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Abstract: This article treats the problem of constructing nonparametric asymp-

totically distribution-free tests for conditional quantile independence in multidi-

mensions. Our approach combines the quantile martingale difference divergence

with a notion of the recently introduced multivariate center-outward ranks and

signs. We derive the asymptotic null representation of the proposed test statis-

tics by exploiting the degenerate V -type and U -type structures of the quantile

martingale difference divergence and the Glivenko-Cantelli strong consistency

and distribution-freeness of the center-outward ranks and signs. This represen-

tation permits direct calculation of limiting null distributions without requiring

bootstrap calibration. We further show that our center-outward versions of the

quantile martingale difference divergence tests are consistent against all fixed al-

ternatives. A local power analysis provides strong support for the center-outward

approach by establishing the nontrivial power of our center-outward rank-based

tests over root-n neighborhoods. Moreover, the proposed tests are computation-

ally feasible and well-defined without any moment assumptions. We illustrate

the advantages of the proposed methods via extensive simulation studies and a
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gene expression dataset analysis.

Key words and phrases: center-outward ranks and signs, conditional quantile,

Hájek representation, Le Cam’s third lemma, quantile martingale difference di-

vergence, V -type and U -type processes

1. Introduction

Inference for regression models is one of the most important issues in statis-

tics. Since Koenker and Bassett (1978), quantile regression has attracted

increasing attention in recent years, mainly due to the robustness against

outliers in the response and the ability to capture heterogeneity in the set of

important predictors. More references about quantile regression estimation

and interpretation can be found in the seminal book by Koenker (2005).

For a scalar response variable Y ∈ R and a set of predictors x ∈ Rq, we

are interested in exploring whether x = (X1, . . . , Xq)
T is useful in model-

ing a certain aspect of the quantiles of Y , before constructing a paramet-

ric/nonparametric quantile regression model. For theoretical development,

a fixed dimension is assumed to derive the asymptotic results.

To test for significant predictors at the τth (0 < τ < 1) conditional

quantile of Y , a natural methodology is to carry out a hypothesis test com-

paring the null model of no predictors and the full model consisting of all
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q predictors. Zheng (1998) first considered a kernel-based test for a gener-

al parametric quantile regression model. He and Zhu (2003) extended the

approach in Stute (1997) and proposed a test based on a weighted cumula-

tive sum process of the residuals. See also Horowitz and Spokoiny (2002),

Whang (2006), Otsu (2008), Escanciano and Velasco (2010) and Escanciano

and Goh (2014) for more lack-of-fit tests based on cumulative sum process-

es. Conde-Amboage et al. (2015) suggested projecting the covariates x into

a random variable first, and then applying He and Zhu (2003)’s method to

form a lack-of-fit test. Xu and Chen (2020) generalized the mean restriction

test of Su and Zheng (2017) to the quantile restriction case. Wang et al.

(2018) and Xu and An (2024) suggested marginal testing procedures based

on fitting the working marginal quantile regression models by regressing Y

on Xj, j = 1, . . . , q, for each j separately. Their approach is in the spirit

of McKeague and Qian (2015), who proposed an adaptive resampling test

for detecting significant predictors based on marginal linear mean regres-

sion. Dong et al. (2019) novelly transformed lack-of-fit tests for parametric

quantile regression models into checking the equality of two conditional dis-

tributions, and then employed Baringhaus and Franz (2004)’s method to

construct a reliable test. Most of these tests are non-parametric, and they

can detect the departures at all directions when the sample size tends to in-
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finity. Despite their usefulness, the null limit distributions, which involved

in the aforementioned methodologies, depend on the unknown density of the

error distribution and, therefore, are not Asymptotically Distribution-Free

(ADF).

In this article, we study the problem of testing conditional quantile inde-

pendence in multidimensions and develop nonparametric testing procedures

that are ADF. For this, we first introduce a variant of the martingale dif-

ference divergence (Shao and Zhang, 2014; Park et al., 2015; Zhang et al.,

2018; Lee and Shao, 2018; Lee et al., 2020), the so-called quantile martin-

gale difference divergence (Lee and Hilafu, 2022). Our proposed tests are

based on applying the quantile martingale difference divergence to center-

outward ranks and signs (Chernozhukov et al., 2017; Hallin, 2017; Hallin

et al., 2021; Shi et al., 2022). Among the existing literature, the most close-

ly related papers to ours are the ones by Shao and Zhang (2014) and Lee

and Hilafu (2022). For clarity we discuss the differences in the following

four important aspects.

• Exploiting the degenerate V -type and U -type structures of the quan-

tile martingale difference divergence and the Glivenko-Cantelli strong

consistency and distribution-freeness of the center-outward ranks and

signs, we derive the asymptotic null representation of the proposed

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0266



test statistics. This representation permits direct calculation of lim-

iting null distributions without requiring bootstrap calibration. In

contrast, we need bootstrap to estimate the critical values for the

original martingale difference divergence test statistic.

• The proposed testing procedures are computationally feasible and are

well-defined without any moment assumptions. They are consistent

against all fixed alternatives, that is, the probability of rejecting the

null, calculated under the alternative, converges to one as the sample

size increases. Unlike the original martingale difference divergence

test, we can use our tests on generally distributed predictors and

errors including the heavy-tailed ones.

• Combined with a nontrivial use of Le Cam’s third lemma in a con-

text of non-Gaussian limits, we conduct local power analyses of the

proposed quantile martingale difference divergence tests. We provide

strong support for the center-outward approach by establishing the

nontrivial power of our center-outward rank-based tests over root-n

neighborhoods. However, previous work does not perform any power

analysis for the original martingale difference divergence test.

• Unlike the original martingale difference divergence test, our center-
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outward rank-based tests allow for the incorporation of score function-

s, which may improve their performance. In addition, our proposed

method can be used to conduct joint tests across multiple quantiles.

The remainder of the paper is organized as follows. In Section 2, we

give a brief review of the quantile martingale difference divergence and

the center-outward ranks and signs. Our center-outward versions of the

quantile martingale difference divergence tests are proposed in Section 3,

after establishing the asymptotic null representation of the test statistics,

followed by results on the consistency and the local power analysis of the

tests. In Section 4, we consider extensions across multiple quantiles. In

Section 5, we report some simulation studies and a real data example. We

conclude the article with a short discussion in Section 6. Technical proofs

are relegated to the Supplementary Material.

2. Preliminaries

2.1 Center-outward ranks and signs

Let x have an absolutely continuous probability measure on Rq. Let Sq

and Sq−1 denote the open unit ball and the unit sphere in Rq, respectively.

Denote by Wq the spherical uniform measure on Sq, that is, the product

of the uniform measures on [0, 1) (for the distance to the origin) and on
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2.1 Center-outward ranks and signs

Sq−1 (for the direction). The center-outward distribution function F± of x

is defined as the almost surely unique gradient of convex function mapping

Rq to Sq and pushing x forward to Wq, that is, F±(x) ∼ Wq. We refer the

readers to Chernozhukov et al. (2017), Hallin (2017), Hallin et al. (2021)

and Shi et al. (2022) for details about the existence and almost everywhere

uniqueness of a center-outward distribution function. In dimension q = 1,

F± reduces to 2F − 1 ∼Uniform(-1, 1), where F is the usual cumulative

distribution function.

The sample counterpart F̂± of F± is based on an n-tuple of data points

x1, . . . ,xn ∈ Rq. As in Hallin (2017), let n factorize into n = nRnS + n0,

for nR, nS ∈ Z+ and 0 ≤ n0 < min(nR, nS), where Z+ is the set of positive

integer numbers, nR → ∞ and nS → ∞ as n → ∞. Consider a sequence

Gn of grids, where each grid consists of the intersection between an nS-

tuple (u1, . . . ,unS
) of unit vectors, and the nR hyperspheres with radii

1/(nR + 1), . . . , nR/(nR + 1) centered at the origin, along with n0 copies

of the origin. It is required that the sequence Gn of grids is such that

the discrete distribution with probability masses 1/n at each gridpoint and

probability mass n0/n at the origin converges weakly to the uniformWq over

the ball Sq. Let T be the collection of all bijective mappings between {xi}ni=1

and Gn. The empirical center-outward distribution function is defined as
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2.2 Quantile martingale difference divergence

F̂± = argminT∈T
n∑

i=1

∥xi − T (xi)∥2, where ∥ · ∥ stands for the Euclidean

norm. The center-outward rank of xi is defined as (nR + 1)∥F̂±(xi)∥, and

the center-outward sign of xi is defined as F̂±(xi)/∥F̂±(xi)∥ if ∥F̂±(xi)∥ ̸= 0,

and 0 otherwise.

2.2 Quantile martingale difference divergence

Shao and Zhang (2014), Park et al. (2015), Lee and Shao (2018) and Lee

et al. (2020) advocated using the martingale difference divergence (MDD)

and its standardized version to measure the conditional mean independence

between two variables. The MDD of Y given x whose square is defined by

MDD2(Y | x)

= c−1
q

∫
Rq

| E{Y exp(ısTx)} − E(Y )E{exp(ısTx)} |2 ∥s∥−1−qds,

where ı = (−1)1/2, cq = π(1+q)/2/Γ{(1 + q)/2}, and Γ(·) is the complete

gamma function: Γ(x) =
∫∞
0
tx−1 exp(−t)dt. The definition is an analogue

of the popular distance covariance (Székely et al., 2007) and has many

remarkable properties. For instance, MDD2(Y | x) = 0 if and only if

pr{E(Y | x) = E(Y )} = 1. If E(| Y |2 +∥x∥2) < ∞, Theorem 1 in Shao

and Zhang (2014) stated that

MDD2(Y | x) = −E [{Y1 − E(Y1)}{Y2 − E(Y2)}∥x1 − x2∥] , (2.1)
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2.2 Quantile martingale difference divergence

where (Y1,x1) and (Y2,x2) are independent copies of (Y,x).

Given that (Yi,xi), i = 1, . . . , n is a random sample from the popula-

tion (Y,x), Shao and Zhang (2014) proposed the V -type sample martingale

difference divergence defined as

M̂DD
2

1(Y | x) = −n−2

n∑
i1,i2=1

A1,i1i2B1,i1i2 , (2.2)

where

A1,i1i2 = a1,i1i2 − n−1

n∑
i3=1

a1,i1i3 − n−1

n∑
i4=1

a1,i4i2 + n−2

n∑
i3,i4=1

a1,i3i4 ,

and B1,i1i2 = b1,i1i2 − n−1

n∑
i3=1

b1,i1i3 − n−1

n∑
i4=1

b1,i4i2 + n−2

n∑
i3,i4=1

b1,i3i4 ,

with a1,i1i2 = Yi1Yi2 and b1,i1i2 = ∥xi1−xi2∥. In some statistical applications,

one may prefer to use U -type statistic. Adopting the idea of the double

centred distance (Székely and Rizzo, 2014; Park et al., 2015; Yao et al.,

2018), Zhang et al. (2018) proposed the U -type sample martingale difference

divergence defined as

M̂DD
2

2(Y | x) = {n(n− 3)}−1

n∑
i1 ̸=i2

A2,i1i2B2,i1i2 , (2.3)

where

A2,i1i2 = a2,i1i2 − (n− 2)−1

n∑
i3=1

a2,i1i3 − (n− 2)−1

n∑
i4=1

a2,i4i2

+{(n− 1)(n− 2)}−1

n∑
i3,i4=1

a2,i3i4 ,
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2.2 Quantile martingale difference divergence

and B2,i1i2 = b2,i1i2 − (n− 2)−1

n∑
i3=1

b2,i1i3 − (n− 2)−1

n∑
i4=1

b2,i4i2

+{(n− 1)(n− 2)}−1

n∑
i3,i4=1

b2,i3i4 ,

with a2,i1i2 =| Yi1 − Yi2 |2 /2 and b2,i1i2 = b1,i1i2 .

Using the MDD in (2.1), Lee and Hilafu (2022) stated a formal definition

of the quantile martingale difference divergence (QMDD). For a continuous

random variable Y ∈ R, a random vector x ∈ Rd and a quantile level

τ ∈ (0, 1), the τth QMDD is defined as

QMDD2
τ (Y | x) = −E ([I{Y1 ≤ Qτ (Y )} − τ ][I{Y2 ≤ Qτ (Y )} − τ ]∥x1 − x2∥) ,

where Qτ (Y ) is the unconditional τth quantile of Y . As the QMDD is a spe-

cial case of the MDD, it inherits a number of the latter’s desirable features.

In particular, Lee and Hilafu (2022, Proposition 1) showed that QMDD2
τ (Y |

x) = 0 if and only if pr{Y ≤ Qτ (Y ) | x} = pr{Y ≤ Qτ (Y )} almost surely,

under the assumption that E(∥x∥2) <∞. The quantile independence-zero

equivalence property motivates us to use it in a distribution-free testing

procedure. Inspired by the sample estimators of MDD2 in (2.2) and (2.3),

we construct the QMDD estimators as below:

Q̂MDD
2

1,τ (Y | x) = −n−2

n∑
i1,i2=1

Â1,i1i2B1,i1i2 , (2.4)

and Q̂MDD
2

2,τ (Y | x) = {n(n− 3)}−1

n∑
i1 ̸=i2

Â2,i1i2B2,i1i2 . (2.5)
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Let Q̂τ (Y ) be the τth sample quantile of Y . Write εi,τ = Yi − Qτ (Y ),

ε̂i,τ = Yi − Q̂τ (Y ) and ψτ (ε̂i,τ ) = τ − I(ε̂i,τ ≤ 0), where the symbol I(·)

stands for the indicator function. The statistics Â1,i1i2 and Â2,i1i2 are the

natural analogues of A1,i1i2 and A2,i1i2 that replace a1,i1i2 and a2,i1i2 by

ψτ (ε̂i1,τ )ψτ (ε̂i2,τ ) and | ψτ (ε̂i1,τ )− ψτ (ε̂i2,τ ) |2 /2, respectively.

3. Method proposed

3.1 Score transformed test statistics

Let Qτ (Y | x) denote the quantile of Y conditional on x at the τth quan-

tile level, and assume that x is absolutely continuous with respect to the

Lebesgue measure. Let J : [0, 1) → R+ be the score function and R+ denote

the set of nonnegative reals. Define the population scored center-outward

distribution functions asG±(x) = J{∥F±(x)∥}{F±(x)/∥F±(x)∥}I(∥F±(x)∥

̸= 0). Thanks to Shi et al. (2022, Proposition 4.2), the relation pr[pr{Y ≤

Qτ (Y ) | x} = τ ] = 1 is equivalent to

pr[pr{Y ≤ Qτ (Y ) | G±(x)} = τ ] = 1, (3.1)

provided that the score function J is strictly monotone. Classical examples

include the normal or van der Waerden score function J(x) = F−1
(χ2

q)
1/2(x)

with F(χ2
q)

1/2 the (χ2
q)

1/2 distribution function, the Wilcoxon score function
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3.2 Asymptotic null representation

J(x) = x and the sign test score function J(x) = 1. Following Shao and

Zhang (2014, Assumption B1) and Zhang et al. (2018, Assumption 3.2), we

assume throughout this paper that in a small neighborhood of Qτ = Qτ (Y ),

the cumulative distribution function of Y is continuously differentiable, and

(Y ≤ Qτ ) is independent of x under the conditional quantile independence.

Define the sample scored center-outward distribution functions as

Ĝ±(x) = J{∥F̂±(x)∥}{F̂±(x)/∥F̂±(x)∥}I(∥F̂±(x)∥ ̸= 0).

Let B̂1,i1i2 denote the analog ofB1,i1i2 except for replacing b1,i1i2 by ∥Ĝ±(xi1)−

Ĝ±(xi2)∥. Analogously, construct B̂2,i1i2 by replacing b2,i1i2 by ∥Ĝ±(xi1)−

Ĝ±(xi2)∥. Motivated by (3.1) and using the QMDD in (2.4) and (2.5), we

consider the V -type and U -type quantile MDD statistics defined as

V̂τ = −n−2

n∑
i1,i2=1

Â1,i1i2B̂1,i1i2 , (3.2)

and Ûτ = {n(n− 3)}−1

n∑
i1 ̸=i2

Â2,i1i2B̂2,i1i2 , (3.3)

respectively.

3.2 Asymptotic null representation

In order to develop our multivariate asymptotic null representation, we first

introduce formally the oracle counterparts to the rank-based quantile MDD
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3.2 Asymptotic null representation

statistics in (3.2) and (3.3). The oracle versions of V̂τ and Ûτ are

V̂ ♮
τ = −n−2

n∑
i1,i2=1

Â♮
1,i1i2

B̂♮
1,i1i2

,

and Û ♮
τ = {n(n− 3)}−1

n∑
i1 ̸=i2

Â♮
2,i1i2

B̂♮
2,i1i2

,

which are obtained by replacing the empirical Q̂τ (Y ) and Ĝ±(·) in (3.2) and

(3.3) with their population analogs. The oracle V̂ ♮
τ and Û ♮

τ cannot be com-

puted from the observations as they involve the population unconditional

quantile Qτ (Y ) and the population scored center-outward distribution func-

tion G±(·). However, the limiting null distributions of V̂ ♮
τ and Û ♮

τ , unlike

those of V̂τ and Ûτ , follow from standard theory for degenerate statistics of

V -type and U -type (Serfling, 1980, Chapters 5 and 6).

For τ ∈ (0, 1), take

h[{ψτ (εi,τ ),G±(xi)}4i=1] = 8−1{| ψτ (ε1,τ )− ψτ (ε3,τ ) |2 + | ψτ (ε2,τ )− ψτ (ε4,τ ) |2

− | ψτ (ε1,τ )− ψτ (ε4,τ ) |2 − | ψτ (ε2,τ )− ψτ (ε3,τ ) |2}

×{∥G±(x1)−G±(x3)∥+ ∥G±(x2)−G±(x4)∥

−∥G±(x1)−G±(x4)∥ − ∥G±(x2)−G±(x3)∥}.

We symmetrize h by

h̃[{ψτ (εi,τ ),G±(xi)}4i=1] = 3−1(h[{ψτ (ε1,τ ),G±(x1)}, {ψτ (ε2,τ ),G±(x2)},

{ψτ (ε3,τ ),G±(x3)}, {ψτ (ε4,τ ),G±(x4)}]
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3.2 Asymptotic null representation

+h[{ψτ (ε1,τ ),G±(x1)}, {ψτ (ε3,τ ),G±(x3)},

{ψτ (ε2,τ ),G±(x2)}, {ψτ (ε4,τ ),G±(x4)}]

+h[{ψτ (ε1,τ ),G±(x1)}, {ψτ (ε4,τ ),G±(x4)},

{ψτ (ε2,τ ),G±(x2)}, {ψτ (ε3,τ ),G±(x3)}]).

Let h̃c[{ψτ (εi,τ ),G±(xi)}ci=1] = E[h̃[{ψτ (εi,τ ),G±(xi)}4i=1] | {ψτ (εi,τ ),G±(xi)

}ci=1] be projections of h̃ to lower-dimensional sample spaces, for c = 1, . . . , 4.

Further denote the double centred version of ∥G±(x1)−G±(x2)∥ as

D{G±(x1),G±(x2)}

= ∥G±(x1)−G±(x2)∥ − E{∥G±(x1)−G±(x2)∥ | G±(x1)}

−E{∥G±(x1)−G±(x2)∥ | G±(x2)}+ E{∥G±(x1)−G±(x2)∥}.

The useful property of the double centred distance, that is, E[D{G±(x1),

G±(x2)} | x1] = E[D{G±(x1),G±(x2)} | x2] = 0 is helpful to obtain the

asymptotic representation of V̂ ♮
τ and Û ♮

τ under conditional quantile inde-

pendence. This point can be summarized as follows.

Proposition 1. Let the score function J satisfy
∫ 1

0
J2(x)dx < ∞ and

var[D{G±(x1),G±(x2)}] > 0. Under the null hypothesisH0 that Qτ (Y | x)

and x are independent, as n → ∞, n V̂ ♮
τ and n Û ♮

τ converge in dis-

tribution to τ(1 − τ)
∞∑
k=1

λkN
2
k and τ(1 − τ)

∞∑
k=1

λk(N
2
k − 1), respectively,
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3.2 Asymptotic null representation

where N1, N2, . . . are independent standard normal random variables and

λk,τ = 6−1τ(1− τ)λk > 0, k ≥ 1 are the associated eigenvalues correspond-

ing to the symmetric kernel h̃2 admitting a spectral decomposition

h̃2[{ψτ (εi,τ ),G±(xi)}2i=1] = −6−1ψτ (ε1,τ )ψτ (ε2,τ )D{G±(x1),G±(x2)}

=
∞∑
k=1

λk,τϕk,τ{ψτ (ε1,τ ),G±(x1)}ϕk,τ{ψτ (ε2,τ ),G±(x2)}.

Moreover, ϕk,τ{ψτ (ετ ),G±(x)} = {τ(1 − τ)}−1/2ψτ (ετ )ϕk{G±(x)}, E[ϕk1{

G±(x)}ϕk2{G±(x)}] = I(k1 = k2), and {λk}k≥1 and {ϕk}k≥1 are the eigen-

values and eigenfunctions, defined in relation to the symmetric kernel D

admitting a spectral decomposition

D{G±(x1),G±(x2)} = −
∞∑
k=1

λkϕk{G±(x1)}ϕk{G±(x2)}.

Thanks to the distribution-freeness ofG±, the distribution ofD{G±(x1),

G±(x2)} is exactly the same as that of D{J(∥w1,q∥)(w1,q/∥w1,q∥), J(∥w2,q∥

)(w2,q/∥w2,q∥)}, where w1,q and w2,q are independent and distributed ac-

cording to the spherical uniform measure Wq, that is, the product of the

uniform measures on [0, 1) and on Sq−1. The random variable ψτ (ετ ) has

two point distribution with the probabilities pr{ψτ (ετ ) = τ} = 1 − τ and

pr{ψτ (ετ ) = τ − 1} = τ . The conditional quantile independence of Qτ (Y |

x) and x implies the independence of ψτ (ετ ) and [ϕk{G±(x)}]k≥1. Given

any fixed dimension q, both τ(1− τ)
∞∑
k=1

λkN
2
k and τ(1− τ)

∞∑
k=1

λk(N
2
k − 1)
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3.2 Asymptotic null representation

are therefore independent of the underlying distributions.

Remark 1. Typical examples that satisfy
∫ 1

0
J2(x)dx < ∞ include the

van der Waerden, Wilcoxon and sign test score functions, where J is e-

qual to F−1
(χ2

q)
1/2(x), x and 1, respectively. According to Theorem 7 from

Székely and Rizzo (2009), var[D{G±(x1), G±(x2)}] can be expressed as

the squared population distance covariance between G±(x) and G±(x).

Therefore, var[D{G±(x1),G±(x2)}] > 0 basically assumes that G±(x) is

not a constant.

Remark 2. For any prespecified significance level α, let z1,1−α and z2,1−α

be the upper-α quantiles of
∞∑
k=1

λkN
2
k and

∞∑
k=1

λk(N
2
k − 1), respectively. The

values of λk’s, and hence also the critical values of z1,1−α and z2,1−α them-

selves, are distribution-free and only depend on the dimension q and the

score function J . The critical values may thus be calculated using numerical

methods for each pair of q and J .

Remark 3. In the univariate case of q = 1 and when J(x) = x, it can be

easily checked that

h̃2[{ψτ (εi,τ ),G±(xi)}2i=1] = h̃2[{ψτ (εi,τ ), 2F (Xi)− 1}2i=1]

= 4ψτ (ε1,τ )ψτ (ε2,τ )[2
−1F 2(X1) + 2−1F 2(X2)−max{F (X1), F (X2)}+ 1/3].

We obtain from van der Vaart (1998, Example 12.13) that the kernel func-
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3.2 Asymptotic null representation

tion 2−1F 2(X1) + 2−1F 2(X2)−max{F (X1), F (X2)} + 1/3 has eigenvalues

π−2k−2 with corresponding eigenfunctions 21/2 cos(πkX) for k ≥ 1. Since

ψτ (ετ ) and X are independent and E{ψ2
τ (ετ )} = τ(1− τ), we find that the

nonzero eigenvalues of the kernel function h̃2[{ψτ (εi,τ ), 2F (Xi)− 1}2i=1] are

4τ(1−τ)π−2k−2 for k ≥ 1, with eigenfunctions 21/2 cos(πkX)ψτ (ετ )/{τ(1−

τ)}1/2. Then as n → ∞, n V̂ ♮
τ and n Û ♮

τ converge in distribution to

4τ(1− τ)π−2
∞∑
k=1

k−2N2
k and 4τ(1− τ)π−2

∞∑
k=1

k−2(N2
k − 1), respectively.

Intuitively, the asymptotic null behavior of V̂τ and Ûτ follows from

that of their Hájek asymptotic representations, which are oracle versions

in Proposition 1. In the next, we show the correctness of this intuition by

proving asymptotic equivalence between rank-based quantile MDD statis-

tics and their oracle versions.

Theorem 1. Assume that the conditions in Proposition 1 hold. Then, un-

der the conditional quantile independence of Qτ (Y | x) and x, the random

vector (n V̂τ , n Ûτ ) has the same limit distribution as the vector (n V̂ ♮
τ , n Û

♮
τ )

and thus each of n V̂τ and n Ûτ does enjoy distribution-freeness.

Remark 4. For q = 1, we take the nonzero eigenvalues λk,τ = 4τ(1 −

τ)π−2k−2, k ≥ 1. We are not aware of any closed form formulas for the eigen-

values when q ≥ 2, but the asymptotic null distributions of V̂τ and Ûτ do

not depend on the joint distribution of (Y,x). This inspires us to randomly
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3.2 Asymptotic null representation

generate new samples from uniform distribution to approximate the asymp-

totic null distributions. To be precise, we generate (Y ‡
1 ,x

‡
1), . . . , (Y

‡
n ,x

‡
n) in-

dependently from uniform distribution, and re-estimate V̂τ and Ûτ based on

{(Y ‡
i ,x

‡
i )}ni=1. We repeat this procedure for B times and set the simulation-

based critical values to be the upper α quantile of the estimates of V̂τ and

Ûτ obtained from the randomly generated samples. The Dvoretzky-Kiefer-

Wolfowitz inequality guarantees the asymptotic control of sizes using the

simulation-based thresholds for a sufficiently large B, say, B = 1000.

For any significance level α ∈ (0, 1), let z1,1−α and z2,1−α be as in Remark

2 and define the tests

T̂1,τ,α = I{n V̂τ > τ(1− τ)z1,1−α}, and T̂2,τ,α = I{n Ûτ > τ(1− τ)z2,1−α}.

By Theorem 1, in conjunction with Proposition 1 and Slutsky’s theorem,

the following proposition summarizes the asymptotic type I error control of

the rank-based quantile MDD tests.

Corollary 1. Suppose the conditions in Theorem 1. Then, lim
n→∞

pr(T̂1,τ,α =

1) = α and lim
n→∞

pr(T̂2,τ,α = 1) = α under the conditional quantile indepen-

dence of Qτ (Y | x) and x.
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3.3 Consistency and local asymptotic power

3.3 Consistency and local asymptotic power

To begin with, we discuss the consistency of the rank-based quantile MDD

tests T̂1,τ,α and T̂2,τ,α. For this, we need the projection of h̃ to (q + 1)-

dimensional sample spaces. When Qτ (Y | x) and x are not independent,

it has the expression h̃1{ψτ (ε1,τ ),G±(x1)} − 2−1MDD{ψτ (ετ ) | G±(x)} =

−2−1E[ψτ (ε1,τ )ψτ (ε2,τ )D{G±(x1),G±(x2)} | ψτ (ε1,τ ),G±(x1)]. The follow-

ing theorem shows that each of T̂1,τ,α and T̂2,τ,α yields a universally consis-

tent test for the conditional quantile independence testing problem.

Theorem 2. Let the score function J satisfy
∫ 1

0
J2(x)dx <∞ and var[h̃1{

ψτ (ε1,τ ),G±(x1)}] > 0. Under the fixed alternative H1 that Qτ (Y | x) and

x are dependent, as n→ ∞, both n1/2[V̂τ −MDD{ψτ (ετ ) | G±(x)}]/4 and

n1/2[Ûτ−MDD{ψτ (ετ ) | G±(x)}]/4 converge in distribution to a normal dis-

tribution with mean zero and variance var[h̃1{ψτ (ε1,τ ),G±(x1)}]. In partic-

ular, under any fixed alternative, both n V̂τ and nÛτ converge in probability

to ∞ if n→ ∞ and thus lim
n→∞

pr(T̂1,τ,α = 1) = lim
n→∞

pr(T̂2,τ,α = 1) = 1.

Having established distribution-freeness and consistency of T̂1,τ,α and

T̂2,τ,α previously, we now shift our attention to their local powers against

contiguous alternatives. To quantify the notion of local alternatives, we

adopt the standard smooth parametric model assumptions from the theory

of local asymptotic normality (van der Vaart, 1998, Chapter 7).
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3.3 Consistency and local asymptotic power

For a given quantile level τ ∈ (0, 1), consider a parametric model {Pτ (· |

θ), θ ∈ Θ}, where, throughout this section, Θ is assumed to be an open

subset of R. Each Pτ (· | θ) is absolutely continuous with respect to a σ-

finite measure µ and set pτ (· | θ) = dPτ (· | θ)/dµ(·). Following the paper

of Shi et al. (2022), we assume the following standard regularity conditions

on this parametric family.

• Conditional quantile dependence of Qτ (Y | x) and x: pτ (Y,x | θ) =

[(1− τ)I{ψτ (ετ ) = τ}+ τI{ψτ (ετ ) = τ − 1}]p(x) holds if and only if

θ = 0, where p(x) is the density function of x.

• The family {Pτ (· | θ), θ ∈ Θ} is quadratic mean differentiable (QMD)

at θ = 0 with score function ητ (Y,x | θ) = d log{pτ (Y,x | θ)}/dθ, see

Lehmann and Romano (2005, Definition 12.2.1) for related definitions.

That is,
∫
R1+q{p1/2τ (Y,x | θ)−p1/2τ (Y,x | 0)−2−1θητ (Y,x | 0)p1/2τ (Y,x |

0)}2dY dx = o(θ2) as θ → 0.

• The Fisher information exists at θ = 0, that is, Iτ (0) = E{η2τ (Y,x |

0)} > 0. Moreover, the score function ητ (Y,x | 0) is not additively

separable such that cov[ψτ (ετ )ϕk{G±(x)}ητ (Y,x | 0)] = E[ψτ (ετ )ϕk{

G±(x)}ητ (Y,x | 0)] ̸= 0 for some k ≥ 0.

For a local power analysis, we consider a sequence of local alternatives
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obtained as θ = n−1/2θ0 with some constant θ0 ̸= 0. In this local model,

testing the null hypothesis of conditional quantile independence reduces to

testing whether θ0 is zero.

Theorem 3. Let the score function J satisfy the conditions of Proposition

1. Under the local alternative H1n from the model {pτ (Y,x | θ0n−1/2)}θ0 ̸=0,

as n→ ∞, n V̂τ and n Ûτ converge in distribution to 6
∞∑
k=1

λk,τ (Nk+θ0{τ(1−

τ)}−1/2cov[ψτ (ετ )ϕk{G±(x)}, ητ (Y,x | 0)])2 and 6
∞∑
k=1

λk,τ{(Nk + θ0{τ(1 −

τ)}−1/2cov[ψτ (ετ )ϕk{G±(x)}, ητ (Y,x | 0)])2 − 1}, respectively. In particu-

lar, under H1n, for any β > 0, there exists a constant Cβ depending only

on β such that, as long as | θ0 |> Cβ, lim
n→∞

pr(T̂1,τ,α = 1) ≥ 1 − β and

lim
n→∞

pr(T̂2,τ,α = 1) ≥ 1− β.

The results in Theorem 3 show that the rank-based quantile MDD

tests T̂1,τ,α and T̂2,τ,α have non-trivial asymptotic powers against O(n−1/2)

alternatives, in addition to being consistent against all fixed alternatives

and asymptotically distribution-free for large sample sizes.

4. Extension to Allow for Multiple Quantiles

One attractive feature of the proposed methodology is that it enables us

to assess the relationship between Y and x at multiple quantiles. We now

discuss testing across multiple quantiles through rank-based quantile MDD.
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Let T = {τ1, . . . , τL} be a set of quantile levels of interest, where L is finite.

Testing that for each τ ∈ T, Qτ (Y | x) and x are independent is equivalent

to testing whether each of MDD{ψτl(ετl) | G±(x)}, 1 ≤ l ≤ L is zero. To

test whether x has an effect on either of the L-quantiles, we can consider

testing H̃0 : MDD{ψτ1(ετ1) | G±(x)} = · · · = MDD{ψτL(ετL) | G±(x)} = 0

versus H̃1 : at least one of the MDD{ψτl(ετl) | G±(x)}s is non-zero.

To pool information across quantiles, we propose to consider the sum-

type test statistics Ŝ1,T =
∑L

l=1 V̂τl and Ŝ2,T =
∑L

l=1 Ûτl , where V̂τ and Ûτ are

defined in equations (3.2) and (3.3). One may also consider the maximum-

type test statistics M̂1,T = max1≤l≤L V̂τl and M̂2,T = max1≤l≤L Ûτl to com-

bine information across quantiles. We choose the sum-type test statistics

as they have good powers against dense alternatives, and MDD{ψτ (ετ ) |

G±(x)} is more likely to be non-zero in an interval of τ and thus dense

when the alternative is true.

By the joint null convergence result in the next theorem over τ ∈ T, we

can extend the distribution-freeness for the test calibration of V̂τ and Ûτ

across multiple quantiles.

Theorem 4. Assume that the conditions in Proposition 1 hold. Under the

null hypothesis H̃0 that for each τ ∈ T, Qτ (Y | x) and x are independent,

as n→ ∞, the statistics (n V̂τ )τ∈T and (n Ûτ )τ∈T converge in distribution to
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{τl(1−τl)
∞∑
k=1

λkN
2
kl}Ll=1 and {τl(1−τl)

∞∑
k=1

λk(N
2
kl−1)}Ll=1, respectively, where

the λk are defined as in Proposition 1, and (N1l)
L
l=1, (N2l)

L
l=1, . . . are mutually

independent and identically distributed, each with the multivariate normal

distribution with mean 0 ∈ RL and covariance matrix [{τl1τl2(1 − τl1)(1 −

τl2)}−1/2{min(τl1 , τl2)− τl1τl2}]Ll1,l2=1 ∈ RL×L.

Theorem 4 gives the joint asymptotic null representation of our rank-

based quantile MDD statistics across multiple quantiles. By an application

of the continuous-mapping theorem, the random vector (n Ŝ1,T, n Ŝ2,T, n M̂1,T,

n M̂2,T) converges in distribution to the vector {
∑L

l=1

∞∑
k=1

τl(1 − τl)λkN
2
kl,∑L

l=1

∞∑
k=1

τl(1− τl)λk(N
2
kl − 1), maxLl=1

∞∑
k=1

τl(1− τl)λkN
2
kl, maxLl=1

∞∑
k=1

τl(1−

τl)λk(N
2
kl − 1)}. Moreover, λ1, λ2, . . . are free of the data generating distri-

butions.

Remark 5. As the joint null convergence result in Theorem 4 over τ ∈ T

is asymptotically distribution-free, this provides a computationally efficient

way to compute critical values of the joint tests. Following Remark 4,

we generate (Y ‡
1 ,x

‡
1), . . . , (Y

‡
n ,x

‡
n) independently from uniform distribution,

and re-estimate (V̂τ )τ∈T and (Ûτ )τ∈T based on {(Y ‡
i ,x

‡
i )}ni=1. We repeat

the above procedure for B times and the corresponding simulation-based

critical values are given by the upper α quantile of the estimates of Ŝ1,T,

Ŝ2,T, M̂1,T and M̂2,T obtained from the randomly generated samples. The
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Dvoretzky-Kiefer-Wolfowitz inequality ensures that this simulation-based

procedure approximates the joint null distributions asymptotically, as long

as B, say, B = 1000 is sufficiently large.

When the dependence between Qτ (Y | x) and x holds at a single

quantile level τ ∈ T, it follows from Theorem 1 that n Ŝ1,T = n V̂τ +

Op(1), n Ŝ2,T = n Ûτ + Op(1), n M̂1,T = max{n V̂τ , Op(1)} and n M̂2,T =

max{n Ûτ , Op(1)}. This, together with Theorems 2 and 3, indicates that

each of n Ŝ1,T, n Ŝ2,T, n M̂1,T and n M̂2,T converges in probability to in-

finity, under the fixed alternative or the local alternative, which decays at

an order slower than n−1/2. Therefore, the joint tests across multiple quan-

tiles are consistent and can detect alternatives that tend to the null at the

parametric rate n−1/2.

5. Numerical Examples

5.1 Monte Carlo simulations

We conduct Monte Carlo simulations to assess the finite sample perfor-

mance of the proposed rank-based quantile martingale difference divergence

tests, which are asymptotically distribution-free and constructed based on

V̂τ , Ûτ , Ŝ1,T, Ŝ2,T, M̂1,T and M̂2,T in Sections 3 and 4. For compari-

son purposes, we also implement the recent tests proposed by Shao and
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5.1 Monte Carlo simulations

Zhang (2014, SZτ ) and Zhang et al. (2018, ZYSτ ). Following Shao and

Zhang (2014), page 1306, the SZ test statistic can be considered as ŜZτ =

−n−2
n∑

i1,i2=1

Â1,i1i2B1,i1i2 , where Â1,i1i2 and B1,i1i2 are the same as equation

(2.4). Let xi = (Xi1, . . . , Xiq)
T and define

B2,i1i2(j) = b2,i1i2(j)− (n− 2)−1

n∑
i3=1

b2,i1i3(j)− (n− 2)−1

n∑
i4=1

b2,i4i2(j)

+{(n− 1)(n− 2)}−1

n∑
i3,i4=1

b2,i3i4(j),

with b2,i1i2(j) =| Xi1j −Xi2j |, j = 1, . . . , q. Following Zhang et al. (2018),

pages 224 and 225, the ZYS test statistic is computed as ẐYSτ =
q∑

j=1

{n(n−

3)}−1
n∑

i1 ̸=i2

Â2,i1i2B2,i1i2(j), where Â2,i1i2 is the same as equation (2.5). We

use the EDMeasure library of R to compute the SZ and ZYS statistics by

the mdd function in that package. The critical value of the SZ or ZYS

test is obtained using the wild bootstrap approximation in Section 2.4 of

Zhang et al. (2018). The number of bootstrap replications is 500. For

the proposed testing procedures at a given quantile level or across multiple

quantiles, we suggest the use of the simulation-based methods in Remarks

4 and 5 to provide critical values. We apply each test at a single quantile

level τ = 0.25, τ = 0.5 and τ = 0.75, separately. For our joint tests, a set of

quantile levels, that is, T = {0.25, 0.5, 0.75} is employed. The significance

level α is fixed at 0.05, and for each test, the rejection probabilities reported
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5.1 Monte Carlo simulations

in the simulation are computed based on 1000 Monte Carlo replications.

First, generate the data according to

A linear model : Y = xTβ + ϵ, (5.1)

A transformation model : Y = sin(xTβ + ϵ), (5.2)

and A multiple-index model : Y = xTβ1 + exp(xTβ2) + ϵ. (5.3)

In the linear model (5.1) and transformation model (5.2), we consider q = 2,

β = (0, 1/3)T, X1 ∼ N(0, 1/9) or t(3), X2 ∼ N(0, 1) and ϵ ∼ N(0, 1). In

the multiple-index model (5.3), we let q = 4, β1 = (0, 1/4, 0, 0)T, β2 =

(0, 0, 1/5, 1/5)T, X1 ∼ N(0, 1/9) or t(3), X2 ∼ N(0, 1), X3 ∼ N(0, 1), X4 ∼

N(0, 1) and ϵ ∼ N(0, 1). The covariates X1, . . . , X4 and ϵ are mutually

independent. Under the null, β = (0, 0)T and β1 = β2 = (0, 0, 0, 0)T. For

each model, a random sample of size n = 200 of (Y,X1, . . . , Xq) is generated.

Table 1 displays the critical values of asymptotic null distributions of the

center-outward rank-based MDD test statistics for the dimension q ∈ {2, 4}

and the score function J(x) ∈ {F−1
(χ2

q)
1/2(x), x, 1} at the significance level

α = 0.05. Here all the critical values are estimated numerically using the

method described in Remarks 4 and 5. We report the empirical sizes of

the proposed tests with van der Waerden score function J(x) = F−1
(χ2

q)
1/2(x)

and the SZ, ZYS tests, presented in Table 2. The simulated size results
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5.1 Monte Carlo simulations

for the proposed tests with Wilcoxon score function J(x) = x and sign

score function J(x) = 1 are summarized in Table 4. It can be observed

that the proposed tests with either rejection threshold as well as their two

competitors control the size effectively.

We provide in Table 3 the empirical powers of the proposed tests with

van der Waerden score function J(x) = F−1
(χ2

q)
1/2(x) as well as those of the

SZ and ZYS tests for Models (5.1)-(5.3). For the proposed tests, we further

present power results for Wilcoxon score function J(x) = x and sign score

function J(x) = 1 in Table 5. We can draw several useful conclusions from

Tables 3 and 5. The first conclusion is that for heavy-tailed t(3) covariates,

the tests via martingale difference divergence with center-outward ranks

and signs perform better than the original martingale difference divergence

tests. Moreover, our tests have very much comparable powers when all

covariates are normal. This is expected since the proposed tests are well-

defined without any moment assumptions. The second conclusion is that

compared with the other methods at a single quantile level, the proposed

tests across quantiles provide relatively high power across all scenarios that

are considered. This is not surprising because our joint MDD tests pool

information across quantiles. The last but not least conclusion is that the

proposed tests based on van der Waerden score function J(x) = F−1
(χ2

q)
1/2(x)
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and Wilcoxon score function J(x) = x have more substantial power gain

than the MDD-based test with sign score function J(x) = 1 does.

We also report the additional simulation results for X1 ∼ N(0, 1) in

Table 6 when van der Waerden score is adopted, while keeping the rest of

the set-up the same as in Models (5.1)-(5.3). These simulations yield the

same conclusion as that of Table 3 for X1 ∼ t(3) with var(X1) = 2. This

is anticipated in that X1 is useless to model the quantiles of the response

variable. As the variance of X1 increases to 1 and 2, both SZ and ZYS

tests have substantial power loss. In contrast, owing to the nonparametric

property of center-outward ranks and signs, our proposed tests retain the

high power under such alternatives.

5.2 Data example

We consider a gene expression dataset, which comes from a study by Scheet-

z et al. (2006), to illustrate the effectiveness of our proposed tests. This

gene expression dataset consists of 120 arrays, each of which contains 31,042

probe sets, which is analyzed on a logarithmic scale. This dataset has been

analyzed by a few statisticians, including Fan et al. (2011), Wang et al.

(2012) and Shao and Zhang (2014), among others. The empirical observa-

tions of previous studies reveal that there exists nonlinear relationship be-
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Table 1: The quantiles table of asymptotic null distributions of the pro-

posed MDD test statistics with different score functions at the nominal level

5%.
τ = 0.25 τ = 0.5 τ = 0.75 T = {0.25, 0.5, 0.75}

q V̂τ Ûτ V̂τ Ûτ V̂τ Ûτ Ŝ1,T Ŝ2,T M̂1,T M̂2,T

van der Waerden score function J(x) = F−1

(χ2
q)1/2

(x)

2 0.6667 0.3716 0.8489 0.4559 0.6665 0.3722 1.8182 0.8395 0.9416 0.5806

4 0.8585 0.3894 1.1150 0.4937 0.8106 0.3504 2.4455 0.8847 1.1475 0.6010

7 1.0481 0.3992 1.3493 0.4869 1.0669 0.4234 3.0977 0.9207 1.3762 0.5849

Wilcoxon score function J(x) = x

2 0.2818 0.1558 0.3523 0.1851 0.2794 0.1520 0.7717 0.3567 0.3814 0.2347

4 0.2318 0.1001 0.3038 0.1287 0.2191 0.0887 0.6829 0.2489 0.3211 0.1611

7 0.2054 0.0716 0.2686 0.0909 0.2094 0.0759 0.6130 0.1693 0.2759 0.1068

sign score function J(x) = 1

2 0.5837 0.3544 0.7390 0.4323 0.5624 0.3332 1.5631 0.7877 0.8297 0.5309

4 0.4752 0.2282 0.6130 0.2802 0.4487 0.2009 1.3375 0.5101 0.6346 0.3308

7 0.4149 0.1603 0.5368 0.1986 0.4244 0.1679 1.2285 0.3846 0.5567 0.2455

tween gene expression values. The response Y is the gene TRIM32 at probe

1389163 at, which has been found to cause the Bardet-Biedl syndrome (Chi-

ang et al., 2006). For the remaining genes, we rank q probe sets that have

the largest variances as the covariates, following Zhou et al. (2024). We

choose the dimension of covariates be the same with that used in simula-

tion studies, namely q = 2, 4, 7. We apply the proposed tests based on van

der Waerden score function J(x) = F−1
(χ2

q)
1/2(x) to examine conditional quan-

tile independence between gene expression levels, with comparison to Shao

and Zhang (2014) and Zhang et al. (2018). In this analysis, we consider the
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Table 2: The empirical sizes of the proposed tests with van der Waerden

score function J(x) = F−1
(χ2

q)
1/2(x) and the SZ, ZYS tests under different

quantiles at the nominal level 5% for Models (5.1)-(5.3).
normal covariate t(3) covariate

Method Model (5.1) Model (5.2) Model (5.3) Model (5.1) Model (5.2) Model (5.3)

τ = 0.25

V̂τ 0.035 0.036 0.043 0.036 0.034 0.035

Ûτ 0.035 0.034 0.044 0.038 0.033 0.036

SZτ 0.042 0.040 0.050 0.040 0.041 0.050

ZYSτ 0.049 0.046 0.052 0.041 0.040 0.047

τ = 0.5

V̂τ 0.060 0.061 0.048 0.055 0.051 0.052

Ûτ 0.061 0.061 0.048 0.055 0.052 0.054

SZτ 0.048 0.052 0.045 0.048 0.046 0.051

ZYSτ 0.052 0.057 0.054 0.038 0.037 0.049

τ = 0.75

V̂τ 0.043 0.045 0.058 0.045 0.042 0.048

Ûτ 0.043 0.044 0.057 0.044 0.042 0.053

SZτ 0.058 0.051 0.058 0.046 0.037 0.056

ZYSτ 0.054 0.051 0.055 0.044 0.042 0.055

T = {0.25, 0.5, 0.75}

Ŝ1,T 0.055 0.053 0.046 0.045 0.047 0.047

Ŝ2,T 0.055 0.052 0.046 0.045 0.047 0.048

M̂1,T 0.057 0.058 0.053 0.054 0.052 0.055

M̂2,T 0.059 0.061 0.051 0.052 0.050 0.049

center-outward van der Waerden tests across three quantiles 0.25, 0.5 and

0.75, and the SZ, ZYS tests at a single quantile level τ ∈ {0.25, 0.5, 0.75}.

To evaluate the power performances of the ten tests with nominal signifi-

cance level 0.05, we randomly select subsets of size 100 from the whole data

set, to calculate the test statistics. We repeat this random selection pro-
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5.2 Data example

Table 3: The empirical powers of the proposed tests with van der Waerden

score function J(x) = F−1
(χ2

q)
1/2(x) and the SZ, ZYS tests under different

quantiles at the nominal level 5% for Models (5.1)-(5.3).
normal covariate t(3) covariate

Method Model (5.1) Model (5.2) Model (5.3) Model (5.1) Model (5.2) Model (5.3)

τ = 0.25

V̂τ 0.779 0.719 0.666 0.748 0.689 0.646

Ûτ 0.781 0.720 0.668 0.743 0.691 0.649

SZτ 0.823 0.780 0.279 0.141 0.122 0.087

ZYSτ 0.823 0.775 0.563 0.374 0.310 0.279

τ = 0.5

V̂τ 0.886 0.861 0.802 0.850 0.839 0.770

Ûτ 0.888 0.864 0.802 0.851 0.841 0.773

SZτ 0.909 0.887 0.396 0.176 0.164 0.106

ZYSτ 0.903 0.881 0.700 0.459 0.440 0.389

τ = 0.75

V̂τ 0.800 0.733 0.761 0.759 0.693 0.716

Ûτ 0.803 0.735 0.753 0.763 0.694 0.710

SZτ 0.828 0.775 0.341 0.146 0.121 0.090

ZYSτ 0.820 0.767 0.633 0.380 0.324 0.317

T = {0.25, 0.5, 0.75}

Ŝ1,T 0.944 0.918 0.902 0.928 0.892 0.877

Ŝ2,T 0.942 0.919 0.901 0.927 0.892 0.878

M̂1,T 0.909 0.883 0.841 0.876 0.848 0.809

M̂2,T 0.913 0.889 0.833 0.890 0.866 0.803

cedure 1000 times and report the empirical powers of the tests in Table 7.

It suggests that the incorporation of score functions may bring potentially

significant efficiency gain for the quantile MDD-based tests.
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Table 4: The empirical sizes of the proposed tests with Wilcoxon score

function J(x) = x and sign score function J(x) = 1 under different quantiles

at the nominal level 5% for Models (5.1)-(5.3).
normal covariate t(3) covariate

Method Model (5.1) Model (5.2) Model (5.3) Model (5.1) Model (5.2) Model (5.3)

Wilcoxon score function J(x) = x

V̂0.25 0.041 0.042 0.048 0.036 0.035 0.041

Û0.25 0.039 0.041 0.045 0.038 0.034 0.043

V̂0.5 0.053 0.049 0.041 0.049 0.052 0.045

Û0.5 0.050 0.052 0.043 0.050 0.052 0.046

V̂0.75 0.036 0.036 0.054 0.045 0.044 0.053

Û0.75 0.038 0.037 0.055 0.047 0.046 0.050

Ŝ1,T 0.043 0.042 0.033 0.043 0.043 0.038

Ŝ2,T 0.040 0.042 0.032 0.041 0.040 0.035

M̂1,T 0.045 0.047 0.041 0.050 0.051 0.039

M̂2,T 0.042 0.048 0.044 0.048 0.050 0.040

sign score function J(x) = 1

V̂0.25 0.039 0.041 0.044 0.042 0.040 0.036

Û0.25 0.037 0.040 0.042 0.043 0.044 0.039

V̂0.5 0.050 0.044 0.045 0.051 0.053 0.053

Û0.5 0.049 0.046 0.047 0.051 0.055 0.056

V̂0.75 0.043 0.043 0.054 0.050 0.052 0.046

Û0.75 0.041 0.042 0.053 0.048 0.051 0.044

Ŝ1,T 0.046 0.047 0.045 0.045 0.038 0.051

Ŝ2,T 0.044 0.046 0.043 0.046 0.041 0.048

M̂1,T 0.040 0.044 0.051 0.043 0.042 0.052

M̂2,T 0.047 0.050 0.058 0.047 0.048 0.054

6. Discussion

This paper provides the martingale-difference-divergence-based framework

for specifying conditional quantile dependence measures that leverage the
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Table 5: The empirical powers of the proposed tests with Wilcoxon score

function J(x) = x and sign score function J(x) = 1 under different quantiles

at the nominal level 5% for Models (5.1)-(5.3).
normal covariate t(3) covariate

Method Model (5.1) Model (5.2) Model (5.3) Model (5.1) Model (5.2) Model (5.3)

Wilcoxon score function J(x) = x

V̂0.25 0.782 0.730 0.673 0.754 0.690 0.635

Û0.25 0.781 0.728 0.674 0.758 0.694 0.637

V̂0.5 0.891 0.873 0.809 0.850 0.834 0.779

Û0.5 0.890 0.872 0.811 0.852 0.835 0.782

V̂0.75 0.797 0.741 0.768 0.759 0.692 0.744

Û0.75 0.799 0.744 0.763 0.760 0.698 0.735

Ŝ1,T 0.944 0.928 0.890 0.929 0.902 0.866

Ŝ2,T 0.943 0.924 0.885 0.926 0.899 0.861

M̂1,T 0.914 0.896 0.821 0.887 0.862 0.789

M̂2,T 0.917 0.894 0.830 0.892 0.859 0.796

sign score function J(x) = 1

V̂0.25 0.712 0.637 0.630 0.675 0.617 0.592

Û0.25 0.710 0.638 0.628 0.674 0.615 0.591

V̂0.5 0.805 0.782 0.781 0.777 0.760 0.744

Û0.5 0.804 0.780 0.783 0.777 0.759 0.747

V̂0.75 0.743 0.669 0.724 0.693 0.625 0.693

Û0.75 0.740 0.666 0.727 0.692 0.628 0.690

Ŝ1,T 0.903 0.869 0.876 0.884 0.848 0.846

Ŝ2,T 0.904 0.872 0.880 0.886 0.850 0.847

M̂1,T 0.832 0.790 0.819 0.806 0.784 0.780

M̂2,T 0.858 0.814 0.831 0.828 0.805 0.792

new concept of center-outward ranks and signs. Asymptotic distributions

of the proposed test statistics are studied under the null, local and fixed

alternatives by using tools related to U -type and V -type statistics indexed

by parameters. The associated independence tests have the strong appeal
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Table 6: The empirical sizes and powers of the proposed tests with van

der Waerden score function J(x) = F−1
(χ2

q)
1/2(x) and the SZ, ZYS tests under

different quantiles at the nominal level 5% whenX1 ∼ N(0, 1) under Models

(5.1)-(5.3).
Size Power

Method Model (5.9) Model (5.10) Model (5.11) Model (5.9) Model (5.10) Model (5.11)

τ = 0.25

V̂τ 0.037 0.033 0.046 0.751 0.674 0.657

Ûτ 0.040 0.035 0.046 0.752 0.674 0.660

SZτ 0.049 0.046 0.040 0.234 0.190 0.111

ZYSτ 0.039 0.037 0.045 0.491 0.420 0.373

τ = 0.5

V̂τ 0.056 0.057 0.047 0.853 0.834 0.793

Ûτ 0.058 0.061 0.045 0.856 0.836 0.792

SZτ 0.052 0.048 0.044 0.308 0.288 0.122

ZYSτ 0.057 0.055 0.046 0.581 0.548 0.499

τ = 0.75

V̂τ 0.047 0.045 0.051 0.774 0.708 0.736

Ûτ 0.047 0.046 0.048 0.773 0.712 0.736

SZτ 0.056 0.060 0.048 0.249 0.201 0.125

ZYSτ 0.058 0.063 0.049 0.494 0.424 0.447

T = {0.25, 0.5, 0.75}

Ŝ1,T 0.049 0.051 0.043 0.922 0.897 0.890

Ŝ2,T 0.050 0.051 0.044 0.922 0.893 0.892

M̂1,T 0.049 0.050 0.047 0.871 0.842 0.823

M̂2,T 0.046 0.048 0.046 0.881 0.848 0.827

of being asymptotically distribution-free. Via the incorporation of score

functions, our framework allows one to construct a variety of consisten-

t center-outward versions of the quantile martingale difference divergence

tests. This can lead to significant gains in power, as our numerical experi-
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Table 7: The empirical powers of the center-outward van der Waerden

tests across quantiles and the SZ, ZYS tests at a single quantile level in the

analysis of the gene expression dataset.
Ŝ1,T Ŝ2,T M̂1,T M̂2,T SZ0.25 SZ0.5 SZ0.75 ZYS0.25 ZYS0.5 ZYS0.75

q = 2

0.688 0.690 0.612 0.650 0.491 0.458 0.307 0.475 0.424 0.256

q = 4

0.594 0.598 0.562 0.551 0.386 0.422 0.274 0.342 0.419 0.258

q = 7

0.416 0.428 0.407 0.418 0.319 0.387 0.249 0.462 0.471 0.383

ments demonstrate.

Consider that the convergence rate of empirical center-outward ranks

and signs becomes slow as the dimension of covariates increases. When

the dimension is moderately large relative to the sample size, the center-

outward score tests are expected to suffer from power loss. It can be easily

checked that when q = 1, F± reduces to 2F − 1, where F is the usual

cumulative distribution function. For j = 1, . . . , q, let F̂Xj
be the empirical

distribution function of Xj. To enhance the power for large dimension, it

would be interesting to follow the idea of Zhang et al. (2018) to construct

the QMDD-based score statistic
q∑

j=1

{n(n−3)}−1
n∑

i1 ̸=i2

Â2,i1i2B̂2,i1i2(j), where

B̂2,i1i2(j) = b̂2,i1i2(j) − (n − 2)−1
n∑

i3=1

b̂2,i1i3(j) − (n − 2)−1
n∑

i4=1

b̂2,i4i2(j) +

{(n− 1)(n− 2)}−1
n∑

i3,i4=1

b̂2,i3i4(j), with b̂2,i1i2(j) =| ĜXj
(Xi1j)− ĜXj

(Xi2j) |
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REFERENCES

and ĜXj
(Xi1j) = J{| 2F̂Xj

(Xi1j) − 1 |}sign{2F̂Xj
(Xi1j) − 1}, j = 1, . . . , q.

Deriving the asymptotic distribution of the aggregated test statistic in high

dimensions is certainly more challenging and is left for future work.

Supplementary Material

The online supplementary material contains all technical proofs, and more

numerical results on some aspects of limiting distributions and comparison

under moderate dimension.

Acknowledgments

Kai Xu is supported by National Natural Science Foundation of China

(12271005, 11901006), Natural Science Foundation of Anhui Province (2308085Y06,

1908085QA06) and Young Scholars Program of Anhui Province (2023).

Daojiang He is the corresponding author, and his research is supported

by National Natural Science Foundation of China (11201005) and Natural

Science Foundation of Anhui Province (2408085MA005).

References

Baringhaus, L. and C. Franz (2004). On a new multivariate two-sample test. Journal of

Multivariate Analysis 88, 190–206.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0266



REFERENCES

Chernozhukov, V., A. Galichon, M. Hallin, and M. Henry (2017). Monge-kantorovich depth,

quantiles, ranks and signs. The Annals of Statistics 45, 223–256.

Chiang, A. P., J. S. Beck, H.-J. Yen, M. K. Tayeh, T. E. Scheetz, R. E. Swiderski, D. Y.

Nishimura, T. A. Braun, K.-Y. A. Kim, J. Huang, et al. (2006). Homozygosity mapping

with snp arrays identifies trim32, an e3 ubiquitin ligase, as a bardet–biedl syndrome gene

(bbs11). Proceedings of the National Academy of Sciences 103, 6287–6292.

Conde-Amboage, M., C. Sánchez-Sellero, and W. González-Manteiga (2015). A lack-of-fit test
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