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Abstract: Clustered data-based analysis has been extensively conducted in vari-

ous studies. Recent research has demonstrated that a network-based heterogene-

ity analysis, which adopts a system perspective and incorporates the intercon-

nections among variables while considering heterogeneity between components,

can provide more informative results compared to approaches based on simpler

statistics. Moreover, incorporating grouping strategies in analysis can better

delineate the sources of heterogeneity and enable more flexible modeling for clus-

tered data. In this article, we introduce a novel approach called the grouped

heterogeneous Gaussian graphical models (Grouped-HGGM) for network analy-

sis of high-dimensional clustered data. Our approach assumes that clusters can

be divided into distinct groups, and any heterogeneity across clusters is captured

through the cluster-wise mixture probabilities. Unlike most previous approaches

that assume that the number of components is known in advance, an appealing

feature of our method is the automatic determination of the number of com-

ponents and sparse estimation using a fusion technique. Consistency properties
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are rigorously established, and an effective computational algorithm is develope-

d. Extensive simulations demonstrate the practical superiority of the proposed

approach over closely related alternatives. In the analysis of breast cancer da-

ta, the proposed approach identifies heterogeneity structures different from the

alternatives.

Key words and phrases: Clustered data, Gaussian graphical models, Grouping

strategies, Heterogeneity analysis.

1. Introduction

Consider data that can be divided into m known clusters, which can be

based on postal regions, institutions, species, and others. This type of data

is referred to as clustered data, which frequently appears in various areas of

research, such as neuroscience (Galbraith, Daniel and Vissel (2010)), per-

sonalized medicine (Fokkema et al. (2018)), and labor economics (Pereda-

Fernandez (2021)). For a given cluster i (i = 1, . . . ,m), heterogeneity often

manifests in real data, indicating the presence of subgroup structures. As a

popular analytical strategy, the finite mixture model (McLachlan and Peel

(2000)) could be useful to flexibly capture heterogeneity. In the left panel

of Figure 1, we show a dataset consisting of m clusters, and each cluster is

treated as a finite Gaussian mixture comprising K0 subgroups/components:
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fi(x) =

K0∑
l=1

π∗ilfl(x;µ∗l ,Σ
∗
l ), i = 1, . . . ,m, (1.1)

where fl(x;µ∗l ,Σ
∗
l ) is a Gaussian distribution with mean vector µ∗l and

covariance matrix Σ∗l . For m clusters from the model (1.1), one of the

primary objectives in the statistical analysis would be accounting for het-

erogeneity across clusters, prompting us to consider the scenario that the

cluster-wise distributions share common latent distributions fl. The hetero-

geneity across clusters is captured through the cluster-wise mixture proba-

bilities (π∗i1, . . . , π
∗
iK0

) in the model (1.1). Specifically, we assume that all the

clusters are divided into a finite number of groups by a grouping strategy,

and the clusters within the same group share the same mixture probability.

For the sake of clarity of hierarchy, let us provide a concise example. Can-

cer data stemming from diverse regions or laboratories (clusters) fall with-

in the purview of clustered data. Given the existence of cancer subtypes

(components), the investigation necessitates conducting component-specific

network analysis. Moreover, the groups are derived through the mentioned

grouping strategy. The idea of assuming shared latent distributions across

clusters is not new and can be traced back to earlier literature (Teh et al.

(2006), Rodriguez, Dunson and Gelfand (2008), Sugasawa (2021)). Our

study advances by further considering a useful and popular setting. Specif-
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ically, we take into account the interrelationships among variables in clus-

tered data, which is both promising and challenging. Under the Gaussian

Graphical Model (GGM) framework, these interrelationships can be recov-

ered from the inverse covariance matrix (Σ∗l )
−1. As depicted in the right

panel of Figure 1, learning the component-specific network structures is also

one of the objectives of our study.

The GGM framework stands out as particularly attractive for analyzing

conditional dependencies, primarily due to its clear interpretations, favor-

able statistical properties, and computational advantages. The problem of

estimating multiple networks in the presence of sample heterogeneity un-

der GGM has been extensively studied. Two main scenarios have been

explored: one is where it is unknown which samples belong to which dis-

tributions (Gao et al. (2016), Ren et al. (2022)), and the other is where

this information is known (Guo et al. (2011), Danaher, Wang and Witten

(2014)). In this study, we consider the former scenario as it offers more

flexibility. While heterogeneous GGMs have been widely employed for het-

erogeneity analysis across various disciplines, this article can be unique in

conducting unsupervised heterogeneity analysis for high-dimensional clus-

tered data. The GGM assumes that observations follow a multivariate

normal distribution, wherein the conditional independence of two nodes
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Figure 1: Heterogeneity network analysis of clustered data using Grouped-

HGGM, including data structures (left), component-specific networks anal-

ysis by GGM (right). Group assignment of m clusters into G groups, where

π∗1,π
∗
2, . . . ,π

∗
G are group-specific mixture probabilities.
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(variables) is equivalent to the corresponding element in the precision ma-

trix having a zero value. Consequently, determining the network structure

involves a sparse estimation of the precision matrix, for which various tech-

niques, including penalization, have been employed. Notable contributions

include joint graphical Lasso (Danaher, Wang and Witten (2014)) and its

subsequent refinements (Gao et al. (2016)). Additionally, a more encom-

passing approach known as SCAN (Hao et al. (2018)) enables sparsity in

both cluster means and precision matrices. However, the aforementioned

studies typically necessitate pre-specifying K0, which is usually difficult to

justify such a choice. Ren et al. (2022) proposed a fusion penalty to identify

number of components. Although related research has also conducted high-

dimensional unsupervised heterogeneity analysis, our work, which involves

a key difference in the incorporation of a broader data framework, aims to

investigate not only component heterogeneity but also heterogeneity among

clusters, this is theoretically and computationally challenging. The afore-

mentioned studies can be viewed as special cases with m = 1. Currently,

the available literature addressing these specific issues remains very limited.

Consequently, there is a strong demand for more effective methods in this

domain.

Our contributions in this article are twofold. First, on the method-
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ological front, we propose a novel approach called the grouped heteroge-

neous Gaussian graphical model (Grouped-HGGM) for network analysis of

high-dimensional clustered data. Beyond following the GGM framework to

establish the network (graph) of variables, the significant advances include

incorporating heterogeneity and grouping strategies. Under the framework

of heterogeneity analysis, the proposed analysis identifies the number of

components as well as their respective network structures. Furthermore, it

seeks to group datasets from multiple clusters to explore the heterogeneity

among these clusters using cluster-wise mixture probabilities. It belongs to

the family of network-based heterogeneity analysis and may exhibit similar

merits as those demonstrated in Gao et al. (2016), Hao et al. (2018), and

Ren et al. (2022). On the theoretical front, we provide a non-asymptotic s-

tatistical analysis of the output generated directly from the ECM algorithm.

When simultaneously identifying the number of components and accommo-

dating the heterogeneity among clusters through the determination of the

number of groups, our analysis focus on additional technical challenges in

both theory and computation. The theoretical and computational devel-

opments in this study, although sharing some similarities with the existing

studies, are notably more intricate and demand additional investigations.

With advancements in methodology, theory, and numerical analysis, this
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study offers a significant contribution beyond the existing literature.

The remainder of the article is organized as follows. Section 2 presents

a novel method for analyzing heterogeneity in clustered data with a net-

work structure, and an ECM algorithm is developed to implement it. The

theoretical properties of the proposed estimators are established in Section

3. In Section 4, a comparative study is conducted to assess the performance

of the proposed method against alternatives. Section 5 illustrates the pro-

posed method using a real data example. Further discussions are provided

in Section 6. Additional numerical results, detailed algorithms, and proofs

of the theorems are provided in the Supplementary Material.

2. Methods

Let xij denote the j-th p-dimensional measurement in the i-th cluster for i =

1, . . . ,m and j = 1, . . . , ni, where m is the number of clusters and ni is the

number of within-cluster samples or cluster size which can be unequal across

clusters. Assume further that the the ni subjects belong to K0 components

defined based on cancer subtypes, where K0 and component memberships

are unknown. This is a reasonable assumption as the data within each

cluster is of the same type. For instance, the number K0 of cancer subtypes

remains consistent across all clusters. In model (1.1), the cluster-wise share
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common latent distributions, that is, the mean µ∗l and covariance matrix

Σ∗l of l-th component are same for all m clusters. The parameters µ∗l , Σ∗l

and cluster-wise mixture probabilities π∗i = (π∗i1, . . . , π
∗
iK0

) are unknown.

To model the heterogeneity across clusters, we divide the m clusters into G

groups, i.e.,

fi(xij) =

K0∑
l=1

π∗gilfl(xij;µ
∗
l ,Σ

∗
l ), (2.1)

where gi ∈ {1, . . . , G} and π∗gi = (π∗gi1, . . . , π
∗
giK0

) are unknown grouping

parameters and group-specific mixture probabilities, respectively. Thus the

clusters within the same group share the same mixture probabilities, which

leads to the same mixture distributions in a given group. It is worth noting

that, an unknown number of components K0 complicates the problem, a

finite mixture model with too few numbers of components may fail to ade-

quately capture heterogeneity, leading to biased estimates. Conversely, an

excessive number of components can result in data overfitting and diminish

interpretability. Many existing studies (Danaher, Wang and Witten (2014),

Gao et al. (2016), Hao et al. (2018), Sugasawa (2021) and Li et al. (2022))

require a prior specification of the value of K0 in model (2.1) or select it us-

ing information criteria. It is naturally unreasonable to specify K0 directly.

Recent literature (Pei et al. (2022), Chen et al. (2023)) on mixture modeling

highlights the difficulty of consistently selecting the K0 using information
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2.1 Penalized estimation

criteria. In our study, we do not require a prior specification of the value

of K0 in the model (2.1) or select it using information criteria.

2.1 Penalized estimation

While it is challenging to determine K0 a priori, specifying its “upper

bound” K > K0 can be relatively straightforward. To be cautious, K can

be taken as a relatively large number and bounded. This can be based on

some contexts about the data or simply by selecting a relatively appropri-

ate number. With this K, we consider the following grouped heterogeneous

Gaussian graphical models:

fi(xij) =
K∑
k=1

πgikfk(xij;µk,Θ
−1
k ), i = 1, . . . ,m, j = 1, . . . , ni, (2.2)

where
∑K

k=1 πgik = 1, µk = (µk1, . . . , µkp)
> is the mean vector, and Θk =

Σ−1
k is the precision matrix for the k-th component with the (i, j)-th entry

θkij. Define g and π as the collections of gi and πgk, respectively, which are

also unknown. For parameter estimation and determination of the hetero-

geneity structure, we propose the penalized objective function:

L(Ω, g,π |X) =
1

N

m∑
i=1

ni∑
j=1

log

{
K∑
k=1

πgikfk(xij;µk,Θ
−1
k )

}
− P (Ω), (2.3)

where N =
∑m

i=1 ni andX stand for the total sample size and the collection

of observed data, respectively. Ωk = vec(µk,Θk) = (µk1, . . . , µkp, θk11, . . . ,
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2.1 Penalized estimation

θkp1, . . . , θk1p, . . . , θkpp)
> ∈ Rp+p2 , and Ω = (Ω1, . . . ,ΩK)> ∈ RK(p+p2).

Here, the penalty is proposed as

P (Ω) =
K∑
k=1

p∑
r=1

pλ1(|µkr|) +
K∑
k=1

∑
i6=j

pλ2(|θkij|) +
∑
k<k′

pλ3(τk,k′), (2.4)

where τk,k′ = (||µk − µk′ ||22 + ||Θk −Θk′ ||2F )
1
2 , || · ||F is the Frobenius nor-

m, and pλ(·) is a concave penalty function with tuning parameter λ > 0.

Consider (Ω̂, ĝ, π̂) = arg max
Ω,g,π

L(Ω, g,π | X). Define {Υ̂1, . . . , Υ̂K̂0
} as the

distinct values of Ω̂, that is, {k : Ω̂k ≡ Υ̂l, k = 1, . . . , K}l=1,...,K̂0
consti-

tutes a partition of {1, . . . , K}. Then there are K̂0 components with the

estimated mean and precision parameters in Ω̂. The sparsity patterns of

the precision matrix estimates directly correspond to the structures of the

networks. Specifically, if and only if the (i, j)-th entry of the estimate for

Θk is zero, the corresponding two variables are not connected conditional

on the other variables.

Rationale The proposed modeling approach considers the heterogeneity

across clusters by incorporating grouping parameters in (2.3) and obtains

the number of components K̂0 using the penalized fusion technique. In

(2.4), the first two penalties are imposed on the parameters of the mean

and precision matrices, respectively, which are common practices and aim

to promote sparsity. The most notable advancement in our work lies in

the third, the fusion penalty. This penalty serves to shrink the differences
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2.2 Computation

among the K components and encourage equality, ultimately resulting in

a smaller number of components. In this article, the cluster-wise distri-

butions in the model (2.1) share common Gaussian distributions fl, which

are defined by both mean µ∗l , covariance matrix Σ∗l . Consequently, the fu-

sion penalty is applied to both the mean and precision matrix parameters,

which intuitively leads to a more effective penalty than solely applying it

to a single parameter.

2.2 Computation

An Expectation-Conditional-Maximization (ECM) algorithm facilitated by

the Alternating Direction Method of Multipliers (ADMM) algorithm is de-

veloped for optimizing objective function (2.3). The ECM algorithm per-

forms a conditional maximization in each M-step, that is, each parameter

πgk, µk, Θk, and gi is maximized separately by fixing other parameters.

We estimate the grouping parameter gi(i = 1, . . . ,m) and other unknown

parameters simultaneously via the maximum likelihood method. Here it is

assumed that the number of groups G is known, and its estimation will be

discussed later. To develop the ECM algorithm, we introduce latent vari-

ables zij ∈ {1, . . . , K} and consider a hierarchical expression of model (2.2)

given by xij|(zij = k) ∼ fk(xij;µk,Θ
−1
k ) and Pr(zij = k) = πgik. Then the
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2.2 Computation

penalized log-likelihood function for the complete data can be written as:

L(Ω, g,π |X) =
1

N

m∑
i=1

ni∑
j=1

K∑
k=1

I(zij = k)
{

log fk(xij;µk,Θ
−1
k ) + log πgik

}
−P (Ω).

(2.5)

In the E-step, we compute the conditional probabilities of zij = k for k =

1, . . . , K, given the data and current parameter values Ω(t−1), g(t−1),π(t−1).

The expectation of the complete log-likelihood is given by:

Q(Ω, g,π |X,Ω(t−1), g(t−1),π(t−1))

=
1

N

m∑
i=1

ni∑
j=1

K∑
k=1

ω
(t)
ijk log fk(xij;µk,Θ

−1
k ) +

1

N

m∑
i=1

K∑
k=1

log πgik

ni∑
j=1

ω
(t)
ijk − P (Ω)

≡ Q1(Ω |X,Ω(t−1), g(t−1),π(t−1)) +Q2(g,π |X,Ω(t−1), g(t−1),π(t−1))− P (Ω),

(2.6)

where ω
(t)
ijk can be computed as:

ω
(t)
ijk =

π
(t−1)
gik

fk

(
xij;µ

(t−1)
k ,

(
Θ

(t−1)
k

)−1
)

K∑
k=1

π
(t−1)
gik

fk

(
xij;µ

(t−1)
k ,

(
Θ

(t−1)
k

)−1
) , i = 1, . . . ,m, j = 1, . . . , ni.

(2.7)

The maximization of Q1(Ω | X,Ω(t−1), g(t−1),π(t−1)) in (2.6) with respect

to Ω can be divided into K maximization problems, and Ω1, . . . ,ΩK can be

separately updated. In addition, maximizingQ2(g,π |X,Ω(t−1), g(t−1),π(t−1))

includes discrete optimization of g in the space {1, . . . , G}m, and such a

search is computationally burdensome. Alternatively, we first maximize
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2.2 Computation

Q2(g(t−1),π |X,Ω(t−1), g(t−1),π(t−1)) with respect to π, denote π(t) as the

maximizer, and then maximize Q2(g,π(t) |X,Ω(t−1), g(t−1),π(t−1)) with re-

spect to g to obtain g(t). This allows a separate updating for each element

of g.

In the t-th maximization step, maximizing (2.6) with respect to πgk

leads to the estimate:

π
(t)
gk =

1∑
i:g

(t)
i =g

ni∑
j=1

K∑
k=1

ω
(t)
ijk

∑
i:g

(t)
i =g

ni∑
j=1

ω
(t)
ijk. (2.8)

For µk, maximizing (2.6) with respect to {µ} = µ1, . . . ,µK is equivalent

to solving:

{µ(t)} = arg min
{µ}

{
1

2N

K∑
k=1

m∑
i=1

ni∑
j=1

ω
(t)
ijk

{
(xij − µk)>Θ

(t−1)
k (xij − µk)

}
+ P ({µ})

}
,

(2.9)

where

P ({µ}) =
K∑
k=1

p∑
r=1

pλ1(|µkr|)+
∑
k<k′

pλ3

((
||µk − µk′||22 + ||Θ(t−1)

k −Θ
(t−1)
k′ ||2F

) 1
2

)
.

Here the local quadratic approximation can be adopted and lead to an ex-

plicit solution at each iteration. Details are provided in the Supplementary

Material.

For Θk, maximizing (2.6) with respect to {Θ} = Θ1, . . . ,ΘK is equiv-
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2.2 Computation

alent to solving:

{Θ(t)
k } = arg max

{Θ}

{
K∑
k=1

m∑
i=1

ni∑
j=1

ω
(t)
ijk

[
log{det(Θk)} − tr(S̃kΘk)

]
− P ({Θ})

}
,

(2.10)

where S̃k is a pseudo sample covariance matrix defined as

S̃k =

∑m
i=1

∑ni

j=1 ω
(t)
ijk(xij − µ

(t)
k )(xij − µ(t)

k )>∑m
i=1

∑ni

j=1 ω
(t)
ijk

,

and

P ({Θ}) =
K∑
k=1

∑
i6=j

pλ2(|θkij|)+
∑
k<k′

pλ3

((
||µ(t)

k − µ
(t)
k′ ||

2
2 + ||Θk −Θk′ ||2F

) 1
2

)
.

To effectively solve (2.10), the ADMM technique is employed. Different

from the existing literature, the addition of the fusion penalty complicates

the optimization process, rendering it more challenging. To address this is-

sue, the efficient sparse alternating minimization algorithm (S-AMA)(Wang

et al. (2018)) is adopted.

For updating gi, we compute all the values of the objective function for

g = 1, . . . , G and select the maximizer. That is, update gi by solving:

g
(t)
i = arg max

g=1,...,G

{
1

N

K∑
k=1

log π
(t)
gk

ni∑
j=1

ω
(t)
ijk

}
. (2.11)

The ECM algorithm can be sensitive to the choice of initial estima-

tors. In our numerical study, the initialization is implemented using the

K-means method, where the precision matrices are obtained by directly
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2.2 Computation

inverting the covariance matrices. We note that some other sensible clus-

tering methods may also generate satisfactory initial values. Denote the

obtained cluster-wise mixture probabilities as π
(0)
i = (π

(0)
i1 , . . . , π

(0)
iK ) and

parameters Ω
(0)
ik . Then, the standard K-means algorithm with G groups is

applied to π
(0)
1 , . . . ,π

(0)
m , and we adopt the estimated grouping and centroids

as the initial estimators of g and π, respectively. The initial estimators of

Ωk can be obtained via calculating the element-wise medians or means of

{Ω(0)
1k , . . . ,Ω

(0)
mk} for k = 1, . . . , K. The algorithm of the update process is

summarized in Algorithm S1 of the Supplementary Material.

The proposed approach requires tuning (λ1, λ2, λ3) and G. To deter-

mine the optimal values of the tuning parameters, we minimize the following

BIC-type criterion:

BICG,λ = −2Q(Ω̂, ĝ, π̂)|K=K̂0
+ logN

G(K̂0 − 1) +m+

K̂0∑
l=1

s1l

+2

K̂0∑
l=1

s2l,

(2.12)

where s1l = |{r : µ̂lr 6= 0, 1 ≤ r ≤ p}|, and s2l = |{(i, j) : θ̂lij 6= 0, 1 ≤ i <

j ≤ p}| for l = 1 . . . , K̂0.

Remark 1 To the best of our knowledge, there is currently no existing

literature that provides a guarantee for the global convergence of the ECM

algorithm in a general case. However, with a reasonably good initialization,

the ECM algorithm can be ensured to converge to a solution within a small
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neighborhood of the true solution, in terms of statistical accuracy, even if it

may get trapped in a local optimum after a sufficient number of iterations.

Specifically, we require the initial value to be within a ball of constant radius

around the true solution. By conducting enough iterations, we can ensure

that the optimization error is dominated by the statistical error, and as a

result, the overall error bound is of the same order as the statistical error.

Further details can be found in the Supplementary Material, specifically in

the proof of Result 1.

Remark 2 The BIC-type criterion (2.12) is analogous to that of Sugasawa

(2021) and Hao et al. (2018), which have demonstrated great performance

in their studies. The limitation of our work lies in not establishing a rigorous

theoretical guarantee for Ĝ. To our knowledge, providing such theoretical

proof in high-dimensional settings poses challenges, and such limitations

about information criterion are shared by many existing studies (Göbler et

al. (2024), Ren et al. (2022), Hao et al. (2018)).

3. Theoretical properties

Denote the true parameter values as Υ∗ = (Υ∗>1 , . . . ,Υ∗>K0
)> and Υ∗l =

vec(µ∗l ,Θ
∗
l ) for l = 1, . . . , K0. Define Sl = {(i, j) : θ∗lij 6= 0, 1 ≤ i 6= j ≤ p}

as the index set of non-zero elements in the l-th precision matrix and the
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sparsity parameter s = max{|Sl|, l = 1, . . . , K0}. Similarly, define Dl =

{r : µ∗lr 6= 0, 1 ≤ r ≤ p} as the non-zero elements in the l-th mean vector

and the sparsity parameter d = max{|Dl|, l = 1, . . . , K0}. Without loss of

generality, suppose that the cluster labels are assigned such that the cluster

size increases with the cluster index, that is, n1 ≤ n2 ≤ · · · ≤ nm. The

following conditions are needed.

Condition 1. For some positive constants β1, β2, 0 < β1 < min
l=1,...,K0

ψmin(Θ∗l )

< max
l=1,...,K0

ψmax(Θ∗l ) < β2 < ∞, where ψmin(Θ∗l ) and ψmax(Θ∗l ) are the

smallest and largest eigenvalues of Θ∗l , respectively.

Condition 2. ||µ∗||∞ = max
l=1,...,K0

||µ∗l ||∞ and ||Θ∗||∞ = max
l=1,...,K0

||Θ∗l ||∞ are

bounded, where ||Θ∗l ||∞ = max
i=1,...,p

∑p
j=1 |θ∗lij| and θ∗lij is the (i, j)-th entry of

Θ∗l .

Condition 3. The K0 components are sufficiently separable such that each

pair {(l, l′), 1 ≤ l 6= l′ ≤ K0},

pr(x ∈ Al)pr(x ∈ Al′) ≤
%

24(K0 − 1)
√

max{W,W ′,W ′′}
,

where Al and Al′ are the l-th and l′-th components, respectively, % =

cmin{β1,
1
2
(β2 + 2α0)−2} for a constant c. Here, W = maxlWl, W

′ =
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maxlW
′
l , and W ′′ = maxlW

′′
l with

Wl = sup
t∈[0,1]

E
[
{δΥtl

(x)}> δΥtl
(x) ‖Θ∗l′(x− µ∗l′)‖

2
2

]
,

W ′
l = sup

t∈[0,1]

E
[
{δΥtl

(x)}> δΥtl
(x)

∥∥Θ∗−1
l′

∥∥2

F

]
,

W ′′
l = sup

t∈[0,1]

E
[
{δΥtl

(x)}> δΥtl
(x)

∥∥(x− µ∗l′)(x− µ∗l′)>
∥∥2

F

]
,

Define Υ̃t = Υ∗ + t(Υ− Υ∗), Υ̃t = (Υ̃t1, . . . , Υ̃tK0), and Υ̃tl = vec(µ̃tl, Θ̃tl)

with t ∈ [0, 1]. For any Υ ∈ Bα0(Υ
∗) = {Υ : ‖Υ−Υ∗‖2 ≤ α0}:

δΥtl
(x) =

 Θ̃tl(x− µ̃tl)

1
2
vec{Θ̃−1

tl − (x− µ̃tl)(x− µ̃tl)>}

 .

Condition 4. min
{
{|µ∗lr| : r ∈ Dl, l = 1, . . . , K0}, {|θ∗lij| : (i, j) ∈ Sl, l =

1, . . . , K0}
}
> (a + 1

2
) · max{λ1, λ2}. Let b = min

1≤l 6=l′≤K0

||Υ∗l − Υ∗l′ ||2, and

therefore b > (a+ 1
2
)λ3.

Condition 5. λ1, λ2, λ3 �
√

(s+ p) log p/N .

Condition 6. ρ(t) = λ−1pλ(t) is concave in t ∈ [0,∞) with a continuous

derivative ρ′(t) satisfying ρ(0) = 0, and ρ′(0+) = 1 is independent of λ.

There exists a constant 0 < a <∞ such that ρ(t) is constant for all t ≥ aλ.

Condition 7. The probability density function g(X; g,Υ∗) ≡
∏m

i=1

∏ni

j=1

fi(xij; gi,Υ
∗) is identifiable in (g,π,Ω) up to the permutation of the compo-

nent and grouping labels, where fi(xij; gi,Υ
∗) =

∑K0

l=1 π
∗
gil
fl(xij;µ

∗
l ,Θ

∗−1
l )

is a mixture distribution.
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Condition 8. For the interior point Υ0 from a compact set S ∈ RK0(p+p2),

there exist functions Mt(x), t = 1, 2, 3, such that for Υ in a neighborhood

of N(Υ0),

fi(x; gi,Υ)

fi(x; g′i,Υ)
< M1(x),

∣∣∣∣∂ log fi(x; g′i,Υ)

∂Υs

∣∣∣∣ < M2(x),

∣∣∣∣∂2 log fi(x; g′i,Υ)

∂Υs∂Υs′

∣∣∣∣ < M3(x),

for arbitrary g and g′, where g′ as the collection of g′i. Υs and Υs′ are differ-

ent components of Υ. E[M2
1 (x)] <∞, E[M2

2 (x)] <∞ and E[M2
3 (x)] <∞.

Conditions 1 and 2 are commonly assumed in the literature on high-

dimensional heterogeneity analysis. Condition 3, also known as the suffi-

ciently separable condition, requires that if a sample belongs to a component

with a probability close to 1, then its probability of belonging to any other

component should be close to 0. Further discussions on this condition can

be found in Hao et al. (2018). Condition 4 specifies the minimum signals

and minimal differences across sample components. Condition 5 provides

the orders of the tuning parameters. Finally, Condition 6 is a common as-

sumption and is satisfied by SCAD (Fan and Li (2001)) and MCP (Zhang

(2010)). Conditions 7 and 8 are regularity conditions for establishing the

consistency of grouping parameters. Note that the finite mixtures of Pois-

son, negative binomial, and most continuous distributions, including the

Gaussian distribution, satisfy Condition 7. With these conditions and giv-

en K > K0 is bounded, we can establish the following consistency results.
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Theorem 1. Suppose that Conditions 1-8 hold, assume that (s+p) log p/N =

o(1). There exists a local maximum of (2.3) that satisfies:

1. (Consistency of ĝi)
1
m

∑m
i=1 I(ĝi 6= g∗i ) = op(n

−δ
1 ) for any δ > 0,

where g∗i and ĝi are the true parameter value and estimate of gi, respectively.

2. (Consistency of K̂0) P (K̂0 = K0)→ 1.

3. (Rate of convergence)
∑K0

l=1

(
||µ̂l − µ∗l ||2 + ||Θ̂l −Θ∗l ||F

)
= Op

(√
(s+p) log p

N

)
.

4. (Sparsistency) Denote the set of the nonzero elements of µ̂l as D̂l =

{r : µ̂lr 6= 0} and the set of the nonzero off-diagonal elements of Θ̂l as

Ŝl = {(i, j) : θ̂lij 6= 0}. Then D̂l = Dl and Ŝl = Sl for l = 1, . . . , K̂0.

Remark 3 Theorem 1 demonstrates that the proposed approach exhibits

the well-desired consistency properties, particularly in terms of accurately

identifying the number of components and the weak consistency of grouping

parameters. These results represent a significant advancement over much

of the existing literature, where such an identification has been nontrivial.

Note that K is bounded in Theorem 1, this setting is sufficient and enables

our statistical rate for the precision matrix estimation under the Frobenius

norm to achieve the optimal rate O(
√

(s+ p) log p/N) established in Cai

et al. (2016). With regard to sparsistency, the concave penalty offers the

advantage that precision matrices can exhibit less sparsity compared to

those penalized under the L1 penalty (where the order of s is no larger than
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O(p)). Although the consistency of estimation and variable selection results

may not be deemed “surprising” in light of the existing literature, it is

important to emphasize that our study involves high-dimensional clustered

data with network structures. This represents a more complex scenario

compared to many existing studies, as it includes them as special cases

when m = 1. To the best of our knowledge, there has been very limited

research on these results in the model settings addressed in our study. The

proof is provided in the Supplementary Material.

4. Numerical studies

In this section, we assess the finite sample performance of the proposed

approach and compare it with relevant alternative methods. We consid-

er a three-class problem (K0 = 3) with p = 100. We set equal cluster

sizes in all clusters, i.e., ni = n for i = 1, . . . ,m, where m denotes the

number of clusters. We consider various combinations of m and n, includ-

ing (m,n) = (20, 80), (20, 160), (40, 80), and (40, 160). The observations are

generated according to the following procedure. The component labels Lij
′
s

are sampled from {1, 2, 3} with probability πi = (πi1, πi2, πi3) for the i-th

cluster, that is, each component for i-th cluster can have a different sample

size. Then we generate xij ∼ N(µ(Lij),Σ(Lij)). The first eight compo-
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nents of the component means are (µ1>4 ,−µ1>4 )>I(Lij = 1) + µ18I(Lij =

2) + (−µ)18I(Lij = 3), and the rest p− 8 components are set as 0. For µ,

we consider 1.5 and 2.5. Thereby, all the clusters share the same mean and

covariance, and variations of the cluster-wise distributions are determined

by the cluster-wise mixture probabilities πi, i = 1, . . . ,m. To generate πi,

we use a symmetric Dirichlet distribution with the concentration parameter

of αd = 2.

For the structure of the precision matrices, we consider three popular

choices, namely, tridiagonal, nearest-neighbor, and power-law.

(1) Tridiagonal network. The diagonal elements are all equal to one,

and the nonzero off-diagonal elements are 0.2I(Lij = 1) + 0.3I(Lij =

2) + 0.4I(Lij = 3). Under the second and third types, each network is

composed of 10 equally sized and separate subnetworks. Out of the 10 sub-

networks, eight are shared by the three components. For the remaining two

subnetworks, pairs share one subnetwork in common, while each component

has a unique subnetwork. We consider the following two commonly used

methods for generating the subnetworks.

(2) Nearest-neighbor network. For each subnetwork in the first com-

ponent, p/10 points are generated randomly on a unit square, and all

p/10× (p/10− 1)/2 pairwise distances are calculated. Then we find the n′
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nearest neighbors of each point. The nearest-neighbor network is obtained

by linking any two points that are among the n′-nearest neighbors of each

other. n′ controls the degree of sparsity, and we set n′ = 3.

(3) Power-law network. For the precision matrix of the first component,

10 power-law subnetworks are generated with two edges added in each step.

The initial 10-block precision matrix (θ1ij)p×p is generated via:

θ1ij =


1, i = j

0, i 6= j, i � j

Unif([−0.4,−0.1] ∪ [0.1, 0.4]), i 6= j, i ∼ j,

where i ∼ j means that there is an edge between nodes i and j and i �

j means otherwise. To ensure positive definiteness, we consider θ1jj =∑
i6=j |θ1ij| + 0.1. It is noted that the component-specific subnetworks are

generated similarly and independently in the latter two networks.

With the proposed approach, we set K = 6, and G is determined using

the information criterion (2.12) from the set of {1, 2, . . . , 10}. For compari-

son, we combine the classical glasso method (with K = 2, 3, 4, and 6) with

the grouping method introduced in this article, which we refer to as “Glas-

so+grouping”. Similarly, we also adopt the “JGL+grouping” method. To

evaluate the performance of our proposed approach, we consider the follow-

ing measures: (a) The ratio of the number of times K̂0 equals K0 to the
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total number of runs (denoted as ‘Ratio’), (b) mean and standard deviation

(sd) of K̂0, (c) mean and sd of selected G, (d) component membership error

defined by

CE(ϕ̂i, ϕi) =
(
N
2

)−1
m∑
i=1

|{(a, b) :

I(ϕ̂i(xia) = ϕ̂i(xib)) 6= I(ϕi(xia) = ϕi(xib)); a < b}|,

where ϕ̂i and ϕi are the estimated and true component membership for the

i-th cluster, respectively, (e) root mean squared error (RMSE) for µ, Θ,

and π. When K̂0 6= K0, the RMSEs are defined as

RMSE(µ) =
1

K̂0

K̂0∑
k=1

K0∑
l′=1

‖µ̂k − µ∗l′‖2

·I(l′ = arg min
l
{‖µ̂k − µ∗l ‖2

2 + ‖Θ̂k −Θ∗l ‖2
F}),

RMSE(Θ) =
1

K̂0

K̂0∑
k=1

K0∑
l′=1

‖Θ̂k −Θ∗l′‖F

·I(l′ = arg min
l
{‖µ̂k − µ∗l ‖2

2 + ‖Θ̂k −Θ∗l ‖2
F}).

When K̂0 = K0, the RMSEs are defined as RMSE(µ) =
∑K0

k=1 ‖µ̂k −

µk‖2/K0 and RMSE(Θ) =
∑K0

k=1 ‖Θ̂k −Θk‖F/K0. Note that RMSE(π) is

only defined under K̂0 = K0: RMSE(π) =
∑G

g=1

∑
i:gi=g

‖π̂g − πi‖2/G, (f)

the true positive rate (TPR, percentage of true edges selected) and the false

positive rate (FPR, percentage of false edges selected) for the off-diagonal
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elements of the precision matrices. When K̂0 = K0, they are defined as

TPR =
1

K0

K0∑
k=1

∑
i<j I(θkij 6= 0, θ̂kij 6= 0)∑

i<j I(θkij 6= 0)
,

FPR =
1

K0

K0∑
k=1

∑
i<j I(θkij = 0, θ̂kij 6= 0)∑

i<j I(θkij = 0)
.

When K̂0 6= K0, we have definitions:

TPR =
1

K̂0

K̂0∑
k=1

K0∑
l′=1

∑
i<j I(θkij 6= 0, θ̂kij 6= 0)∑

i<j I(θkij 6= 0)

·I(l′ = arg min
l
{‖µ̂k − µ∗l ‖2

2 + ‖Θ̂k −Θ∗l ‖2
F}),

FPR =
1

K̂0

K̂0∑
k=1

K0∑
l′=1

∑
i<j I(θkij = 0, θ̂kij 6= 0)∑

i<j I(θkij = 0)

·I(l′ = arg min
l
{‖µ̂k − µ∗l ‖2

2 + ‖Θ̂k −Θ∗l ‖2
F}).

With 100 replicates, the summary results for the different scenarios of

(m,n) and µ = 1.5 are presented in Tables 1 and 2, and the additional

results can be found in Tables S1-S6 of Supplementary Material. Similar

observations are made across different settings. Notably, JGL+grouping

demonstrates satisfactory performance when the number of components

is correctly specified. Similarly, Glasso+grouping also demonstrates good

performance when K = 3, but it tends to select more complex model-

s compared to JGL+grouping and the proposed method. The results of

Glasso+grouping may be unsatisfactory when K is incorrectly specified.

The proposed approach demonstrates competitive performance across the
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entire range of simulations. As an illustrative example, we examine Ta-

ble 2, which corresponds to the Power-law setting with (m,n) = (20, 160).

Grouped-HGGM exhibits satisfactory TPR, FPR, RMSE values, and a Ra-

tio of 0.97. In contrast, the other alternatives display significantly poorer

estimation performance with considerably larger RMSEs. Additionally, it

is noted that increasing sample size improves numerical performance for all

measures. Here we also report the average values of the selected number of

groups G. It is observed that, as the variations in sample size n for each

cluster or the number of clusters m increase, the average value of G tends

to increase as well. This finding is in line with that made by Sugasawa

(2021). An additional insight from the Glasso+grouping method with d-

ifferent K values is that an incorrectly specified K can lead to different

values of G. We perform an additional simulation study on µ to see how

well the algorithm can detect the number of components as a function of

problem hardness. The results can be found in Section S4 of Supporting

Materials.

5. Analysis of TCGA data

According to the latest global burden of cancer survey, breast cancer has

surpassed lung cancer as the most commonly diagnosed cancer, with an
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estimated 2.3 million new cases (Sung et al. (2021)). In this section, we

analyze breast invasive carcinoma data collected from The Cancer Genome

Atlas (TCGA (2023)). The analysis aims to achieve two primary objectives:

(i) Identify the number of components (subtypes) and their corresponding

network structures to investigate gene expression patterns among differ-

ent components. (ii) Group datasets from 19 source sites to explore the

heterogeneity among these source sites through the group-specific mixture

probability.

The mRNA expression data for tumor tissues are obtained from a di-

verse set of 907 samples collected from 19 reputable source sites, including

renowned universities, hospitals, and cancer research centers. Due to the

limitation in sample size, it is more reliable to focus on analyzing the most

promising pathway rather than conducting a genome-wide analysis. In our

study, a total of 147 gene expressions are selected for downstream analy-

sis. These genes belong to the Kyoto Encyclopedia of Genes and Genomes

(KEGG (2023)) hsa05224 pathway, which is named “breast cancer” and

contains well-known breast cancer-related genes such as HER2 (also called

ERBB2), MYC, WTN, HRAS, NRAS, BRAF, BRCA1, NOTCH, and oth-

ers. Although the data has been examined in quite a few published studies,

it is noted that the perspectives taken in the published studies are signifi-
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cantly different from the proposed.

The methodology presented in this article is conducted in an unsuper-

vised manner. When implementing our proposed approach, we selected a

value of K = 8. This choice is considered sufficiently large since there is cur-

rently no evidence in existing research suggesting that the number of breast

invasive carcinoma subtypes exceeds 8. Following the implementation, a to-

tal of five distinct components are identified, with sizes of 385, 205, 131,

161, and 25. Additional comprehensive information regarding these compo-

nents can be obtained directly from the authors upon request. Regarding

these five components, we present the corresponding estimated gene ex-

pression networks in Figure S1 (Supplementary Material). These networks

exhibit 464, 783, 741, 978, and 953 edges, respectively. Furthermore, Table

S7 (Supplementary Material) demonstrates that these networks display a

varying degree of overlap in their edges, ranging from small to moderate.

Table 3 compares the identified five components with four clinically con-

firmed subtypes. The Rand index (RI), measuring the degree of agreement

between these two grouping approaches, yields a value of RI = 0.7442, sug-

gesting certain consistency. The orange nodes of Figure S1 display 25 genes

with the highest degrees in each component, highlighting notable distinc-

tions among the sample groups. Our results are summarized as follows:
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(i) The orange nodes of Figure S1 show that ERBB2 is found to be over-

expressed exclusively in component 3, as the HER2+ ones are mostly in

component 3 from Table 3. (ii) Our results in Table 3 demonstrate that

the basal-like ones are predominantly identified in component 4 by the pro-

posed approach. Additionally, JAG1, JAG2, and DLL3, known markers

of triple-negative breast invasive carcinoma, exhibit high expression levels

(the orange nodes) in the center-right panel of Figure S1.

Table 3: Compare the identified five components with four clinically con-

firmed subtypes.

Component 1 Component 2 Component 3 Component 4 Component 5 Sum

Luminal A 318 113 20 0 20 471

Luminal B 60 92 38 0 3 193

Basal-like 0 0 7 160 0 167

HER2+ 7 0 66 1 2 76

Sum 385 205 131 161 25 907

The unsupervised component/subgroup analysis demonstrates excellent

performance. In addition to examining gene behavior, we also explore the

optimal grouping of 19 source sites. The results of the grouping strategy

are presented in Table 4. Within the same group, source sites share iden-

tical mixture probabilities (the last column), thus constituting the same

mixture distribution. Variation in mixture probabilities indicates hetero-
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geneity among groups, thereby facilitating a comprehensive interpretation

of the characteristics of the four groups. Specifically, the mixture prob-

abilities of the fifth component are 0.0096, 0.0845, 0.4375, and 0.0000 in

groups 1 to 4, respectively, so that the fifth component can be a meaning-

ful component to distinguish the four groups. Furthermore, we conduct an

additional analysis of the data employing the Glasso+grouping and obtain

RI = 0.7149. Since the alternative approach does not compress the num-

ber of components, we specify the number of components as 4. Detailed

results can be found in Tables S8-S10 and Figure S2 of the Supplementary

Material.

6. Discussion

In this article, we propose a new method called grouped heterogeneous

Gaussian graphical model (Grouped-HGGM), which provides a comprehen-

sive and flexible framework for unsupervised heterogeneity analysis in high-

dimensional clustered data with network structures. The main strength of

Grouped-HGGM lies in the expression of cluster-wise conditional distribu-

tions as finite mixtures of latent distributions that are shared across all

clusters. Moreover, the between-cluster heterogeneity is captured through

a cluster-wise mixture probability that follows a carefully designed group-
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Table 4: The grouping strategy of the 19 source sites using proposed ap-

proach.

Group label Source site TSS code Group-specific mixture probability

Group 1 Indivumed A8 π̂1 = (0.4540, 0.2172, 0.1345, 0.1847, 0.0096)

ILSBio C8

Group 2 Christiana Healthcare A7 π̂2 = (0.4244, 0.1990, 0.0597, 0.2324, 0.0845)

International Genomics Consortium AC

Asterand E9

University of Chicago OL

Albert Einstein Medical Center S3

Group 3 UCSF A1 π̂3 = (0.1250, 0.0625, 0.1250, 0.2500, 0.4375)

Walter Reed A2

Cureline AN

MSKCC AO

Mayo AR

Duke B6

University of Pittsburgh BH

Greater Poland Cancer Center D8

Roswell Park E2

University of Miami EW

MD Anderson GM

Group 4 Candler LL π̂4 = (0.3070, 0.3340, 0.2923, 0.0667, 0.0000)
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ing structure. Our methodology incorporates several advancements to en-

hance the analysis of heterogeneity. Firstly, we have utilized the associa-

tion between variables to enable efficient detection and characterization of

heterogeneity. Additionally, we have developed a data-driven approach to

determine the number of components in a fully automated way. We have

estimated both the means and precision matrices to capture the underly-

ing structure of the data accurately, and we have introduced the group-

ing strategy to model clustered data flexibly, further enhancing the ver-

satility and applicability of our approach. The theoretical development

of our methodology is challenging, as demonstrated in the accompany-

ing Supplementary Material, while also providing implications for other

high-dimensional heterogeneity and network analyses. We have develope-

d a generalized Expectation-Conditional-Maximization (ECM) algorithm,

facilitated by the Alternating Direction Method of Multipliers (ADMM)

technique, for effectively estimating sparse parameters and unknown group-

ing parameters. Our numerical studies have demonstrated the promising

performance of the Grouped-HGGM in accurately identifying the number

of components in clustered data. Our analysis of real-world breast invasive

carcinoma data has provided valuable insights into disease heterogeneity,

highlighting the potential application of our methodology in other cancer
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types and diverse fields such as neuroscience (Galbraith, Daniel and Vissel,

2010), personalized medicine (Fokkema et al., 2018), and labor economics

(Pereda-Fernandez, 2021).

Our study opens up several potential avenues for future research. The

penalized fusion technique employed in our heterogeneity analysis can be

extended to more complex scenarios, such as investigating conditional net-

work structures, thereby enabling data-driven determination of the number

and structure of components. Furthermore, the grouping strategy repre-

sents an improvement over random effects analysis by providing an en-

hanced approach for addressing heterogeneity. This strategy can also be

explored in the analysis of heterogeneity in numerous non-Gaussian data

types, or alternatively, considered in supervised and semi-supervised stud-

ies, which can be a prospective avenue for future research. In addition,

while we have not focused on allowing different clusters to have different

K0 values, this could be achieved by imposing sparsity of the group-specific

mixture probabilities π∗gi , thereby serving other analytical objectives. By

addressing these directions, our research has the potential to significantly

advance the understanding and analysis of heterogeneity in clustered data,

providing valuable insights in a wide range.
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