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Abstract: Repeated measurements are common in many fields, where random vari-

ables are observed repeatedly across different subjects. Such data have an underlying

hierarchical structure, and it is of interest to learn covariance/correlation at differ-

ent levels. Most existing methods for sparse covariance/correlation matrix estimation

assume independent samples. Ignoring the underlying hierarchical structure and cor-

relation within the subject may lead to erroneous scientific conclusions. In this paper,

we propose to distinguish between the between-subject covariance structure and the

within-subject covariance structure. In the presence of repeated measurement, this

leads to the problem of sparse and positive-definite estimation of between-subject and

within-subject covariance matrices. Our estimators are solutions to convex optimiza-

tion problems that can be solved efficiently. We establish estimation error rates for the

proposed estimators and demonstrate their favorable performance through theoretical

analysis and comprehensive simulation studies. We further apply our methods to con-

struct between-subject and within-subject covariance graphs of clinical variables from
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hemodialysis patients.

Key words and phrases: Covariance graph; repeated measurements; ecological fallacy;

random effect; sparsity.

1. Introduction

Understanding the covariance structure among random variables is one of the

most fundamental tasks in statistics with applications in a wide range of fields,

including economics, biology, and biomedical sciences [Bickel and Levina, 2008b,

Fan et al., 2016]. This task becomes particularly challenging in high-dimensional

settings, where various regularized estimation methods have been proposed in

recent years. However, virtually all current methods require the critical as-

sumption that observations are independent, which could be violated in many

applications. Estimating covariance structures in the presence of dependence

remains an important and challenging problem due to repeated measurements

[Ostroff, 1993].

In many fields, such as medicine, psychology, and neuroscience, random vari-

ables of interest are often measured repeatedly across different subjects, which

leads to dependence among observations within each subject. For example, vital

signs such as pulse and blood pressure are usually measured in multiple phys-

ical exams for each subject. Measurements from the same subject are usually
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correlated. However, these correlations are rarely characterized and sometimes

even totally ignored in the estimation of covariance structure between variables,

which may be practically misguided or even lead to erroneous conclusions [Bae

et al., 2016].

Repeated measurements have an underlying hierarchical structure, and it is

of scientific interest to define and estimate covariance structures at each level.

For example, physical activity tends to increase the heart rate of a person (within

a subject), while physically active people tend to have a lower average heart

rate (between subjects) [Epskamp et al., 2018]. However, in many applications,

this distinction of covariance structures at different levels is often ignored. A

commonly used approach to estimating covariance structure with repeated mea-

surements is to use the sample covariance estimate based on data aggregated for

each subject [Epskamp et al., 2018, Fisher et al., 2018]. This approach results in

biased estimates for covariance structures at either level, and conclusions based

on the estimated covariances may be misleading, causing ecological fallacy or

Simpson’s paradox. Specifically, in Section 7, we apply this biased estimation

based on aggregated data for estimating correlation structures among clinical

variables collected from hemodialysis patients and demonstrate in Figure 2 that

it misses some of the crucial correlation structures that can be recovered by our

proposed method.
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The main premise of this paper is that the dependence structure among

random variables within a subject is different from the dependence structure

between subjects and, thus, should be estimated differently. We are not the

only ones in the literature proposing such a distinction of covariance structures

at different levels. Indeed, the importance of distinguishing between-subject and

within-subject covariances has been increasingly emphasized in the psychomet-

rics literature. For example, the nomothetic approach is used to study variations

between subjects, and the idiographic approach is used to study variations within

a subject [Hamaker, 2012].

However, this issue has not yet received significant attention in the statistics

and biostatistics community and applications in other fields. In particular, to

the best of our knowledge, no statistical methods have been introduced to char-

acterize the bias in using the covariance estimation based on aggregated data

formally and provide practical advice on the improved estimators.

This paper aims to formally address this methodological gap within the

statistics literature and to provide improved estimators with theoretical guar-

antees. We emphasize the importance of separating the covariance structure

among random variables into two targets of estimation: one for within-subject

covariance and one for between-subject covariance, which encode different covari-

ance structures and characterize the bias of using aggregated data in estimating
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either of these two covariance matrices. As improved methods, we propose esti-

mators that are sparse and non-negative definite for both between-subject and

within-subject covariance structures with much improved theoretical properties.

The rest of this paper is organized as follows. Section 2 formally charac-

terizes the distinction between between-subject and within-subject covariances,

and introduces the sample estimates for these two target matrices. Based on

these sample estimates, we propose sparse estimates that are guaranteed to be

positive-definite. As discussed in Section 3, our proposed estimators are defined

as solutions to convex optimization problems, which can be solved efficiently us-

ing an ADMM algorithm. The statistical properties of our proposed estimators

are presented in Section 4. Section 5 compares our proposed between-subject

covariance estimator with the MANOVA-type estimator. Sections 6 and 7 inves-

tigate the numerical performance of our proposed estimators with comprehensive

simulations and an application to a dataset collected from end-stage renal dis-

ease (ESRD) patients. The paper ends with a discussion. Detailed technical

proofs are provided in the Supplementary Materials.
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2. Separate Estimation of Between- and Within-subject Covariance

Structures

For simplicity, this paper uses the term “subject” to represent a generic ex-

perimental unit. We consider a multivariate one-way random effect model for

within-subject and between-subject covariance structures among p random vari-

ables:

Yij = bi + εij, j = 1, . . . , ni; i = 1, . . . ,m, (2.1)

where Yij = (Yij1, . . . , Yijp)
T ∈ Rp is the j-th (out of ni) observation of the

i-th subject, bi = (bi1, · · · , bip)T ∈ Rp are independent and identically dis-

tributed random vectors with mean 0 and covariance matrix Σb ∈ Rp×p, and

εij = (εij1, . . . , εijp)
T ∈ Rp are independent and identically distributed random

vectors with mean 0 and covariance matrix Σε ∈ Rp×p. Additionally, bi and

εij are mutually independent. The between-subject covariance Σb measures the

covariance structure among variables at the group level E(Yij | i). On the other

hand, the within-subject covariance Σε characterizes the covariance structure

among components in Yij−E(Yij | i). Model (2.1) has found wide applications,

e.g., in the classical test theory [Algina and Swaminathan, 2015], where the ob-

served score is modeled as the summation of the true score (as a latent variable)

and a random error. These definitions of between-subject and within-subject
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covariance are in a similar spirit to those in Ostroff [1993] and Piantadosi et al.

[1988], where only the sample version of these quantities was defined.

In longitudinal studies, data with repeated measurements are commonly

modeled by mixed-effects models. Model (2.1) can be considered as a multidi-

mensional response linear mixed effects model without fixed effects. In mixed-

effects model literature, there are two types of estimation methods, where one

maximizes likelihood or restricted likelihood [Rao and Sylvestre, 1984, Laffont

et al., 2014, Fieuws and Verbeke, 2006], the other uses Bayesian Markov chain

Monte Carlo (MCMC) [Bürkner, 2017, Stan Development Team, 2024]. In prac-

tice, those likelihood-based methods are restricted to low-dimensional cases as

computation becomes prohibitive when the number of responses is moderately

large. In this paper, we take a moment estimation approach to greatly simplify

the computation of covariance matrices, leading to the possibility of developing

a theory for sparse estimations in a high-dimensional setting.

For the cross-sectional data, which is a special case of (2.1) with ni = 1 for

i = 1, . . . ,m, it is clear that one can only estimate the overall covariance Σb +

Σε, which does not separate the within-subject and between-subject covariance

structures. When ni ≥ 2 for at least some i ∈ {1, . . . ,m}, a common approach

is to aggregate data across subjects and obtain {Ȳ1·, . . . , Ȳm·}, where Ȳi· =
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∑ni

j=1 Yij/ni. The sample covariance estimate based on this aggregated data,

Σ =
1

m− 1

m∑
i=1

(
Ȳi· −

1

m

m∑
i=1

Ȳi·

)(
Ȳi· −

1

m

m∑
i=1

Ȳi·

)T

, (2.2)

is an unbiased estimate of

E(Σ) = Σb +
m∑
i=1

1

mni

Σε. (2.3)

Consequently, Σ is a biased estimate of either Σε or Σb. Epskamp et al. [2018]

used (2.3) to estimate the between-subject covariance structure. Statistical in-

ferences based on aggregated data may be misinterpreted [Fisher et al., 2018].

In particular, analysis based on aggregated data may result in an issue termed

ecological fallacy or Simpson’s paradox [Piantadosi et al., 1988, Freedman, 1999,

Hamaker, 2012, Epskamp et al., 2018]. Therefore, this paper emphasizes that

one should separately estimate within-subject and between-subject covariance

matrices.

We consider the following unbiased estimates:

Σ̂ε =

(
m∑
i=1

ni −m

)−1 m∑
i=1

ni∑
j=1

(Yij − Ȳi·)(Yij − Ȳi·)
T, (2.4)

Σ̂b = Σ−
m∑
i=1

(mni)
−1Σ̂ε. (2.5)

The sample estimate Σ̂ε is an unbiased estimate of Σε [Rao and Heckler,

1998]. From (2.2), Σ̂b is an unbiased estimate of Σb, and is a multivariate ex-

tension of the unweighted sum-of-squares estimator in Rao and Sylvestre [1984].
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There exist other unbiased estimates, one of which for Σb will be considered in

Section 5 and shown to be suboptimal compared to Σ̂b considered in (2.5).

3. Sparse Positive Definite Estimation of the Two Covariance Ma-

trices

In high-dimensional settings, where the number of random variables p is larger

than the number of subjects m, we observe that Σ̂ε in (2.5) may be singular.

Furthermore, Σ̂b may not be positive semi-definite for any dimensions. In par-

ticular, the diagonal elements in Σ̂b could be negative, making neither Σ̂ε nor

Σ̂b useful in practice. Furthermore, in high-dimensional settings, the entry-wise

sparsity assumption in covariance matrices is commonly imposed for better in-

terpretation. These observations call for regularized estimation of both Σb and

Σε that are sparse and guaranteed to be positive definite.

Most recent approaches to estimating a large covariance matrix involve reg-

ularized estimation based on an unbiased estimate of the target covariance ma-

trix. In a setting with independent and identically distributed samples, it is

straightforward to use the sample covariance matrix as an unbiased estimate,

and methods in the literature differ in various approaches to imposing regulariza-

tion. Specifically, methods based on thresholding the sample covariance matrix

have been well-studied [Bickel and Levina, 2008a,b, Cai and Yuan, 2012], and
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further improvements have been developed to ensure positive definiteness in the

resulting estimates [Rothman et al., 2009, Rothman, 2012, Xue et al., 2012, Cui

et al., 2016]. Bien and Tibshirani [2011] proposed a penalized likelihood proce-

dure for estimating a sparse covariance matrix, which could be computationally

intensive due to the non-convexity of the likelihood in the covariance matrix.

In this section, we adapt a similar strategy and propose a regularized estimate

of Σb and Σε based on their unbiased estimates in (2.5). Our proposed regu-

larized estimators are defined as solutions to convex optimization problems and

are guaranteed to be positive definite.

Specifically, we consider the following optimization problem for estimating

a generic covariance matrix Σ with input matrix B [Xue et al., 2012],

min
Σ⪰δIp

1

2
∥Σ−B∥2F + λ|Σ|1, (3.1)

where ∥ · ∥F is the Frobenius norm and | · |1 is the ℓ1-norm of the off-diagonal

elements of the input matrix. In high-dimensional settings, the unbiased es-

timator for both of the target covariance matrices may not be non-negative

definite. In practice, a reasonable estimate of either ΣB or Σε needs to be non-

negative definite. Indeed, a non-negative definite covariance matrix is essential

to ensure mathematical validity, interpretability, valid statistical inference, and

computational stability. For repeated measurement data, non-negative definite

covariance matrices are essential for interpreting heterogeneity between subjects,
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variation within subjects, and correlations between different variables and ensur-

ing the validity of downstream analyses. While in general positive definiteness

in the estimated covariance matrix is desired, we note that in some cases posi-

tive semidefiniteness is induced (e.g., random effects selection by inducing low

rank in the estimate of Σb, Pinheiro and Bates [2000]). We propose to enforce

non-negative definiteness in the estimate of both target matrices by using the

constraint Σ ⪰ δIp in (3.1), which imposes positive semi-definiteness on Σ− δIp.

In practice, a small value of δ > 0 is used for numeric stability since the minimum

eigenvalue of the target matrix is usually unknown. This positive definiteness

constraint is essential for a usable and accurate estimate (see Table 1 in the

Supplementary Materials for numeric evidence).

A solution to (3.1) is simultaneously sparse, positive definite, and close to

the input matrix B, which is usually set as an unbiased sample estimate. Let

Σ̂+
ε be the sparse and positive definite estimate of Σε as the solution to (3.1)

with B = Σ̂ε and λ = λε, and Σ̂+
b be the sparse and positive definite estimates

of Σb as the solution to (3.1) with B = Σ̂b and λ = λb. We study Σ̂+
ε and Σ̂+

b

both theoretically and numerically. In addition, to illustrate the suboptimality

of using group aggregation in estimating either covariance matrix, we further

study Σ
+
, which is defined as the solution to (3.1) with B = Σ and λ = λ0. The

theoretical tuning parameter values λε, λb, and λ0 are discussed in Section 4.
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Table 1: Summary of notations for various covariance matrix estimators. Reg-

ularized estimates are defined as solutions to (3.1) with corresponding sample

estimates.

Target Sample

Estimate

Regularized

Estimate

Tuning

Parameter

Comments

Σ Σ
+

λ0 based on (2.2), no distinction at different levels

Σε Σ̂ε Σ̂+
ε λϵ Σ̂ε defined in (2.4)

Σb Σ̂b Σ̂+
b λb Σ̂b defined in (2.5)

Σb Σ̃b Σ̃+
b λ̃b discussed in Section 5

In Table 1, we provide a summary of notations for various covariance matrix

estimators that are considered in this paper.

The convex optimization problem (3.1) can be written equivalently as

min
Σ,Θ

{
1

2
∥Σ−B∥2F + λ|Θ|1 : Σ = Θ, Σ ⪰ δIp

}
, (3.2)

which we solve using the alternating direction method of multipliers [Boyd et al.,

2010]. Specifically, the algorithm iteratively minimizes the following augmented

Lagrangian

L(Σ,Θ;Λ) =
1

2
∥Σ−B∥2F + λ|Θ|1 + ⟨Λ,Σ−Θ⟩+ ρ

2
∥Σ−Θ∥2F ,
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over Σ, Θ, and the dual variable Λ using the following updates until convergence:

Σ← argminΣ⪰δIp L(Σ,Θ;Λ) = 1
1+ρ

(B + ρΘ− Λ, δ)+, (3.3)

Θ← argminΘ L(Σ,Θ;Λ) = Sλ/ρ
(
Σ + 1

ρ
Λ
)
, (3.4)

Λ← Λ + ρ(Σ−Θ).

The update in (3.3) computes the projection onto a positive semi-definite cone,

where (A, δ)+ =
∑p

j=1max(λj, δ)vjv
T
j for a generic matrix A ∈ Rp×p with the

eigendecomposition A =
∑p

j=1 λjvjv
T
j . The update in (3.4) evaluates element-

wise soft-thresholding operators, where {Sb(A)}jk = sign(Ajk)max(|Ajk| − b, 0)

for any matrix A and scalar b ≥ 0. We follow Boyd et al. [2010] for practical

considerations in this algorithm, including the initial values, the stopping cri-

terion, and the updating strategy for the optimization parameter ρ, and refer

to S1 of the Supplementary Materials for further implementation details. This

algorithm has been widely used in the literature on covariance estimation [e.g.,

Bien and Tibshirani, 2011, Xue et al., 2012] with well-established convergence

analysis [Nishihara et al., 2015]. The computational complexity of each update is

dominated by the eigendecomposition in (3.3), which requires O(p3) operations.

An approximate alternating direction method of multipliers [Rontsis et al., 2022]

could be used to improve the computational complexity by avoiding repeated

eigendecompositions.
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4. Theoretical Properties

In this section, we first illustrate the pitfall of the sample estimator (2.2) based on

the aggregated data to estimate either of the target matrices. In comparison, we

then derive the finite-sample estimation error rate of our proposed estimators

Σ̂+
ε (in Section 4.3) and Σ̂+

b (in Section 4.4), and establish their asymptotic

consistency.

4.1 Notations and Assumptions

We observe Yij ∈ Rp, which is the j-th repeated measurement of the i-th subject

for j = 1, . . . , ni and i = 1, . . . ,m, following the model (2.1), where εij and bi are

p-dimensional sub-Gaussian random vectors with the true within and between

covariance cov(εij) = Σ0
ε and cov(bi) = Σ0

b respectively, and bi and εij are

mutually independent. Let N =
∑m

i=1 ni be the total number of observations.

We consider the following class of sparse covariance matrices:

U(M, s) =

{
Σ ∈ Sp×p

++ : max
k

Σk,k ≤M, max
k

p∑
ℓ=1

1(Σk,ℓ ̸= 0) ≤ s

}
,

where Sp×p
++ is the set of all p-by-p symmetric positive definite matrices, and Σk,ℓ

is the (k, ℓ)-th entry of Σ. A matrix in U(M, s) has diagonals bound M and

maximum row-wise (and by symmetry, column-wise) sparsity level s.
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4.2 Inconsistency of sample covariance estimator based on aggregated data

4.2 Inconsistency of sample covariance estimator based on aggre-

gated data

We first establish that Σ is inconsistent in estimating either Σb or Σϵ due to

a non-vanishing bias in the estimation lower bounds, even with the number of

subjects approaching infinity. Recall from (2.3) that Σ is biased in estimating

either Σb or Σϵ. In the following theorem, we characterize the finite sample lower

bound on the element-wise estimation error.

Theorem 1. Consider the true within-subject covariance Σ0
ε with maxk(Σ

0
ε)k,k ≤

Mε and the true between-subject covariance Σ0
b with maxk(Σ

0
b)k,k ≤Mb. Let

λ0,b = max
k,l

∣∣∣∣ m(Σ0
ε)k,l

(m− 1)n∗ +
(Σ0

b)k,l
m− 1

∣∣∣∣− C1

(
log p

m

)1/2

,

and

λ0,ε = max
k,l

∣∣∣∣ m

m− 1
(Σ0

b)k,l −
(
1−

∑m
i=1 n

−1
i

(m− 1)

)
(Σ0

ε)k,l

∣∣∣∣− C1

(
log p

m

)1/2

,

for sufficiently large C1 > 0, where n∗ = m/
∑m

i=1 n
−1
i . If log p ≤ m, then the

naive sample estimate Σ based on the aggregated data satisfies

pr

{
max
k,l

∣∣(Σ− Σ0
b)k,l

∣∣ > λ0,b

}
≥ 1− 4p−C2 ,

and

pr

{
max
k,l

∣∣(Σ− Σ0
ε)k,l

∣∣ > λ0,ε

}
≥ 1− 4p−C2 ,

where C2 > 0 only depends on C1 and max(Mε,Mb).
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4.3 Estimation Error Rate for the Within-Subject Covariance Estimator

The first terms in both of λ0,b and λ0,ε above are not vanishing, even when m

approaches infinity. This implies that Σ is not a good estimate of either Σe or Σb.

For example, in the balanced setting where ni = n1 for all i = 1, . . . ,m, it holds

that n∗ = n1. The bias term in estimating Σb does not vanish even if m → ∞

as long as n1 = O(1). And the bias term in estimating Σϵ is not going to zero

even if both m → ∞ and ni → ∞, as long as Σ0
b = Σ0

ϵ does not hold element-

wise. However, in practice, Σ has been misused to provide a sample estimate

for subsequent regularized estimation [Epskamp et al., 2018]. In Section S3.5

in Supplementary Materials, we provide upper bounds on the estimation error

rates for Σ
+

for estimating either Σb or Σε, which is defined as the solution

to (3.1) with input sample matrix B = Σ. In the subsequent subsections, we

present upper bounds on the estimation error rate of our proposed estimators

and show their consistency.

4.3 Estimation Error Rate for the Within-Subject Covariance Esti-

mator

Theorem 2 (Estimation error rate of Σ̂+
ε ). Assume that the true within-subject

covariance matrix Σ0
ε ∈ U(Mε, sε). Let λε = C1(N log p)1/2/(N−m) be the value

of the tuning parameter λ in (3.1) for a sufficiently large constant C1 > 0. If
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4.3 Estimation Error Rate for the Within-Subject Covariance Estimator

log p ≤ N , the proposed within-subject estimator Σ̂+
ε satisfies

∥∥∥Σ̂+
ε − Σ0

ε

∥∥∥
F
≤ 5λε(psε)

1/2

with probability at least 1− 4p−C2, where C2 > 0 only depends on C1 and Mε.

The term (psε)
1/2 in the error rate above represents the overall sparsity of

the true covariance matrix Σ0
ε. This dependence on the sparsity level has also

been noted in Rothman et al. [2008] and Xue et al. [2012] over slightly different

matrix classes. Notably, the estimation error rate does not depend on Mε or on

the exact values of ni for i = 1, ...,m. Instead, the effective sample size in λ is

N1/2−N−1/2m, which only depends on the total observation number N and the

number of subjects m.

Remark 1. When the number of subject m is relatively small compared with

the total number of observations N in the scale of m = o(N1/2), Theorem 2

implies that ∥∥∥Σ̂+
ε − Σ0

ε

∥∥∥
F
= OP

{
(psεN

−1 log p)1/2
}
,

where Xn = OP (an) means that for a set of random variables Xn and a cor-

responding set of constants an, Xn/an is bounded by a positive constant with

probability approaching 1. This rate coincides with those in Bickel and Levina

[2008b], Rothman et al. [2008, 2009], Cai and Liu [2011], Xue et al. [2012], which

are derived based on the assumption of independent and identically distributed
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4.3 Estimation Error Rate for the Within-Subject Covariance Estimator

observations.

Remark 2. On the other hand, with m = O(N), e.g., when the number of

repeated measurements of each subject is bounded by a constant, Theorem 2

implies that ∥∥∥Σ̂+
ε − Σ0

ε

∥∥∥
F
= OP

{
(psεm

−1 log p)1/2)
}
.

In this scenario, m plays the role of the effective sample size, and estimation

consistency is achieved when m approaches infinity.

Remark 3. Following the similar presentation as in Xue et al. [2012], the prob-

ability for which the estimation error bound in Theorem 2 (and all subsequent

theorems) holds solely depends on the ambient dimension p, which implicitly

assumes that p → ∞. In the settings where p is fixed, following the proof

in S3 in Supplementary Materials, the probability can be expressed in terms

of the effective sample size, which implies that the probability goes to 1 as

N1/2 −N−1/2m→∞.

Remark 4. We note that although the theoretical analysis depends on the ex-

ponential tail condition from the sub-Gaussian assumptions, it can be extended

to allow for a polynomial-tail condition as in Xue et al. [2012] using similar

arguments. Specifically, a generic random variable Z with mean 0 satisfies the

polynomial-tail condition with constant Kz if for all γ > 0 and δ > 0, the
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4.3 Estimation Error Rate for the Within-Subject Covariance Estimator

following holds

E
[
|Z|4(1+γ+δ)

]
≤ Kz (4.1)

for some Kz > 0. The following theorem derives the estimation error bound for

Σ̂+
ε under the polynomial-tail condition.

Theorem 3. Suppose that random errors εij ∈ Rp are i.i.d. random vectors

with mean zero and within-subject covariance cov(εij) = Σε ∈ U(Mε, sε). Fur-

thermore, suppose that the entries εijk satisfy the polynomial-tail condition (4.1)

with constant Kε for k = 1, . . . , p. For any constant M > 0, let

λε = 16(Kε + 1)(M + 2)
(N log p)1/2

N −m
.

If p ≤ cNγ for some c, then the regularized within-subject covariance estimate

Σ̂+
ε satisfies

pr
{∥∥∥Σ̂+

ε − Σ0
ε

∥∥∥
F
≤ 5λε(psε)

1/2
}

≥ 1−O(p−M)−Kεp(logN)2(1+γ+δ)N−(γ+δ) −Kεp(logm)2(1+γ+δ)m−(γ+δ).

Comparing with Theorem 2, Σ̂+
ε attains the same rate of error bound under

the polynomial-tail condition, with more stringent scaling conditions on p, m,

and N so that the probability for which the error bound holds goes to 1. This

pattern is consistent with Theorem 2 in Xue et al. [2012].
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4.4 Estimation Error Rate for the Between-Subject Covariance Estimator

4.4 Estimation Error Rate for the Between-Subject Covariance Es-

timator

Theorem 4 (Estimation error rate of Σ̂+
b ). Assume that the true between-subject

covariance matrix Σ0
b ∈ U(Mb, sb) and the true within-subject covariance matrix

Σ0
ε ∈ U(Mε, sε). Let

λb = C1

(
log p

m

)1/2

+ C2
(N log p)1/2

(N −m)n∗ +
Mb

m
+

Mε

mn∗ (4.2)

be the value of the tuning parameter λ in (3.1) for sufficiently large C1, C2 >

0, where n∗ = m/
∑m

i=1 n
−1
i . If log p ≤ m, then the proposed between-subject

estimator Σ̂+
b satisfies ∥∥∥Σ̂+

b − Σ0
b

∥∥∥
F
≤ 10λb(psb)

1/2

with probability at least 1 − 8p−C3, where C3 > 0 only depends on C1, C2 and

max(Mε,Mb).

Unlike the estimation error rate for Σ̂ε in Theorem 2, the rate for Σ̂b depends

on the values of ni’s via the term n∗. A simple bound n∗ ≥ mini ni implies that

the second term in λb converges to 0 at a rate that is at least not slower than λε

in Theorem 2. The rate in λb is thus dominated by (m−1 log p)1/2. Furthermore,

in Theorem 7 in S3.7 of the Supplementary Materials, we derive the estimation

error bound for Σ̂+
b under the polynomial-tail condition (4.1), which is the same

as under the exponential-tail condition.
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Finally, in some scenarios, the estimation of between-subject and within-

subject correlation matrices, instead of covariance matrices, is of interest and

can be obtained similarly in the proposed framework. We provide estimation

error rates of the sparse positive definite estimators of two correlation matrices

in S3.6 of the Supplementary Materials.

5. Comparison Between Two Unbiased Estimators of Between-subject

Covariance

We consider a commonly used unbiased estimator of Σb based on the multivariate

analysis of variance [Rao and Heckler, 1998]:

Σ̃b =
1

n0

{
m∑
i=1

ni

m− 1
(Ȳi· − Ȳ··)(Ȳi· − Ȳ··)

T − Σ̂ε

}
,

where

n0 =
N −N−1

∑m
i=1 n

2
i

m− 1
, Ȳi· = n−1

i

ni∑
j=1

Yij, Ȳ·· = N−1

m∑
i=1

ni∑
j=1

Yij,

and N =
∑m

i=1 ni.

It is straightforward to show that E(Σ̃b) = Σb. However, just like Σ̂b in

(2.5), the diagonal elements of Σ̃b could be negative, which is undesirable for

an estimate of Σb. Specifically, in the setting where bi and εij follow Gaussian

distributions and ni’s are all equal, it can be shown that pr{(Σ̃b)k,k < 0} de-

creases with (Σ0
b)k,k/(Σ

0
ε)k,k. An adjustment for negative diagonal values of Σ̃b is
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proposed in Rao and Heckler [1998] based on the assumption that Σ̂ε is positive

definite, which is violated in the high-dimensional settings.

We demonstrate an additional limitation of using Σ̃b, in comparison with Σ̂b,

in obtaining a sparse positive definite estimate of Σb. Define Σ̃+
b as a solution

of (3.1) with B = Σ̃b (see Table 1). The following theorem shows that the

performance of Σ̃+
b hinges on the data imbalance.

Theorem 5 (Estimation error rate of Σ̃+
b ). Assume that the true between-subject

covariance matrix Σ0
b ∈ U(Mb, sb) and the true within-subject covariance matrix

Σ0
ε ∈ U(Mε, sε). Let

λ̃b = C1
maxi ni

n0

(
log p

m

)1/2

+ C2
(N log p)1/2

n0(N −m)
+

(2N − n0m)Mb

2n0m
+

Mε

n0m

be the value of the tuning parameter λ in (3.1) for sufficiently large C1, C2 > 0.

If log p ≤ m, then Σ̃+
b satisfies

∥∥∥Σ̃+
b − Σ0

b

∥∥∥
F
≤ 10λ̃b(psb)

1/2

with probability at least 1 − 8p−C3, where C3 > 0 only depends on C1, C2 and

max(Mε,Mb).

We define a measure of data imbalance as maxi ni/n0 ≥ 1, where n0 is

defined in (5.1). In the balanced dataset where all ni’s are equal, we have

maxi ni/n0 = 1 and the two estimators coincide Σ̂+
b = Σ̃+

b . This equivalence is
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also reflected by the same estimation error rate since λb = λ̃b. When ni’s are

not all equal, the imbalance maxi ni/n0 > 1 increases with maxi ni for fixed m

and N . Comparing the first term in λb and λ̃b, the estimation error rate of Σ̃+
b

in the dimension p is strictly worse than that of Σ̂+
b , which does not depend on

the imbalance of the dataset.

To understand the theoretical advantage of using Σ̂b in the imbalanced data,

we note that it can be interpreted as a pooling estimator, where each repeated

measurement contributes to the final covariance matrix estimate equally. In

comparison, the form of Σ̃b suggests that subjects with more measurements will

have a heavier weight in the final estimate. This suggests the possible depen-

dence of Σ̃b on the data imbalance. Furthermore, Σ̂b is an extension to the

Unweighted Sums of Squares (USS) type estimator [Rao et al., 1981, Rao and

Sylvestre, 1984] to the multivariate case. Conclusions from Rao and Sylvestre

[1984], which focuses on the univariate case, state that “ ... there is considerable

gain in using the USS estimators instead of the ANOVA estimator... ” which

suggests the similar advantage of USS estimator (Σ̂b) over the ANOVA type of

estimator (Σ̃b) in the multivariate settings. We numerically verify this compar-

ison in Section 6, and demonstrate that the practical performance of Σ̃+
b could

be very sensitive to the data imbalance.
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6. Simulation Studies

In this section, we evaluate the numeric performance of our proposed estimators

Σ̂+
ε (for the within-subject covariance Σε) and Σ̂+

b (for the between-subject co-

variance Σb), and compare with Σ
+
(in estimating either Σb or Σε) and Σ̃+

b (in

estimating Σb).

6.1 Simulation Settings

In each of the subsequent subsections, we generate observations Yij from model

(2.1), where bi ∼ N(0,Σ0
b) and εij ∼ N(0,Σ0

ε). All estimators in comparison

are defined as solutions to the optimization problem (3.1) with corresponding

input sample covariance matrices. We use a 5-fold cross-validation procedure to

select the optimal tuning parameter value λ in (3.1) for each problem. We refer

interested readers to S2 of the Supplementary Materials for the details of the

cross-validation procedure in the repeated measurement settings.

6.2 General Comparison

In Sections 4 and Section 5, we have shown that the estimation error rates of

the estimators we study in this paper depend on various factors: the number

of subjects m, the total number of observations N , the ambient dimension p,

and for Σ̃+
b the data imbalance, i.e., maxi ni/n0. To illustrate the established
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6.2 General Comparison

theoretical results, we consider the following models:

Model 1. Banded matrices with bandwidth 10: set (Σ0
b)j,k = (1− |j − k|/10)+

and (Σ0
ε)j,k = (−1)|k1−k2|(1− |k1 − k2|/10)+;

Model 2. Covariance matrices corresponding to an ar(1) series: set (Σ0
b)j,k =

0.6|j−k| and (Σ0
ε)j,k = (−0.6)|j−k|.

We note that the same covariance structures had been used in Bickel and

Levina [2008a], Rothman [2012], Xue et al. [2012], Cui et al. [2016]. In each

setting, we let N = 1000 and m = 100 and consider p = 100 and p = 200.

Furthermore, to study the effect of data imbalance on the estimation error, we

set ni = a for i = 1, 2, . . . , 99, where a = {3, 4, · · · , 10}, and n100 = N −99a. By

doing so, we generate settings where the measure of data imbalance, maxi ni/n0,

varies.

Fig. 1 summarizes the estimation error in the Frobenius norm averaged over

100 replications. We present the performance of four estimators: the proposed

within-subject estimator Σ̂+
ε for estimating Σ0

ε, and three between-subject esti-

mators Σ̂+
b (our proposed method), Σ̃+

b (the ANOVA type estimator), and Σ
+

(the aggregated estimator) for estimating either Σ0
b or Σ0

ε. Among the three

between-subject estimators, our proposed method Σ̂+
b achieves the lowest esti-

mation error in all simulation settings. Furthermore, being consistent with the

results in Theorem 2, Theorem 4, and Theorem 5, the performance of Σ̂+
b and
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Figure 1: Estimation error (in Frobenius norm, averaged over 100 replicates) for two

between-subject (solid) and one within-subject (dash) covariance matrix estimator:

Σ̃+
b (violet triangle), Σ̂+

b (orange circle), and Σ̂+
ε (pink diamond). The estimation

error of the aggregated estimator (Σ
+
, green square) is evaluated in estimating the

within-subject (dash) and the between-subject (solid) covariance matrices. The x-axis

is maxi ni/n0, which characterizes the imbalance of the data.
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6.2 General Comparison

Σ
+
are much less sensitive to the data imbalance maxi ni/n0 while the error of

Σ̃+
b dramatically increases as the data become less balanced. Surprisingly, in all

but the perfectly balanced case (maxi ni/n0 = 1), we observe that Σ̃+
b , which

is built on the unbiased sample estimate (5.1), performs much worse than Σ
+

which is built on the biased Σ in (2.2). This suggests the dominating role of data

imbalance in the estimation error of Σ̃+
b . Our proposed method Σ̂+

ε also achieves

much lower estimation errors than Σ
+
in estimating within-subject covariance

in all simulation settings. The decreasing error of Σ
+
in estimating Σ0

ε is consis-

tent with Theorem 5 in S3.5 of the Supplementary Materials, which states that

the error rate of ∥Σ+ − Σ0
ε∥F is inversely proportional to the imbalance score

maxi ni/n0. As seen in Fig 1, the estimator Σ
+

based on the biased sample

estimate Σ surprisingly has a relatively acceptable numerical performance. In

S4.2 in Supplementary Materials, we conduct additional simulation studies to

further demonstrate the limitations of using Σ and the favorable performance of

our proposed estimators.

To demonstrate the effectiveness of regularization, in Fig. 1 in S4.1 of the

Supplementary Materials, we present the cross-validation curves and the receiver

operating characteristic (ROC) of the sparsity recovery of these estimators in

Model 1 with p = 100 and under three different levels of data imbalance. The

optimal values of λ for Σ̂+
ε , Σ̂

+
b , and Σ

+
are relatively stable across different
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6.2 General Comparison

levels of data imbalance, while the optimal value of λ for Σ̃+
b sharply fluctuates

and generally increases with maxi ni/n0. This indicates that large values of

maxi ni/n0 tend to result in more shrinkage of the off-diagonal entries in Σ̃+
b

towards 0. This observation is aligned with the larger error of Σ̃+
b in Frobenius

norm in Fig. 1 for large values of maxi ni/n0.

While the theoretical guarantees of support recovery would be an interesting

and challenging problem for future research, we observe numerically that the

data imbalance seems not to affect the support recovery performance of Σ̂+
ε ,

Σ̂+
b , and Σ

+
, which is an established favorable properties of these estimators in

terms of estimation error. In contrast, just as in estimation error, Σ̃+
b suffers in

sparsity recovery performance from the data imbalance.

Finally, we note that our proposed methods do not require the assumptions

that random effects bi and random errors εij are normally distributed. To gauge

the numeric performance of the proposed estimators when the Gaussian assump-

tion is violated, e.g., in heavy-tailed data, we consider simulation settings where

random effects and random errors are both generated from a t5 distribution, and

every other specification remains the same as in Model 1 with p = 100. The

results, which are summarized in S4.3 in the Supplementary Materials, suggest

that our proposed methods still perform favorably in heavy-tailed settings.
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7. Covariance Graphs of Clinical Variables from Hemodialysis Pa-

tients

We apply our proposed methods to estimate the between-subject and within-

subject covariance structures among some clinical variables collected from hemodial-

ysis patients. Hemodialysis is a treatment that filters wastes and fluid from

patients’ blood when the kidneys no longer function well. Hemodialysis patients

usually follow a strict schedule by visiting a dialysis center about three times a

week. Clinical variables, such as blood pressure and pulse, are measured during

each treatment. Since numerous metabolic changes accompanying impaired kid-

ney function affect all organ systems of the human body, it is imperative to study

correlations among clinical variables. Those clinical variables are measured re-

peatedly for each hemodialysis patient at each treatment. We will investigate

correlation structures at the patient (between-patient) and treatment (within-

patient) levels.

We use a dataset of measurements of several clinical and laboratory vari-

ables during 2018 and 2021 from 5,000 hemodialysis patients. For homogeneity,

we consider white, non-diabetic, and non-Hispanic male patients who never had

a COVID-19-positive polymerase chain reaction test. We use the measurements

starting from the second year to avoid large fluctuations in the first year of

dialysis. The dataset contains 276 patients with at least three complete treat-
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ment records every 30 days. The data imbalance is maxi ni/n0 = 2.54. For

simplicity, we focus on the relationships among interdialytic weight gain, blood

pressure, and heart rate. Based on Ipema et al. [2016], we consider the fol-

lowing eight variables: idwg (interdialytic weight gain, kg), ufv (ultrafiltration

volume, L), min sbp (minimum systolic blood pressure, mmHg), min dbp (min-

imum diastolic blood pressure, mmHg), max sbp (maximum systolic blood pres-

sure, mmHg), max dbp (maximum diastolic blood pressure, mmHg), min pulse

(minimum pulse, beats/min), and max pulse (maximum pulse, beats/min). In

our analysis, ufv is set to be the difference between predialysis and postdialysis

weight within a hemodialysis session.

We are interested in recovering the correlation structures at the patient and

treatment levels. Estimating the correlation matrix corresponds to recovering

the correlation graph, where the nodes represent the random variables of interest

and the edges present the marginal correlation between the nodes [Chaudhuri

et al., 2007]. We apply our method to repeated clinical measurements from

these 276 patients. The regularization parameters are chosen by 5-fold cross-

validation with the one standard error rule [Hastie et al., 2009]. Fig. 2 presents

estimates of the within-subject (left panel) and between-subject (middle panel)

correlations, which indeed present different correlation structures. We also in-

clude the estimate using the aggregated data (right panel) for comparison, which
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Figure 2: Within-subject (left), between-subject (middle) correlation graphs and cor-

relation graph using the aggregated data (right) for clinical variables from hemodialy-

sis patients. We present correlation matrices with the convention of using bi-directed

covariance graphs [Chaudhuri et al., 2007]. The blue edges correspond to the positive

correlations, while the red edges represent the negative correlations. The width of an

edge corresponds to the strength of the correlation.

coincides with our between-subject estimate. This is consistent with Theorem 1

for this dataset’s small value of maxi ni/n0.

It is important to realize that covariance structures at the treatment and pa-

tient levels could differ and should be estimated separately. Existing biological

studies based on the aggregated measurements ignore such a difference in esti-

mation and thus may lead to erroneous conclusions. In particular, our estimated

correlation graph at the treatment level (within-subject) reveals much insight

for hemodialysis treatment that cannot be recovered using the aggregate data.
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Specifically, we discuss several important recovered correlations in Σ̂+
ε that have

been missed in either Σ̂+
b or Σ

+
. Specifically, salt and fluid intake between two

hemodialysis sessions leads to interdialytic weight gain. A dialyzer, an artificial

kidney, should filter the accumulation of waste and fluid. Ultrafiltration vol-

ume measures the waste and fluid removed from patients’ blood. Consequently,

higher idwg leads to larger ufv, confirmed by the positive correlation between

idwg and ufv at the treatment level in Fig. 2. A rapid removal of fluid from

a patient’s blood results in the depletion of blood volume and subsequently

leads to a decrease in systolic blood pressure, confirmed by the negative corre-

lation between ufv and min sbp at the treatment level in Fig. 2. The lowered

blood pressure will be compensated by heart functionality, which elevates the

heart rate, again confirmed by the negative correlation between min sbp and

max pulse at the treatment level in Fig. 2. However, no relationships among

idwg, max pulse, and min sbp have been observed at the patient level in the

middle panel of Fig. 2. This implies that we should focus on correlations be-

tween clinical measurements at the treatment level rather than the patient level

when evaluating the effectiveness of hemodialysis.
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8. Discussion

In this paper, we study the problem of estimating covariance structure among

random variables in the presence of dependent observations from repeated mea-

surements. In this challenging setting, we suggest against the commonly used

subject-aggregated estimator, which could incur ecological fallacy. Instead, we

propose simultaneously studying the between-subject and the within-subject co-

variance matrices under a random effect model. These two targets of estimation

retain different covariance graphs and should be interpreted and estimated dif-

ferently — a key observation that is commonly ignored in previous literature.

Through both theoretical and numerical studies, we show that our proposed

sparse and positive definite estimator of both target matrices enjoys favorable

estimation error rates and robustness to the imbalance of the data.

We note that this paper emphasizes the importance of separating and es-

timating covariance structures at different levels in the presence of dependent

observations. Our approach is not restricted to either the random effect model

in (2.1) or any specific regularized estimation methods such as in (3.1). Follow-

ing the idea of this paper, extending model (2.1) to more general mixed effects

models that allows for fixed effects Xijβ requires proper treatment of different

covariance matrices, and their simultaneous regularized estimation will be an

interesting future research direction. In particular, among existing methods in
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literature, one strategy [see, e.g., Ahn et al., 2012] is to first deploy a working

homoscedastic assumption on the linear model and to obtain a least squares

estimate β̂, which is unbiased but is not statistically efficient. Then the residues

Yij − Xijβ̂ can be used for the task of covariance estimation. Another type of

method adapts a joint estimation approach, but has to impose strongly simplify-

ing assumptions on the covariance structure among the random effects [Reisetter

and Breheny, 2021]. Most importantly, however, virtually all existing methods

only focus on the univariate response setting [Ahn et al., 2012, Reisetter and

Breheny, 2021]. The problem of extending this task to the multivariate response

settings is of great importance to the literature. However, this problem can be

particularly challenging, as the estimation of β (and potentially selection of fixed

effects) is largely intertwined with the (regularized) estimation of covariance ma-

trices, both in terms of computation and theoretical analysis. The authors are

working on tackling these challenges in a follow-up project.

Supplementary Material

The online Supplementary Material includes proofs of the theoretical results,

computational details, and additional data analyses.
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