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Abstract: The accessibility of vast volumes of unlabeled data has sparked growing inter-
est in semi-supervised learning (SSL) and covariate shift transfer learning (CSTL). In this
paper, we present an inference framework for estimating regression coefficients in condi-
tional mean models within both SSL and CSTL settings, while allowing for the misspecifi-
cation of conditional mean models. We develop an augmented inverse probability weighted
(AIPW) method, employing reqularized calibrated estimators for both propensity score (PS)
and outcome regression (OR) nuisance models, with PS and OR models being sequentially
dependent. We show that when the PS model is correctly specified, the proposed estima-
tor achieves consistency, asymptotic normality, and valid confidence intervals, even with
possible OR model misspecification and high-dimensional data. Moreover, by suppressing
detailed technical choices, we demonstrate that previous methods can be unified within our
AIPW framework. Our theoretical findings are verified through extensive simulation studies

and a real-world data application.
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1. Introduction

In recent years, vast volumes of unlabeled data have become increasingly accessible,
sparking growing interest in how to leverage these data in both academic research
and industrial applications. One of the active areas of research is semi-supervised
learning (SSL). In addition, covariate shift transfer learning (CSTL) also exploits
information from unlabeled data. Both have various application scenarios like com-
puter vision (Sohn et al., 2020; Zhou and Levine, [2021; Zheng et al., 2022), natural
language process (Chen and Huang, [2016; Ruder et al., 2019; |Zhao et al., 2022,
causal inference (Alvari et al., [2019; |Aloui et al., [2023; [Zhang et al., 2023)), health-
care data analysis (Castro et al. 2020; Liu et al., 2023} Tang et al., 2024])), etc.

In both SSL and CSTL settings, we have access to a labeled dataset £ and an
unlabeled dataset U, where the labeled dataset £ contains observations with both
the covariates X and the outcome Y, while the unlabeled dataset U consists solely
of observations with the covariates X. The training set 7 is the union of £ and
U. Nevertheless, there is a key distinction between the classic SSL and CSTL se-
tups (Chapelle et al., 2006; Liu et al.| [2023). In CSTL, the conditional distributions
of Y given X in the labeled and unlabeled datasets are assumed to be the same,
whereas the marginal distributions of X are different (hence the term covariate
shift), and the estimator is ultimately evaluated on unlabeled data. However, under

the classic SSL setup, it is assumed that the distributions of labeled data, unlabeled



data, and population are the same, making no difference in evaluating the estimator
on which distribution. To accommodate both SSL and CSTL, we consider a more
general setting. We only assume the conditional distribution of Y given X is the
same in labeled and unlabeled data, while marginal distributions of X are permit-
ted to be different. Estimators evaluated on the population and unlabeled data are

both considered.

While there is a long history of SSL (Chapelle et al. 2006; [Zhu, 2008) and

CSTL (Quinonero-Candela et al.;2009)), a growing literature has considered inference

procedures only recently. Notable advancements have been made in estimating the

population mean E(Y') (Zhang et al., 2019; |Zhang and Bradic| [2021]) and regression

coefficients or fixed linear combinations in (generalized) linear models regressing Y’

against a sub-vector of X (Chakraborttyl 2016} [Liu et al.,[2023) or in linear models

regressing Y against full X (Chakrabortty and Cail 2018} Chakrabortty et al.,|2019;

Deng et al,[2024; Zhang et al,[2023;/Chen and Zhang| 2023)). See Section[5.1]and the

Supplementary Material Section S2 for further information. Inferences of quantile

regression (Chakrabortty et al.,[2022), explained variance ((Cai and Guo, 2020)), and

model performance metrics such as true and false positive rates (Gronsbell and Cali,

2017) have also attracted interest.
In this article, we focus on the inference of regression coefficients in (conditional)
mean models for Y against a sub-vector of X in SSL settings, hence called semi-

supervised regression analysis. We demonstrate a unified framework for estimating



and inferring these coefficients, particularly in cases where the (conditional) mean
model and outcome regression (OR) model E(Y'|X) may be misspecified. Previous
SSL and CSTL methods that considered this type of problems, such as/Chakrabortty
(2016), |Chakrabortty and Cai (2018]), Zhang et al.[ (2019), Zhang and Bradic| (2021))
and |Liu et al.| (2023), can largely be accommodated in the augmented inverse prob-
ability weighting (AIPW) framework (Robins et al., [1994; Tan|, 2020a; [Wu et al.,
2024). See Section [5| and Section |8 for further details.

Despite significant advancements made, there remain limitations in the previous
ATPW methods. Methods developed in SSL settings usually treat the problem as the
one where data are missing completely at random (MCAR) (Chakrabortty, [2016;
Chakrabortty and Cail, 2018; |Zhang et al| 2019; Zhang and Bradic, |2021). This
restricts their application scenarios and overlooks the significance of constructing
the propensity score (PS) model. In contrast, our setting is in general a missing-
at-random (MAR) problem (Little and Rubin, 2019), and the estimation of the PS
model is no longer negligible. In the setting of MCAR, the PS remains a constant,
whereas in the setting of MAR, the PS varies with the covariates X. In MAR
problems, similarly as in Tan (2020a), the estimation of PS and OR models needs
to be carefully handled in a way different from regularized least squares or maximum
likelihood as in previous papers, so that v/N-consistent estimation can be achieved
with possible misspecification of the OR model, where N is the sample size of T.

In summary, we mainly make two contributions. First, we present an inference



framework that accommodates several previous settings, including the estimation of
population mean and regression coefficients in conditional mean models of Y given
any sub-vector of X under both SSL and CSTL setups. Second, we propose a novel
AIPW method that enables v/ N-consistent and asymptotically normal estimation
and achieves valid confidence intervals under suitable sparsity conditions, when the
PS model is correctly specified but the OR model may be misspecified. This ro-
bustness to model misspecification is achieved by carefully exploiting the connection
between PS and OR models and designing estimating equations for nuisance param-
eters, differently from regularized least-squares or maximum-likelihood estimation.
Previous related methods (Chakrabortty et al., 2019) achieve v/N-consistency when
both PS and OR models are correctly specified and the estimated PS and OR func-
tions converge to the true values at fast enough rates (specifically, the product of
estimation errors is smaller than N~'/2). In contrast, our proposed estimator is
shown to be v/N-consistent even when the estimated OR function converges to a
target value different from the true value and the estimated PS function converges
to the true value, both slower than N~'/2 (but faster than N~'/4), with misspecified
OR model and correctly specified PS model. Hence the aforementioned product of
estimation errors may be greater than N~/2.

This work is also related to the causal inference problem under the strong ignor-
ability assumption (Rosenbaum and Rubin, 1983)). Specifically, the SSL problem is

similar to estimating the average treatment effect (ATE) and the conditional ATE



(CATE) (Zimmert and Lechner| [2019; [Fan et al., 2022; Wu et al.,|2024). The CSTL
problem can be viewed as an analog to the estimation of the average treatment effect
on the treated (ATT).

The rest of this paper is organized as follows. In section 2] we present our setup
and define the target parameters of interest. In Section [3| we construct a novel
AIPW estimator for the target parameter. We show theoretical properties of the
proposed estimator in Section [4] and compare them with the previous literature in
Section [l Numerical implementation is introduced in Section [l An application
to a crime study is presented in Section [/} Extension of proposed methods to the

CSTL setting is given in Section [§] followed by concluding discussions in Section [9]

2. Setup and preliminaries

2.1 Data and target parameters

Let Y € R be a response variable and X = (1, X1,..., X4)T € R4 be a covariate
vector with the first element being the constant 1. In addition, let R € {0, 1} be the
indicator of whether Y is observed: R = 1 if observed and R = 0 if missing. Assume
that {(X;,Y;,R;) : @ = 1,...,N} is an independent and identically distributed
(i.i.d.) sample from a joint distribution of (X,Y, R), denoted as P. The observed
dataset, {(X;, R;Y;,R;) : i = 1,..., N}, can be split into a labeled dataset £ =

{(X;,Y;,R; = 1), i = 1,...,n} and an unlabeled dataset Y = {(X;, R; = 0),i =



2.1 Data and target parameters

n+1,...,N}. For Z € R™, a sub-vector of X, it is of interest to fit a regression

model for the conditional mean E(Y|Z):

E(Y|Z) = (57 Z), (2.1)

where E(-) denotes the expectation under P, 5* is a parameter vector, and () is an
(increasing) inverse link function, such as the identity function 1 (u) = u and logit
function ¢(u) = 1/{1+exp(—u)}. When Z is a strict sub-vector of X, the parameter
[* can be seen to capture the marginal (or full) effect of Z on Y, as any indirect
effect of Z on Y through other covariates in X is marginalized out conceptually.
This is similar to marginal structural models (Robins| |1999; Wu et al., 2024)). In
comparison, the coefficient sub-vector associated with Z in the full regression of Y
on X can be seen to represent the direct effect of Z on Y after accounting for the
influence of other covariates in X on Y.

Model is allowed to be misspecified, that is, E(Y|Z) may not be in the

form (8" Z). With possible model misspecification, 5* is defined as the solution to

ELY —4(8"2)} Z] = 0. (2.2)

For a generalized linear model with ¢ (-) as the canonical inverse link, the estimating

equation (2.2)) leads to maximum likelihood estimation, so that ¢(8*"Z) can be



2.1 Data and target parameters

interpreted as the best likelihood-based approximation to E(Y'|Z) using model (2.1)).
The regression model is flexible. The target parameter $* accommodates

a variety of estimands in the previous literature.
(a) If we set Z = 1 and ¥(u) = u, then * = E(Y). The problem corresponds
to the semi-supervised estimation of the population mean (Zhang et al., 2019;

Zhang and Bradic, 2021)).

(b) If we set Z to be a univariate covariate, for example, Z = X;, then 5* cor-
responds to the regression coefficient in the regression model of Y given the
particular covariate X;. This problem was studied by Liu et al,| (2023) and

Wu et al.| (2024)).

(c) If we set Z = X, then * corresponds to the coefficient vector in the re-
gression model of Y given the full covariate vector X (Chakrabortty}, 2016;
Chakrabortty and Cai, 2018; |Chakrabortty et al., [2019; Deng et al., 2024
Zhang et al., 2023).

The description above is general, without specifying dependency of the dimen-
sions of X and Z on N. Nevertheless, for our statistical theory (Section , we
allow the dimension of X to increase as N increases, but the dimension of Z is
fixed, and we study inference about the entire vector $*. Hence our work is distinct
from |Chakrabortty et al. (2019)) in case (c¢) where Z = X is high-dimensional and
then the estimation objective is inferences about individual elements of 8*. See

the Supplementary Material Section S2 for a detailed comparison of our work and



2.2 General assumptions

several papers mentioned in case (c¢). On the other hand, for |Chakrabortty| (2016)
and |Chakrabortty and Cai (2018) in case (¢), Z = X is fixed-dimensional and
inference about * is studied by incorporating kernel smoothing in fitting the OR
function. Hence such settings can be properly accommodated by our theory with
fixed-dimensional Z but high-dimensional X as basis functions (denoted as F' or G
later) for OR fitting.

In addition to the parameter vector 5*, it may also be of interest to consider
target parameters defined within unlabeled data corresponding to the CSTL setting,
as studied in several recent papers (Liu et al., 2023} He et al., 2024)). To incorporate
this setting, we consider a regression model for the conditional mean in the unlabeled
data: E(Y|R = 0,2Z) = ¢(8""Z). With possible model misspecification, 5% is

defined as the solution to

E[(1—R){Y - 4(8"2)} Z] = 0. (2.3)

To illustrate the main ideas, we focus on the estimation of 5*, and defer the associ-
ated results for the estimation of 3% to Section [§|
2.2 General assumptions

Without imposing any assumption, we cannot obtain a consistent estimator of 5* due

to the missingness of Y in the unlabeled data. Below, we introduce the identifiability



2.2 General assumptions

assumption.
Assumption 1. Y 1l R| X.

Assumption (1] is crucial for the identifiability of 5* and B%. It ensures that
E(Y|X,R=1) =E(Y|X, R =0), indicating that the conditional mean of Y is the
same for both unlabeled and labeled data after accounting for the full covariates X.
This establishes the connection between the labeled and unlabeled data. Moreover,
Assumption [I| implies that P(R = 1|X,Y) = P(R = 1|X), meaning that the label
indicator R depends solely on the covariates X, i.e., R is missing at random (Molen-
berghs et al. [2015; Imbens and Rubin) 2015)). It should be noted that Assumption
does not imply Y 1l R | Z when Z # X. If Y 1l R | Z and the regression models
are correctly specified, then f* = $%. Otherwise, the equality may not hold.

Despite bearing many similarities, Assumption [l| differs from the classic SSL
setup in the missing mechanism represented by the probabilistic behavior of R. SSL
assumes the missing-completely-at-random mechanism (MCAR) (Chakrabortty, |2016;
Chakrabortty and Cai, [2018; |Zhang et al., [2019; Zhang and Bradic, 2021)), that is,
R 1 (X,Y), thus P(R = 1|X) is a constant, independent of X. In contrast,
we allow R to probabilistically depend on X. In addition, we make the following

technical assumption.

Assumption 2. 7%(X) = P(R = 1|X) > ¢ almost surely, for some constant 0 <

¢ < 1 independent of N and d.



2.3 AIPW estimating equations

This condition is introduced to ensure that each unit has a positive probability
of belonging to £. Then the labeled dataset L is of a non-negligible size compared
with N. By Assumption , the ratio n/N may randomly fluctuate but, as N — oo,
converges to a value in the interval (0,1}, equal to E(n/N) = P(R = 1). This
distinguishes our sampling process from the stratified sampling process widely used
in the previous literature (Chakrabortty], 2016; |Chakrabortty and Cai, 2018; Zhang
et al) 2019; Zhang and Bradic, 2021), where the sizes of labeled and unlabeled
datasets, n and N —n, are deterministic. For the asymptotic analysis, they assume
that both n and N tend to oo such that n/N converges to a value in [0, 1], including

zero. See Section [ for a detailed discussion.

2.3 AIPW estimating equations

For estimating 8*, we introduce the augmented inverse probability weighting (AIPW)
estimating equations. Essentially the same AIPW estimating equation has been used
in the previous literature, albeit under somewhat different settings than ours. See
Section ] for a connection and comparison of our method with the previous methods.

With the true PS model 7*(X) = P(R = 1|X), under Assumption [I} we have
EH{R/m*(X)}{Y —¢(57Z)} Z] = E[{Y — (8" Z)} Z]. Then a sample estimating
equation for £* is E [{R/#(X)}{Y — (87 Z)}Z] = 0, where #(X) is an estimator of
7*(X) and E denotes the sample mean, defined as E(U) = N~ SV U, for a variable

U. Let BIPW be a solution to the previous estimating equation. If the PS model



2.3 AIPW estimating equations

is correctly specified, then under certain regularity conditions, 7 (X) LN (X)) and
BIPW L p*; If the PS model is misspecified, 7(X) ;P@ (X)) and BIPW ;P@ G*.
To mitigate the possible inconsistency of BIPW, the AIPW method introduces an
augmented term. Specifically, let m*(X) = E(Y|X) be the true OR function and

m(X) be a corresponding estimator, the ATPW estimating equation is

R
m(X)

R
m(X)

b {Y—¢<5Tz>}z+{1— }{m<x>—w<ﬂTz>}z —0. (24)

Let BAIPW be the solution to equation . If the PS model is misspecified,
the augmented term E [{1 — R/#(X)} {/(X) — (67 Z)} Z] corrects the bias of
E[{R/#(X)HY — (3" Z)} Z] by introducing the estimator 7(X). In addition, if
the PS model is correctly specified, the augmented term improves the estimation
efficiency of 5* by leveraging the association between X and Y. It can be shown
that the left side of equation converges in probability to that of equation ([2.2)),
if either 7(X) LN ™ (X) or m(X) LN m*(X), which is the property of double
robustness.

In the classic SSL setup, estimating 5* is considered to be an MCAR problem,
where 7(X) is a constant, independent of X, and the estimator m (X)) is usually
defined using an OR model by (unweighted) least squares, maximum likelihood, or

variations (Chakrabortty, 2016; [Chakrabortty and Cail [2018; Zhang et al., [2019).

However, our semi-supervised regression is formulated as a MAR problem, where



7(X) depends on X. In such a scenario, as shown in the next section, the estimators
7(X) and m(X) for the PS and OR functions can be defined in a sequential manner,
different from least squares or maximum likelihood, in order to obtain desirable

properties with possible model misspecification.

3. Method

We develop a novel AIPW method that achieves v/N-consistency in the setting of
sparse high-dimensional PS and OR models, even if the estimation of the PS model

1/2

exhibits convergence rates slower than N~/ and the OR model is misspecified.

3.1 Model specification for nuisance parameters

AIPW estimation based on the estimating equation requires constructing the
estimators 7(X) and m(X) for 7%(X) and m*(X), using some PS and OR mod-
els. In contrast with the previous literature, we introduce a dependency between
7(X) and m(X) by carefully specifying basis functions and incorporating weighted
estimation.

Specifically, let F(X) = {1, fi(X),..., f,(X)}" be a vector of known functions
of X. We allow p to be high-dimensional, tending to infinity as N increases. As

in [Tan| (2020a)), we propose using logistic regression as a working model for the PS



3.1 Model specification for nuisance parameters

function 7*(X),

P(R=1|X) =7(X;7y) = [1 +exp{—/"F(X)}] ", (3.1)

where v is an unknown coefficient parameter.

Remark 1. In several related works on classic SSL and stratified sampling setups,
making efforts to estimate the PS may not be necessary. Firstly, in the classic SSL
setup, the true PS is a constant, leading to a constant PS model. Secondly, in the
stratified sampling setup, the proportion n/N is fixed and known, which corresponds

to a known PS function. Thus, researchers concentrate on specifying OR models.

Next, we turn to modeling the OR function m*(X). The working model for

m*(X) is specified as

E(Y]X) = m(X;a) = ${a"G(X)}, (3.2)

where G(X) = {1,91(X),...,9,(X)}" is a vector of known functions of X and
g can be high-dimensional. In contrast to the previous literature, to ensure valid
inference even when the OR model is misspecified, we carefully specify a choice of
G(X) as follows:

G(X) = [F(X)" {Zo F(X)}'], (3.3)

where Z ® F'(X) consists of all interactions between Z and F(X) (i.e., all prod-



3.2 Estimation procedures

ucts of individual components from Z and F(X)). Equation (3.3) represents the
minimal choice for G(X), and additional covariates can also be incorporated, such
as nonlinear terms of Z and F(X). Under sparsity conditions, these additional

terms can be readily accommodated.

3.2 Estimation procedures

The proposed method consists of the following three steps: (a) estimating the param-
eter v in the PS model ; (b) estimating the parameter a in the OR model ;
(c) estimating the target parameter [3.

For estimating 7, we utilize a regularized calibrated estimator (Tan, [2020b)),

defined as

4 = argmin Lgrcar(7) = argmin{lcar () + Ay |71/} (3.4)

YERPH1 ~ERPHL
where £oar(7) = E[Rexp{—7"F (X)}+(1—R)y"F(X)], \, is a pre-specified tuning
parameter, || - ||; denotes the Li-norm, and for any vector v, v;,; is the sub-vector
of v consisting of its i—th to j—th elements (both ends included). For a possibly
misspecified model 7(X;~), under suitable regularity conditions, 4 converges in
probability to its target value ¥ defined by ¥ = argmin, cg,+1 E[R exp{—~"F(X)} +
(1= R F(X)].

For estimating «, we adopt a regularized weighted maximum likelihood estima-



3.2 Estimation procedures

tor (Tan, [2020a), defined as

& = argmin LRWL(OG% = argmiﬂ{KWL(% @) + /\aHOfl:qu}y (3-5)

acRet+l acRat+1

where fwi(a;9) = E(Rw(X:4)[-Ya"G(X) + ¥{a"G(X)})), w(X,9) = {1 -
m(X,9)}/m(X.4), O(u) = [, (t)dt is the antiderivative of ¥ and A, is a tuning
parameter. Similar to the target value 7, we define the target value of o as a =
argmin, g+ B (Rw(X;7) [-Ya"G(X) + ¥{a"G(X)}]) .

After obtaining the estimators of v and «, the proposed calibrated AIPW esti-

mator of 3, denoted as B, is the solution to

E{7(0,4,8,4)} =0, (3.6)

where O = (X, Z,Y,R) and 7(O, o, 8,7) = {R/7(X; V) HY ¢ (" G) } Z+{¢ (0" G)
—(B"Z)}Z. Our estimating equations share the same form as the estimating
equations . However, there is a crucial distinction between our method and
previous related methods based on (2.4). In previous methods, the PS and OR
models are specified and fitted independently of each other, typically both by least
squares, maximum likelihood, or variations. In our method, the PS and OR models
are specified and fitted in a sequentially dependent manner. This design allows our

estimator /3 to achieve v N -consistency in the presence of misspecified OR models.



4. Theoretical analysis

In this section, we present the theoretical analysis of the proposed estimator B . In
Section [£.1] we examine theoretical properties of estimators 4 and & in PS and OR
models. Then, we study the asymptotic properties of the proposed estimator /5’ in
Section [4.2] Finally, in Section [4.3], we extend our analysis to the classic SSL setting

(stratified sampling with constant PS).

4.1 Properties of the estimators for nuisance parameters

For simplicity, we denote F'(X) and G(X) as F and G, respectively. All the
regularity Assumptions are given in the Supplementary Material. In addition, let

| -| denote the cardinality of a set. We first present the properties of 4 based on Tan

(2020a) [Theorems 1 and 3].

Proposition 1. Suppose that Assumption S1 in the Supplementary Material is sat-
isfied, and A, in (3.4) is specified by A\, = Ao, where Ay > 1 is a constant defined

in Assumption S1. Then, with probability at least 1 — 8e,

D, (V' F, 7" F) + (Ao = DAollF = Al < Mo|S5|A8, (4.1)

where My > 0 is a constant, and DTCAL(WA/TF, ¥TF) is the symmetrized Bregman Di-
vergence w.r.t LoaL(y), i.e., D5y (T F,5"F) = —E[R{exp(—4"F) — exp(—7"F)}

(4°F ~5'F).



4.1 Properties of the estimators for nuisance parameters

Note that D{,, ("F,5"F) > 0, then equation (&I implies that |5 — 7|, <
{Moy/(Ap — 1)}|S5| Ao, which indicates that the L;-convergence rate of the proposed

regularized calibrated estimator 4 is [S5| Ao, where |S5| is the nonzero size of ¥ and

Ao = ¢,/In{(1 +p)/e}/N for some constant c,. For example, taking ¢ = 1/(1 + p)

gives Ao = ¢y1/2In(1 + p)/N, which leads to |7 — 7|1 = O(]55]|v/In(1 + p)/N).

Proposition 2. Suppose Assumptions S1 and S2 in the Supplementary Material are
satisfied. If n{(1+p)/e}/N < 1 and A\, in (3.5)) is specified as Ay, where A; > 1

is a constant defined in Assumption S2. Then with probability at least 1 — 10e,

Dl (6"G,a"G,7) + exp(no) (A1 — D\i[|d — ally < M| S5[A3 + Mis|Sa|M2, (4.2)

where N1 s a constant defined in Lemma S9, M1 and Mo are constants defined in
Section S6.2 of the Supplementary Material; D\TNL(&TG, a"G,75) is the symmetrized

Bregman divergence given by
Dy (6"G,a"G,5) = E[Rw(X;9){(6"G) - ¥(a"G)Ha"G - a"G)].  (4.3)

Proposition |2 gives the convergence rate of &. Since DI,VL(dTG, a"G,y) >0
and Ay > A\ (Assumption S2(vi)), ||& — &|li < ¢, (]55] + [Sa]) M1 for some constant

Cm > 0.



4.2 Large sample properties of the proposed estimator

4.2 Large sample properties of the proposed estimator

In this subsection, we present the properties of the proposed estimator B .

Theorem 1. Suppose Assumptions[l] 2] and S1 —S3 in the Supplementary Material
are satisfied, and the PS model is correctly specified with 7(-;%) = 7*(-). If
In{(1 + p}/e)/N < 1, then the following results hold.

(i) The estimator # is consistent and asymptotically normal, and v N (B —B*) LN
N(0,3), where <, denotes convergence in distribution, ¥ = ' 'AI'"! with ' =
E{41(3"2)ZZ"}, and A — E{r(0,a, ", 9)7(0,a, 5",7)"}.

~

(i) A consistent estimator of 3 is 3 = I'"'AT'"!, where I' = E{¢; (5"
Z)ZZ"} and A= E{T(O,@,B,’?) (O, & B, ) } Thus, for a constant vector e
with the same dimension of 5, an asymptotic (1 —7) confidence interval for ¢"g* is

B+ Zn/g\/CTﬁ)C/N, where 2, is the (1 —7/2) quantile of the standard normal

distribution.

Theorem [1| shows that if the PS model is correct, and @ — & at certain rate
(faster than N—'/4), regardless of whether the OR working model is correct, the pro-
posed estimator B is v/ N—consistent and asymptotically normal, and the proposed
Cls based on ¥ are valid. In Section S1 of the Supplementary Material, we provide
a detailed discussion to explain how these properties are achieved and why, for a
general choice of Z, the correct specification of the PS model is assumed, although

either PS model or OR model is assumed to be correct in related work (Tan) 2020a)).



4.3 Extension to stratified sampling with constant PS

In contrast, the estimator Blpw is not v/N-consistent in general, even with a
correctly specified PS model, because in high-dimensional settings, the convergence
rate of #(X) is typically slower than N~'/2 leading to a slower convergence rate
of Blpw. Similarly, when the PS model is correctly specified but the OR model
is misspecified, the convergence rate of the AIPW estimator with the PS and OR
functions being estimated using conventional regularized maximum likelihood as in
double machine learning (Chernozhukov et al., [2018) may also be slower than N~1/2,
Such double-machine learning estimators are only shown to achieve v/N-consistency
when both PS and OR models are correctly specified and the estimated PS and OR

functions converge to the true values at fast enough rates (specifically, the product

of estimation errors is smaller than N~1/2).

4.3 Extension to stratified sampling with constant PS

To facilitate comparison with existing methods described in Section[5], we extend the
theoretical analysis of the proposed estimator to the classic SSL setting (stratified
sampling with constant PS), where the sizes of labeled and unlabeled datasets, n
and N — n, are deterministic. For fixed n and N, the observed data are generated

as follows:

o The labeled dataset (X1,Y7), ..., (Xn, Y,) "~ P(X,Y|R = 1).

e The unlabeled dataset (X, 11,...,Xn) LRS- P(X,Y|R=0).



4.3 Extension to stratified sampling with constant PS

Moreover, by letting F' = 1, #(X) = 7(X;9) = n/N (constant PS) and allowing
a general choice of G instead of ({3.3), our AIPW estimator, denoted as BS, can be

rewritten as a solution to the following estimating equation:
n N
LN Y- UG} 2ok 3 Y (UG~ v(F 2N 2 =0, (1)
n — 7 (2 (2 N — (2 (2 7 . .

Due to the constant 7(X), our estimator & reduces to the regularized unweighted
maximum likelihood or least squares estimator. The following proposition for BS

can be readily derived.

Proposition 3. Suppose that the conditions of Theorem[d] are satisfied with F = 1,
m™(X) = n/N, and a general choice of G, where Assumption S3(v) reduces to
1S/ In(q + 1) = o,(y/n). Then we have /n(3* — *) 4 N(0, %), where ¥° =
ILA°T!, with T defined as in Theorem[]] and A* = E([Y — {(N —n)/N}y(a"G)

—(n/N)W(BTZ)PZZ") + {(N —n)n/N*}E[{¢(a"G) — (67 2)}* ZZ7].

For comparison, by letting F' = 1 and 7*(X') = n/N in Theorem [} the variance
matrix ¥ for 3 such that \/N(B — 5%) 4, N(0,X) is ¥ = I 'AT !, where A =
E((N/m){Y — $(@"G)}? + {$(a"G) — w(5" 2)})] ZZ") + 2E({Y — $(a"G)}
{Y(@"G) — (B Z)}ZZ™). By direct calculation (see Section S8 of the Supple-
mentary Material), we have 3 /N = ¥*/n, which means the asymptotic variances
of BS and B are the same. Hence, in the classic SSL with constant PS, the asymp-

totic variances of our estimators, § under random sampling or ° under stratified



sampling, are equivalent to each other.

5. Comparison with previous methods

We first summarize various previous methods, all of which can be integrated into
the ATPW estimation framework. We also compare the asymptotic variances of
our methods with previous ones. See the Supplementary Material Section S2 for a
detailed comparison of our paper with several related papers with regression of Y

on high-dimensional Z = X as mentioned in Section [2.1]

5.1 Unified framework

Various methods have been proposed in the classic SSL setting, i.e., stratified sam-
pling with constant PS (F' = 1) asin Section (Chakrabortty, 2016; Chakrabortty
and Cail, 2018; [Zhang et al| 2019; |Zhang and Bradic, 2021). From an AIPW point
of view, the major difference among previous methods lies in the choices of OR
working models. For example, Zhang et al| (2019)) and |Zhang and Bradic (2021))
proposed linear OR working models for the estimation of E(Y), i.e., with Z =
1. |Chakrabortty (2016) and Chakrabortty and Cai (2018) proposed using non-
parametric or semi-parametric OR working models, such as kernel smoothing or
partially linear model, for regression analysis with Z a sub-vector of X.

If we disregard the specific choice of the OR working model, the previous meth-

ods can be incorporated into the AIPW estimating framework. In our notation, the
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previous estimators can be reformulated as solutions of

—Z{Y V(A G)}YZi + Z{w (A"Gi) = (8" Z:)}Z: =0,  (5.1)

for different choices of Z; and (-). Specifically, Zhang et al.|(2019) and |Zhang and
Bradic| (2021)) correspond to the case of Z =1 and #(-) is the identity function in
(5.1), while |Chakrabortty| (2016) corresponds to the case where Z is any sub-vector
of X and ¢(-) is an arbitrary inverse link function. Suppose a constant PS model
is used with 7*(X) = n/N, then the AIPW estimating equation or, in the
simplified form, in Section [£.3] coincides with (5.1).

In addition, Chakrabortty and Cai (2018) adopted a variation of AIPW esti-
mating equations. By the assumption lim, y_.n/N — 0 and controlling kernel
smoothing in fitting OR working models, they made it possible to drop the labeled
part and only retain the augmented term of unlabeled data in . Their estimat-
ing equations can be reformulated in our notation as {1/(N—n)} Zij\inﬂ{@b(dTGi) -
(B Z;)}YZ; = 0, with 1(-) to be identity function and Z = X, corresponding to

full linear regression.

5.2 Variance comparison

Under stratified sampling with constant PS, both estimators of Zhang et al.| (2019)

and |Zhang and Bradic (2021) of E(Y) achieve asymptotic normality and their



5.2 Variance comparison

asymptotic variance is Var(Y — a"G) + (n/N)Var(@"G). Under this setting,
by Proposition [3| with Z = 1, our AIPW estimator has the asymptotic variance
E{(Y —a"G)*>+ (n/N)(a"G — 3*)* + 2(n/N)(Y — a*G)(a*G — %)}, where * =
E(Y) = E(a"G) and E{(Y — a"G)G} = 0 by definition of @ and the fact that G
includes 1. Then E{(Y — &"G)(a"G — )} = E{(Y —a"G)(a"G)} = 0, and our
asymptotic variance reduces to Var(Y — a"G) + (n/N)Var(a"G) matching results
in |Zhang et al.| (2019) and [Zhang and Bradic| (2021).

Under stratified sampling with constant PS, the estimators of regression coeffi-
cients in conditional mean models proposed by Chakrabortty| (2016) and Chakrabortty
and Cai (2018) achieve asymptotic normality under the assumption that lim,, y_oc /N

— 0. Their asymptotic variances satisfy
r'Var[{Y —¢(a"G)} Z]T . (5.2)

In this setup, by Proposition , our estimator has the asymptotic variance I'"*Var[{Y —
(" G)}ZIT~ + (n/N)TTE{(a"G) =y (8 Z)}* ZZ |0~ +2(n/N)TT'E[{Y —
Y(@"G)Hy(a"G) = (8" Z)} ZZ" T, which, compared with (5.2)), in general has
additional term (n/N)I‘_l{]E([{w(@TG) —(BTZ) P +2{Y —¢(a"G)Hy(a"G) —
W(B2))Z27) [T,

The additional term reduces to 0 under the condition lim, x_0o n/N — 0, im-

plying that our result aligns with those of |Chakrabortty| (2016]) and |Chakrabortty



and Cail (2018) with the same condition.

6. Numerical implementation and simulation

We design experiments to evaluate the finite-sample performance of the proposed
method and compare it with several alternative methods: the IPW method with
Lasso-regularized maximum likelihood estimation for the PS model, AIPW methods
with Lasso-regularized maximum likelihood estimation for both the PS and OR
models without cross-fitting as in (Tan| (2020a)), and AIPW methods with cross-
fitting and Lasso-regularized maximum likelihood estimation for both the PS and
OR models (Chernozhukov et al., 2018; |[Zhang and Bradic, |2021). These competing
estimators are denoted as IPW, AIPWgy,, and AIPWcp, respectively. For the PS
and OR models, the basis functions F' and G are specified as follows.

e AIPWgear: Given X = (1,X1,...,Xq)7, let {&}F, be k points equally spaced
within (—a,a), where d = 3, k = 49, and a = 3. Let fj;(X) = (Xi; — &)+,
i=1,...,dj=1,. k Let F={1,f11(X),..., fin,(X),. ... far(X),

-, fan, (X)}T be basis functions in the PS model, and G = {F",(Z Q@ F)"}" be
basis functions in the OR model. The dimension of F is 148. For Z =1, X; , X,
the dimensions of G are 148, 285 and 589, respectively.

e [PW: Let F be the basis functions for the PS model.

o AIPWRMmL: Let F and G = F be the basis functions for both PS and OR models,

respectively.



e AIPWcp: Let F and G = F be the basis functions for both PS and OR models,

respectively.

We consider the estimators of population mean for Z = 1, regression coefficients
in the mean model for Z = X; and Z = X, respectively. The data generating
mechanisms and the associated numerical results are presented in Section S9 of
the Supplementary Material. We evaluate methods with five metrics: Bias (Monte
Carlo bias), v/Var (Monte Carlo standard deviation), v/EVar (square root of the
mean of variance estimates), CP90 (coverage proportions of the 90% Cls), and
CP95 (coverage proportions of the 95% ClIs). The simulation results demonstrate
that the proposed method AIPWgcar, has the smallest v/Var and v/EVar, and Bias.
Moreover, CP90 and CP95 of the proposed method are more aligned with their
nominal values of 0.90 and 0.95, respectively. This indicates the effectiveness of the
proposed method in terms of estimating both the population mean and regression

coefficients. See Section S9.3 of the Supplementary Material for more details.

7. Application

7.1 Data description

The Communities and Crime dataset comprises 1994 records of crime-related infor-
mation from communities in the USA, which combine socio-economic data from the

1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crime



7.1 Data description

data from the 1995 FBI UCR. Each record includes a response ViolentCrimesPerPop
(total number of violent crimes per 100,000 population) and 127 covariates, encom-
passing both location information, such as state as well as county, and socio-
economic factors, such as PctTeen2Par (percent of kids age 12-17 in two parent
households), HousVacant (number of vacant households), PctHousNoPhone (per-
cent of occupied housing units without phone) and PopDens (population density
in persons per square mile). In this study, we are interested in examining the
influence of univariate covariates on the response. We consider the case where
Z = (1, X;)" for a particular univariate covariate X; as discussed in Section [2.1| and
denote f* = (6o, f1)-

Due to the presence of numerous missing values in high-dimensional covariates,
we eliminate covariates with high missing ratios. See details of the pre-rocessing
procedure in Section S10.1 of the Supplementary Material. After pre-processing,
the analytical dataset consists of 1993 observations and 26 covariates (i.e., d = 26).
The shift in covariates X is naturally introduced by the different states where the
communities are located. We set label indicator R for communities in New Jersey
(Code 34) to be 1 and that for communities in other states to be 0 and remove
the associated response data if R = 0, resulting in 211 labeled observations and
1782 unlabeled observations. The covariate shift of the joint distribution of X
was confirmed to exist using a Gaussian kernel two-sample test with maximum

mean discrepancy (You, 2023). Additionally, we assess the shift of each individual
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covariate by a bootstrap version of the Kolmogorov—Smirnov test (Sekhon, 2011]).
For results of those tests, please see Section S10.2 of the Supplementary Material.

We randomly take 90% of labeled data and 90% of unlabeled data to form the
training set with the remaining data used for the testing set. From the remain-
ing 26 covariates, we select four representative ones: PctTeen2Par, HousVacant,
PctHousNoPhone and PopDens, which illustrate different aspects of the socio-economic
characteristics of communities. Notice that the covariate shift exists in all four co-
variates.

We compare the proposed method with IPW, AIPWgryp, and AIPW cr methods
with piecewise linear basis functions introduced in Section 6. The PS and OR
working models are estimated the same way as described in Section S9.2 of the
Supplementary Material. For details of the procedures for designing basis functions,

please see Section S10.3 of the Supplementary Material.

7.2 Results

Table |1] presents the estimates of the regression coefficients Bl along with the predic-
tion mean squared error (MSE), which are calculated using the test data. It reveals
that the point estimates of the regression coefficient are similar across the differ-
ent methods. Notably, our estimators achieve the lowest prediction MSE except
PctTeen2Par, highlighting the superior performance of our methods in minimizing

predictive errors.
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Table 1: Summary of 51 and prediction MSE

51 prediction MSE
AIPWgRcar, IPW AIPWgrMm AIPWer AIPWRgcaL IPW  AIPWgy AIPWep
PctTeen2Par -0.137 -0.172  -0.147 -0.256 0.034 0.032 0.034 0.044
HousVacant 0.107 0.261 0.073 0.133 0.046 0.085  0.046 0.047
PctHousNoPhone 0.123 0.245 0.103 0.050 0.036 0.058 0.039 0.047
PopDens 0.045 0.069 0.048 0.039 0.050 0.052  0.052 0.055

Moreover, signs of estimates of coefficients are the same among different meth-
ods for each covariate Z of interest. and they coincide with common sense and
previous studies. For example, the coefficients of PctTeen2Par are negative, since it
is believed to have protective effects in assaults (Luo and Qi, 2017); the coefficients
of HousVacan is positive, and criminological theories predict a positive association
between vacancy and crime since empty structures of houses could provide loca-
tions for some crimes (e.g., prostitution, drug dealing), and the absence of residents
may prevent social organization and reduce guardianship (Roth, 2019)). Moreover,
AIPWgmr and ours are close in all cases, while IPW estimators and AIPW¢p esti-
mators are far from others in some cases.

In Figure , we compare the 95% ClIs of AIPWgcar,, AIPWgwmr, and AIPWcr.
From the ClIs, we see that for AIPWgy, and our estimators all four single effects are
significant. ClIs of our estimators and of AIPWgy,’s have similar lengths and are
overlapped, except HousVacant. The reason of the small difference is that the esti-
mates of Jy are a bit different. CIs of AIPWr are much longer; for PctHousNoPhone
and PopDens, the estimates are not significant. Both phenomenons show that

ATPW¢r is not as efficient as other two methods.
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Figure 1: Comparison of 95% CIs of AIPWgrcar, AIPWgyr, and AIPW g

8. Extension to estimation of 3%

Consider the estimation of 3%, defined as a solution to estimating equations ([2.3)).
Under Assumption[l] E[R{1 — *(X)}/m*(X){Y —¢(8"Z)} Z] = E[{1 — R}
{Y —4(B8%Z)} Z]. Then a natural sample estimating equation for % is E[R{1 —

7(X)}/7(X){Y —¢(8"Z)}Z] = 0. We augment the estimating equations similarly



as described in Section 2.3 and obtain the sample AIPW estimating equations:

RO =X} R
By vy 2 {1

m}{mm (5 2)) 2| =0,

(8.1)

For the PS and OR models, we adopt a similar construction as in Section Our
AIPW estimator for 8%, £°, is defined as the solution to the estimating equa-
tions E{7°(0, &, 8,7)} = 0, where 7°(0, o, 8,7) = ([R{1 =7 (X; )} /(X 7){Y —
P(672) 1+ [{m(X57) — B}/ m(X5 1 ){(a"G) —¢(87Z)}) Z. The asymptotic prop-

erties of 4% is given in Theorem [2|

Theorem 2. Under Assumptions and S1 — S3 in the Supplementary Material, if
the PS model is correctly specified with 7(+;5) = 7*(+), and In{(1+p)/e} /N <
1, we have that

(i) the estimator 3° is consistent and asymptotically normal, and vN (BO —
%) 4 N(0, X9), where 3% = T AT with % = E[{1 — m(X;7)}1 (8> Z)
ZZ") and A° = E {7°(0, &, 8*,7)7°(0, a, 8*,7)"}.

(ii) a consistent estimator of 30 is 320 = ['0-1 AT~ where IO = E{¢, (6°TZ)Z Z"}
and A° =E {7‘0(0, &, %, 4)7°(0, &, BOT,ﬁ)T}. Thus, for a constant vector ¢ with

the same dimension of 3, an asymptotic (1 — n) confidence interval for ¢ is
"B £ 2,151/ cTE0¢/N.

Theorem 2| shows that if the PS model is correct, regardless of the correctness of



OR working models, the proposed estimator BO is consistent, asymptotically normal,
and the proposed Cls based on 320 are valid. Similarly to the estimation of 5%,
conclusions in Theorem [2| also hold in low-dimensional settings with a reduced form
of Assumptions S1 to S3.

We point out that the method of |Liu et al.| (2023) for CSTL can be viewed as an
AIPW estimator of 4% under the stratified sampling setting, where the labeled and
unlabeled datasets £ and U are treated as two independent samples of fixed sizes
n and N —n. They employed partial linear models for both PS and OR working
models. By replacing their choices of semi-parametric nuisance models with our
parametric models, the estimator of 3% in |Liu et al.| (2023) can be reformulated as

the solution to the following estimating equations:

- Zw VY- 9@ G}z + Z {v(a"Gy) —v(8"Z:)} Z] =
i=n-+1
(8.2)
where w(X;;4°) = exp(—7°"F;) and F; is the abbreviation of F'(X;); 4° = (%5, ¥75)"

is an estimator of the parameter v° in an exponential tilt model, defined as

dGy = exp(7g + 75 F1,)dGo, (8.3)

where G and (G are two probability distributions for the unlabeled and labeled

data in Fy,, and 7§ = —In{ [ exp(vfg,Fl:p)dGo} to ensure that [ dG; = 1. The



exponential tilt model (8.3|) can be shown to be equivalent to the logistic PS model
(3.1), where the coefficients are related as follows (Prentice and Pyke, 1979 Qin,

1998; Tian et al., [2026)):

s Pm s
Yo = Yo + In (1 —p ) ) Yip = 71:p7 (84)

where p,, = P(R = 1), the true value of the proportion of missing data. When
analyzing the asymptotic property in stratified sampling settings, we assume n/N
to be constant and, consequently, assume that p,, = n/N. On the other hand, our

estimating equations (8.1)) can be rewritten as

T D WX ) (Y- 0@ G2+ D (U6 G — v(8 20} 2] = 0,

(8.5)
where 4 = (40, %1,p)" is an estimator of the parameter 7 in logistic PS model .
If the estimators 4° and 7 satisfy the same relationship as , ie., 9 = A5 +
In{n/(N —n)} and 41, = 47, then one can see that {(N — n)/n}w(X;;7°) =
exp(—4"F;) = w(X;;%), and the two equations and match each other.
Thus, the different forms of and can be explained by the relationship of

the coefficient estimates between the exponential tilt model (8.3) and the logistic

regression model (3.1]).



9. Discussion

We present a new AIPW method for the inference of regression coefficients in (con-
ditional) mean models in SSL and CSTL settings. We demonstrate that various
previous methods can be unified in our AIPW framework by suppressing detailed
technical choices. Our AIPW estimator achieves asymptotic normality, and valid
CIs can be obtained, whether or not the OR working model is correctly specified,
with high-dimensional data. Finite sample performances of the proposed method
are confirmed by a simulation study and an application to a real-world dataset.
Currently, the proposed Cls can only achieve single robustness to the misspeci-
fication of the OR model. Doubly robust Cls can be developed using the approach
of \Ghosh and Tan| (2022), albeit at the cost of increasing technical and numerical
complexities. In addition, how to handle the case where lim, y_oo /N — 0 under
the random sampling process is also technically challenging, since the “positivity as-
sumption” (Assumption [2)) typical in missing data theory is violated. New analysis

needs to be developed to address the problem.

Supplementary Material

The online Supplementary Material contains a heuristic discussion on conditions for
the proposed estimator to be v/ N-consistent and asymptotic normal, a comparison

of our paper with several related papers with regression of Y on high-dimensional
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Z = X and papers under stratified sampling settings, detailed proofs of theorems as

well as propositions, and details of the numerical implementation and application.
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