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Abstract: This paper investigates the asymptotic properties of algorithms that

can be viewed as robust analogues of the classical empirical risk minimization.

These strategies are based on replacing the usual empirical average with a robust

proxy of the mean, such as a variant of the median-of-means estimator. It is

well known by now that the excess risk of resulting estimators often converges

to zero at optimal rates under much weaker assumptions than those required

by their classical counterparts. However, less is known about the asymptotic

properties of the estimators themselves, for instance, whether robust analogues

of the maximum likelihood estimators are asymptotically efficient. We take a

step towards answering these questions and show that for a wide class of para-

metric problems, minimizers of the appropriately defined robust proxy of the risk

converge to the minimizers of the true risk at the same rate, and often have the

same asymptotic variance, as the estimators obtained by minimizing the usual

empirical risk. Finally, we discuss the computational aspects of the problem and

demonstrate the numerical performance of the methods under consideration in

numerical experiments.
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1. INTRODUCTION.

totic normality, adversarial contamination.

1. Introduction.

The concept of robustness addresses stability of statistical estimators under

various forms of perturbations, such as the presence of corrupted/atypical

observations (“outliers”) in the data. The questions related to robustness

in the framework of statistical learning theory have seen a surge in interest,

both from the theoretical and practical perspectives, and resulted in the

development of novel algorithms. These new robust algorithms are charac-

terized by the fact that they provably work under minimal assumptions on

the underlying data-generating mechanism, often requiring the existence of

moments of low order only. Majority of the existing works focused on the

upper bounds for the risk of the estimators (such as the classification or

prediction error) produced by the algorithms, while in this paper we are

interested in the asymptotic properties of the estimators themselves. The

asymptotic viewpoint allows one to gauge efficiency of the estimators and

understand the magnitude of constants appearing in the bounds, as opposed

to just studying the form of dependence of the bounds on the parameters

of interest (sample size, dimension, etc.) The mean estimators at the core

of the approach under consideration are non-linear and are defined as so-
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1. INTRODUCTION.

lutions of optimization problems, which makes the analysis more technical.

Navigation through the technical details and development of the tools such

as Bahadur-type representations needed to tackle the non-linearities occu-

pies a large part of the analysis. Therefore, the main contributions of the

paper are technical in nature.

Next, we introduce the mathematical framework used in the exposition.

Let pS,Sq be a measurable space, and let X P S be a random variable with

distribution P . Suppose that X1, . . . , XN are i.i.d. copies of X. Moreover,

assume that L “
 

`pθ, ¨q, θ P Θ Ď Rd
(

is a class of measurable functions

from S to R indexed by an open subset of Rd. Population versions of many

estimation problems in statistics and statistical learning, such as maximum

likelihood estimation and regression, can be formulated as risk minimization

of the form

E `pθ,Xq Ñ min
θPΘ

. (1.1)

In particular, when tpθ, θ P Θu is a family of probability density functions

with respect to some σ-finite measure µ and `pθ, ¨q “ ´ log pθp¨q, the re-

sulting problem corresponds to maximum likelihood estimation. In what

follows, we will set Lpθq to be the risk associated with the parameter θ,

namely Lpθq “ E`pθ,Xq. Throughout the paper, we will assume that the

minimum in problem (1.1) is attained at a unique point θ0 P Θ. The true
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1. INTRODUCTION.

distribution P is typically unknown, and an estimator of θ0 is obtained via

minimizing the empirical risk, namely,

rθN :“ argmin
θPΘ

LNpθq, (1.2)

where LNpθq :“ 1
N

řN
j“1 ` pθ,Xjq. If the marginal distributions of the pro-

cess t`pθ, ¨q, θ P Θu are heavy-tailed, meaning that they possess finite mo-

ments of low order only, then the error |LNpθq ´ Lpθq| can be large with

non-negligible probability, motivating the need for alternative proxies for

the risk Lpθq. Another scenario of interest corresponds to the adversar-

ial contamination framework, where the initial dataset of cardinality N 1 is

merged with a set of O ă N 1 outliers generated by an adversary who has

complete knowledge of the underlying distribution and an opportunity to

inspect the data, and the combined dataset of cardinality N “ N 1 ` O

is presented to the algorithm responsible for constructing the estimator of

θ0. In what follows, the proportion of outliers will be denoted by κ :“ O
N

.

Similarly to the heavy-tailed scenario, the empirical loss LNpθq is not a

robust proxy for E`pθ,Xq in this case, therefore estimation and inference

results based on minimizing LNpθq may be unreliable. One may approach

the problem of estimating θ0 robustly from different angles. One class

of popular methods consists of robust versions of the gradient descent al-

gorithm for the optimization problem (1.1), where the gradient ∇Lpθkq is
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1. INTRODUCTION.

estimated on each iteration k; for example, this approach has been explored

by Prasad et al. (2020); Chen et al. (2017); Alistarh et al. (2018), among

others. Another technique (the one that we investigate in this paper) is

based on replacing the average LNp¨q by a robust proxy of Lpθq. Its advan-

tage is the fact that we only need to estimate a real-valued quantity Lpθq,

as opposed to the high-dimensional gradient vector ∇Lpθq. On the other

hand, favorable properties, such as convexity, that are “inherited” by the

formulation (1.2) from (1.1), are usually lost in this case. Several repre-

sentative papers that explore this direction include the works by Audibert

et al. (2011); Lerasle and Oliveira (2011); Brownlees et al. (2015); Lugosi

and Mendelson (2019b); Lecué and Lerasle (2020); Cherapanamjeri et al.

(2019); Mathieu and Minsker (2021); also, see an excellent survey paper by

Lugosi and Mendelson (2019a). Instead of the empirical risk LNpθq, these

works employ robust estimators of the risk such as the median-of-means

estimator (Nemirovski and Yudin, 1983; Alon et al., 1996; Devroye et al.,

2016) or Catoni’s estimator and its variants (Catoni, 2012; Li et al., 2022).

In this paper, we study estimators based on the modification of the median-

of-means principle introduced by Minsker (2019) combined with the idea

behind the so-called “median-of-means tournaments” (Lugosi and Mendel-

son, 2019b) and the closely related “min-max” robust estimators (Audibert
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et al., 2011; Lecué and Lerasle, 2020). The latter are based on an observa-

tion that θ0 can be alternatively obtained via

θ0 “ argmin
θPΘ

max
θ1PΘ

pLpθq ´ Lpθ1qq . (1.3)

Therefore, an estimator of θ0 can be constructed by replacing the difference

Lpθ, θ1q :“ Lpθq ´ Lpθ1q by its robust proxy constructed as follows. Let

k ď N{2 be an integer, and assume that G1, . . . , Gk are disjoint subsets of

the index set t1, . . . , Nu of cardinality |Gj| “ n ě tN{ku each. For θ P Θ,

let

sLjpθq :“
1

n

ÿ

iPGj

`pθ,Xiq

be the empirical risk evaluated over the subsample indexed by Gj. Assume

that ρ : R ÞÑ R` is a convex, even function that is increasing on p0,8q

and such that its (right) derivative is bounded. Let t∆nuně1 be a non-

decreasing positive sequence of “scaling factors” such that ∆n “ op
?
nq and

∆8 :“ limnÑ8 ∆n P p0,8s, and define

pLpθ, θ1q P argmin
zPR

k
ÿ

j“1

ρ

ˆ

?
n
sLjpθq ´ sLjpθ

1q ´ z

∆n

˙

. (1.4)

For example, the choice ∆n — logpnq suffices for all results of the paper to

hold (in fact, it suffices for ∆8 to be a sufficiently large constant); we will

make a remark regarding the practical aspects of setting ∆n below. The es-

timator pLpθ, θ1q is what we referred to as the robust proxy of Lpθ, θ1q, where
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robustness is justified by the fact that the error
ˇ

ˇ

ˇ

pLpθ, θ1q ´ Lpθ, θ1q
ˇ

ˇ

ˇ
satisfies

non-asymptotic exponential deviation bounds under minimal assumptions

on the tails of the random variables `pθ,Xq ´ `pθ1, Xq and the ability of

pLpθ, θ1q to resist adversarial outliers. For example, Theorem 3 in (Minsker,

2019) essentially states that whenever ∆n Á Var1{2
p`pθ,Xq ´ `pθ1, Xqq and

for all s À k,

ˇ

ˇ

ˇ

pLpθ, θ1q ´ Lpθ, θ1q
ˇ

ˇ

ˇ
À σpθ, θ1q

c

s

N
`∆n

ˆ

k

N
`

O
?
n

N

˙

with probability at least 1´ e´s, assuming that E|`pθ,Xq ´ `pθ1, Xq|3 ă 8

and where À denotes the inequality up to absolute numerical constants;

similar guarantees also hold uniformly over θ, θ1 P Θ; note that setting

∆n — σpθ, θ1q yields the most robust estimator. Given the robust proxy

pLpθ, θ1q of Lpθ, θ1q, an analogue of the classical empirical risk minimizer rθN

can be obtained via

pθn,k “ argmin
θPΘ

sup
θ1PΘ

pLpθ, θ1q. (1.5)

Simple sufficient conditions for the existence of pθn,k are discussed in the

supplementary material; in principle, one could consider near-minimizers

instead, however, we avoid this route due to the extra layer of technical-

ities it brings. The idea behind considering differences of the risks and

defining θ0 via (1.3) is related to the fact that the estimators (1.4) of
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Lpθq, unlike their traditional counterparts LNpθq, are non-linear: if we set

pLpθq “ argminzPR
řk
j“1 ρ

´?
n

sLjpθq´z

∆n

¯

, then pLpθ, θ1q ‰ pLpθq ´ pLpθ1q.

Related approaches based on direct minimization of pLpθq have been pre-

viously investigated by Brownlees et al. (2015); Holland and Ikeda (2017);

Lecué et al. (2020); Mathieu and Minsker (2021), where the main object of

interest was the excess risk Eppθn,kq :“ Lppθn,kq ´ Lpθ0q. It has been recog-

nized however that non-linearity of pLpθq often results in sub-optimal rates,

while the tournament-type procedures avoid these shortcomings. In the

present work, we will be interested in the asymptotic behavior of the er-

ror pθn,k ´ θ0, rather than the excess risk: in particular, we will establish

asymptotic normality of the sequence
?
N
´

pθn,k ´ θ0

¯

and demonstrate that

robust estimators can still be efficient under essentially the same set of suf-

ficient conditions as required by the standard M-estimators (van der Vaart,

2000). The nonlinear nature of the estimator pLpθ, θ1q makes the proofs sig-

nificantly more technical compared to the classical theory of M-estimators

based on usual empirical risk minimization. To tackle these challenges, our

arguments rely on Bahadur-type representations for pLpθ, θ1q whose remain-

der terms admit tight uniform bounds.
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1.1 Notation.

Absolute constants will be denoted c, c1, C, C1, C
1, etc., and may take dif-

ferent values in different parts of the paper. Given a, b P R, we will write

a^b for minpa, bq and a_b for maxpa, bq. For a function f : Rd ÞÑ R, define

argmin
yPRd

fpyq :“ ty P Rd : fpyq ď fpxq for all x P Rd
u,

and }f}8 :“ ess supt|fpyq| : y P Rdu. Moreover, Lippfq will stand for the

Lipschitz constant of f ; if d “ 1 and f is m times differentiable, f pmq will

denote the m-th derivative of f . For a function gpθ, xq mapping Rd ˆ R

to R, Bθg will denote the vector of partial derivatives with respect to the

coordinates of θ; similarly, B2
θg will denote the matrix of second partial

derivatives. For x P Rd, }x} will stand for the Euclidean norm of x, }x}8 :“

maxj |xj|, and for a matrix A P Rdˆd, }A} will denote the spectral norm

of A. We will frequently use the standard big-O and small-o notation, as

well as their in-probability siblings oP and OP . For vector-valued sequences

txjujě1, tyjujě1 Ă Rd, asymptotic relations xj “ opyjq and xj “ Opyjq are

assumed to hold coordinate-wise. We will write xj ! yj if xj “ opyjq and

xj " yj if yj “ opxjq. For a square matrix A P Rdˆd, trA :“
řd
j“1 Aj,j

denotes the trace of A. Given a function g : R ÞÑ R, measure Q and

1 ď p ă 8, we set }g}pLppQq
:“

ş

R |gpxq|
pdQ. For i.i.d. random variables
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2. STATEMENTS OF THE MAIN RESULTS.

X1, . . . , XN distributed according to P , PN :“ 1
N

řN
j“1 δXj

will stand for the

empirical measure; here, δXpgq :“ gpXq. The expectation with respect to a

probability measure Q will be denoted EQ; if the measure is not specified,

it will be assumed that the expectation is taken with respect to P , the

distribution of X. Given f : S ÞÑ Rd, we will write Qf for
ş

fdQ P Rd,

assuming that the last integral is calculated coordinate-wise. For θ, θ1 P Θ,

let σ2pθ, θ1q “ Var p`pθ,Xq ´ `pθ1, Xqq and for Θ1 Ď Θ, define σ2pΘ1q :“

supθ,θ1PΘ1 σ
2pθ, θ1q.

Finally, we will adopt the convention that the infimum over the empty

set is equal to `8. Additional notation and auxiliary results are introduced

on demand.

2. Statements of the main results.

We begin by listing the assumptions on the model; these conditions are

similar to the standard assumptions made in the parametric estimation

framework (van der Vaart, 2000; van der Vaart and Wellner, 1996). The

first assumption lists the requirements for the loss function ρ (note that the

choice of this function is completely determined by the statistician).

Assumption 1. The function ρ : R ÞÑ R is convex, even, and such that

(i) ρ1pzq “ z for |z| ď 1 and ρ1pzq “ const for z ě 2.
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2. STATEMENTS OF THE MAIN RESULTS.

(ii) z ´ ρ1pzq is nondecreasing;

(iii) ρp5q is bounded and Lipschitz continuous.

An example of a function ρ satisfying required assumptions is given by

“smoothed” Huber’s loss defined as follows. Let

Hpyq “
y2

2
It|y| ď 3{2u `

3

2

ˆ

|y| ´
3

4

˙

It|y| ą 3{2u

be the usual Huber’s loss. Moreover, let ψ be the mollifier

ψpxq “ C exp

ˆ

´
4

1´ 4x2

˙ "

|x| ď
1

2

*

where C is chosen so that
ş

R ψpxqdx “ 1. Then ρ given by the convolution

ρpxq “ ph ˚ ψqpxq satisfies Assumption 1.

Remark 1. The classical median-of-means estimator (Nemirovski and Yudin,

1983; Alon et al., 1996) corresponds to the choice ρpxq “ |x| that does not

satisfy smoothness assumptions imposed above. Asymptotic behavior of

the estimators corresponding to this loss is left as an open problem; numer-

ical evidence suggesting that asymptotic normality does not hold in this

case is presented in (Minsker and Yao, 2025).

Assumption 2. The Hessian B2
θLpθ0q exists and is strictly positive definite.

This assumption ensures that in a sufficiently small neighborhood of θ0,

cpθ0q}θ´θ0}
2 ď Lpθq´Lpθ0q ď Cpθ0q}θ´θ0}

2 for some 0 ă cpθ0q ď Cpθ0q ă
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2. STATEMENTS OF THE MAIN RESULTS.

8. The following two conditions allow one to control the “complexity” of

the class t`pθ, ¨q, θ P Θu.

Assumption 3. For every θ P Θ, the map θ1 ÞÑ `pθ1, xq is differentiable

at θ for P -almost all x (where the exceptional set of measure 0 can depend

on θ), with derivative Bθ`pθ, xq. Moreover, @θ P Θ, the envelope function

Vpx; δq :“ sup}θ̃´θ}ďδ

›

›

›
Bθ`pθ̃, xq

›

›

›
of the class

!

Bθ`pθ̃, ¨q : }θ̃ ´ θ} ď δ
)

satis-

fies EV2pX; δq ă 8 for sufficiently small δ “ δpθq.

An immediate implication of this assumption is the fact that the func-

tion θ ÞÑ `pθ, xq is locally Lipschitz. It other words, for any θ P Θ, there

exists a ball Bpθ, rpθqq of radius rpθq such that for all θ1, θ2 P Bpθ, rpθqq,

|`pθ1, xq ´ `pθ2, xq| ď Vpx; rpθqq}θ1 ´ θ2}. In particular, this condition suf-

fices to prove consistency of the estimators considered in this work and is

similar to the classical assumptions used in the analysis of M-estimators,

e.g. see the book by van der Vaart (2000). The final assumption that we

impose allows us to treat non-compact parameter spaces. Essentially, we

require that the estimator pθn,k defined via (1.5) belongs to a compact set

of sufficiently large diameter with high probability, namely,

lim
RÑ8

lim sup
n,kÑ8

P
´›

›

›

pθn,k ´ θ0

›

›

›
ě R

¯

“ 0 and

The following condition is sufficient for the display above to hold:
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doi:10.5705/ss.202024.0268



2. STATEMENTS OF THE MAIN RESULTS.

Assumption 4. Let X1, . . . , Xn be i.i.d. Given t, R ą 0 and a positive

integer n, define

Bpn,R, tq :“ P

˜

inf
θPΘ, }θ´θ0}ěR

1

n

n
ÿ

j“1

`pθ,Xjq ă E`pθ0, Xq ` t

¸

.

Then limRÑ8 lim supnÑ8Bpn,R, tq “ 0 for some t ą 0.

Let us emphasize that the data X1, . . . , Xn in Assumption 4 do not

contain outliers. Requirements similar to this assumption are commonly

imposed in the classical framework of M-estimation, (e.g see van der Vaart,

2000). Of course, when Θ is compact, Assumption 4 holds automatically;

another general scenario when Assumption 4 is true occurs if the class

t`pθ, ¨q : θ P Θu is Glivenko-Cantelli (van der Vaart and Wellner, 1996).

Otherwise, it can usually be verified on a case-by-case basis. For instance,

consider the framework of linear regression, where the data consist of i.i.d.

copies of the random couple pZ, Y q P Rd ˆ R such that Y “ xZ, θ˚y ` ε

for some θ˚ P Rd and a noise variable ε that is independent of Z and has

variance σ2. Moreover, assume that Z is centered and has positive definite

covariance matrix Σ. In this case, `pθ, Z, Y q “ pY ´ xZ, θyq2, and it is easy

to see that 1
n

řn
j“1 `pθ, Zj, Yjq “

1
n
p}~ε}2 ` }Zpθ ´ θ˚q}2 ´ 2x~ε,Zpθ˚ ´ θqyq,

where ~ε “ pε1, . . . , εnq
T and Z P Rnˆd has Z1, . . . , Zn as rows. Cauchy-

Schwarz inequality combined with a simple relation 2|ab| ď a2{2` 2b2 that
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2. STATEMENTS OF THE MAIN RESULTS.

holds for all a, b P R yield that

1

n

n
ÿ

j“1

`pθ, Zj, Yjq ě
1

2n
}Zpθ ´ θ˚q}2 ´

1

n
}~ε}2,

hence inf}θ´θ˚}ěR
1
n

řn
j“1 `pθ, Zj, Yjq ě

R2

2
inf}u}“1xΣnu, uy ´

1
n
}~ε}2 where

Σn “
1
n

řn
j“1 ZjZ

T
j is the sample covariance matrix. Since inf}u}“1xΣnu, uy ě

λminpΣq´ }Σn´Σ} “ λminpΣq´ oP p1q and 1
n
}~ε}2 “ Opp1q, it is easy to con-

clude that Assumption 4 holds; here, we used the fact that }Σn´Σ} “ oP p1q

in view of the law of large numbers.

We are ready to state the main results regarding consistency and asymp-

totic normality of the estimator (1.5). Recall the adversarial contamination

framework defined in section 1. In all statements below, we assume that the

sequences tkjujě1 and tnjujě1, corresponding the the number of subgroups

and their cardinality respectively, are non-decreasing and converge to 8 as

j Ñ 8, and that the total sample size is Nj :“ kjnj.

Theorem 1. Let assumptions 1, 2, 3 and 4 be satisfied. Suppose that

the number of outliers Oj is such that lim sup
jÑ8

Oj

kj
ď c for a sufficiently

small absolute constant c ą 0. Then the estimator pθnj ,kj defined in (1.5) is

consistent: pθnj ,kj Ñ θ0 in probability as j Ñ 8.

We remark that the contamination framework considered in Theorem

1 is quite general: for instance, in the framework if linear regression, X “
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pZ, Y q P Rd ˆR, hence outliers can occur among both the predictor Z and

response variable Y . On the other hand, many classical robust regression

methods, such as Huber’s regression, only allow the outliers among the

responses. The following theorem constitutes the main contribution of the

paper.

Theorem 2. Let assumptions 1, 2, 3 and 4 be satisfied, and suppose that

the number of outliers Oj is such that lim sup
jÑ8

Oj

kj
ď c for a sufficiently

small absolute constant c ą 0. Moreover, assume that tαnj ,kjujě1 is a non-

increasing sequence such that

α2
nj ,kj

ě
1

njkj
and α2

nj ,kj
"

Oj

kj

1
?
nj
.

Then

lim
MÑ8

lim sup
nj ,kjÑ8

P
´

}pθnj ,kj ´ θ0} ěM ¨ αnj ,kj

¯

“ 0.

In addition, if the sample is free of adversarial contamination (that is, Oj “

0), then

a

Nj

´

pθnj ,kj ´ θ0

¯

d
ÝÑ N

`

0, D2
pθ0q

˘

as j Ñ 8,

where D2pθ0q “ rB
2
θLpθ0qs

´1
Σ rB2

θLpθ0qs
´1

and Σ “ E
“

Bθ`pθ0, XqBθ`pθ0, Xq
T
‰

.

This result goes one step further compared to Theorem 1 and establishes

the rate of convergence of pθn,k to θ0. Moreover, it implies that in the “ideal,”

outlier-free scenario, αn,k “
1?
nk
“ 1?

N
is the standard parametric rate
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(and the rate is strictly slower if Oj ě 1), and that no loss of asymptotic

efficiency occurs compared to the standard M-estimator based on empirical

risk minimization. For example, maximum likelihood estimator corresponds

to the case when tpθ, θ P Θu is a family of probability density functions with

respect to some σ-finite measure µ and `pθ, ¨q “ ´ log pθp¨q. If it holds that

´B
2
θ E log pθ0pXq “ Ipθ0q :“ E

“

Bθ log pθ0pXqBθ log pθ0pXq
T
‰

,

then it follows that pθnj ,kj is asymptotically equivalent to the maximum like-

lihood estimator. The proof of Theorem 2 is presented in section 3.2 below,

while the proof of Theorem 1 is outlined in section S2 of the supplementary

material.

Remark 2. One may wonder whether the second claim of Theorem 2 re-

mains valid in the presence of outliers (that is, Oj ą 0). To the best of

our knowledge, this is not the case. One possible path to constructing es-

timators that remain asymptotically normal in the presence of adversarial

contamination is to consider an approach based on the gradient descent

algorithm applied to the optimization problem (1.1), where the gradient

∇Lpθkq is robustly estimated on each iteration k; we refer the reader to

the list of references investigating such methods and listed in section 1. In-

vestigation of the asymptotic properties of such methods is an interesting

direction for future research.
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2.1 Computational aspects.

Here, we briefly discuss some of the more practical aspects of the pro-

posed estimators, including the choice of the scaling factors ∆n. Note that,

while pLpθ, θ1q itself is defined as a minimizer of a convex function, it is

not a convex-concave function itself, and the problem (1.5) is not guaran-

teed to be convex-concave or have a unique solution. However, the gra-

dient of pLpθ, θ1q, both with respect to θ and θ1, is easily computable: as

řk
j“1 ρ

1

´?
n

sLjpθq´sLjpθ
1q´pLpθ,θ1q

∆n

¯

“ 0, differentiating this expression yields

that

BθpLpθ, θ
1
q “

řk
j“1 Bθ

sLjpθqρ
2

´?
n

sLjpθq´sLjpθ
1q´pLpθ,θ1q

∆n

¯

řk
j“1 ρ

2

´?
n

sLjpθq´sLjpθ1q´pLpθ,θ1q

∆n

¯ .

Due to this fact, gradient descent-ascent type methods for solving the prob-

lems closely related to (1.5) have been proposed and have shown good per-

formance in extended simulation studies; we refer the reader to (Lecué and

Lerasle, 2020; Mathieu and Minsker, 2021) for the details.

The problem of choosing the scaling factor for robust estimators of

location has been studied since the seminal work of Huber (1964). Here,

we suggest setting ∆n in a data-dependent way using the “median absolute

deviation” (MAD) estimator; this idea has been suggested and numerically

tested in (Mathieu and Minsker, 2021). We start with ∆n :“ ∆n,0 being

a fixed number (e.g., ∆n,0 “ 1q. Given an approximate solution pθt, θ
1
tq,
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e.g., obtained via the gradient descent-ascent iteration, set xMpθt, θ
1
tq :“

median
`

sL1pθt, θ
1
tq, . . . ,

sLkpθt, θ
1
tq
˘

, and

MADpθt, θ
1
tq “ median

´ˇ

ˇ

ˇ

sL1pθt, θ
1
tq ´

xMpθt, θ
1
tq

ˇ

ˇ

ˇ
, . . . ,

ˇ

ˇ

ˇ

sLkpθt, θ
1
tq ´

xMpθt, θ
1
tq

ˇ

ˇ

ˇ

¯

.

Finally, define p∆n,t`1 :“
MADpθt,θ1tq

Φ´1p3{4q
, where Φ is the distribution function of

the standard normal law and the normalizing factor comes from the fact

that for a sample from the normal distribution Npµ, σ2q, the expected value

of MAD equals Φ´1p3{4qσ. The scaling factor can be updated again after a

fixed number of iterations. Our theoretical results do not allow for a data-

dependent choice of ∆n however, and it would be an interesting avenue

for further investigation. We include a simple proof-of-concept numerical

simulation in section S8 of the supplementary material.

3. Proofs.

The proof of Theorem 2 uses characterization of pθn,k as the solution of the

min-max problem, and follows a standard pattern of consequently establish-

ing consistency, rate of convergence and finally the asymptotic normality.

The arguments are quite general and can be extended beyond the classes

that satisfy Lipschitz property imposed by Assumption 3. Since pLpθ1, θ2q

is defined implicitly as a solution of the convex minimization problem, we

rely on the Bahadur-type linear representation of pLpθ1, θ2q ´ Lpθ1, θ2q with
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uniform control of the remainder terms.

3.1 Preliminaries.

Below, we state several results that our proofs frequently rely upon.

Lemma 1. Let F : R ÞÑ R be a function such that F 2 is bounded and

Lipschitz continuous. Moreover, suppose that ξ1, . . . , ξn are independent

centered random variables such that E|ξj|2 ă 8 for all j, and that Zj, j “

1, . . . , n are independent with normal distribution N p0,Varpξjqq. Then

ˇ

ˇ

ˇ

ˇ

ˇ

EF

˜

n
ÿ

j“1

ξj

¸

´ EF

˜

n
ÿ

j“1

Zj

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď CpF q
n
ÿ

j“1

E
“

ξ2
j ¨minp|ξj|, 1q

‰

.

In particular, if E|ξj|2`τ ă 8 for some τ P p0, 1s and all j, then

ˇ

ˇ

ˇ

ˇ

ˇ

EF

˜

n
ÿ

j“1

ξj

¸

´ EF

˜

n
ÿ

j“1

Zj

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď CpF q
n
ÿ

j“1

E|ξj|2`τ .

The proof is given in section S3 of the supplementary material.

Lemma 2. Let F “
 

fθ, θ P Θ1 Ď Rd
(

be a class of functions that is Lip-

schitz in parameter, meaning that |fθ1pxq ´ fθ2pxq| ďMpxq}θ1´ θ2}. More-

over, assume that EMppXq ă 8 for some p ě 1. Finally, suppose that

X1, . . . , Xn are i.i.d. Then

E sup
θ1,θ2PΘ1

˜

1
?
n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

pfθ1pXjq ´ fθ2pXjq ´ P pfθ1 ´ fθ2qq

ˇ

ˇ

ˇ

ˇ

ˇ

¸p
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ď Cppqdp{2diamp
pΘ1, } ¨ }qE}M}pL2pPnq

and

E sup
θPΘ1

˜

1
?
n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

pfθpXjq ´ Pfθ1q

ˇ

ˇ

ˇ

ˇ

ˇ

¸p

ď Cppq
´

dp{2diamp
pΘ1, } ¨ }qE}M}pL2pPnq

` E1^ p
2 |fθ0pXq ´ Pfθ0 |

2_p
¯

for any θ0 P Θ1.

The proof is outlined in section S4 of the supplementary material. The

following result that can be viewed as a weak Bahadur representation of

pLpθ, θ0q is one of the key technical components that the proof of Theorem

2 relies on. Recall that rpθ0q ą 0 is such that for all θ1, θ2 P Bpθ, rpθ0qq,

|`pθ1, xq ´ `pθ2, xq| ď Vpx; rpθ0qq}θ1 ´ θ2} (see the paragraph following As-

sumption 3 for more details).

Lemma 3. Assume that adversarial contamination framework, and let O

denote the number of outliers. Let L “ t`pθ, ¨q, θ P Θu be a class of func-

tions, and, given θ0 P Θ, set σ2pδq :“ sup}θ´θ0}ďδ Var p`pθ,Xq ´ `pθ0, Xqq.

Moreover, let Assumption 3 hold. Then for every δ ď rpθ0q, the following

representation holds uniformly over }θ ´ θ0} ď δ:

?
N
´

pLpθ, θ0q ´ Lpθ, θ0q

¯
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“
∆n

Eρ2
´?

n
∆n

`

L̄1pθ, θ0q ´ Lpθ, θ0q
˘

¯

1
?
k

k
ÿ

j“1

ρ1
ˆ?

n

∆n

`

L̄jpθ, θ0q ´ Lpθ, θ0q
˘

˙

`Rn,kpθq, (3.1)

where

sup
}θ´θ0}ďδ

|Rn,kpθq| ď Cpd, θ0q

ˆ

δ2 s
2

?
k
`
?
kδ3

`
O2

k3{2

˙

with probability at least 1´ 3
s
.

The proof is contained in section S5 of the supplementary material.

3.2 Proof of Theorem 2.

As in the proof of Theorem 1, we will omit subscript j and write “k, n”

instead of “kj, nj” to denote the increasing sequences of the number of sub-

groups and their cardinalities. The argument is divided into two steps. The

first step consists in establishing the fact that the estimator pθn,k converges

to θ0 at
?
N -rate, while on the second step we prove asymptotic normal-

ity by “zooming” to the resolution level N´1{2; this proof pattern is quite

standard in the empirical process theory (van der Vaart and Wellner, 1996).

Step one. Similar to the proof of Theorem 1, we set

pθpθ1q :“ argmax
θPΘ

pLpθ1, θq “ argmin
θPΘ

pLpθ, θ1q

and define pθ
p1q
n,k :“ pθn,k and pθ

p2q
n,k :“ pθppθ

p1q
n,kq. We present a detailed argument
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establishing the convergence rate for pθ
p1q
n,k, and outline the modifications

necessary to establish the result for pθ
p2q
n,k. Our goal can be equivalently

stated as showing that

lim
MÑ8

lim sup
n,kÑ8

P
´

}pθ
p1q
n,k ´ θ0} ě 2Mαn,k

¯

“ 0. (3.2)

Define

SN,j : “
 

θ : 2j´1αn,k ă }θ ´ θ0} ď 2jαn,k
(

,

S̄N,j :“
 

θ : 0 ď }θ ´ θ0} ď 2jαn,k
(

,

and observe that

}pθ
p1q
n,k´θ0} ě 2Mαn,k ùñ inf

θPSN,j

´

pLpθ, pθpθqq ´ pLpθ0, pθpθ0qq

¯

ď 0 for some j ąM,

where pθpθ1q :“ argmaxθPΘ pLpθ1, θq. As pLpθ, pθpθqq ě pLpθ, θ0q for any θ, the in-

equality }pθp1q´θ0} ě 2Mαn,k implies that infθPSN,j

´

pLpθ, θ0q ´ pLpθ0, pθpθ0q

¯

ď

0 for some j ąM, which in turn entails that

inf
θPSN,j

´

pLpθ, θ0q ´ Lpθ, θ0q ´ pLpθ0, pθpθ0qq ` Lpθ0, pθpθ0qq

¯

ď Lpθ0, pθpθ0qq ´ inf
θPSN,j

Lpθ, θ0q

for some j ąM . Since Lpθ0, pθpθ0qq ´ infθPSN,j
Lpθ, θ0q ď 0 by the definition

of θ0, the previous display yields that
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sup
θPSN,j

ˇ

ˇ

ˇ

pLpθ, θ0q ´ Lpθ, θ0q ´ pLpθ0, pθpθ0qq ` Lpθ0, pθpθ0qq

ˇ

ˇ

ˇ

ě inf
θPSN,j

Lpθ, θ0q ´ Lpθ0, pθpθ0qq ě inf
θPSN,j

Lpθ, θ0q,

which further implies that either

sup
θPSN,j

ˇ

ˇ

ˇ

pLpθ, θ0q ´ Lpθ, θ0q

ˇ

ˇ

ˇ
ě inf

θPSN,j

Lpθ, θ0q

2
,

or
ˇ

ˇ

ˇ

pLpθ0, pθpθ0qq ´ Lpθ0, pθpθ0qq

ˇ

ˇ

ˇ
ě infθPSN,j

Lpθ,θ0q
2

. Let 0 ă η1 ď rpθ0q be

small enough so that Lpθq ´ Lpθ0q ě c}θ ´ θ0}
2 for θ such that }θ ´

θ0} ď η1 (existence of η1 follows from Assumption 2), and observe that

P
´

}pθ
p1q
n,k ´ θ0} ě η1

¯

Ñ 0 as n, k Ñ 8 due to consistency of the estimator

under assumptions of the theorem. We then have

P
´

}pθ
p1q
n,k ´ θ0} ě 2Mαn,k

¯

ď P
´

}pθ
p1q
n,k ´ θ0} ě η1

¯

` P
´
ˇ

ˇ

ˇ

pLpθ0, pθpθ0qq ´ Lpθ0, pθpθ0qq

ˇ

ˇ

ˇ
ě c 22Mα2

n,k

¯

` P

¨

˝

ď

j:jěM`1, 2jαn,kďη1

sup
θPSN,j

ˇ

ˇ

ˇ

pLpθ, θ0q ´ Lpθ, θ0q

ˇ

ˇ

ˇ
ě c 22j´2α2

n,k

˛

‚. (3.3)

We will now estimate the second and third terms on the right-hand side of

the display above, starting with the third term.

‚ Estimating P
´

Ť

j:jěM`1, 2jαn,kďη1
supθPSN,j

ˇ

ˇ

ˇ

pLpθ, θ0q ´ Lpθ, θ0q

ˇ

ˇ

ˇ
ě c 22j´2α2

n,k

¯

.

Let us invoke Lemma 3 applied to the class
 

`pθ, ¨q ´ `pθ0, ¨q, θ P S̄N,j
(

. To-

gether with the union bound applied over M ă j ď Jmax :“ tlogp
?
Nη1qu`1
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with sj :“ j2, it implies that for all θ P SN,j, M ` 1 ď j ď Jmax,

?
N
´

pLpθ, θ0q ´ Lpθ, θ0q

¯

“
∆n

Eρ2
´?

n
∆n

`

L̄1pθq ´ L̄1pθ0q ´ Lpθ, θ0q
˘

¯

ˆ
1
?
k

k
ÿ

i“1

ρ1
ˆ?

n

∆n

`

L̄ipθq ´ L̄ipθ0q ´ Lpθ, θ0q
˘

˙

`Rn,k,jpθq, (3.4)

where

sup
θPS̄N,j

|Rn,k,jpθq| ď Cpd, θ0q

ˆ

22j

N

j4

?
k
`
?
k

23j

N3{2
`

O2

k3{2

˙

uniformly over allM ď j ď Jmax with probability at least 1´3
ř

j:jěM`1 j
´2 ě

1 ´ C
M

. Let E denote the event of probability at least 1 ´ C
M

on which the

previous representation holds. Moreover, observe that, in view of Lemma

1, for η1 small enough and N large enough,

sup
}θ´θ0}ďη1

ˇ

ˇ

ˇ

ˇ

Eρ2
ˆ?

n

∆n

`

L̄1pθq ´ L̄1pθ0q ´ Lpθ, θ0q
˘

˙

´ ρ2p0q

ˇ

ˇ

ˇ

ˇ

ď
ρ2p0q

2
“

1

2
.

Taking this fact into account and noting that (i) 2j?
N

j4
?
k
`
?
k 22j

N
ď c̃2j for

any j ď Jmax and any c̃ ą 0 given that n is large enough and that the

relation (ii) O2

k3{2
“ opα2

n,k

?
Nq follows from assumptions of the theorem, we

see that the remainder term Rn,k,jpθq is smaller than c̃22j
´

1?
N
` α2

n,k

?
N
¯

on event E , hence

P

¨

˚

˝

ď

j:jěM`1, 2j?
N
ďη1

sup
θPSN,j

ˇ

ˇ

ˇ

pLpθ, θ0q ´ Lpθ, θ0q

ˇ

ˇ

ˇ
ě c 22j´2α2

n,k

˛

‹

‚

ď
C

M
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`
ÿ

j:jěM`1, 2jαn,kďη1

P

˜

sup
θPSN,j

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
k

k
ÿ

i“1

ρ1
ˆ?

n

∆n

`

L̄ipθq ´ L̄ipθ0q ´ Lpθ, θ0q
˘

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ě c122jα2
n,k

?
N

¸

where we used the fact that whenever c̃ is small enough,

c22j´2α2
n,k ´ c̃2

2j

ˆ

1

N
` α2

n,k

˙

ě c122jα2
n,k for c1 ą 0.

Invoking Lemma 1 again, we see that (assuming that L̄1p¨q is based on a

contamination-free sample)

sup
θPS̄N,j

ˇ

ˇ

ˇ

ˇ

Eρ1
ˆ?

n

∆n

`

L̄1pθq ´ L̄1pθ0q ´ Lpθ, θ0q
˘

˙
ˇ

ˇ

ˇ

ˇ

ď C
22j

N
.

Let us denote ρ1n,ipθ, θ0q “ ρ1
´?

n
∆n

`

L̄ipθq ´ L̄ipθ0q ´ Lpθ, θ0q
˘

¯

, i “ 1, . . . , k

for brevity. Moreover, let ρ̃1n,ipθ, θ0q be a version of ρ1n,ipθ, θ0q based on

a contamination-free i.i.d. sample X̃1, . . . , X̃N such that X̃j “ Xj for

j R J where J Ă t1, . . . , Nu contains the indices of the outliers among

X1, . . . , XN . As (i)
ˇ

ˇ

ˇ

1?
k

řk
i“1pρ

1
n,ipθ, θ0q ´ ρ̃

1
n,ipθ, θ0qq

ˇ

ˇ

ˇ
ď 2}ρ1}8

O?
k
, (ii) O?

k
!

α2
n,k

?
N by assumption, and (iii)

?
k 22j

N
ď c2

22j?
N
ď c222jα2

n,k

?
N for any

c2 ą 0 and sufficiently large n, it is easy to check that

P

˜

sup
θPSN,j

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
k

k
ÿ

i“1

ρ1n,ipθ, θ0q

ˇ

ˇ

ˇ

ˇ

ˇ

ě c122jα2
n,k

?
N

¸

ď P

˜

sup
θPSN,j

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
k

k
ÿ

i“1

˜

ρ̃1n,ipθ, θ0q ´ Eρ̃1n,ipθ, θ0q

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ě c222jα2
n,k

?
N

¸

ď
1

c222jα2
n,k

?
N
E sup
θPSN,j

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
k

k
ÿ

i“1

˜

ρ̃1n,ipθ, θ0q ´ Eρ̃1n,ipθ, θ0q

¸ˇ

ˇ

ˇ

ˇ

ˇ
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where we used Markov’s inequality on the last step. To bound the expected

supremum, we proceed in exactly the same fashion using symmetrization,

contraction and desymmetrization inequalities as in the proof of Lemma 3

(see the supplementary material), and deduce that

E sup
θPSN,j

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
k

k
ÿ

i“1

˜

ρ̃1n,ipθ, θ0q ´ Eρ̃1n,ipθ, θ0q

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

∆n

E sup
θPSN,j

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
N

N
ÿ

j“1

´

`pθ, X̃jq ´ `pθ0, X̃jq ´ Lpθ, θ0

¯

ˇ

ˇ

ˇ

ˇ

ˇ

.

The right side of the display above can be bounded by Cpd,θ0q
∆n

2j?
N

(using

Lemma 2), implying that

P

˜

sup
θPSN,j

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
k

k
ÿ

i“1

˜

ρ̃1n,ipθ, θ0q ´ Eρ̃1n,ipθ, θ0q

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ě c222jα2
n,k

?
N

¸

ď
C1pd, θ0q

∆n

1

2j
,

where we used the fact that α2
n,k ě

1
N

. Therefore,

P

¨

˚

˝

ď

j:jěM`1, 2j?
N
ďη1

sup
θPSN,j

ˇ

ˇ

ˇ

pLpθ, θ0q ´ Lpθ, θ0q

ˇ

ˇ

ˇ
ě c 22j´2α2

n,k

˛

‹

‚

ď
C

M
`
C1pd, θ0q

∆n

ÿ

jěM

2´j ď
C

M
`
C1pd, θ0q

∆n

2´M`1
Ñ 0 as M Ñ 8

whenever n, k are large enough.

‚ Estimating P
´
ˇ

ˇ

ˇ

pLpθ0, pθpθ0qq ´ Lpθ0, pθpθ0qq

ˇ

ˇ

ˇ
ě c 22Mα2

n,k

¯

.

In view of (3.3), it only remains to show that

P
´?

N
ˇ

ˇ

ˇ

pLpθ0, pθpθ0qq ´ Lpθ0, pθpθ0qq

ˇ

ˇ

ˇ
ě c 22Mα2

n,k

¯

Ñ 0 as n, k Ñ 8. (3.5)
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To this end, it suffices to repeat the argument presented above, with several

simplifications. First, we will start by proving that

lim
MÑ8

lim sup
n,kÑ8

P
´

}pθpθ0q ´ θ0} ě 2Mαn,k

¯

“ 0.

We have already shown in the course of the proof of Theorem 1 that pθpθ0q

is a consistent estimator of θ0, so that P
´

}pθpθ0q ´ θ0} ě η2

¯

Ñ 0 for any

η2 ą 0. If }pθpθ0q ´ θ0} ě 2Mα2
n,k, then pθpθ0q P SN,j for some j ą M ,

implying that supθPSN,j
pLpθ0, θq ě pLpθ0, θ0q “ 0, which entails the inequality

supθPSN,j

´

pLpθ0, θq ´ Lpθ0, θq
¯

ě ´ supθPSN,j
Lpθ0, θq “ infθPSN,j

Lpθ, θ0q ě

c 22j´2α2
n,k whenever 2jαn,k ď η2 and η2 is small enough. Therefore,

P
´

}pθpθ0q ´ θ0} ě 2Mαn,k

¯

ď P
´

}pθpθ0q ´ θ0} ě η2

¯

` P

¨

˝

ď

j:jěM`1, 2jαn,kďη2

sup
θPSN,j

ˇ

ˇ

ˇ

pLpθ0, θq ´ Lpθ0, θq
ˇ

ˇ

ˇ
ě c 22j´2α2

n,k

˛

‚.

The probability of the union is estimated as before using Lemma 3, implying

that it converges to 0 as M Ñ 8. To complete the proof of (3.5), observe

that

P
´
ˇ

ˇ

ˇ

pLpθ0, pθpθ0qq ´ Lpθ0, pθpθ0qq

ˇ

ˇ

ˇ
ą c 22Mα2

n,k

¯

ď P
´

}pθpθ0q ´ θ0} ě 2Mαn,k

¯

` P

˜

sup
}θ´θ0}ď2Mαn,k

ˇ

ˇ

ˇ

pLpθ0, θq ´ Lpθ0, θq
ˇ

ˇ

ˇ
ě c 22Mα2

n,k

¸

and that

P

˜

sup
}θ´θ0}ď2Mαn,k

ˇ

ˇ

ˇ

pLpθ0, θq ´ Lpθ0, θq
ˇ

ˇ

ˇ
ě c 22Mα2

n,k

¸

ď
C

M
`
Cpd, θ0q

∆n

2´M Ñ 0
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as M Ñ 8, which follows from the representation (3.4) in the same fashion

as before. This completes the proof of relation (3.2). To establish that

lim
MÑ8

lim sup
n,kÑ8

P
´

}pθ
p2q
n,k ´ θ0} ě 2Mαn,k

¯

“ 0,

we begin by observing that the inequality }pθ
p2q
n,k´ θ0} ě 2Mαn,k implies that

supθPSN,j
pLppθ

p1q
n,k, θq ě

pLppθ
p1q
n,k, θ0q for some j ą M . If 2jαn,k ď η3 for suffi-

ciently small constant η3 ą 0, we see that it further entails the inequality

sup
θPSN,j

´

pLppθ
p1q
n,k, θq ´ Lp

pθ
p1q
n,k, θq ´

pLppθ
p1q
n,k, θ0q ` Lppθ

p1q
n,k, θ0q

¯

ě ´ sup
θPSN,j

Lppθ
p1q
n,k, θq ` Lp

pθ
p1q
n,k, θ0q “ inf

θPSN,j

Lpθ, pθ
p1q
n,kq ` Lp

pθ
p1q
n,k, θ0q

“ inf
θPSN,j

Lpθ, θ0q ě c 22j´2α2
n,k.

We deduce from the display above that

P
´

}pθ
p2q
n,k ´ θ0} ě 2Mαn,k

¯

ď P
´

}pθ
p2q
n,k ´ θ0} ě η3

¯

`P
´

}pθ
p1q
n,k ´ θ0} ě 2Mα2

n,k

¯

` P

¨

˝

ď

j:jěM`1, 2jαn,kďη3

sup
θPSN,j ,θ1PS̄N,M{2

ˇ

ˇ

ˇ

pLpθ1, θq ´ Lpθ1, θq
ˇ

ˇ

ˇ
ě c1 22j´2α2

n,k

˛

‚

` P

˜

sup
θPS̄N,M{2

ˇ

ˇ

ˇ

pLpθ, θ0q ´ Lpθ, θ0q

ˇ

ˇ

ˇ
ě c1 22Mαn,k

¸

.

We have shown before that the first and second term on the right side of

the previous display converge to 0 as M , n and k tend to infinity, while the

last term converges to 0 in view of argument presented previously in detail

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0268



3. PROOFS.

(see representation (3.4) and the bounds that follow). It remains to estimate

P
´

Ť

j:jěM`1, 2jαn,kďη3
supθPSN,j ,θ1PS̄N,M{2

ˇ

ˇ

ˇ

pLpθ1, θq ´ Lpθ1, θq
ˇ

ˇ

ˇ
ě c1 22j´2α2

n,k

¯

. To

this end, we again invoke Lemma 3 applied to the class

 

`pθ1, ¨q ´ `pθ2, ¨q, θ1 P S̄N,M{2, θ2 P S̄N,j
(

.

Here, the “reference point” is pθ0, θ0q. Since

|`pθ, xq ´ `pθ1, xq| ď V px; rpθ0qqp2
j
` 2M{2qαn,k,

it is easy to see that σ2pδq ď EM2
θ0
pXq

`

22j ` 2M
˘

α2
n,k ď Cpθ0q2

2jα2
n,k, and

to deduce that

?
N
´

pLpθ1, θq ´ Lpθ1, θq
¯

“
∆n

Eρ2
´?

n
∆n

`

L̄1pθ1q ´ L̄1pθq ´ Lpθ1, θq
˘

¯

1
?
k

k
ÿ

i“1

ρ1
ˆ?

n

∆n

`

L̄ipθ
1
q ´ L̄ipθq ´ Lpθ

1, θq
˘

˙

`Rn,k,jpθ
1, θq,

where

sup
θPS̄N,j ,θ1PS̄N,M{2

|Rn,k,jpθ
1, θq| ď Cpd, θ0q

ˆ

22j

N

j4

?
k
`
?
k

23j

N3{2
`

O2

k3{2

˙

uniformly over all M ď j ď Jmax with probability at least 1 ´ C
M

. The

remaining steps again closely mimic the argument outlined in detail after

display (3.4) and yield that
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P

¨

˝

ď

j:jěM`1, 2jαn,kďη3

sup
θPSN,j ,θ1PS̄N,M{2

ˇ

ˇ

ˇ

pLpθ1, θq ´ Lpθ1, θq
ˇ

ˇ

ˇ
ě c1 22j´2α2

n,k

˛

‚

ď
Cpd, θ0q

∆n

2´M`1
Ñ 0

as M Ñ 8, therefore implying the last claim in the first part of the proof.

Step two. Now we are ready to establish the asymptotic normality of pθ
p1q
n,k

and pθ
p2q
n,k. To this end, observe that the first claim of the theorem holds with

αn,k “
1?
nk
“ 1?

N
, and consider the stochastic process MNph, qq indexed by

h, q P Rd and defined via

MNph, qq :“ N
´

pLpθ0 ` h{
?
N, θ0 ` q{

?
Nqq ´ Lpθ0 ` h{

?
N, θ0 ` q{

?
Nq

¯

.

Below, we will show that MNph, qq converges weakly to the Gaussian pro-

cess W ph, qq :“ W T ph ´ qq, h, q P Rd, where W „ Np0,ΣW q and ΣW “

E
“

Bθ`pθ0, XqBθ`pθ0, Xq
T
‰

. Let us deduce the conclusion assuming that weak

convergence has already been established. We have that

N ¨ pLpθ0`h{
?
N, θ0` q{

?
Nqq “ N ¨Lpθ0`h{

?
N, θ0` q{

?
Nq`MNph, qq.

Note that, in view of Assumption 2 and the fact that θ0 minimizes Lpθ0q,

N ¨ Lpθ0 ` h{
?
N, θ0 ` q{

?
Nq Ñ

1

2
hTB2

θLpθ0qh´
1

2
qTB2

θLpθ0qq as N Ñ 8,

therefore

N ¨pLpθ0`h{
?
N, θ0`q{

?
Nqq

d
ÝÑ W Th`

1

2
hTB2

θLpθ0qh´

ˆ

W T q ´
1

2
qTB2

θLpθ0qq

˙

.
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It is easy to see that

´

´
“

B
2
θLpθ0q

‰´1
W,´

“

B
2
θLpθ0q

‰´1
W

¯

“ argmin
h

max
q
W Th`

1

2
hTBdθLpθ0qh´

ˆ

W T q ´
1

2
qTBdθLpθ0qq

˙

,

where ´ rB2
θLpθ0qs

´1
W „ N

´

0, rB2
θLpθ0qs

´1
ΣW rB

2
θLpθ0qs

´1
¯

. Therefore,

since

´?
N
´

pθ
p1q
n,k ´ θ0

¯

,
?
N

´

pθ
p2q
n,k ´ θ0

¯¯

“ argmin
h

max
q

pLpθ0`h{
?
N, θ0`q{

?
Nqq,

continuous mapping theorem yields the desired conclusion. Next, we will

establish the required weak convergence.

‚ Establishing weak convergence. To this end, we apply Lemma 3 to

the class

rLN :“

$

’

’

&

’

’

%

r`Nph, q, ¨q :“ `pθ0 ` h{
?
N, ¨q ´ `pθ0 ` q{

?
N, ¨q,

›

›

›

›

›

›

›

›

¨

˚

˚

˝

h

q

˛

‹

‹

‚

›

›

›

›

›

›

›

›

ď R

,

/

/

.

/

/

-

,

(3.6)

and note that

›

›

›

›

›

›

›

›

¨

˚

˚

˝

θ0 ` h{
?
N

θ0 ` q{
?
N

˛

‹

‹

‚

´

¨

˚

˚

˝

θ0

θ0

˛

‹

‹

‚

›

›

›

›

›

›

›

›

ď R?
N

. We will also introduce the

following notation for brevity (that will be used only in this part of the

proof):

L̄jph, qq :“
1

n

ÿ

iPGj

r`Nph, q,Xiq, rLph, qq :“ Er`Nph, q,Xq. (3.7)
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The quantities δ and σ2pδq defined in Lemma 3 admit the bounds δ ď R?
N

and, in view of Assumption 3,

σ2
pδq :“ sup

}ph,qqT }ďR

Var
´

r`Nph, q,Xq
¯

ď 2EV 2
pX; rpθ0qq

R2

N
, (3.8)

hence Lemma 3 yields that

MNph, qq “
∆n

Eρ2
´?

n
∆n

´

L̄1ph, qq ´ rLph, qq
¯¯

?
N
?
k

k
ÿ

j“1

ρ1
ˆ?

n

∆n

´

L̄jph, qq ´ rLph, qq
¯

˙

` oP p1q

uniformly over
›

›ph, qqT
›

› ď R. In view of Assumption 1,

P
ˆˇ

ˇ

ˇ

ˇ

?
n

∆n

´

L̄jph, qq ´ rLph, qq
¯

ˇ

ˇ

ˇ

ˇ

ď 1

˙

ď Eρ2
ˆ?

n

∆n

´

L̄1ph, qq ´ rLph, qq
¯

˙

ď 1.

As sup}ph,qqT }ďR P
´
ˇ

ˇ

ˇ

?
n

∆n

´

L̄jph, qq ´ rLph, qq
¯
ˇ

ˇ

ˇ
ě 1

¯

ď sup}ph,qqT }ďR
Varpr`ph,q,Xq

∆2
n

Ñ

0 as n, k Ñ 8, we deduce that Eρ2
´?

n
∆n

´

L̄1ph, qq ´ rLph, qq
¯¯

Ñ 1 and

MNph, qq “ ∆n

?
N
?
k

k
ÿ

j“1

ρ1
ˆ?

n

∆n

´

L̄jph, qq ´ rLph, qq
¯

˙

` oP p1q. (3.9)

It remains to establish convergence of the finite dimensional distributions

as well as asymptotic equicontinuity. Convergence of finite dimensional

distributions will be deduced from Lindeberg-Feller’s central limit theorem.

As ρ1pxq “ x for |x| ď 1 by Assumption 1,

ρ1
ˆ?

n

∆n

´

L̄jph, qq ´ rLph, qq
¯

˙

“

?
n

∆n

´

L̄jph, qq ´ rLph, qq
¯
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on the event Cj :“
!
ˇ

ˇ

ˇ

?
n

∆n

´

L̄jph, qq ´ rLph, qq
¯
ˇ

ˇ

ˇ
ď 1

)

. Chebyshev’s inequality

and Assumption 3 imply that

P
`

C̄j
˘

ď Var

ˆ?
n

∆n

´

L̄jph, qq ´ rLph, qq
¯

˙

ď
Er`2ph, q,Xq

∆2
n

ď
EV2pX; rpθ0qq}h´ q}

2

∆2
nN

,

therefore, P
´

Ťk
j“1 C̄j

¯

ď
EV2pX;rpθ0qq}h´q}2

∆2
nn

Ñ 0 as nÑ 8, and

MNph, qq “ ∆n

?
N
?
k

k
ÿ

j“1

?
n

∆n

´

L̄jph, qq ´ rLph, qq
¯

` oP p1q

“
1
?
N

N
ÿ

j“1

?
N
´

r`Nph, q,Xjq ´ rLph, qq
¯

` oP p1q

on the event
Şk
j“1 Cj. Hence, the limits of the finite dimensional distribu-

tions of the processes MNph, qq and

xMNph, qq :“
1
?
N

N
ÿ

j“1

?
N
´

r`Nph, q,Xjq ´ rLph, qq
¯

coincide. It is easy to conclude from the Lindeberg-Feller’s theorem that

the finite dimensional distributions of the process ph, qq ÞÑ xMNph, qq are

Gaussian, with covariance function

lim
NÑ8

cov
´

xMNph1, q1q,xMNph2, q2q

¯

“ ph1 ´ q1q
T E

”

Bθ`pθ0, Xq pBθ`pθ0, Xqq
T
ı

ph2 ´ q2q , (3.10)

Indeed, the aforementioned relation follows from the dominated conver-

gence theorem, where pointwise convergence and the “domination” hold
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due to Assumption 3. Lindeberg’s condition is also easily verified, as
´?

Nr`Nph, q,Xq
¯2

ď V2pX; rpθ0qq}h ´ q}2, implying that the sequence
"

´

a

Nj
r`Nj
ph, q,Xq

¯2
*

jě1

is uniformly integrable, where Nj “ nj ¨ kj.

Finally, we will establish the asymptotic equicontinuity of the process

MNph, qq. To this end, it suffices to prove that for any ε ą 0,

lim
δÑ0

lim sup
n,kÑ8

P

˜

sup
}ph1,q1qT´ph2,q2qT }ďδ

|MNph1, q1q ´MNph2, q2q| ě ε

¸

Ñ 0,

which would follow, in view of Lemma 3, from the relation

lim
δÑ0

lim sup
n,kÑ8

E sup
}ph1,q1qT´ph2,q2qT }ďδ

ˇ

ˇ

ˇ

ˇ

ˇ

∆n

?
N
?
k

k
ÿ

j“1

˜

ρ1
ˆ?

n

∆n

´

L̄jph1, q1q ´ rLph1, q1q

¯

˙

´ ρ1
ˆ?

n

∆n

´

L̄jph2, q2q ´ rLph2, q2q

¯

˙

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“ 0. (3.11)

To estimate the expected supremum in (3.11), we first observe that for any

h, q,

?
Nk

ˇ

ˇ

ˇ

ˇ

Eρ1
ˆ?

n

∆n

´

L̄1ph, qq ´ rLph, qq
¯

˙ˇ

ˇ

ˇ

ˇ

“ op1q (3.12)

as k, nÑ 8 by Lemma 1 and inequality (3.8). Therefore, we only need to

show that

lim sup
n,kÑ8

E sup
}ph1,q1qT´ph2,q2qT }ďδ

|MNph1, q1q ´MNph2, q2q´

pEMNph1, q1q ´ EMNph2, q2qq|
δÑ0
ÝÝÑ 0.
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Next, we will apply symmetrization inequality with Gaussian weights (van der

Vaart and Wellner, 1996). Specifically, let g1, . . . , gk be i.i.d. Np0, 1q ran-

dom variables independent of the data X1, . . . , XN . Then, setting Bpδq :“

 

ph1, q1q, ph2, q2q : }ph1, q1q
T ´ ph2, q2q

T } ď δ
(

, we have that

E sup
Bpδq

|MNph1, q1q ´MNph2, q2q ´ pEMNph1, q1q ´ EMNph2, q2qq| ď

Cpρq∆nE sup
Bpδq

ˇ

ˇ

ˇ

ˇ

ˇ

?
N
?
k

k
ÿ

j“1

gj

˜

ρ1
ˆ?

n

∆n

´

L̄jph1, q1q ´ rLph1, q1q

¯

˙

´ ρ1
ˆ?

n

∆n

´

L̄jph2, q2q ´ rLph2, q2q

¯

˙

¸ˇ

ˇ

ˇ

ˇ

ˇ

.

Let us condition everything on X1, . . . , XN ; we will write Eg to denote the

expectation with respect to g1, . . . , gk only. Consider the Gaussian process

Yn,kptq defined via Rk Q t ÞÑ Yn,kptq :“ 1?
k

řk
j“1 gj

?
Nρ1ptjq, where

tj :“ tjph, qq “

?
n

∆n

´

L̄jph, qq ´ rLph, qq
¯

, j “ 1, . . . , k.

In what follows, we will rely on the ideas behind the proof of Theorem

2.10.6 in van der Vaart and Wellner (1996). Let us partition the set tph, qq :

}ph, qq} ď Ru into the subsets Sj, j “ 1, . . . , Npδq of diameter at most δ

with respect to the Euclidean distance } ¨ }, and let tpjq :“ tpjqphpjq, qpjqq P

Sj j “ 1, . . . , Npδq be arbitrary points; we also note that Npδq ď
`

6R
δ

˘2d
.

Next, set T pjq :“ ttph, qq : ph, qq P Sju. Our goal will be to show that

lim sup
n,kÑ8

E max
j“1,...,Npδq

sup
tPT pjq

ˇ

ˇYn,kptq ´ Yn,kpt
pjq
q
ˇ

ˇÑ 0 as δ Ñ 0,
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whence the desired conclusion would follow from Theorem 1.5.6 in van der

Vaart and Wellner (1996). By Lemma 2.10.16 in van der Vaart and Wellner

(1996),

Eg max
j“1,...,Npδq

sup
tPT pjq

ˇ

ˇYn,kptq ´ Yn,kpt
pjq
q
ˇ

ˇ

ď C

˜

max
j“1,...,Npδq

Eg sup
tPT pjq

ˇ

ˇYn,kptq ´ Yn,kpt
pjq
q
ˇ

ˇ

`
a

logNpδq max
1ďjďNpδq

sup
tPT pjq

Var1{2
g

`

Yn,kptq ´ Yn,kpt
pjq
q
˘

¸

. (3.13)

Observe that Varg
`

Yn,kptq ´ Yn,kpt
pjqq

˘

“ N
k

řk
i“1

´

ρ1ptiq ´ ρ
1pt
pjq
i qq

¯2

, hence

E max
1ďjďNpδq

sup
tPT pjq

Var1{2
g

`

Yn,kptq ´ Yn,kpt
pjq
q
˘

ď E1{2 sup
tp1q,tp2q

N

k

k
ÿ

i“1

´

ρ1pt
p1q
i q ´ ρ

1
pt
p2q
i q

¯2

ď
?
NLpρ1qE1{2 sup

tp1q,tp2q

´

t
p1q
1 ´ t

p2q
1

¯2

“ Lpρ1qE1{2 sup
}ph1,q1q´ph2,q2q}ďδ

˜?
nN

∆n

´

L̄1ph1, q1q ´ L̄1ph2, q2q

´ prLph1, q1q ´ rLph2, q2q

¯

¸2

,

where the supremum is taken over all tp1qph1, q1q, t
p2qph2, q2q such that

}ph1, q1q´ph2, q2q} ď δ. To estimate the last expected supremum, we invoke

Lemma 2 with fh,qpXq :“ `pθ0`h{
?
N,Xq´ `pθ0` q{

?
N,Xq, noting that,

in view of Assumption 3,

?
N |fh1,q1pXq ´ fh2,q2pXq| ď VpX; rpθ0qq p}h1 ´ h2} ` }q1 ´ q2}q
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ď 2VpX; rpθ0qq }ph1, q1q ´ ph2, q2q} . (3.14)

Therefore,

E1{2 sup
}ph1,q1q´ph2,q2q}ďδ

ˆ

?
nN

∆n

´

L̄1ph1, q1q ´ L̄1ph2, q2q ´ prLph1, q1q ´ rLph2, q2q

¯

˙2

ď C
?
dE1{2V2

pX; rpθ0qq ¨ δ,

yielding that the second term on the right side of (3.13) converges in prob-

ability to 0 as δ Ñ 0. It remains to show that the first term

max
j“1,...,Npδq

Eg sup
tPT pjq

ˇ

ˇYn,kptq ´ Yn,kpt
pjq
q
ˇ

ˇ

converges to 0 in probability. As ρ1 is Lipschitz continuous, the covariance

function of Yn,kptq satisfies

E
`

Yn,kpt
p1q
q ´ Yn,kpt

p2q
q
˘2
ď L2

pρ1q
N

k

k
ÿ

j“1

´

t
p1q
j ´ t

p2q
j

¯2

,

where the right side corresponds to the variance of increments of the process

Zn,kptq “
Lpρ1q
?
k

k
ÿ

j“1

gj
?
Ntj.

Therefore, Slepian’s lemma (Ledoux and Talagrand, 1991) implies that for

any j,

Eg sup
tPT pjq

ˇ

ˇYn,kptq ´ Yn,kpt
pjq
q
ˇ

ˇ
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ď Eg sup
ph,qqPSj

1
?
k

ˇ

ˇ

ˇ

ˇ

ˇ

?
Nn

∆n

k
ÿ

i“1

gj

´

L̄iph, qq ´ L̄iph
pjq, qpjqq ´ prLph, qq ´ Lphpjq, qpjqqq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

.

In turn, it yields the inequality

E max
j“1,...,Npδq

Eg sup
tPT pjq

ˇ

ˇYn,kptq ´ Yn,kpt
pjq
q
ˇ

ˇ

ď E sup
}ph1,q1q´ph2,q2q}ďδ

1
?
k

ˇ

ˇ

ˇ

ˇ

ˇ

?
Nn

∆n

k
ÿ

i“1

gj

´

L̄iph1, q1q ´ L̄iph2, q2q

´ prLph1, q1q ´ rLph2, q2qq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

.

To complete the proof, we will apply the multiplier inequality (Lemma

2.9.1 in van der Vaart and Wellner, 1996) to deduce that the last display is

bounded, up to a multiplicative constant, by

max
m“1,...,k

E sup
}ph1,q1q´ph2,q2q}ďδ

1
?
m

ˇ

ˇ

ˇ

ˇ

ˇ

?
Nn

∆n

m
ÿ

i“1

εj

´

L̄iph1, q1q ´ L̄iph2, q2q

´ prLph1, q1q ´ rLph2, q2qq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

where ε1, . . . , εk are i.i.d. Rademacher random variables. Next, desym-

metrization inequality (Lemma 2.3.6 in van der Vaart and Wellner, 1996)

implies that for any m “ 1, . . . , k,

E sup
}ph1,q1q´ph2,q2q}ďδ

1
?
m

ˇ

ˇ

ˇ

ˇ

ˇ

?
Nn

∆n

m
ÿ

i“1

εj

´

L̄iph1, q1q ´ L̄iph2, q2q

´ prLph1, q1q ´ rLph2, q2qq

¯

ˇ

ˇ

ˇ

ˇ

ˇ
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ď 2E sup
}ph1,q1q´ph2,q2q}ďδ

1
?
mn

ˇ

ˇ

ˇ

ˇ

ˇ

?
N

∆n

mn
ÿ

i“1

´

r`Nph1, q1, Xiq ´
r`Nph2, q2, Xiq

´ prLph1, q1q ´ rLph2, q2qq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

where r`Nph, q,Xq and rLph, qq were defined in (3.6) and (3.7) respectively. It

remains to apply Lemma 2 in exactly the same way as before (see (3.14)) to

deduce that the last display is bounded from above by C
?
dE1{2V2pX; rpθ0qq¨

δ Ñ 0 as δ Ñ 0. This completes the proof of asymptotic equicontinuity,

and therefore weak convergence, of the sequence of processes MNph, qq.

Supplementary Material

The online supplementary material includes the proof of Theorem 1, the

proofs of technical results and description of numerical simulation.
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