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Abstract: In this paper the problem of testing for the presence/absence of a (multi-level)treatment

effect is considered. A new test-statistic, essentially based on the same principles as the classical

Kruskal-Wallis test, is introduced, and its theoretical properties are studied. Test-statistics for

stochastic dominance problems are also studied. The good behaviour of the proposed test in

terms of both significance level and power, with respect to other commonly used test proce-

dures, is showed through a simulation study. Finally, an application to real data is provided.
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1. Introduction

Assessing whether a treatment with different levels has effect on an outcome is of

primary interest in Statistics. In an experimental framework, based on a controlled

random assignment of subjects to treatment levels, a fundamental tool is ANOVA

(ANalysis Of VAriance), essentially devoted to compare different independent samples,

each corresponding to a different treatment level. When Normality of observations

cannot be assumed, it is customary to use the Kruskal-Wallis test, that plays a role

similar to that of the F -test in case of Normal, homoskedastic observations.

The situation is considerably more intricate in observational studies, in particular

when the assignment-to-treatment mechanism is not controlled and “purely random”.

Due to the presence of confounding covariates, there could be relevant differences among

subjects receiving different treatment levels.
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In causal studies, the problem of comparing a single treatment vs. a control is

widely studied. Bootstrap-based tests to assess the distributional consequences of

a treatment on some outcome variable in (possibly) non-randomized assignment-to-

treatment mechanisms, when a binary instrument is available for the researcher, are

studied in Abadie (2002). Permutation tests are studied in Ding (2017), Wu and Ding

(2021). Nonparametric tests, that are essentially extension of Kolmogorov-Smirnov

and Wilcoxon tests, are proposed in Conti and De Giovanni (2022).

The “usual” approach to the problem of comparing the effects of a treatment with

several levels seems to consist in focusing on pairwise ATE comparisons; cfr. Yang et al.

(2016), Li and Li (2019). Simultaneous consideration of all pairwise comparisons, for

instance combined through the Bonferroni rule, is not studied. The importance of

defining a common support region when studying multi-level treatments, where differ-

ences in the implementation of certain approaches can vary the causal estimands and

change the study population to which inference is generalizable, as well, is dealt with

in Lopez and Gutman (2017). A technique, Vector Matching, for generating matched

sets balanced with respect to covariates distribution when there are more than two

categorical treatments, and that addresses some of the pitfalls of the current method,

is introduced and compared to previously proposed algorithms to reduce the bias on

observed covariates. The causal estimands for the proposed and existing matching

algorithms is the pairwise average treatment effect, population and sample (PATE,

SATE).

The main goal of the present paper is to develop some ANOVA-type tools for

observational studies, where the assignment-to-treatment mechanism depends on un-

controlled covariates. In more detail, our first goals is to develop a test that plays the

same role as the Kruskal-Wallis test in experimental studies. When the hypothesis of
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no treatment effect is rejected, it is also of interest to find out whether there is any

particular pattern of the effects for different levels of treatment. For instance, there

could be a treatment level whose effect is highest in terms of outcome, or there could

be some order among the effects of the different treatment levels, again in terms of

outcome. This kind of analysis implies that it is first necessary to define what it means

that a level of treatment is higher that another one in terms of outcome. This entails

first the introduction of a stochastic dominance relationship between outcomes corre-

sponding to different levels of treatment. Secondly, statistical tests are proposed for

testing hypotheses concerning stochastic dominance relationships.

According to the above remarks, the main contributions offered by the present

paper are essentially two.

- Construction of a new non-parametric test for comparing the effect of different

treatment levels. This would provide a non-parametric ANOVA-type tool, based

on a suitable extension of the classical Kruskal-Wallis test to observational stud-

ies. This test is of asymptotically exact significance level, and is proved to be

superior if compared to test based on pairwise comparisons.

- Construction of new statistical tests to asses whether a treatment level dominates

one or more other levels, in terms of the distribution of corresponding outcomes.

As already remarked, if compared to the case of a single level vs. a control

(cfr. Conti and De Giovanni (2022), Donald and Hsu (2014)), the case of several

treatment levels offers different stochastic dominance patterns. It is interesting to

note that the stochastic dominance relationship among treatment levels actually

allows to order them, either partially or totally. In addition, the ordering between

levels of treatment is not imposed a priori; we simply study whether it exists on

the basis of the corresponding effects on outcomes.
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The paper is organized as follows. Section 2 is devoted to a basic description of the

problem. In Section 3 asymptotic preliminary results, on which all subsequent results

rest, are provided. In Section 4 a Kruskal-Wallis type test is studied, and Section 5

deals with various problems of testing for stochastic dominance. Finally, in Section

6 a simulation study to compare our proposal to other existing in the literature is

performed, and in Section 7 and application to real data is considered. Technical parts

and proofs of results are deferred to Supplementary Materials.

2. Problem description

Consider n independent units, each receiving a treatment T with K+1 levels, denoted

by 0, 1, . . . , K. The level 0 conventionally corresponds to the absence of treatment,

i.e. to the control group. Next, denote by Y(k), k = 0, 1, . . . , K the potential outcome

of a subject when treatment is at level k. The observed outcome for a unit is then

Y =
K∑
k=0

Y(k)I(T=k), (2.1)

where

I(T=k) =


1 if T = k

0 if T ̸= k

is the indicator function of the event T = k.

From now on, we will say that treatment T has no effect (in distribution) whenever

Y(0), Y(1), . . . , Y(K) have the same probability distribution. Denoting by
d
= the equality

in distribution, the absence of treatment effect is equivalent to say that Y(0)
d
= Y(1)

d
=

· · · d
= Y(K). This is essentially a probabilistic version of the sharp hypothesis of absence
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of treatment effect in experimental studies; cfr. Ding (2017), Wu and Ding (2021). The

symbol Fk(y) = P (Y(k) ≤ y), y ∈ R, will denote in the sequel the distribution function

(d.f.) of potential outcome Y(k), k = 0, . . . , K.

As already said, the assignment-to-treatment mechanism is not a controlled, “purely

random”, mechanism. Due to the presence of confounding covariates, there could be

relevant differences among subjects receiving different treatment levels. In the present

paper, we focus on an assignment-to-treatment mechanism that only depends on ob-

served covariates, with no unobserved confounders; the relevant covariates vector is

denoted by X = (X1 · · · XP ). The kth (generalized) propensity score is the probabil-

ity of receiving treatment at level k, conditionally on X = x,

pk(x) = P (T = k|X = x); k = 0, . . . , K. (2.2)

Of course, the relationship p0(x)+p1(x)+· · ·+pK(x) = 1 holds. The basic assumptions

on which the paper rests are listed below.

H1. Strong unconfoundedness. T ⊥⊥ (Y(0), Y(1), . . . , Y(K))|X.

H2. Common support. There exists a positive real ε for which ε ≤ pk(x) ≤ 1− ε for

each x and k = 0, 1, . . . , K.

H3. Compactness. The support X of X is a compact subset of RP .

Observed data for n subjects are the triplets (Yi, Ti, Xi), i = 1, . . . , n. The r.v.s

(Yi, Ti, Xi) are assumed to be independent and identically distributed (i.i.d.).

In both parametric / non- or semi-parametric situations, the inferential focus is

often on determining if any of the K + 1 treatments does have a different effect. The
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main hypothesis to be tested is the absence of treatment effect, namely


H0 : F0 = F1 = · · · = FK

H1 : The d.f.s Fks do not coincide

. (2.3)

Other hypotheses of interest will be considered in Section 5.

3. Preliminary results

In order to estimate the d.f.s Fks, an important preliminary step consists in estimating

the propensity scores pk(x), k = 0, 1, . . . , K. Here we just confine ourselves to some

simple, informal ideas. More precise results are in the Supplementary Material.

If the (generalized) propensity score pk(x) is smooth enough, it can be approximated

as

pk(x) ≈ pwk (x) =
exp{x′

vec,Lπk,L}
1 +

∑K
k=1 exp{x′

vec,Lπk,L}
, k = 0, 1, . . . , K (3.1)

where xvec,L is a L-dimensional vector of orthogonal polynomials in the covariates,

and πk,L is a vector of coefficients. In other terms, each covariate is considered as

a polynomial, including both main effects and higher-order terms (corresponding to

interactions among covariates).

Next, πk,L are estimated by maximizing the “working likelihood”
∑

log pwk (xi),

with the constraint
∑

k p
w
k (xi) = 1. In symbols:

π̂k,L = argmax
K∑
k=0

n∑
i=1
Ti=k

log pwk (xi), k = 1, . . . , K.
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As estimators of pk(x)s, it is then natural to take

p̂0(x) =
1

1 +
∑K

k=1 exp{x′
vec,Lπ̂k,L}

, (3.2)

p̂k(x) =
exp{x′

vec,Lπ̂k,L}
1 +

∑K
k=1 exp{x′

vec,Lπ̂k,L}
, k = 1, . . . , K. (3.3)

The rate of convergence for the above estimators is obtained in Kim (2013), Proposition

2.1 and subsequent discussion. As a result, as n, L tend to infinity, with L increasing

“slowly” w.r.t. n, the following result holds

sup
x∈X

|p̂k(x)− px(x)| = op(n
−1/4), k = 0, 1, . . . , K. (3.4)

As remarked by a referee, a relevant practical problem is the choice of L and xvec,L.

In the simulation (Section 6), as well as in the application (Section 7) we have adopted

the same approach as in the Supplement of Firpo (2007). In detail, the order of the

approximating polynomial for propensity score is obtained through cross-validation,

where the optimal number of terms minimizes a Kullback–Leibler distance. Further-

more, the order in which the polynomial terms are added Is the same as in Firpo

(2007).

Next, on the basis of the estimators (3.2)-(3.3), the following are considered

F̂k(y) =
n∑

i=1

I(Yi≤y)wi,k, k = 0, 1, . . . , K (3.5)

where wi,k = I(Ti=k)p̂k(xi)
−1
/∑

I(Tj=k)p̂k(xj)
−1 .
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Define next the K + 1-variate empirical process

Wn(y) =


W0,n(y)

· · ·

WK,n(y)

 =


√
n(F̂0(y)− F0(y))

· · ·
√
n(F̂K(y)− FK(y))

 . (3.6)

The second result on which all subsequent sections rest, and which is in its turn an

immediate generalization of Donald and Hsu (2014) and Proposition 1 in Conti and

De Giovanni (2022), is reported below.

Proposition 1. Suppose that assumptions H1-H3, are met, that (3.4) holds, that

Y(k) possess finite second moments, that E[Y(k)|x] are continuously differentiable, and

that Fk(y), Fk(y|x) are continuous, for all k = 0, 1, . . . , K. Then, the sequence of

stochastic processes (3.6) converges weakly, as n → ∞, to a (K + 1)-variate Gaussian

process

W (y) =


W0(y)

· · ·

WK(y)



with null mean function (E[Wk(y)] = 0 for all k = 0, 1, . . . , K) and covariance kernel

C(y, t) = E[W (y)⊗W (t)] =


C00(y, t) C01(y, t) · · · C0K(y, t)

· · ·

CK0(y, t) CK1(y, t) · · · CKK(y, t)

 (3.7)
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with

Ckk(y, t) = E

[
1

pk(X)
(Fk(y ∧ t|X)− Fk(y|X)Fk(t|X))

]
+E[(Fk(y|X)− Fk(y)) (Fk(t|X)− Fk(t))] (3.8)

and

Chk(t, y) = Ckh(y, t) = E[(Fk(y|X)− Fk(y)) (Fh(t|X)− Fh(t))]. (3.9)

Convergence is in the set l∞K+1(R) of bounded functions R 7→ RK+1 equipped with the

sup-norm.

Remark. As remarked by the AE, the weighting scheme based on inverse weighting

probability may be unstable in case of very small probability. A practical and common

solution is based on trimming, i.e. on removing subjects with scores in between α and

1− α (α = 0 means no trimming); cfr. Crump et al. (2009) where, in the case K = 1,

a theoretical analysis is performed, and the rule of thumb α = 0.1 is proposed. Gener-

alizations to the multi-level treatment case are in Yang et al. (2016), and asymmetric

trimming is considered in Stürmer et al. (2010). The main trouble with trimming is

that, despite the potential gain in estimation efficiency, the decision on how many sub-

jects to exclude is ad hoc, and a large proportion of the sample could be discarded;

furthermore, they are frequently sensitive to the cutoff level. An alternative proposal

is the overlap weighting (OW) method in Li et al. (2018), where, again in the case

K = 1, each subject weight is the probability the subject is assigned to the opposite

group. A comparison of the performance of different methods is in Li et al. (2019).
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4. Non-parametric Kruskal-Wallis type test for treatment comparison

4.1 Reconsidering the “classical” Kruskal-Wallis test

The main goal of the present section is to construct a fully non-parametric test for the

hypothesis problem (2.3). The test proposed here is in some way inspired to the well-

known Kruskal-Wallis test used in nonparametric one-way ANOVA; cfr. Hettmansperger

and McKean (2011). To understand how the Kruskal-Wallis test works, consider K+1

sub-populations, with continuous d.f.s F0, F1, . . . , FK , respectively. Assume further

that the population d.f. is a mixture of F0, F1, . . . , FK , with weights λ0, λ1, . . . , λK :

F (y) =
K∑
k=0

λkFk(y). (4.1)

As a divergence parameter of Fks to F , let us consider

δ =
K∑
k=0

λk

(∫ +∞

−∞
F (y) dFk(y)−

∫ +∞

−∞
F (y) dF (y)

)2

=
K∑
k=0

λk

(∫ +∞

−∞
F (y) dFk(y)−

1

2

)2

(4.2)

where
∫
F (y) dF (y) = 1/2 because Fks are continuous.

The idea behind the “classical” Kruskal-Wallis test can be described in relatively

simple terms. Suppose K + 1 independent samples of size n0, . . . , nK are available

for our K + 1 sub-populations, take n = n0 + · · · + nK , and assume that nk/n → λk

for each k. Denote by Rik the rank of observation ith (i = 1, . . . , nk) of sample kth

(k = 0, 1, . . . , K) computed across the entire sample of all n pooled observations, by

Rk =
∑

iRik/nk the average rank of the kth sample, and by R the overall average
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4.1 Reconsidering the “classical” Kruskal-Wallis test

rank. The Kruskal-Wallis statistic is traditionally written as

G = (n− 1)
K∑
k=0

nk

(
Rk −R

)2/ K∑
k=0

nk∑
i=1

(
Rik −R

)2
. (4.3)

To see the relationship between the statistic (4.3) and (4.2), let F̂ e
k be the empirical

distribution function (e.d.f.) of the kth sample, and let F̂ e be the overall e.d.f. for

all n observations pooled together. Then, it is easy to see (4.3) can be equivalently

re-written as:

G = n cn

K∑
k=0

nk

n

(∫ +∞

−∞
F̂ e(y) dF̂ e

k (y)−
1

2

)2

+ dn

for appropriate constants cn, dn, tending to 1 and 0, respectively, as nks go to infinity.

Hence, the Kruskal-Wallis statistic is equivalent to

K∑
k=0

nk

n

{√
n

(∫ +∞

−∞
F̂ e(y) dF̂ e

k (y)−
1

2

)}2

. (4.4)

Eqn. (4.4) suggests to take, as a Kruskal-Wallis type test for the hypotheses problem

(2.3),

Dn =
K∑
k=0

nk

n

{(√
n

∫ +∞

−∞
F̂ (y) dF̂k(y)−

1

2

)}2

(4.5)

where F̂ks are given by (3.5), and

nk =
n∑

i=1

I(Ti=k), k = 0, . . . , K; (4.6)

F̂ (y) =
K∑
k=0

nk

n
F̂k(y). (4.7)

11

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0255



4.2 Limiting distribution of the proposed Kruskal-Wallis type test

Note that Dn/n can be considered as an estimator of the divergence measure (4.2).

It is worth noticing that the divergence measure δ in (4.2), as well as the statistic

Dn in (4.5), can be expressed in a different but equivalent form, useful for subsequent

developments. Consider first

θjk =

∫ +∞

−∞
Fj(y) dFk(y), j, k = 0, 1, . . . , K (4.8)

which is the measure of the divergence between the two d.f.s Fj, Fk used in the (two-

sample) Wilcoxon-Mann-Whitney statistic; cfr., for instance, Conti and De Giovanni

(2022) and references therein. Since (as it is easily verified through an integration by

parts) θjk = 1−θkj, using θjk is equivalent to use θkj. Moreover, if j = k then θkk = 1/2,

provided Fk is continuous. Then, the measure of divergence δ can be written down in

terms of θjks as

δ =
K∑
k=0

λk

(∫ +∞

−∞

K∑
j=0

λjFj(y) dFk(y)−
1

2

K∑
j=0

λj

)2

=
K∑
k=0

λk


K∑
j=0
j ̸=k

λj

(
θjk −

1

2

)
2

(4.9)

Note further that when F0 = F1 = · · · = FK , all θjk are equal to 1/2, and hence

δ = 0. Otherwise, δ is positive.

4.2 Limiting distribution of the proposed Kruskal-Wallis type test

To find out the limiting distribution of the test-statistic Dn under H0, define first the

estimator of θjk

θ̂jk =

∫ +∞

−∞
F̂j(y) dF̂k(y), j ̸= k = 0, . . . , K, (4.10)
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4.2 Limiting distribution of the proposed Kruskal-Wallis type test

the vectors

θkK = [θk1 · · · θkK ]′ , θ̂kK =
[
θ̂k1 · · · θkK

]′
, k = 0, . . . , K − 1

and the K(K + 1)/2-dimensional vectors

θvec =
[
θ′
0K · · · θ′

K−1K

]
, θ̂vec =

[
θ̂′
0K · · · θ̂′

K−1K

]
. (4.11)

In terms of θ̂jk, Dn can be written as

Dn =
K∑
k=0

nk


K∑
j=0
j ̸=k

nj

n

(
θ̂jk −

1

2

)
2

. (4.12)

The path to find out the limiting distribution of Dn under H0 is summarized below.

1. Study the limiting distribution of θ̂vec, for general F0, . . . , FK .

2. Obtain, as a consequence, the limiting distribution of Dn, under the null hypoth-

esis H0 (in this case all components of the vector θvec are equal to 1/2).

Proposition 2. Under the same conditions as Proposition 1, as n → ∞,

√
n(θ̂vec − θvec)

d→ V (4.13)

where V is a (non-singular) K(K + 1)/2-dimensional Multivariate Normal r.v. with

mean vector 0 and covariance matrix ΣV with elements specified in (S2.12).

Proof. See Supplementary Material.

Proposition 3. Suppose the conditions as Proposition 1 are met. The following two

statements hold.
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4.3 Testing for the absence of treatment effect

1. If F0 = F1 = · · · = FK, then

Dn
d→ V ′A′ΛAV as n → ∞. (4.14)

where V is the K(K + 1)/2-dimensional Multivariate Normal r.v. defined in

Proposition 2, and AΛ are the matrices defined in (S2.16).

2. If the hypothesis F0 = F1 = · · · = FK is false and δ > 0, then

lim
n→∞

P (Dn > M) = 1 ∀M > 0. (4.15)

Proof. See Supplementary Material.

Proposition 3 shows that the test-statistic Dn is consistent provided that δ > 0.

Hence, exactly as in the “classical” Kruskal-Wallis test, it is not an omnibus test.

Among (many) other cases, it is consistent under a shift treatment effect, i.e. when

the effect of treatment consists in a shift of the potential outcome distribution.

Unlike the Kruskal-Wallis test, the limiting distribution of Dn under H0 is not a

Chi-square with K + 1 degrees of freedom, but instead a linear combination of K + 1

independent Chi-square each with 1 degree of freedom, and with coefficients related to

the eigenvalues ofΣV . In the next subsection, an approximation based on sub-sampling

is considered.

4.3 Testing for the absence of treatment effect

The basic idea to test for the hypothesis of absence of treatment effect is to refer to

the test-statistic Dn, and to reject H0 whenever Dn takes a “large enough” value. As

a consequence, the rejection region takes the form Dn > const. Such a rejection region
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4.3 Testing for the absence of treatment effect

can be also interpreted in terms of simultaneous confidence region for θjks. Define, as

in (S2.13),

D̃n =
K∑
k=0

λk


√
n
∑
j=0
j ̸=k

λj

(
θ̂jk − θjk

)
2

. (4.16)

The limiting distribution of D̃n, for general θjks, is studied in Proposition S2. Since

θjk = 1/2 when F0 = · · · = FK , as n gets large, considering the rejection region

Dn > const is equivalent to construct a simultaneous confidence region for θjks of the

form {θvec : D̃n ≤ const}, and to reject H0 whenever the vector with all components

equal to 1/2 is not in the confidence region. If the confidence level of the above region

is equal to 1 − α, the significance level of the test is α. Hence, denoting by d1−α the

(1 − α)th quantile of the distribution of D̃n, the rejection region can be expressed in

the form

Dn > d1−α

It remains to provide (at least) an approximation for d1−α. Sub-sampling technique

is a simple but effective technique to approximate distribution functions and quantiles;

cfr. Politis and Romano (1994). Among its nice features, it requires conditions consid-

erably less stringent than bootstrap; see, for instance, Ch. 23 of van der Vaart (1998),

where bootstrap is shown to work under a strengthened form of Hadamard differentia-

bility. Furthermore, the computational burden of subsampling is frequently less heavy

than bootstrap. Its use in the context of testing for causal effect in the treatment vs.

control case (i.e. with K = 1) has been considered in Conti and De Giovanni (2022).

Define Si = (Yi, Ti, Xi), i = 1, . . . , n, let 1 ≤ m ≤ n, and consider the n!/[m!(n−m)!]

15

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0255



4.3 Testing for the absence of treatment effect

sub-samples of size m of (S1, . . . , Sn). The sub-sampling procedure is described below.

1. Select (deterministically or randomly)M independent sub-samples of sizem from

the sample of Sis, i = 1, . . . , n. In the sequel, the lth selected subsample will

be denoted by ul, l = 1, . . . , M . The M subsamples do not generally refer to a

partition of the whole sample.

2. Denote by F̂k,m;l(y) the estimates of Fk(y)s, k = 0, 1, . . . , K obtained from lth

sub-sample, let θ̂jk,m;l be the corresponding estimates of θjk, and let λ̂j,m;l =∑
i∈ul

I(Ti=j)/m be the estimate of λj obtained by the lth sub-sample.

3. Compute the statistic D̃m;l =
∑

k λ̂k,m;l

{√
m
∑

j λ̂j,m;l

(
θ̂jk,m;l − θ̂jk

)}2

, l =

1, . . . , M.

4. Compute the empirical d.f. R̂n,m(z) =
∑

l I(D̃m;l≤z)/M.

5. Compute the corresponding quantile R̂−1
n,m(p) = inf{z : R̂n,m(z) ≥ p}.

If m → ∞, m/n → 0 as n → ∞, from Politis and Romano (1994), under the same

conditions of Proposition 3, the following two results are obtained.

(i) supz

∣∣∣R̂n,m(z)− P (D̃n ≤ z)
∣∣∣ tends in probability to 0 as n, m, M tend to infinity.

(ii) d̂1−α tends in probability to d1−α, for every fixed 0 < α < 1.

As a consequence, at an asymptotically exact significance level α, the test for ab-

sence of treatment effect possesses rejection region

Dn > d̂1−α. (4.17)

Remark. As correctly remarked by a referee, m is related not only to n (the sample

size), but also to L the dimension of xvec. Since L is chosen prior to m, the larger L,
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the larger m, which may lead to a higher computational burden. In our simulation the

value m = n0.8 has been used, with L chosen as in the supplement of Firpo (2007).

5. Testing for stochastic dominance

5.1 General aspects

In evaluating the effect of treatments, it is frequently of interest to test whether the

treatments do have an effect on the whole distribution function of Y , namely whether

changing the treatment level improves the behavior of the whole d.f. of Y . This implies

considering some appropriate notion of stochastic dominance for treatments effects. We

consider here first order stochastic dominance; crf. McFadden (1989), Anderson (1996).

The d.f. Fk first-order stochastically dominates Fj if Fk(y) ≤ Fj(y) for all real y. In

this case, the notation Y(j) ⪯ Y(k) will be used.

An important feature of the measure θjk (4.8) is that θjk ≥ 1/2 whenever Y(j) ⪯ Y(k)

(the opposite is not necessarily true), i.e. θjk is monotonic w.r.t. first order stochastic

dominance. This opens the road to its use as a test-statistics for stochastic dominance.

In the case K = 1, namely treatment vs. control, different tests for stochastic

dominance have been proposed in the literature; cfr., in particular, Donald and Hsu

(2014), Donald and Hsu (2016) for a nice treatment of the subject and further refer-

ences, and Conti and De Giovanni (2022), where a test for stochastic dominance based

on Wilcoxon statistics is studied. The main goal of the present section is to study

various problems of testing for first order stochastic dominance.

5.2 Testing for the “best” treatment

The goal of this section is to construct a test for the hypothesis that a certain treatment

level is the “best” one, in the sense that it stochastically dominates all other treatments.
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5.2 Testing for the “best” treatment

With no loss of generality, it may be assumed that the treatment level to be tested as

the best is K, so that the corresponding hypothesis problem is


H0 : Y(k) ⪯ Y(K) ∀ k = 0, 1, . . . , K − 1

H1 : Y(K) does not dominate all other treatment effects

. (5.1)

Due to the monotonicity of θjks, the hypothesis problem (5.1) can be transformed in

its weaker version


H0 : θk,K ≥ 1

2
∀ k = 0, . . . K − 1

H1 : θk−1,k <
1
2

for some k = 0, . . . K − 1

. (5.2)

A simple idea to test for the hypothesis (5.2) at a significance level α would consist

in constructing simultaneous confidence intervals for θ0K , θ1K , . . . , θK−1K with overall

level 1− α, and in rejecting H0 if at least one of those intervals contains 1/2.

From the arguments of Section S.2.3.1 in the Supplementary Material, it is seen

that

max
0≤k≤K−1

√
n(θ̂kK − θkK)

d→ V ∗
1 as n → ∞ (5.3)

where V ∗
1 possesses absolutely continuous distribution. Hence, there exists a unique

d1−α for which P (V ∗
1 ≤ d1−α) = 1− α, and in view of (5.3), as n gets large,

P

(
max
1≤k≤K

√
n(θ̂k−1 k − θk−1 k) ≤ d1−α

)
≃ 1− α. (5.4)
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5.2 Testing for the “best” treatment

From (5.3) and (5.4), for large n, the following relationships are obtained

1− α ≃ P

(
max

0≤k≤K−1

√
n(θ̂kK − θkK) ≤ d1−α

)
= P

(√
n(θ̂kK − θkK) ≤ d1−α ∀ k = 0, 1, . . . , K − 1

)
= P

(
θkK ≥ θ̂kK − d1−α√

n
∀ k = 0, 1, . . . , K − 1

)

from which it is easy to conclude that the K intervals

[
θ̂kK − d1−α√

n
, 1

]
, k = 0, 1, . . . , K − 1 (5.5)

are simultaneous confidence intervals with approximate overall confidence level 1− α.

The quantile d1−α can be approximated through the sub-sampling procedure de-

scribed in Section 4.3. Define again Si = (Yi, Ti, Xi), i = 1, . . . , n, let 1 ≤ m ≤ n, and

consider the n!/[m!(n−m)!] sub-samples of size m of (S1, . . . , Sn). The sub-sampling

procedure can be described as follows.

1. Select (either deterministically or randomly) M independent sub-samples of size

m from the sample of Sis, i = 1, . . . , n.

2. Denote by F̂k,m;l(y) the estimates of Fk(y)s, k = 0, 1, . . . , K obtained from lth

sub-sample, let θ̂jk,m;l be the corresponding estimates of θjk, and let λ̂j,m;l =∑
I(Ti=j)/m be the estimate of λj obtained by the lth sub-sample.

3. Compute the statistic V 0−K
m;l = max0≤k≤K−1

√
m
(
θ̂kK,m;l − θ̂kK

)
, l = 1, . . . , M.

4. Compute the empirical d.f. R̂n,m(z) =
∑

I(V 0−K
m;l ≤z)/M.

5. Compute the corresponding quantile R̂−1
n,m(p) = inf{z : R̂n,m(z) ≥ p}.

If m → ∞, m/n → 0 as n → ∞, the following two statements hold.
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5.3 Testing for ordering of all treatments effect

(i) supz

∣∣∣R̂n,m(z)− P
(
max0≤k≤K−1

√
n(θ̂kK − θkK) ≤ z

)∣∣∣ tends in probability to 0

as n, m, M tend to infinity.

(ii) d̂1−α tends in probability to d1−α, for every fixed 0 < α < 1.

As a consequence, at a significance level α, the test that rejects H0 whenever

θ̂kK − d1−α√
n

<
1

2
for at least one k = 0, 1, . . . , K − 1

has approximate significance level α.

5.3 Testing for ordering of all treatments effect

The goal of the present section is the construction of a test for the hypothesis problem


H0 : Y(0) ⪯ Y(1) ⪯ · · · ⪯ Y(K)

H1 : Y(k) ⪯/ Y(k+1) for some k

. (5.6)

Similarly to the above section, because of the monotonicity of θjks, the hypothesis

problem (5.6) can be transformed into the weaker version


H0 : θk−1,k ≥ 1

2
∀ k = 1, . . . K

H1 : θk−1,k <
1
2

for some k = 1, . . . K

. (5.7)

Again, a test for the hypothesis (5.7) at a significance level α is constructed by

first taking simultaneous confidence intervals for θ01, θ12, . . . , θK−1K with overall level

1− α. The null hypothesis H0 is rejected if at least one of the intervals contains 1/2.

From the arguments of Section S.2.3.2 in the Supplementary Materials, It is seen that

max
1≤k≤K

√
n(θ̂k−1 k − θk−1 k)

d→ V ∗
2 as n → ∞ (5.8)
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5.4 Testing for the best group of treatments

where V ∗
2 has again absolutely continuous distribution. As a consequence, there exists

a unique d1−α satisfying the equality

P (V ∗
2 ≤ d1−α) = 1− α.

The same reasoning as in Section 5.2 shows that the approximate relationship

1− α ≃ P

(
θk−1 k ≥ θ̂k−1 k −

d1−α√
n

∀ k = 1, . . . , K

)

holds.

The quantile d1−α can be approximated through sub-sampling, with a procedure

virtually identical to that of Section 5.2. Let R̂n,m(z) be the empirical d.f. obtained

through sub-sampling, and let d̂p = R̂−1
n,m(p) = inf{z : R̂n,m(z) ≥ p} be the corre-

sponding quantile of order p. If m → ∞, m/n → 0 as n → ∞, the following two

statements hold.

(i) supz

∣∣∣R̂n,m(z)− P
(
max1≤k≤K

√
n(θ̂k−1 k − θk−1 k) ≤ z

)∣∣∣ p→ 0.

(ii) d̂1−α
p→ d1−α, for each fixed 0 < α < 1.

Finally, at a significance level α, the test consisting in rejecting H0 if

θ̂k−1 k −
d1−α√

n
<

1

2
for at least one k = 1, . . . , K

has approximate significance level α.

5.4 Testing for the best group of treatments

The goal of this section is to construct a test for the hypothesis that a certain group

of treatment’s levels is the best one. In other words, each treatment in the group
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5.4 Testing for the best group of treatments

dominates all treatments outside of the group. Consider an integer 0 ≤ K0 < K; the

hypotheses problem under consideration is


H0 : Y(j) ⪯ Y(k) ∀ j = 0, 1, . . . , K0 and ∀k = K0 + 1, . . . , K

H1 : Y(j) ⪯/ Y(k) for some j = 0, 1, . . . , K0 and ∀k = K0 + 1, . . . , K

. (5.9)

The starting point is still based on the monotonicity of θjks, that allows to transform

(5.9) into the weaker version


H0 : θjk ≥ 1

2
∀ j = 0, 1, . . . , K0 and ∀k = K0 + 1, . . . , K

H1 : θjk <
1
2

for some j = 0, 1, . . . , K0 and ∀k = K0 + 1, . . . , K

. (5.10)

Again, a test for the hypothesis (5.10) at a significance level α is constructed by first

taking simultaneous confidence intervals for θjk, j = 0, 1, , . . . , K0, k = K0+1, . . . , K,

with overall level 1−α. The null hypothesis H0 is rejected if at least one of the intervals

contains 1/2.

Using the results in Section S.2.3.2 in the Supplementary Materials, it is seen that

that

max
j≤K0

k≥K0+1

√
n(θ̂jk − θjk)

d→ V ∗
3 as n → ∞ (5.11)

where the r.v. in V ∗
3 in (5.11) possesses absolutely continuous distribution. Hence,

there exists a unique d1−α satisfying the equality P (V ∗
3 ≤ d1−α) = 1− α.

Again, using the same reasoning as in Section 5.2, the approximate relationship

1− α ≃ P

(
θjk ≥ θ̂jk −

d1−α√
n

∀ j ≤ K0, k ≥ K0 + 1

)
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is obtained.

The quantile d1−α can be approximated through sub-sampling, with a procedure

identical to that of Section 5.2. Let R̂n,m(z) be the empirical d.f. obtained through

sub-sampling, and let d̂p = R̂−1
n,m(p) = inf{z : R̂n,m(z) ≥ p} be the corresponding

quantile of order p. If m → ∞, m/n → 0 as n → ∞, the following two statements

hold.

(i) supz

∣∣∣R̂n,m(z)− P
(
max1≤k≤K

√
n(θ̂k−1 k − θk−1 k) ≤ z

)∣∣∣ p→ 0.

(ii) d̂1−α
p→ d1−α, for each fixed 0 < α < 1.

Finally, at a significance level α, the test consisting in rejecting H0 whenever

θ̂jk −
d1−α√

n
<

1

2
for at least one j ≤ K0 and k ≥ K0 + 1

has approximate significance level α.

6. Simulation results

The goal of the present section is to study, by Monte Carlo simulation, the performance,

in terms of significance level and power, of the tests introduced so far, that are compared

with other tests proposed in the literature.

6.1 Testing for absence of treatment effects: simulation study 1

In this section, the Kruskal-Wallis type test proposed in Section 4 is compared to

that based on matching on generalized propensity score GPSM, in view of its good

properties shown in (Yang et al., 2016). Such a test is essentially based on pairwise

treatment effects. In order to control the overall significance level, Bonferroni rule has

been used.
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6.1 Testing for absence of treatment effects: simulation study 1

In order to perform a fair comparison, the simulation setting considered here is

essentially similar to that in Yang et al. (2016) for zero (i.e. absence of) treatment

effects, and in Li and Li (2019) for non-zero treatment effects.

Two simulation designs have been considered, the first one withK+1 = 3 treatment

levels and the second one with K + 1 = 6 treatment effects. For the sake of brevity,

details are given here only for K + 1 = 3 levels.

• Six covariates pre-treatment X ′ = (1, X1, X2, X3, X4, X5, X6) have been consid-

ered, where:

- X1, X2, X3 have joint multivariate Normal distribution with with zero means

zero, variances 2, 1, 1, and covariances 1, −1, −0.5, respectively;

- X4 in independent ofX1, X2, X3 with Uniform distribution in (−3, 3): X4 ∼

U(−3, 3);

- X5 in independent of X1, . . . , X4 with Chi square distribution with 1 d.o.f.:

X5 ∼ χ2
1;

- X6 in independent ofX1, . . . , X5 with Bernoulli distribution with parameter

0.5: X6 ∼ Be(0.5).

• In case of zero effects, three treatment groups (K+1 = 3) are generated through

a Multinomial regression model Multinom(p0(x), p1(x), p2(x)) with

- pk(x) = exp(x′ × βk)/
∑

exp(x′ × βk′);

- β′
0 = (0, 0, 0, 0, 0, 0, 0), β′

1 = 0.7 (0, 1, 1, 1,−1, 1, 1), β′
2 = 0.4 (0, 1, 1, 1, 1, 1, 1).

- Potential outcomes are generated as Y(k) = X ′γk + η, with η ∼ N(0, 1) and

γ′
0 = (−1.5, 1, 1, 1, 1, 1, 1), γ′

1 = (−3, 2, 3, 1, 2, 2, 2), γ′
2 = (1.5, 3, 1, 2,−1,−1,−1).
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6.1 Testing for absence of treatment effects: simulation study 1

• In case of non-zero effects, three treatment groups (K + 1 = 3) are generated

through a Multinomial regression model Multinom(p0(x), p1(x), p2(x)) with

- β′
1 = k1 × (1, 1, 1,−1,−1, 1), β′

2 = k2 × (1, 1, 1, 1, 1, 1), where (k1, k2) =

(0.2, 0.1) to simulate a scenario with adequate covariate overlap, and (k1, k2) =

(0.8, 0.4) to simulate lack of overlap with strong propensity tails.

- Potential outcomes are generated from Y(k) = X ′γk+η with η ∼ N(0,1) and

γ′
0 = (−1.5, 1, 1, 1, 1, 1, 1), γ′

1 = (−4, 2, 3, 1, 2, 2, 2), γ′
2 = (3, 3, 1, 2,−1,−1,−1).

Clearly, E[Y(0)] = 0.0, E[Y(1)] = −1.0, E[Y(2)] = 1.5. The potential outcomes

have been reorganized in ascending order of expected values (-1, 0.0, 1.5),

so that T = 2 is the “best” treatment.

As already said, the case of K +1 = 6 treatment levels has been also considered in

simulations, under both zero and non-zero treatment effects. Details can be found in

Yang et al. (2016) for zero effects, and in Section D of the Supplementary material in

Li and Li (2019) for non-zero effects.

The total sample size is n = 1000, 1500, 2000 forK+1 = 3 and n = 1500, 3000, 6000

for K + 1 = 6.

Table 1 summarizes the rejection probabilities of the null hypothesis for different

sample sizes for K + 1 = 3 and K + 1 = 6. Figures 1 and 2 show the estimated

distribution functions of the potential outcomes for n = 1500 and n = 6000 (cfr.

formula (4.7)).

The results show that the Kruskal-Wallis type test is better than the test based on

matching GPSM , in terms of both actual significance level and power, especially for

small sample sizes and lack of overlap.

As an overall remark, Kruskal-Wallis type test seems to offer good performance in
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6.2 Testing for stochastic dominance: simulation study 2

Table 1: Simulation study 1 - rejection probabilities (nominal significance level 0.05),
m = n0.8

Scenario - K + 1 = 3 n=1000 n=1500 n=2000
Kruskal-Wallis
H0 true 0.10 0.07 0.05
H1 true - adequate overlap 1.00 1.00 1.00
H1 true - lack of overlap 0.90 0.95 0.98
GPSM
H0 true 0.16 0.12 0.11
H1 true - adequate overlap 1.00 1.00 1.00
H1 true - lack of overlap 0.83 0.90 0.95

Scenario - K + 1 = 6 n=1500 n=3000 n=6000
Kruskal-Wallis
H0 true 0.22 0.20 0.15
H1 true - adequate overlap 1.00 1.00 1.00
H1 true - lack of overlap 0.91 0.93 0.96
GPSM
H0 true 0.24 0.20 0.16
H1 true - adequate overlap 0.98 1.00 1.00
H1 true - lack of overlap 0.80 0.84 0.88
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Figure 1: Estimated distribution functions of the potential outcomes, K + 1 = 3, H1 -
overlap, n = 1500

terms of both simplicity and power.

6.2 Testing for stochastic dominance: simulation study 2

The goal of this section is to study, again via simulation, the performance of the

stochastic dominance tests proposed in Section 5, namely

- test for the “best” treatment - Section 5.2;
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6.2 Testing for stochastic dominance: simulation study 2
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Figure 2: Estimated average treatment effects of of the potential outcomes, K+1 = 6,
H1 - overlap, n = 6000

- test for the best group of treatments - Section 5.4;

- test for ordering of all treatments effect - Section 5.3;

Since no other tests of stochastic dominance are proposed in the literature in the

case of multi-level treatment, no comparison is made.

The size and power of the above tests are compared in two different cases:

• I: zero treatment effect;

• II: non-zero treatment effect.

The latter, in particular, involves a shift alternative. Two values of the number of

treatment levels are considered: K + 1 = 3 and K + 1 = 4. In the case K + 1 = 3, the

simulation scenarios are shortly described below.
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6.2 Testing for stochastic dominance: simulation study 2

• Case K + 1 = 3 - zero treatment scenario.

- A single covariateX is considered, with Bernoulli distribution: X ∼ Be(0.5).

- Propensity scores are generated according to the model

pk(x) =



0.80(1−x)+0.20x
(0.80(1−x)+0.20x)+(0.50(1−x)+0.50x)+(0.20(1−x)+0.80x)

k = 0

0.50(1−x)+0.50x
(0.80(1−x)+0.20x)+(0.50(1−x)+0.50x)+(0.20(1−x)+0.80x)

k = 1

0.20(1−x)+0.80x
(0.80(1−x)+0.20x)+(0.50(1−x)+0.50x)+(0.20(1−x)+0.80x)

k = 2

.

- Potential outcomes are generated according to the model

Y(k) = 70 + 10X + Uk, k = 0, 1, 2 (6.1)

where Uk possesses Uniform distribution Uk ∼ U(−10, 10), k = 0, 1, 2.

Clearly, θ01 = θ02 = θ12 = 0.5, E[Y(0)] = E[Y(1)] = E[Y(2)] = 75.0.

Furthermore we have E[Y(0)|T = 0] = 72.0, E[Y(1)|T = 1] = 75.0 and

E[Y(2)|T = 2] = 78.0. This is clearly due to the confounding effect of X,

and makes it difficult to detect the absence of treatment effect.

• Case K + 1 = 3 - non-zero treatment scenario.

- A single covariateX is considered, with Bernoulli distribution: X ∼ Be(0.5).

- Propensity scores are generated according to the model

pk(x) =



0.45(1−x)+0.55x
(0.45(1−x)+0.55x)+(0.50(1−x)+0.50x)+(0.55(1−x)+0.45x)

k = 0

0.50(1−x)+0.50x
(0.75(1−x)+0.25x)+(0.50(1−x)+0.50x)+(0.25(1−x)+0.75x)

k = 1

0.55(1−x)+0.45x
(0.45(1−x)+0.55x)+(0.50(1−x)+0.50x)+(0.55(1−x)+0.45x)

k = 2

.
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6.2 Testing for stochastic dominance: simulation study 2

- Potential outcomes are generated according to the model

Y(0) = 74 + 20X + U0

Y(1) = 75 + 20X + U1

Y(2) = 76 + 20X + U2

where Uk ∼ U(−10, 10), k = 0, 1, 2. It is not difficult to see that θ01 = 0.52,

θ02 = 0.55, θ12 = 0.52, E[Y(0)] = 84.0, E[Y(1)] = 85.0, E[Y(2)] = 86.0. Fur-

thermore we have E[Y(0)|T = 0] = E[Y(1)|T = 1] = E[Y(2)|T = 2] = 85.0.

This is clearly due to the confounding effect of X, and makes it difficult to

detect the presence of treatment effect.

A summary of Scenarios I, II is provided in Table 2.

Table 2: Simulation Study 2, scenarios I, II - K + 1=3

Scenario θij E[Y(j)] E[Y(j)|T ]
θ01 = 0.50 E[Y(0)] = 75.0 E[Y(0)|T = 0] = 72.0

I θ02 = 0.50 E[Y(1)] = 75.0 E[Y(1)|T = 1] = 75.0
θ12 = 0.50 E[Y(2)] = 75.0 E[Y(2)|T = 2] = 78.0
θ01 = 0.52 E[Y(0)] = 84.0 E[Y(0)|T = 0] = 85

II θ02 = 0.55 E[Y(1)] = 85.0 E[Y(1)|T = 1] = 85
θ12 = 0.52 E[Y(2)] = 86.0 E[Y(2)|T = 2] = 85

The exact distribution functions of potential outcomes for both scenarios are re-

ported in Section S3 of Supplementary Material.

The case K + 1 = 4 is similar. A summary is reported in Table 3.

Samples sizes n = 500, 1000, 1500 for K + 1 = 3 and n = 500, 1000, 2000 for

K +1 = 4 have been used in Monte Carlo simulations, with N = 1000 replications per

sample size. As far as subsample approximation is concerned, M = 1000 subsamples of

size m = n0.8 have been drawn by simple random sampling from each of the N = 1000
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6.2 Testing for stochastic dominance: simulation study 2

Table 3: Simulation Study 2, scenarios I, II - K + 1=4

Scenario E[Y(j)] E[Y(j)|T ]
E[Y(0)] = 80 E[Y(0)|T = 0] = 74.0

I E[Y(1)] = 80 E[Y(1)|T = 1] = 78.0
E[Y(2)] = 80 E[Y(2)|T = 2] = 82.0
E[Y(3)] = 80 E[Y(3)|T = 2] = 86.0
E[Y(0)] = 94 E[Y(0)|T = 0] = 97.5

II E[Y(1)] = 97 E[Y(1)|T = 1] = 97.5
E[Y(2)] = 99 E[Y(2)|T = 2] = 97.5
E[Y(3)] = 101 E[Y(3)|T = 2] = 97.5

original samples.

Confidence intervals of the test procedures of Sections 5.2, 5.4, 5.3 have been studied

under Scenarios I, II, with Y(2) as the “best” treatment. Results are reported in Tables

4, 5 below.

Table 4: Coverage probabilities (nominal significance level 0.05) - K + 1=3

Testing stochastic dominance n = 500 n = 1000 n = 1500

I
best treatment 98.0 99.0 100.0
best group treatments 98.0 99.0 100.0
Ordering of all treatments 100.0 100.0 100.0

II
best treatment 78.0 82.0 92.0
best group treatments 78.0 82.0 92.0
ordering of all treatments 72.0 76.0 87.0

Table 5: Coverage probabilities (nominal significance level 0.05) - K + 1=4

Testing stochastic dominance n = 500 n = 1000 n = 2000

I
best treatment 99.0 100.0 100.0
best group treatments 99.0 100.0 100.0
Ordering of all treatments 100.0 100.0 100.0

II
best treatment 95.0 100.0 100.0
best group treatments 95.0 100.0 100.0
Ordering of all treatments 81.0 86.0 90.0

All confidence intervals exhibit coverage probabilities close to the nominal values,

although this is less evident for the test of ordering of all treatment effects when

n ≤ 1000. The tests for “best” treatment and for the best group of treatments show

the same results as the potential outcomes are ordered with respect to stochastic dom-
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inance, and in the test for the best group of treatments the groups (T=0, T=1) and

(T=2) are considered.

For the sake of completeness, the Kruskal-Wallis type test and the test based on

matching GPSM have been compared also for this second simulation study. Results

are in Section S4 of the Supplementary Material.

7. Empirical study

7.1 Causal Understanding of Fake News Dissemination on Social Media

In the framework of propagation-based methods for fake news detection, Cheng et al.

(2021) consider a bipartite social network between users on one side, and fake news on

the other side. A user u is connected to fake news i if the user spreads the fake news.

Attributes are associated to users. The outcome is the user susceptibility Bu ∈ (0, 1]

which is formally defined as Bu = nu
fake/(n

u
fake + nu

true), where nu
fake is the number of

fake news user u has shared, under the assumption that the larger the portion of fake

news a user has shared, the more susceptible the user to share fake news. In order to

understand which attributes potentially cause users to share fake news, Cheng et al.

(2021) try to identify confounders, i.e. variables that cause spurious associations be-

tween treatments (e.g., user attributes) and outcome (e.g., user susceptibility). In fake

news dissemination, confounders can be characterized by fake news sharing behavior

that inherently relates to user attributes and online activities. Learning such user be-

havior is subject to selection bias in users who are susceptible to share news on social

media.

The benchmark dataset for fake news detection is GossipCop (Shu et al., 2020).

In GossipCop, entertainment stories were collected from various media outlets. The

fact-checking evaluation results came from the rating scores on the GossipCop website.
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7.1 Causal Understanding of Fake News Dissemination on Social Media

Ratings range from 0 to 10, with 0 indicating fake and 10 real. The dataset consists

of 16.817 real stories and 5.323 fake stories. Table 6 presents the descriptive statistics

of the variables (attributes).

Table 6: Descriptive statistics Gossipcop

1st quartile Median 3rd quartile Mean
Outcome 1.00 1.00 1.00 0.95
Verified 0 0 0 0.015
x0 -0.38 -0.25 0.09 0.00
x1 -1.77 -0.43 -0.24 0.00
Register time 1520 2522 3320 2365
Status count 2809 9585 29702 33003
Favourites count 85 1344 8927 10933
Followers count 81 401 1662 10853
Friend count 145 552 1952 2200

A three lever treatment has been considered, namely

- T = 0. corresponding to unverified users;

- T = 1, corresponding to verified users with register time smaller than the median;

- T = 2, corresponding to verified users with register time higher than the median.

As confounders, beside status count, favourites count, followers count, friend count, the

two dimensional embedding (x0, x1) of fake news spreading behaviour is considered, as

motivated in Cheng et al. (2021). A number of methods for embedding a graph into

a metric space is proposed in the literature; cfr. Grover and Leskovec (2016); Khosla

et al. (2019); Mikolov et al. (2013); Perozzi et al. (2014). The embedding model we have

used here is based on a well known Deep-learning technique: the Skip-Gram model by

Mikolov et al. (2013), originally developed in the field of Natural Language Processing

(NLP). In particular, we have used the implementation of the model made available

by the gensim Python library. The input of the model is represented by a collection of

sequences of adjacent nodes collected by performing random walks on the graph. The
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7.1 Causal Understanding of Fake News Dissemination on Social Media

basic idea is that, just like the co-occurrence of words in sentences in the NLP context

can be used to try to quantify the semantic similarity between words in a language, the

co-occurrence of nodes in random walks is used to try to quantify structural similarities

between the nodes of the network. We stress that, because the only input of the model

is a collection of sequences of random walks on the network, the embedding produced

by the model is only dependent on the topology of the graph, encoded in its adjacency

matrix. As we are interested in a characterization of the properties of the sharing users,

we first deduce a monopartite graph from the original bipartite graph, where each node

represents one fake news sharing user. The process of collecting random walks for the

training of the model is performed over this monopartite graph. In the present case,

this is obtained via a simple projection of the bipartite graph on the users layer, by

which each couple of users (ui, uj) is connected by an undirected weighted link, whose

weight is equal to the number of common fake-news shared by both users. If the new

monopartite weighted undirected graph is denoted as as G, the random walks collection

process is implemented as follows.

1. Fix the length of the random walk L.

2. Choose one starting node ui ∈ V (G).

3. Randomly choose one neighbor node uj of the current node ui according to the

probability distribution Pui
(uj) =

wij

wi
, where wij is the weight of the link con-

necting ui with uj and wi is the total weight of all links attached to ui.

4. Go to step 3, and repeat until the length of the walk is equal to L.

The random walks are collected by starting a single walk from each node of the

network taken in some arbitrary order, the nodes’ order is then randomly reshuffled

and walks are started again from each node. This procedure is repeated γ times. The
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number γ is an hyperparameter of the model that fixes the number of walks per node

and consequently the size of the ensemble used for training the model, which at the end

of the collection procedure is composed of N ·γ walks, N being the number of nodes in

the network. Once the ensemble of random walks is appropriately collected, it is then

fed as the input into the Skip-Gram model, so that a 2-dimensional embedding of the

graph’s nodes can be produced as an output.

The estimated θkl are θ̂01 = 0.57, θ̂02 = 0.58, θ̂12 = 0.51. The Kruskal-Wallis type test

rejects the null hypothesis of zero treatment effect at nominal significance level 0.05.

Estimated pairwise ATEkl are ATE01 = 0.10 ATE02 = 0.15 ATE12 = 0.05.

8. Conclusions

In this paper, new techniques for assessing causal treatment effects using observational

data in scenarios involving more than two treatment options are proposed. The problem

of comparing the effects of a treatment with several different levels is less studied in

the literature than the comparison of a treatment vs. a control. The “usual” approach

seems to consist in separately focusing on pairwise ATE comparisons. Combination of

pairwise comparison, for instance through the Bonferroni rule, is not considered.

In this article, a test for the presence of a treatment effect in case of a treatment

with multiple levels is proposed, based on a suitable extension of the Kruskal-Wallis

statistic. Tests for stochastic dominance of treatment effects are also considered. Two

simulation studies and an application illustrate the advantages of the method.

Supplementary Material

The online Supplementary Material contains details on the estimation of the general-

ized propensity score, the proofs of the main results and the in-depth description of
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Simulation Study 2.
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