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Abstract: Repeated measurements are common in many fields, where random vari-
ables are observed repeatedly across different subjects. Such data have an underlying
hierarchical structure, and it is of interest to learn covariance/correlation at differ-
ent levels. Most existing methods for sparse covariance/correlation matrix estimation
assume independent samples. Ignoring the underlying hierarchical structure and cor-
relation within the subject may lead to erroneous scientific conclusions. In this paper,
we propose to distinguish between the between-subject covariance structure and the
within-subject covariance structure. In the presence of repeated measurement, this
leads to the problem of sparse and positive-definite estimation of between-subject and
within-subject covariance matrices. Our estimators are solutions to convex optimiza-
tion problems that can be solved efficiently. We establish estimation error rates for the
proposed estimators and demonstrate their favorable performance through theoretical
analysis and comprehensive simulation studies. We further apply our methods to con-

struct between-subject and within-subject covariance graphs of clinical variables from
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hemodialysis patients.

Key words and phrases: Covariance graph; repeated measurements; ecological fallacy;

random effect; sparsity.

1. Introduction

Understanding the covariance structure among random variables is one of the
most fundamental tasks in statistics with applications in a wide range of fields,
including economics, biology, and biomedical sciences [Bickel and Levina, 2008b),
Fan et al., 2016]. This task becomes particularly challenging in high-dimensional
settings, where various regularized estimation methods have been proposed in
recent years. However, virtually all current methods require the critical as-
sumption that observations are independent, which could be violated in many
applications. Estimating covariance structures in the presence of dependence
remains an important and challenging problem due to repeated measurements
[Ostroft, [1993].

In many fields, such as medicine, psychology, and neuroscience, random vari-
ables of interest are often measured repeatedly across different subjects, which
leads to dependence among observations within each subject. For example, vital
signs such as pulse and blood pressure are usually measured in multiple phys-

ical exams for each subject. Measurements from the same subject are usually



correlated. However, these correlations are rarely characterized and sometimes
even totally ignored in the estimation of covariance structure between variables,
which may be practically misguided or even lead to erroneous conclusions [Bae
et al., 2016].

Repeated measurements have an underlying hierarchical structure, and it is
of scientific interest to define and estimate covariance structures at each level.
For example, physical activity tends to increase the heart rate of a person (within
a subject), while physically active people tend to have a lower average heart
rate (between subjects) [Epskamp et al., 2018]. However, in many applications,
this distinction of covariance structures at different levels is often ignored. A
commonly used approach to estimating covariance structure with repeated mea-
surements is to use the sample covariance estimate based on data aggregated for
each subject [Epskamp et al. [2018, Fisher et al.; 2018]. This approach results in
biased estimates for covariance structures at either level, and conclusions based
on the estimated covariances may be misleading, causing ecological fallacy or
Simpson’s paradox. Specifically, in Section [7, we apply this biased estimation
based on aggregated data for estimating correlation structures among clinical
variables collected from hemodialysis patients and demonstrate in Figure [2| that
it misses some of the crucial correlation structures that can be recovered by our

proposed method.



The main premise of this paper is that the dependence structure among
random variables within a subject is different from the dependence structure
between subjects and, thus, should be estimated differently. We are not the
only ones in the literature proposing such a distinction of covariance structures
at different levels. Indeed, the importance of distinguishing between-subject and
within-subject covariances has been increasingly emphasized in the psychomet-
rics literature. For example, the nomothetic approach is used to study variations
between subjects, and the idiographic approach is used to study variations within
a subject |[Hamaker, 2012].

However, this issue has not yet received significant attention in the statistics
and biostatistics community and applications in other fields. In particular, to
the best of our knowledge, no statistical methods have been introduced to char-
acterize the bias in using the covariance estimation based on aggregated data
formally and provide practical advice on the improved estimators.

This paper aims to formally address this methodological gap within the
statistics literature and to provide improved estimators with theoretical guar-
antees. We emphasize the importance of separating the covariance structure
among random variables into two targets of estimation: one for within-subject
covariance and one for between-subject covariance, which encode different covari-

ance structures and characterize the bias of using aggregated data in estimating



either of these two covariance matrices. As improved methods, we propose esti-
mators that are sparse and non-negative definite for both between-subject and
within-subject covariance structures with much improved theoretical properties.

The rest of this paper is organized as follows. Section [2| formally charac-
terizes the distinction between between-subject and within-subject covariances,
and introduces the sample estimates for these two target matrices. Based on
these sample estimates, we propose sparse estimates that are guaranteed to be
positive-definite. As discussed in Section [3]| our proposed estimators are defined
as solutions to convex optimization problems, which can be solved efficiently us-
ing an ADMM algorithm. The statistical properties of our proposed estimators
are presented in Section [l Section [f] compares our proposed between-subject
covariance estimator with the MANOVA-type estimator. Sections [6]and [7]inves-
tigate the numerical performance of our proposed estimators with comprehensive
simulations and an application to a dataset collected from end-stage renal dis-
ease (ESRD) patients. The paper ends with a discussion. Detailed technical

proofs are provided in the Supplementary Materials.



2. Separate Estimation of Between- and Within-subject Covariance

Structures

For simplicity, this paper uses the term “subject” to represent a generic ex-
perimental unit. We consider a multivariate one-way random effect model for
within-subject and between-subject covariance structures among p random vari-

ables:
}/;j:bi—i-éfij,j:l,...,ni;izl,...,m, (21)

where Y;; = (Yij1,...,Yp)" € RP is the j-th (out of n;) observation of the
i-th subject, b; = (b1, - ,b;p)" € RP are independent and identically dis-
tributed random vectors with mean 0 and covariance matrix >, € RP*P, and
€ij = (&ij1,---,€i5p)" € RP are independent and identically distributed random
vectors with mean 0 and covariance matrix . € RP*P. Additionally, b; and
g;; are mutually independent. The between-subject covariance X, measures the
covariance structure among variables at the group level E(Y;; | ). On the other
hand, the within-subject covariance Y. characterizes the covariance structure
among components in Y;; — E(Y;; | 7). Model has found wide applications,
e.g., in the classical test theory [Algina and Swaminathan, 2015], where the ob-
served score is modeled as the summation of the true score (as a latent variable)

and a random error. These definitions of between-subject and within-subject



covariance are in a similar spirit to those in |Ostroff| [1993] and |Piantadosi et al.
[1988], where only the sample version of these quantities was defined.

In longitudinal studies, data with repeated measurements are commonly
modeled by mixed-effects models. Model can be considered as a multidi-
mensional response linear mixed effects model without fixed effects. In mixed-
effects model literature, there are two types of estimation methods, where one
maximizes likelihood or restricted likelihood |[Rao and Sylvestre, 1984, Laffont
et al., 2014} Fieuws and Verbeke| 2006], the other uses Bayesian Markov chain
Monte Carlo (MCMC) [Biirkner, 2017, |Stan Development Team)| 2024]. In prac-
tice, those likelihood-based methods are restricted to low-dimensional cases as
computation becomes prohibitive when the number of responses is moderately
large. In this paper, we take a moment estimation approach to greatly simplify
the computation of covariance matrices, leading to the possibility of developing
a theory for sparse estimations in a high-dimensional setting.

For the cross-sectional data, which is a special case of with n; = 1 for
1 =1,...,m, it is clear that one can only estimate the overall covariance ¥, +
Y., which does not separate the within-subject and between-subject covariance
structures. When n; > 2 for at least some ¢ € {1,...,m}, a common approach

is to aggregate data across subjects and obtain {Y7.,...,Y,.}, where Y; =



> Yii/n;. The sample covariance estimate based on this aggregated data,

s LY (v e (v Y ) 22)

1=1 =1 =1

is an unbiased estimate of

e (2.3)

Consequently, 3 is a biased estimate of either Y. or ¥,. Epskamp et al.| [2018]
used to estimate the between-subject covariance structure. Statistical in-
ferences based on aggregated data may be misinterpreted [Fisher et al., 2018].
In particular, analysis based on aggregated data may result in an issue termed
ecological fallacy or Simpson’s paradox [Piantadosi et al., 1988, [Freedman), [1999,
Hamaker, 2012, Epskamp et al., [2018]. Therefore, this paper emphasizes that
one should separately estimate within-subject and between-subject covariance
matrices.

We consider the following unbiased estimates:

5= (Z ni — m) ZE(YU ~ Y )(Y; - Y)", (2.4)
S, =% — i(mnwi. (2.5)

The sample estimate gla is an unbiased estimate of . [Rao and Heckler,
1998]. From 1) 5 is an unbiased estimate of ¥, and is a multivariate ex-

tension of the unweighted sum-of-squares estimator in Rao and Sylvestre| [1984].



There exist other unbiased estimates, one of which for ¥, will be considered in

Section [5| and shown to be suboptimal compared to %, considered in (2.5).

3. Sparse Positive Definite Estimation of the Two Covariance Ma-

trices

In high-dimensional settings, where the number of random variables p is larger
than the number of subjects m, we observe that f]s in 1} may be singular.
Furthermore, ib may not be positive semi-definite for any dimensions. In par-
ticular, the diagonal elements in EA]b could be negative, making neither ig nor
ﬁb useful in practice. Furthermore, in high-dimensional settings, the entry-wise
sparsity assumption in covariance matrices is commonly imposed for better in-
terpretation. These observations call for regularized estimation of both ¥, and
Y. that are sparse and guaranteed to be positive definite.

Most recent approaches to estimating a large covariance matrix involve reg-
ularized estimation based on an unbiased estimate of the target covariance ma-
trix. In a setting with independent and identically distributed samples, it is
straightforward to use the sample covariance matrix as an unbiased estimate,
and methods in the literature differ in various approaches to imposing regulariza-
tion. Specifically, methods based on thresholding the sample covariance matrix

have been well-studied |Bickel and Levinal 2008aib}, |Cai and Yuan, 2012], and



further improvements have been developed to ensure positive definiteness in the
resulting estimates [Rothman et al., 2009, Rothman, 2012, Xue et al., 2012, |Cui
et al., 2016]. Bien and Tibshirani| [2011] proposed a penalized likelihood proce-
dure for estimating a sparse covariance matrix, which could be computationally
intensive due to the non-convexity of the likelihood in the covariance matrix.
In this section, we adapt a similar strategy and propose a regularized estimate
of 3, and X, based on their unbiased estimates in . Our proposed regu-
larized estimators are defined as solutions to convex optimization problems and
are guaranteed to be positive definite.

Specifically, we consider the following optimization problem for estimating

a generic covariance matrix ¥ with input matrix B [Xue et al., [2012],

.1 5
Join S11% = Bl + AlX), (3.1)
where || - || is the Frobenius norm and | - |; is the ¢;-norm of the off-diagonal

elements of the input matrix. In high-dimensional settings, the unbiased es-
timator for both of the target covariance matrices may not be non-negative
definite. In practice, a reasonable estimate of either ¥ g or . needs to be non-
negative definite. Indeed, a non-negative definite covariance matrix is essential
to ensure mathematical validity, interpretability, valid statistical inference, and
computational stability. For repeated measurement data, non-negative definite

covariance matrices are essential for interpreting heterogeneity between subjects,



variation within subjects, and correlations between different variables and ensur-
ing the validity of downstream analyses. While in general positive definiteness
in the estimated covariance matrix is desired, we note that in some cases posi-
tive semidefiniteness is induced (e.g., random effects selection by inducing low
rank in the estimate of 3, |Pinheiro and Bates [2000]). We propose to enforce
non-negative definiteness in the estimate of both target matrices by using the
constraint ¥ > 01, in (3.1), which imposes positive semi-definiteness on X —d1,.
In practice, a small value of § > 0 is used for numeric stability since the minimum
eigenvalue of the target matrix is usually unknown. This positive definiteness
constraint is essential for a usable and accurate estimate (see Table 1 in the
Supplementary Materials for numeric evidence).

A solution to is simultaneously sparse, positive definite, and close to
the input matrix B, which is usually set as an unbiased sample estimate. Let
f]: be the sparse and positive definite estimate of Y. as the solution to 1’
with B = ig and A = A, and i; be the sparse and positive definite estimates
of ¥ as the solution to with B = ib and A = \,. We study ij and i;r
both theoretically and numerically. In addition, to illustrate the suboptimality
of using group aggregation in estimating either covariance matrix, we further
study EJF, which is defined as the solution to (3.1) with B = ¥ and A = ). The

theoretical tuning parameter values A, A, and )¢ are discussed in Section [4]



Table 1: Summary of notations for various covariance matrix estimators. Reg-
ularized estimates are defined as solutions to (3.1) with corresponding sample

estimates.

Target Sample Regularized  Tuning Comments

Estimate Estimate  Parameter
) DM Ao based on , no distinction at different levels
3. s, St A 5. defined in
S S S Ny S defined in
p > f],jr N discussed in SectionH

In Table [I, we provide a summary of notations for various covariance matrix
estimators that are considered in this paper.

The convex optimization problem (3.1]) can be written equivalently as
1
win {312 = BIE + Nl s =0, £ 01} (32)

which we solve using the alternating direction method of multipliers [Boyd et al.,
2010]. Specifically, the algorithm iteratively minimizes the following augmented

Lagrangian

1 P
L(E,6;7) = 5[= - BlE+ A6 + (A, - 0) + gI= = o|%,



over X, ©, and the dual variable A using the following updates until convergence:

¥ ¢ argming, 5, L(X,0;A) = fp(B + 0O —A,0)y4, (3.3)
© « argming L(3,0;A) = S,/, <E + %A), (3.4)

A A+p(X-0).

The update in computes the projection onto a positive semi-definite cone,
where (A,d); = 377 max();, 6)v;v; for a generic matrix A € RP*P with the
eigendecomposition A = Z;’:l Ajvju;. The update in evaluates element-
wise soft-thresholding operators, where {Sy(A)};x = sign(A,x) max(|A;x| — b,0)
for any matrix A and scalar b > 0. We follow Boyd et al.| [2010] for practical
considerations in this algorithm, including the initial values, the stopping cri-
terion, and the updating strategy for the optimization parameter p, and refer
to S1 of the Supplementary Materials for further implementation details. This
algorithm has been widely used in the literature on covariance estimation [e.g.,
Bien and Tibshirani, 2011, Xue et al., 2012 with well-established convergence
analysis [Nishihara et al.,[2015]. The computational complexity of each update is
dominated by the eigendecomposition in ([3.3)), which requires O(p*) operations.
An approximate alternating direction method of multipliers [Rontsis et al., |[2022]

could be used to improve the computational complexity by avoiding repeated

eigendecompositions.



4. Theoretical Properties

In this section, we first illustrate the pitfall of the sample estimator (2.2)) based on
the aggregated data to estimate either of the target matrices. In comparison, we

then derive the finite-sample estimation error rate of our proposed estimators

~

Y. (in Section and il‘f (in Section , and establish their asymptotic

£

consistency.

4.1 Notations and Assumptions

We observe Y;; € RP, which is the j-th repeated measurement of the i-th subject
forj=1,...,n;andi=1,...,m, following the model , where €;; and b; are
p-dimensional sub-Gaussian random vectors with the true within and between
covariance cov(e;;) = XU and cov(b;) = X respectively, and b; and e;; are
mutually independent. Let N = "™ n; be the total number of observations.
We consider the following class of sparse covariance matrices:

P

UM, s) = {E e SP m]?thk < M, mgxz 1(Xge #£0) < 3},

=1
where ST is the set of all p-by-p symmetric positive definite matrices, and %y
is the (k,¢)-th entry of ¥. A matrix in U(M,s) has diagonals bound M and

maximum row-wise (and by symmetry, column-wise) sparsity level s.



4.2 Inconsistency of sample covariance estimator based on aggregated data

4.2 Inconsistency of sample covariance estimator based on aggre-

gated data

We first establish that ¥ is inconsistent in estimating either >, or Y. due to
a non-vanishing bias in the estimation lower bounds, even with the number of
subjects approaching infinity. Recall from that ¥ is biased in estimating
either 3, or X.. In the following theorem, we characterize the finite sample lower

bound on the element-wise estimation error.

Theorem 1. Consider the true within-subject covariance X0 with maxy(X2)y x <

M. and the true between-subject covariance 39 with maxy (X)), < M. Let

1 1/2
—Q(%% |
m

1 1/2
_q<%ﬂ ’
m

for sufficiently large Cy > 0, where n* = m/> ", n;t. Iflogp < m, then the

m(Eke | (ZP)ks
(m—1)n* m-—1

Ao,y = mMax

)

"o - (1- ZE) (50,

m—1

k.l

naive sample estimate X based on the aggregated data satisfies
pr{nﬁx ’(E - Eg)k,l| > )\O,b} >1—4p >,
and
pr{rrllﬁx ‘(i — Zg)kvl’ > /\076} >1—4p 2,

where Cy > 0 only depends on Cy and max(M., M,).



4.3 Estimation Error Rate for the Within-Subject Covariance Estimator

The first terms in both of Ay, and A\ . above are not vanishing, even when m
approaches infinity. This implies that ¥ is not a good estimate of either ¥, or ¥,.
For example, in the balanced setting where n; = n; for all : = 1,...,m, it holds
that n, = n;. The bias term in estimating 3, does not vanish even if m — oo
as long as ny = O(1). And the bias term in estimating Y. is not going to zero
even if both m — oo and n; — oo, as long as X = X does not hold element-
wise. However, in practice, ¥ has been misused to provide a sample estimate
for subsequent regularized estimation |[Epskamp et al., 2018]. In Section S3.5
in Supplementary Materials, we provide upper bounds on the estimation error
rates for 3 for estimating either X, or Y., which is defined as the solution
to with input sample matrix B = X. In the subsequent subsections, we
present upper bounds on the estimation error rate of our proposed estimators

and show their consistency.

4.3 Estimation Error Rate for the Within-Subject Covariance Esti-

mator

Theorem 2 (Estimation error rate of ij) Assume that the true within-subject
covariance matriz X0 € U(M., s.). Let \. = C1(Nlogp)'/2/(N —m) be the value

of the tuning parameter X\ in for a sufficiently large constant Cy > 0. If



4.3 Estimation Error Rate for the Within-Subject Covariance Estimator

logp < N, the proposed within-subject estimator ij satisfies

H§+ _ 30

< 5A.(ps.)'/?
» S 5A(pse)
with probability at least 1 — 4p~©2, where Cy > 0 only depends on C and M..

The term (ps.)'/? in the error rate above represents the overall sparsity of
the true covariance matrix X2. This dependence on the sparsity level has also
been noted in Rothman et al.| [2008] and Xue et al.| [2012] over slightly different
matrix classes. Notably, the estimation error rate does not depend on M, or on
the exact values of n; for i = 1, ..., m. Instead, the effective sample size in A is
N2 — N=1/2mp, which only depends on the total observation number N and the
number of subjects m.

Remark 1. When the number of subject m is relatively small compared with
the total number of observations N in the scale of m = o(N'/?), Theorem
implies that

Hi}-f— —ZO

= 0p{(pseN7 logp)'/?},

where X,, = Op(a,) means that for a set of random variables X,, and a cor-
responding set of constants a,, X, /a, is bounded by a positive constant with
probability approaching 1. This rate coincides with those in |Bickel and Levina
[2008b], [Rothman et al.| [2008, [2009], |Cai and Liu [2011], Xue et al.|[2012], which

are derived based on the assumption of independent and identically distributed



4.3 Estimation Error Rate for the Within-Subject Covariance Estimator

observations.
Remark 2. On the other hand, with m = O(N), e.g., when the number of
repeated measurements of each subject is bounded by a constant, Theorem
implies that

Hi+_20

e Op {(psem™ logp)l/Q)} .

In this scenario, m plays the role of the effective sample size, and estimation
consistency is achieved when m approaches infinity.

Remark 3. Following the similar presentation as in |Xue et al. [2012], the prob-
ability for which the estimation error bound in Theorem [2| (and all subsequent
theorems) holds solely depends on the ambient dimension p, which implicitly
assumes that p — oo. In the settings where p is fixed, following the proof
in S3 in Supplementary Materials, the probability can be expressed in terms
of the effective sample size, which implies that the probability goes to 1 as
N2 - N-12m — 0.

Remark 4. We note that although the theoretical analysis depends on the ex-
ponential tail condition from the sub-Gaussian assumptions, it can be extended
to allow for a polynomial-tail condition as in Xue et al| [2012] using similar
arguments. Specifically, a generic random variable Z with mean 0 satisfies the

polynomial-tail condition with constant K, if for all v > 0 and § > 0, the



4.3 Estimation Error Rate for the Within-Subject Covariance Estimator

following holds
E[|Z]*00)] < K, (4.1)

for some K, > 0. The following theorem derives the estimation error bound for

ij under the polynomial-tail condition.

Theorem 3. Suppose that random errors €;; € RP are i.i.d. random wvectors
with mean zero and within-subject covariance cov(e;;) = 3. € U(M,, s.). Fur-
thermore, suppose that the entries €5, satisfy the polynomial-tail condition (4.1))

with constant K. for k=1,...,p. For any constant M > 0, let

(N logp)'/?

A = 16(K. + 1)(M +2) BN

If p < ¢N7 for some c, then the regqularized within-subject covariance estimate

o
YT satisfies

pr{Hii—gg

< 1/2
< 5Ae(pse) }

> 11— O(p_M) a Kgp(log N)2(1+7+5)N—('y+6) _ Ksp(log m)2(1+7+6)m—(7+6)'

Comparing with Theorem , ij attains the same rate of error bound under
the polynomial-tail condition, with more stringent scaling conditions on p, m,
and N so that the probability for which the error bound holds goes to 1. This

pattern is consistent with Theorem 2 in Xue et al.| [2012].



4.4 Estimation Error Rate for the Between-Subject Covariance Estimator

4.4 Estimation Error Rate for the Between-Subject Covariance Es-

timator

Theorem 4 (Estimation error rate of i;“) Assume that the true between-subject
covariance matriz 39 € U(My, sp) and the true within-subject covariance matriz
Y0 e U(M.,s.). Let

logp\'* |, (Nlogp)'* M, M.
Ay = C Cor— + —
’ 1( ) * 2(N—m)n*—i_m—i_mn*

(4.2)

be the value of the tuning parameter X\ in for sufficiently large Cy,Cy >
0, where n* = m/> ", n;l. If logp < m, then the proposed between-subject

estimator 3 satisfies

Hilj — EgHF S 10)\(,(}781,)1/2

—Cs

with probability at least 1 — 8p~3, where C3 > 0 only depends on Cy, Cy and

max (M., My).

Unlike the estimation error rate for i]a in Theorem |2, the rate for i]b depends
on the values of n;’s via the term n*. A simple bound n* > min; n; implies that
the second term in )\, converges to 0 at a rate that is at least not slower than A,
in Theorem 2| The rate in A is thus dominated by (m~'logp)"/2. Furthermore,
in Theorem 7 in S3.7 of the Supplementary Materials, we derive the estimation
error bound for i; under the polynomial-tail condition (4.1]), which is the same

as under the exponential-tail condition.



Finally, in some scenarios, the estimation of between-subject and within-
subject correlation matrices, instead of covariance matrices, is of interest and
can be obtained similarly in the proposed framework. We provide estimation
error rates of the sparse positive definite estimators of two correlation matrices

in S3.6 of the Supplementary Materials.

5. Comparison Between Two Unbiased Estimators of Between-subject

Covariance

We consider a commonly used unbiased estimator of 3, based on the multivariate

analysis of variance [Rao and Heckler, [1998|:

5, = - {Xm: MY, V)Y, — V) — i} ,

ng | “—~m-—1
=1
where
n; m i
N - N1 Zm n? _ : _ d
. i=1"" . —1 _ -1
nyg = , Y. =n, Y, Y.=N E E Y.
m—1 : — £
j=1 =1 j5=1

and N =>"" n,.

It is straightforward to show that E(X,) = %,. However, just like &, in
, the diagonal elements of 3, could be negative, which is undesirable for
an estimate of ¥;. Specifically, in the setting where b, and g;; follow Gaussian
distributions and n;’s are all equal, it can be shown that pr{(ib)k,k < 0} de-

creases with (£9)1/(2%) k. An adjustment for negative diagonal values of 3 is



proposed in Rao and Heckler| [1998] based on the assumption that f]e is positive
definite, which is violated in the high-dimensional settings.

We demonstrate an additional limitation of using ib, in comparison with ib,
in obtaining a sparse positive definite estimate of ¥,. Define i;r as a solution

of 1} with B = %, (see Table . The following theorem shows that the

performance of i; hinges on the data imbalance.

Theorem 5 (Estimation error rate of i;) Assume that the true between-subject

covariance matriz ¥ € U(M,, sp) and the true within-subject covariance matrix

Y0 e U(M.,s.). Let

3, — Clmaxi n; (logp>1/2 +02(N10gp)1/2 (2N — ngm) M, N M.

no no(N —m) 2nom ngm

be the value of the tuning parameter \ in for sufficiently large Cy, Cy > 0.

Iflogp < m, then 3 satisfies

Hi;r - EgHF S 10Xb(p5b)1/2

—C5

with probability at least 1 — 8p~“3, where C3 > 0 only depends on Cy, Cy and

max (M., My).

We define a measure of data imbalance as max;n;/ng > 1, where nq is
defined in (5.1). In the balanced dataset where all n;’s are equal, we have

max; n;/ng = 1 and the two estimators coincide ZBL = Zl'f. This equivalence is



also reflected by the same estimation error rate since \, = Xb. When n;’s are
not all equal, the imbalance max; n;/ng > 1 increases with max; n; for fixed m
and N. Comparing the first term in )\, and Xb, the estimation error rate of i;r
in the dimension p is strictly worse than that of i;r, which does not depend on
the imbalance of the dataset.

To understand the theoretical advantage of using 3, in the imbalanced data,
we note that it can be interpreted as a pooling estimator, where each repeated
measurement contributes to the final covariance matrix estimate equally. In
comparison, the form of 3, suggests that subjects with more measurements will
have a heavier weight in the final estimate. This suggests the possible depen-
dence of ¥, on the data imbalance. Furthermore, 3, is an extension to the
Unweighted Sums of Squares (USS) type estimator [Rao et al., 1981, Rao and
Sylvestre, [1984] to the multivariate case. Conclusions from Rao and Sylvestre
[1984], which focuses on the univariate case, state that “ ... there is considerable
gain in using the USS estimators instead of the ANOVA estimator... ” which
suggests the similar advantage of USS estimator (ﬁ)b) over the ANOVA type of
estimator (3;) in the multivariate settings. We numerically verify this compar-

ison in Section @, and demonstrate that the practical performance of EN]; could

be very sensitive to the data imbalance.



6. Simulation Studies

In this section, we evaluate the numeric performance of our proposed estimators
ij (for the within-subject covariance ¥.) and i;“ (for the between-subject co-
variance ), and compare with N (in estimating either X, or >.) and i,‘f (in

estimating 33).

6.1 Simulation Settings

In each of the subsequent subsections, we generate observations Y;; from model
(2.1), where b; ~ N(0,%) and e;; ~ N(0,%2). All estimators in comparison
are defined as solutions to the optimization problem (3.1)) with corresponding
input sample covariance matrices. We use a 5-fold cross-validation procedure to
select the optimal tuning parameter value A in for each problem. We refer
interested readers to S2 of the Supplementary Materials for the details of the

cross-validation procedure in the repeated measurement settings.

6.2 General Comparison

In Sections [] and Section B, we have shown that the estimation error rates of
the estimators we study in this paper depend on various factors: the number
of subjects m, the total number of observations N, the ambient dimension p,

and for i;’ the data imbalance, i.e., max; n;/ng. To illustrate the established
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theoretical results, we consider the following models:

Model 1. Banded matrices with bandwidth 10: set (X);x = (1 — |7 — k[/10)4

and (32);x = (=111 — |ky — k| /10) 4

Model 2. Covariance matrices corresponding to an AR(1) series: set (X9),x =

0.6V and (29),, = (—0.6)l7*.

We note that the same covariance structures had been used in [Bickel and
Levina, [2008a], Rothman| [2012], |Xue et al. [2012], |Cui et al.| [2016]. In each
setting, we let N = 1000 and m = 100 and consider p = 100 and p = 200.
Furthermore, to study the effect of data imbalance on the estimation error, we
set n; =afori=1,2,...,99, where a = {3,4,--- ,10}, and n19p = N —99a. By
doing so, we generate settings where the measure of data imbalance, max; n;/no,
varies.

Fig. |l|summarizes the estimation error in the Frobenius norm averaged over
100 replications. We present the performance of four estimators: the proposed
within-subject estimator ij for estimating X2, and three between-subject esti-
mators i;“ (our proposed method), i;{ (the ANOVA type estimator), and s
(the aggregated estimator) for estimating either ¥ or XY, Among the three
between-subject estimators, our proposed method EAJZF achieves the lowest esti-
mation error in all simulation settings. Furthermore, being consistent with the

results in Theorem |2| Theorem 4l and Theorem , the performance of f];r and
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Figure 1: Estimation error (in Frobenius norm, averaged over 100 replicates) for two
between-subject (solid) and one within-subject (dash) covariance matrix estimator:
i; (violet triangle), i; (orange circle), and ij (pink diamond). The estimation
error of the aggregated estimator (§+, green square) is evaluated in estimating the
within-subject (dash) and the between-subject (solid) covariance matrices. The z-axis

is max; n; /ng, which characterizes the imbalance of the data.
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5 are much less sensitive to the data imbalance max; n; /ng while the error of
i; dramatically increases as the data become less balanced. Surprisingly, in all
but the perfectly balanced case (max;n;/ng = 1), we observe that i;r, which
is built on the unbiased sample estimate , performs much worse than b
which is built on the biased ¥ in . This suggests the dominating role of data
imbalance in the estimation error of i: Our proposed method i: also achieves
much lower estimation errors than 3 in estimating within-subject covariance
in all simulation settings. The decreasing error of S in estimating ¥ is consis-
tent with Theorem 5 in S3.5 of the Supplementary Materials, which states that
the error rate of ||§Jr — ¥0|F is inversely proportional to the imbalance score
max; n;/ng. As seen in Fig , the estimator 3 based on the biased sample
estimate ¥ surprisingly has a relatively acceptable numerical performance. In
S4.2 in Supplementary Materials, we conduct additional simulation studies to
further demonstrate the limitations of using ¥ and the favorable performance of
our proposed estimators.

To demonstrate the effectiveness of regularization, in Fig. 1 in S4.1 of the
Supplementary Materials, we present the cross-validation curves and the receiver
operating characteristic (ROC) of the sparsity recovery of these estimators in
Model [If with p = 100 and under three different levels of data imbalance. The

optimal values of A for ij, f]b*, and 5 are relatively stable across different
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levels of data imbalance, while the optimal value of A\ for i;’ sharply fluctuates
and generally increases with max; n;/ng. This indicates that large values of
max; n;/ng tend to result in more shrinkage of the off-diagonal entries in i;
towards 0. This observation is aligned with the larger error of ilj in Frobenius
norm in Fig. [1] for large values of max; n;/ng.

While the theoretical guarantees of support recovery would be an interesting
and challenging problem for future research, we observe numerically that the
data imbalance seems not to affect the support recovery performance of f]j,
f]l‘f, and SJF, which is an established favorable properties of these estimators in
terms of estimation error. In contrast, just as in estimation error, i; suffers in
sparsity recovery performance from the data imbalance.

Finally, we note that our proposed methods do not require the assumptions
that random effects b; and random errors €;; are normally distributed. To gauge
the numeric performance of the proposed estimators when the Gaussian assump-
tion is violated, e.g., in heavy-tailed data, we consider simulation settings where
random effects and random errors are both generated from a ¢5 distribution, and
every other specification remains the same as in Model 1 with p = 100. The
results, which are summarized in S4.3 in the Supplementary Materials, suggest

that our proposed methods still perform favorably in heavy-tailed settings.



7. Covariance Graphs of Clinical Variables from Hemodialysis Pa-

tients

We apply our proposed methods to estimate the between-subject and within-
subject covariance structures among some clinical variables collected from hemodial-
ysis patients. Hemodialysis is a treatment that filters wastes and fluid from
patients’ blood when the kidneys no longer function well. Hemodialysis patients
usually follow a strict schedule by visiting a dialysis center about three times a
week. Clinical variables, such as blood pressure and pulse, are measured during
each treatment. Since numerous metabolic changes accompanying impaired kid-
ney function affect all organ systems of the human body, it is imperative to study
correlations among clinical variables. Those clinical variables are measured re-
peatedly for each hemodialysis patient at each treatment. We will investigate
correlation structures at the patient (between-patient) and treatment (within-
patient) levels.

We use a dataset of measurements of several clinical and laboratory vari-
ables during 2018 and 2021 from 5,000 hemodialysis patients. For homogeneity,
we consider white, non-diabetic, and non-Hispanic male patients who never had
a COVID-19-positive polymerase chain reaction test. We use the measurements
starting from the second year to avoid large fluctuations in the first year of

dialysis. The dataset contains 276 patients with at least three complete treat-



ment records every 30 days. The data imbalance is max;n;/ng = 2.54. For
simplicity, we focus on the relationships among interdialytic weight gain, blood
pressure, and heart rate. Based on [I[pema et al. [2016], we consider the fol-
lowing eight variables: idwg (interdialytic weight gain, kg), ufv (ultrafiltration
volume, L), min_sbp (minimum systolic blood pressure, mmHg), min_dbp (min-
imum diastolic blood pressure, mmHg), max_sbp (maximum systolic blood pres-
sure, mmHg), max_dbp (maximum diastolic blood pressure, mmHg), min pulse
(minimum pulse, beats/min), and max_pulse (maximum pulse, beats/min). In
our analysis, ufv is set to be the difference between predialysis and postdialysis
weight within a hemodialysis session.

We are interested in recovering the correlation structures at the patient and
treatment levels. Estimating the correlation matrix corresponds to recovering
the correlation graph, where the nodes represent the random variables of interest
and the edges present the marginal correlation between the nodes |[Chaudhuri
et al., [2007]. We apply our method to repeated clinical measurements from
these 276 patients. The regularization parameters are chosen by 5-fold cross-
validation with the one standard error rule [Hastie et al., [2009]. Fig. [2| presents
estimates of the within-subject (left panel) and between-subject (middle panel)
correlations, which indeed present different correlation structures. We also in-

clude the estimate using the aggregated data (right panel) for comparison, which



Correlation Graph at Treatment Level (f:) Correlation Graph at Patient Level (f;) Correlation Graph Using Aggregated Data (£

Figure 2: Within-subject (left), between-subject (middle) correlation graphs and cor-
relation graph using the aggregated data (right) for clinical variables from hemodialy-
sis patients. We present correlation matrices with the convention of using bi-directed
covariance graphs [Chaudhuri et al., 2007]. The blue edges correspond to the positive
correlations, while the red edges represent the negative correlations. The width of an

edge corresponds to the strength of the correlation.

coincides with our between-subject estimate. This is consistent with Theorem
for this dataset’s small value of max; n;/ny.

It is important to realize that covariance structures at the treatment and pa-
tient levels could differ and should be estimated separately. Existing biological
studies based on the aggregated measurements ignore such a difference in esti-
mation and thus may lead to erroneous conclusions. In particular, our estimated
correlation graph at the treatment level (within-subject) reveals much insight

for hemodialysis treatment that cannot be recovered using the aggregate data.



Specifically, we discuss several important recovered correlations in f]j that have
been missed in either i;r or 5. Specifically, salt and fluid intake between two
hemodialysis sessions leads to interdialytic weight gain. A dialyzer, an artificial
kidney, should filter the accumulation of waste and fluid. Ultrafiltration vol-
ume measures the waste and fluid removed from patients’ blood. Consequently,
higher idwg leads to larger ufv, confirmed by the positive correlation between
idwg and ufv at the treatment level in Fig. [2] A rapid removal of fluid from
a patient’s blood results in the depletion of blood volume and subsequently
leads to a decrease in systolic blood pressure, confirmed by the negative corre-
lation between ufv and min_sbp at the treatment level in Fig. 2] The lowered
blood pressure will be compensated by heart functionality, which elevates the
heart rate, again confirmed by the negative correlation between min_sbp and
max_pulse at the treatment level in Fig. However, no relationships among
idwg, max_pulse, and min _sbp have been observed at the patient level in the
middle panel of Fig. 2l This implies that we should focus on correlations be-
tween clinical measurements at the treatment level rather than the patient level

when evaluating the effectiveness of hemodialysis.



8. Discussion

In this paper, we study the problem of estimating covariance structure among
random variables in the presence of dependent observations from repeated mea-
surements. In this challenging setting, we suggest against the commonly used
subject-aggregated estimator, which could incur ecological fallacy. Instead, we
propose simultaneously studying the between-subject and the within-subject co-
variance matrices under a random effect model. These two targets of estimation
retain different covariance graphs and should be interpreted and estimated dif-
ferently — a key observation that is commonly ignored in previous literature.
Through both theoretical and numerical studies, we show that our proposed
sparse and positive definite estimator of both target matrices enjoys favorable
estimation error rates and robustness to the imbalance of the data.

We note that this paper emphasizes the importance of separating and es-
timating covariance structures at different levels in the presence of dependent
observations. Our approach is not restricted to either the random effect model
in or any specific regularized estimation methods such as in ((3.1]). Follow-
ing the idea of this paper, extending model to more general mixed effects
models that allows for fixed effects X;;3 requires proper treatment of different
covariance matrices, and their simultaneous regularized estimation will be an

interesting future research direction. In particular, among existing methods in



literature, one strategy [see, e.g., |Ahn et al., |2012] is to first deploy a working
homoscedastic assumption on the linear model and to obtain a least squares
estimate B , which is unbiased but is not statistically efficient. Then the residues
Yii — Xi; 3 can be used for the task of covariance estimation. Another type of
method adapts a joint estimation approach, but has to impose strongly simplify-
ing assumptions on the covariance structure among the random effects [Reisetter
and Breheny, [2021]. Most importantly, however, virtually all existing methods
only focus on the univariate response setting [Ahn et al.| 2012, Reisetter and
Breheny, 2021]. The problem of extending this task to the multivariate response
settings is of great importance to the literature. However, this problem can be
particularly challenging, as the estimation of 5 (and potentially selection of fixed
effects) is largely intertwined with the (regularized) estimation of covariance ma-
trices, both in terms of computation and theoretical analysis. The authors are

working on tackling these challenges in a follow-up project.

Supplementary Material

The online Supplementary Material includes proofs of the theoretical results,

computational details, and additional data analyses.
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