Statistica Sinica Preprint No: SS-2024-0224

Title

General Sliced Factorial Designs for Online Experiments
with Multiple Platforms

Manuscript ID

SS-2024-0224

URL

http://www.stat.sinica.edu.tw/statistica/

DOI

10.5705/s5.202024.0224

Complete List of Authors

Zijian Han,
Dongying Wang,
Fasheng Sun and
Peter Chien

Corresponding Authors

Peter Chien

E-mails

peter.chien@wisc.edu




Statistica Sinica

General Sliced Factorial Designs for Online Experiments

with Multiple Platforms

Zijian Han', Dongying Wang?, Fasheng Sun! and Peter Chien®*

! Northeast Normal University, ?Jilin University of Finance and Economics

3 University of Wisconsin-Madison

Abstract: Digital marketing is an integral part of digital transformation in indus-
try. It is critical to use design of experiments to conduct online experiments for
various forms of digital marketing including web design, email marketing, social
network and others. Online experiments often involve multiple platforms, includ-
ing desktop computers from different manufacturers, different types of mobiles
and smart watches of different brands. A sliced factorial design is a suitable choice
for designing online experiments with multiple platforms. We provide a general
theory for sliced factorial designs and propose sliced generalized wordlength pat-
terns to construct such designs for any number of platforms. The theory uses the
characteristics of parallel flat design-based sliced factorial designs to construct
optimal sliced factorial designs. For practical use, several constructed designs
are provided in the Supplementary Material, enabling practitioners to efficiently

design and analyze online experiments across multiple platforms.

Key words and phrases: Design of experiments, J-characteristics, Digital mar-



keting, Sliced effect hierarchy principle.

1. Introduction

With the increasing growth of the internet, online experiments are being
conducted for various forms of digital marketing including website opti-
mization, mobile apps, social networks, video recommendation and email
campaigns (Haizler and Steinberg), 2021)).

Typical A/B testing refers to experiments whose goal is to identify
whether a proposed change is effective. The term “A/B testing” was in-
vented for online experiments in which a sample population is randomly
divided into two mutually exclusive sets (runs), A and B, allowing for
comparative analysis. Some online experiments test features one-at-a-time,
which is called “one-factor-at-a-time” (OFAT) in the design of experiments.
Since the pioneering work of Fisher, it has been well known that factorial
experiments outperform OFAT (see section 4.7 in Wu and Hamada| (2021)).
This form of testing is called a multivariate test in online experiments. In
a simple example, consider the following three website factors, each at two
levels, corresponding to two different versions: the “Navigation” tab on top
left, the “Login” tab on top right, and the “Research” tab in the middle.

To find the best combination of these three attributes, one can create eight



versions of the website for a full factorial design. To avoid confusion, we
define “run size” as the number of distinct level combinations, and “sample
size” as the number of users assigned to the level combinations. As the
number of factors increases, it is necessary in online experiments to use a
fraction of all possible combinations to conduct multivariate tests (Wu and
Hamada) 2021) (Haizler and Steinberg), 2021)). Fractional factorial designs
as such are particularly advantageous in the online space for the following

reasons:

1. Cost Considerations: The setup and execution costs for each factor
level combination are significant and increase as the number of factors

mcreases.

2. High-dimensional Inputs: In online experiments with high-dimensional
input spaces, higher-order interaction effects are often negligible. This
makes fractional factorial design both a practical and cost-effective
choice. By reducing the number of combinations tested, researchers
can allocate larger sample sizes to each combination, improving infer-

€1ce accuracy.

From an experimental design point of view, a new challenge in the

digital space is that online experiments are often conducted across multiple



platforms including different electronic devices and different operational sys-

tems. For example, [Sadeghi et al.| (2020) used a multi-platform experiment

for an empirical email optimization application to maximize engagement
for a digital magazine. They proposed sliced factorial designs for multi-
platform experiments. The slicing idea in such a design came from sliced

space-filling designs in computer experiments where the focus is on low-

dimensional projections. References in this direction include |Qian and Wu

(2009), |Qian (2012)), [Yang et al.|(2014), and Kong et al.| (2018), among oth-

ers. [Sadeghi et al.| (2020) introduced the idea of sliced wordlength pattern

to construct sliced factorial designs (SFDs) with a factorial structure.

(2025) extended such designs to handle multiple layers with two plat-

forms and Sadeghi et al.| (2024)) constructed these designs for an industrial

email campaign with four platforms.

Figure 1: Web site tested across many devices: https://www.smash

ingmagazine.com/2014 /07 /testing-and-responsive-web-design/.
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However, these existing SFDs are only for two or four platforms and
do not provide an explicit expression of the sliced wordlength pattern. As
shown in Figure |1, many modern online experiments are conducted across
many devices. For example, responsive web design or responsive design is
an approach to web design that aims to make web pages render well on a
variety of devices and window or screen sizes from minimum to maximum
display size to ensure usability and satisfaction (Wikipedia). A quick search
on Amazon or BestBuy would show many smartphones, laptops, notebooks,
smart watches and other electric devices for internet use. To address this
practical challenge, we propose a method for constructing new SFDs for
any number of platforms. This method views a sliced factorial design with
n design factors and a slice factor as an asymmetrical fractional factorial
design through the lens of the generalized minimum aberration (GMA, [Wu
and Xu| (2001))), which provides a new sliced generalized wordlength pattern
for SFDs for multi-platform experiments.

We construct SFDs via parallel flats design (PFD) to accommodate
any number of platforms. (Connor and Young| (1961) first proposed the idea
of PFD, in which each single flat is a regular fractional factorial design
(FFD) and the complete design is a nonregular design that retains some

properties of regular fractional factorial designs. For more details of PFDs,



see Section 15.12 in|Cheng| (2014) and references therein. Recently, Edwards
and Mee| (2023) proposed a Kronecker product construction for nonregular
designs, which essentially refers to PFDs. Wang and Mee| (2021) provided
a comprehensive review of two-level PFDs and developed a general theory.

The remainder of the article is organized as follows. Section 2 introduces
the generalized minimum aberration criterion and design criteria for select-
ing factorial designs. Section 3 proposes the sliced generalized wordlength
pattern and the sliced generalized minimum aberration criterion on the basis
of the sliced effect hierarchy principle. Section 4 presents theoretical results
on the characteristics of PFD-based sliced factorial designs and the meth-
ods for constructing optimal sliced factorial designs. Section 5 discusses the
proposed designs with subdesigns of different run sizes. Section 6 concludes
the article with a discussion and suggestions for future work. Some optimal

SFDs are tabulated in the Supplementary Material for practical use.

2. Notation and definitions

An asymmetrical design of N runs, n factors and levels sq, ..., s, is denoted
the (N, sy - - - s,)-design. An (N, sg - --s,)-design D is a set of N row vectors
or an N X n matrix in which each row represents a run and each column

represents a factor. The jth column of D takes values from a set of s;



symbols, e.g., {0,1,...,s;—1} denoted as Z,;, which is the integer ring
with modulo s;, and each row of D is a point from H = Z,, x --- X Zs, .

Consider the general ANOVA model E{Y ()} = >,y Xu(®) By, where
Y () is the response of the design point * € H, (,s are factorial effects,
and {x.,u € H} are orthonormal contrast coefficients such that

S (@)X (@) = [H|S 0,

xcH

where Y, () is the complex conjugate of x,(+). |H| is the number of elements
in the set H, and d,, is the Kronecker delta function, which equals 1 if
u = v and 0 otherwise. As in Wu and Xu/ (2001), only contrasts defined by

tensor products are considered:
Xu(T) = HXT(Z’)(%) foruw = (uy,...,u,) € H, == (x1,...,2,) € H,
i=1

where {iji), u; € Zg, } are orthonormal contrasts for the ith factor with s;

levels satisfying

Z X (@)X (2:) = 8:00, 0,

Iiezsi

for any wu;, v; € Zs,. Following [Wu and Xu| (2001)),
A(D) =N 3" [xuD)]? forj=1,....n (2.1)
wh(u)=j

where the summation is over all w € H with j nonzero elements and

Xu(D) = > scp Xu(®). The vector (A;(D), ..., An(D)) is called the general-



ized wordlength pattern, which results in the GMA criterion by sequentially
minimizing A;(D) in forj=1,...,n.

Designs with two-level factors are widely used in practice. We now
focus on SFDs with two-level subdesigns conducted on each platform. That
is sy = --- = s, = 2. For the special case with s; = -+ = s, = 2,
D is considered an (IV,2")-design, and A;(D) in has the following

equivalent representation:

Aj(D)=N"2 3" Ju(D)* forj=1,...,n, (2.2)

wt(w)=j

where the summation is over all n-tuple binary vectors w with j nonzero
elements and J,, (D) = Y., p(—1)*® with (u,z) = Y7 w;x;. Tang and
Deng| (1999) defined J,(D)’s as J-characteristics of D and proposed the
minimum Gy-aberration (MGyA) criterion to sequentially minimize A;(D)

in (2.2) for j =1,...,n. GMA is the generalized version of MGyA.

3. A new sliced generalized wordlength pattern

Consider the sliced factorial design for a multi-platform experiment con-
ducted on s platforms. Assume that the number of runs for the s platforms
is Ng, N1, ..., Ns_1, and for each platform, the number of design factors and
the corresponding level setting are the same, resulting in n design factors

with two levels. The sliced factorial designs are defined as follows.



Definition 1. We consider a multi-platform experiment for studying n
design factors, denoted Fi,...,F,, on s platforms F,,...,P;_1. Suppose
that the design factor Fj has two levels, 7 = 1,...,n, and that the slice
factor S has s levels, with the level ¢ being associated with P;, ¢ € Z;.
Let d; be an (N;,2")-design conducted on P;, i € Z,. The sliced factorial
design (SFD) is then defined as an (3.7~} N;,2"s)-design D that contains
s subdesigns dy, . .., ds_1 corresponding to the s levels of the slice factor S.

In particular, if N; = N for i =0,...,s — 1, SFD is an (s, 2"s)-design.

Online experiments are used for treatment comparisons, variable screen-
ing, system optimization and other purposes. The multi-platform experi-
ments defined above differ from the experiments with blocking as follows.
For the latter, the block factor is assumed to have no interaction with the
treatment factor (Zhang and Park (2000)). In the former, the interactions
between the slice factor and a design factor are not only nonnegligible but
also important. Thus, multi-platform experiments are much more com-
plex than experiments with blocking. In addition, because of the need to
run across multiple platforms, the optimal level combination of the design
factors often varies with the platform. It is important for sliced factorial
designs to screen out the active design factors and accurately estimate the

design factor effects in addition to the slice factor effect and interactions of



the design factors and the slice factor. Hereinafter, all the effects involving
the slice factor are referred to as slice factor effects. To be more precise,
we present the following sliced effect hierarchy principle from Sadeghi et al.
(2020):

(1) All the lower-order effects are more likely to be important than the
higher-order effects are;

(ii) For the slice factor or any design factor, effects of the same order
are equally likely to be important;

(1i1) Any slice factor effect is likely to be more important than is a design
factor effect that is of the same order.

To thoroughly examine the confounding structure of a sliced factorial
design, we propose the following new sliced generalized wordlength pattern
to measure the overall aliasing between all effects and the grand mean.

For j =1,...,n, define

1 s—1 2
Aj,O(D):(Zs_—lNi)2 Z { Ju(di)}, (3.1)

2=0 wt(u)=j * i=0
1 s—1 s—1 2
A1 (D) = STy > { > Ju(di)xy) (i)} ~ (3.2)
(Ei:O l) v=1 wt(u)=j—1 =0

where J,(d;) and w € Z} are the J-characteristics of subdesign d; and

where y!” (-) is the orthonormal contrast for the slice factor. The value A;

measures the overall aliasing between all j-factor interactions Fj, x - - X F},



and the general mean, whereas A;; measures the overall aliasing between all
J-factor interactions Fj, x---x Iy, xS and the general mean. According to
the sliced effect hierarchy principle defined in Sadeghi et al. (2020), A;114
is less important than is A;( but more important than is A;;;. Thus, we
define a sliced generalized wordlength pattern and the corresponding sliced

generalized minimum aberration criterion.

Definition 2. For the sliced factorial (37— N;, 2"s)-design D, the vector
(A1,17 Al,Ou A2,17 LR An,()? An+171) (33>

Is defined as the sliced generalized wordlength pattern (SGWLP). Then,
the sliced generalized minimum aberration (SGMA) criterion sequentially

minimizes each term in (3.3).
We provide one example to illustrate the definition of the SGWLP.

Example 1. For a multi-platform experiment with eight two-level design
factors and a five-level slice factor, a (5-16,285)-design D, which consists
of five subdesigns d,...,d,, is appropriate. Two SFDs D; and D, are
constructed. D; contains the same subdesigns as d; = dy, ¢ = 1,2,3,4
contains, and dg is 287* regular MA designs with generators F = ABC, F =
ABD,G = ACD and H = BCD. Design D, with five subdesigns defined

as follows contains the same dy that D; contains, but d;, ds, ds and dy are



isomorphic designs of d.

dy: ABCDFE=ABC F=ABD G=ACD H=BCD

d:ABCDE=ABC F=ABD G=ACD+1 H=BCD+1

dy: ABC D FE=ABC F=ABD+1 G=ACD H=BCD+1

ds:ABCDFE=ABC+1 F=ABD G=ACD+1 H=BCD

di: ABC D E=ABC+1 F=ABD+1 G=ACD H=BCD
The addition operation is performed over GF(2), and the +1 operation
switches elements 0 and 1 in the corresponding columns.

The SGWLPs of D; and D, are (07,14,07,1,0) and (07,1.2,12.8,0°1,

0), and 0' is used to represent ¢ successive zero components in SGWLP

hereafter. Thus, D, is better than is D on the basis of the SGMA criterion.

The design in this example can be used for digital marketing across five
different mobiles, such as the top five mobiles in Global, Apple, Samsung,

Xiaomi, OPPO and TRANSSION, as shown in Figure [2]

4. PFD-based sliced factorial design

In fact, D, in Example [I] is a PFD if the slice factor is deleted. This
example implies the possibility of using the concise structure of PFDs to
construct suitable SFDs under the SGMA criterion. Additionally, because

the number of all possible candidates of SFDs for some specific parameters



4.1 Characteristics of the PFD-based sliced factorial design
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Figure 2: Top five mobiles in Global: https://www.canalys.com /newsroom /

worldwide-smartphone-market-2023.

is very large, an exhaustive search is not feasible. We focus on constructing

PFD-based sliced factorial designs.

4.1 Characteristics of the PFD-based sliced factorial design

We study the characteristics of the SGWLP for PFD-based SFDs to simplify
the SGWLP and facilitate the construction of SGMA (sN, 2"s)-designs. All
the designs d; are isomorphic via level permutation on columns and thus
N;=Nfori=0,...,s—1.

For convenience, a switch matrix P = (p;j)sx, with p;; = 0,1 for i =

0,...,5 =1, where j = 1,...,n. Without loss of generality, let py; = 0,


https://www.canalys.com/newsroom/worldwide-smartphone-market-2023
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4.1 Characteristics of the PFD-based sliced factorial design

where j = 1,...,n. Then, the jth column of subdesign d; is defined as

dij:pij@dOja fori:O,...,s—l,jzl,...,n. (41)

Furthermore, J,,(p;) = (—1)?) and J,(P) = 37—, Ju(p;), where p;, is the
(¢ + 1)th row of the switch matrix P, and the J-characteristic of subdesign

d; can be expressed as
Ju(di) = Ju(do)Ju(p;), i=0,...,8—1. (4.2)

The following theorem shows that the sliced generalized wordlength
pattern of D is determined by the initial design dy and the switch matrix

P.

Theorem 1. For an (sN,2"s)-design consisting of s subdesigns dy, . .., ds_q

defined in (4.1)),

A;o(D) = (s]{/)Z Z Ju(do)? Ju(P)?, (4.3)
wt(w)=j
Aj11(D) = Aj(do) — Ajo(D). (4.4)

Theorem [I] gives the following corollary.

Corollary 1. For an (sN,2"s)-design consisting of s subdesigns dy, ..., ds_1
defined as (4.1)),
(i) A;0(D) =0 if and only if for any Jyu(do) # 0 with wt(uw) = j the corre-

sponding Ju(P) = 0;



4.2 Construction of optimal PFD-based sliced factorial designs

(i1) Aj111(D) = 0 if and only if for any Ju(do) # 0 with wt(u) = j the

corresponding J(P) = =+s.

Clearly, A; 9 = 0 if and only if either any column of d, or that of P is
balanced; A;; = 0 if and only if either column of d; is balanced or that
of Pis (0,...,0)T or (1,...,1)T. Therefore, dj is set to a balanced design
with A; (D) = Az1(D) = 0.

Furthermore, considering the first five terms in , the initial design
dy is set to a regular 2"~ design with resolution R > I11 and J,(dy) = 0 for
all w’s with wt(u) = 1,2. Then A; (D) = Ay 1 (D) = Aso(D) = As1(D) =
0. For the topic of regular fractional factorial designs, see Mukerjee and
Wu/ (2006) and [Wu and Hamada| (2021)). Therefore, the SGMA criterion is

equivalent to sequentially minimizing
(A3,07 A4,17 oo 7An,07 An+1,1>~ (45)

In the following constructions, we focus on the situation where dj is a given

regular design of resolution R > I'11.

4.2 Construction of optimal PFD-based sliced factorial designs

E(dy,P) is used to denote the group of PFD-based SFDs generated by the
regular factorial 2"~ design dy and a switch matrix P from P, where P con-

tains all possible switch matrices. The switch matrix P is an s xn matrix, in



4.2 Construction of optimal PFD-based sliced factorial designs

which the elements pg; =0forj =1,...,nand p;; =0,1fore=1,...,5—1,
7 =1,...,n. Thus, an exhaustive search over all possible P configurations
requires up to 0(2"(5_1)) operations. For example, considering a scenario
with 10 factors and 5 platforms, an exhaustive search across all possible

configurations of P would necessitate 24°

operations, which is impractical.
To address this issue, we propose a systematic construction method for the
switch matrix P to reduce computational complexity and generate the de-
sign of the optimal PFD-based (sN, 2"s)-design among FE(dy, P) for a given
dy.

Suppose that the defining contrast subgroup of dy is G = {ug, w1, ..., usm 1}

with capacity 2. Without loss of generality, assume

(1) The vectors uy,...,u,, are linearly independent pencils and ug is

n-dimensional zero vector;

(2) Note that
u;
Um><n = = (me(nfm)y ery;xrm) ’ (46)
Um

and the matrix W,, ., is invertible on GF(2), where T represents the

transposition of a matrix.



4.2 Construction of optimal PFD-based sliced factorial designs

According to the (4.4) of Theorem |1}, for a given regular dy, sequentially
minimizing SGWLP
(Aso, A1y s Anos Angi)
=(A30(D), As(dy) — Aso(D), ..., Ano, An(do) — Ano(D)),
is equivalent to sequentially minimizing (A3 (D), Aso(D), ..., Ano(D)). Ac-

cording to the ([£.3) of Theorem [1]

Aio(D) = (sJif}? wt%j,]u(do)zju(p)z

= > Y Ju(do)?Tu(P)

wt(u)=j
Ju(do)#0

:_ZJ

wt(u)=j
Ju (do);«éO

:_ZJ

wit(u)=
ueg

Thus, sequentially minimizing the SGWLP is equivalent to sequentially
minimizing (Bs, ..., B,), where B; = Zwt(u)gzj Ju(P)2.
ue
Although there are 2"¢—1) different switch matrices P, they may result
in SFDs with the same SGWLP. Two SFDs whose corresponding switch
matrices can be obtained from one another by a sequence of row permu-
tations have the same SGWLP and are called equivalent. Consequently, a

representative can be computed from each equivalence class. This leads to

the following result.



4.2 Construction of optimal PFD-based sliced factorial designs

Proposition 1. For a given regular dy, there are at most (2771;5172) different
sequences (Bs, ..., By) determined by J(P) for all different switch matrices

P.

For a given p,, , ..., Py, ;

P = {Osx(nfm)a (pula cee 7pum)W_1} ) (47)

where W is defined in Equation and Pu] = p, i =1,...,m. The
construction steps for the optimal (sN,2"s)-design among FE(dy, P) are
given in Algorithm [Il We provide two examples for this algorithm.

When s < 2™, the optimal (sN,2"s)-design among F(dy, P) obtained
by Algorithm [I] never includes repeats of the same flats, whereas when
s > 2™, although some of the flats must repeat, the maximum difference
in the frequency of occurrence of each flat is at most 1. This observation
is confirmed by Tables 1 and 2 in the Supplementary Material. To prove
this result, it is necessary to consider not only the structure of the switch
matrix P but also the defining contrast subgroup of dy. We intend to closely

investigate this topic in future work.



4.2 Construction of optimal PFD-based sliced factorial designs

Algorithm 1

1: Given dy and the corresponding independent pencils wq, ..., u,,.

2: Given p,,,...,P,, , obtain a sequence (Bs,...,B,). Collect all

(2mst51_2) sequences (Bs, ..., B,).
3: Choose the best sequence (Bs, ..., B,) from all (2m5+_8172) sequences with

the corresponding values of p,, ,...,p,, , denoted by p', ... p¥.

4: Obtain the optimal switch matrix

P ={0snom), (PF,....p0" W'}, (4.8)

Ensure: The optimal SFD among FE(dy, P) consists of s subdesigns

do, ..., ds_y with d; defined in (1), i =0,...,s — 1.




4.2 Construction of optimal PFD-based sliced factorial designs

Example 2. Consider the case of (3 - 8,2°3)-design. Let the initial de-
sign dy be a regular MA 2°~2 design with two independent pencils u; =
(1,1,0,1,0), and up = (1,0, 1,0,1). The defining contrast subgroup is G =
{ug, uy, w2, uz} with ug = (0,0,0,0,0) and uz = u; + ue = (0,1,1,1,1).
Taking p,, = (0,0,1)",p,, = (0,1,0)" as an example, the switch ma-
trix P can be obtained by ([{.7). Then, By = Jyu, (P)* + Ju,(P)* = 2,
By = Ju,(P)? = 4, and Bs = 0. Similarly, all eight sequences of (Bs, By, Bs)
can be calculated with the best sequence being (2,4,0) with respect to
p? = (0,0,1)", p?' = (0,1,0)". Thus, we obtain the optimal (3 - 8,2°3)-
design among FE(dy,P) given in Table (1| with the corresponding SGWLP

(0.22,1.78,0.11,0.89, 0, 0).

Using the MA design dj for all platforms yields another design given
in Table [2, denoted SMA.SS, where all subdesigns are the same as the
regular 2572 MA design. The SGWLP of SMA.SS is (2,0,1,0,0,0), and the

constructed design in Table [I}is better.



4.2 Construction of optimal PFD-based sliced factorial designs

Table 2: SMA.SS (3-8, 2°3)-design

Table 1: Optimal (3-8, 2°3)-design

among F(dy, P)

Fs 1S

Fy 1S

o Fy, Fy Fy

o Fy, Fy Fy

do

do

dy

dy

da

da




4.2 Construction of optimal PFD-based sliced factorial designs

Algorithm 1 does not require dy to be an MA design. However, our
search indicates that when the initial design is an MA design, the resulting
optimal SFD among E(dy, P) tends to yield the best performance. The
corresponding results are presented in Section S1 of the Supplementary

Material. For further clarification, we provide Example [3]

Example 3. Consider the case of (6-16,2!96)-design. Construct two SFDs
D, and D,. The initial designs of Dy and D5, denoted d(()l) and d(()2), respec-
tively, are Design 10-6.1 and 10-6.3, respectively as listed in Table 3A.2 of
Mukerjee and Wul (2006). Obtain the optimal (6 - 16, 2!°6)-designs among
E (dél), P) and E(d(()2), P) via Algorithm . The optimal switch matrices are

as follows:

Table 3: Optimal switch matrices of D; and D,

Optimal switch matrix of D, Optimal switch matrix of Do
00 0 0 0 0 00 0 O 0 0

o O O O o O
SO R = O R O
_ O =) = O O

o O O O O
o O O o O
o O O o O
S O ==
O = O = = O
O O O O o O
O R O R Rk O
O = = O = O
_ = = O O
_ o O = = O

1
0
1
0
1

O O O = o=
o O O o O
o O O O O
o O O O O
O O V) =
—_— O = = O

The SGWLPs of Dy and D, are (0,8,2,16,3.56,12.44,...) and (0, 10,

1.67,13.33,3.56,8.44, . ..), respectively. Thus, D; outperforms D, according



to the SGMA criterion.

Note that d(()l) is an MA design, but as shown in Table 7 in Wang and
Mee (2021), the 6-PFD with the initial design of d(()Q) is the best. Our
conclusion differs because the SGWLP includes the term A;;(D), which

measures the overall aliasing between all j-factor F, x -+ x F;, | x S and

1

the general mean.

In general, when the SGMA criterion is considered, if the initial design
dy is the design with less aberration, the corresponding optimal PFD-based
(sN,2"s)-design among E(dy, P) is better with some exceptions. For ex-
ample, consider Design 10-6.4, as listed in Table 3A.2 of Mukerjee and Wu
(2006)), as an initial design, denoted dég). Although déQ) in Example [3| has
less aberration than does d(()g), the optimal PFD-based (4 - 16, 2'°4)-designs
among E(d(()g), P) is better than those among E(d(()Q), P) based on the SGMA

criterion, as shown in Table 2 of the Supplementary Material.

5. Sliced factorial designs with subdesigns of different run sizes

The previous section addresses the case where the run sizes of the subdesigns
are equal. However, for some platforms, it might need to estimate additional
effects. This situation requires increased degrees of freedom, which can be

achieved by implementing multiple PFDs on those platforms. For instance,



some platforms may require more observations than others. For this reason,
not all factor combinations are feasible on every platform. For example, a
smartwatch may not be able to accommodate two image-based factors and
a brand logo on the same screen, whereas this combination is feasible on
a desktop. Now revisit the example in Section [I] Let the three factors be
labeled as 1, 2, and 3. Factors 1 and 2 (“Navigation” tab and “Login” tab)
each have two levels, indicating whether or not all secondary menus are
included, whereas factor 3 (“Research” tab) has two levels, representing
the presence or absence of a hyperlink. Due to screen size limitation, a
smartwatch cannot display all secondary menus and a hyperlink at the same
time, whereas a desktop can accommodate this. Therefore, if the sample
size is sufficient, all eight versions can be tested on the desktop platform.
On the smartwatch, however, a fractional factorial design with generator
C=AB +1 can be used to test a subset of these combinations.

To solve the above problem, we explore the case where a platform may
consist of multiple flats. Here the initial design may differ from any individ-
ual subdesign. Let df represent the initial design to distinguish it from the
previous section. For i =0,...,s—1, each subdesign d; is either isomorphic
with respect to the initial design df or contains multiple such isomorphic

designs. Obviously, the run size of d; is an integral multiple of that of dj.



Let v, > 1,2=0,...,s — 1, represent the number of isomorphic designs of
dy in d; with vg 4+ v1 + -+ +vs-1 = ¢. SFD is a (¢/V, 2"s)-design, where N
is the run size of dj.

Similar to Section [4.1], the jth column of subdesign d; is defined as
dij = p;; © de, (5.1)

where p,;; = (pgjl.),...,pz(;”))T, pg-L) =0,1fori=0,...,s—1,j=1,...,n
and h = 1,...,v;. Here, without loss of generality, let p(%) = 0 for all
j =1,...,n. For convenience, let P, = (p;;,...,p;,) fori =0,...,s—1, and
combine them together to obtain a switch matrix P = (P}, P[,..., PL)".
Furthermore, according to the definition of J - characteristics, J,(P) =

S Ju(P) and J,(P) = ngﬂ-(_l)(u’w)? where x is a row vector of the

submatrix P;. Then, we obtain the following lemma.

Lemma 1. The J-characteristic of subdesign d; can be expressed as
Ju(d;) = Ju(di) Ju(P;), i=0,...,s—1. (5.2)

Lemma [1| gives the following theorem. This shows that, even if the
run sizes of the subdesigns are different, the SGWLP of an SFD is still
determined by the initial design dj; and the switch matrix P. The proof of

Theorem [l is similar to that of Theorem [1l and thus omitted.



Theorem 2. For a (¢N,2"s)-design consisting of s subdesigns dy, . .., ds_1

defined in ,

1 *\ 2 2
450(D) = (3 wt%:j Ju(dg)? Ju(P)?. (5:3)
Aja(D) = (s/q)" Aj(dy) — Ajo(D). (5.4)

From Theorem [2| we obtain the following corollary.

Corollary 2. For a (¢N,2"s)-design consisting of s subdesigns dy, . .., ds 1
defined as ,

(i) Ajo(D) = 0 if and only if for any Ju(dj) # 0 with wt(u) = j the
corresponding Jo,(P) = 0;

(i1) Aj111(D) =0 if and only if J,,(df) = 0 with wt(u) = j;

(i99) If Ju(df) # 0 with wt(uw) = j exists, the minimum value of Aji11(D)
is ((s/q)* — 1) A;(dg) if and only if for any Ju(dj) # 0 with wt(uw) = j the

corresponding Jo(P) = %q.

Consider the first five terms in . The values of v;, 1 =0,...,s — 1
are given and are not all one, implying that the slice factor is not balanced.
Thus, A, is a positive constant. We can select the initial design df to be
a regular 2"~™ design with resolution R > [II; then J,(d§) = 0 for all

us with U)t(’u/) = 1,2, and AI,U(D) = AQJ(D) = AQ’O(D) = A371(D) = 0.



In this case, the SGMA criterion is equivalent to sequentially minimizing

E3).

Example 4. Consider the case of an (6 - 16,2°3)-design, where the run
sizes of dy, d; and dy are 16, 32 and 48, respectively. The initial design dj
is Design 6-2.1 as listed in Table 3A.2 of Mukerjee and Wul (2006).

Using Algorithm , we can obtain three nonisomorphic optimal (6 -
16,2%3)-designs, Dy, Dy and D3, among FE(d}, P), in which the SGWLPs

are all the same. The switch matrices of Dy, Dy and Ds are listed as below.

Table 4: Optimal switch matrices of Dy, Dy and Ds

Optimal switch matrix of Dy | Optimal switch matrix of Dy | Optimal switch matrix of D3
r 0 0 0O OO O}O0 OO O0OO0O OJ]0 O0OO0O0OTO0O O
00001 1]/00001 0[000TO0T1 1
P oo o000 1]00O0O0OT1 O0O}j0O0O0O0OT1 O
00001 0]00O0OO0OT1T 1]/0000O0TO0 1
p, 00001 0}j0O0O0OO0OO0O 1|0 O0O0O0T1T O

oo o0 00 0j0 0O0OO0OO0O OCJ]OO0OOO0OO0O O

On the basis of the SGMA criterion, Dy, Dy and Dj3 are optimal (6 -
16, 263)-designs among E(dj, P). However, their subdesigns may not be
optimal. To maintain consistency with Table [4] let the subdesigns of D
be d\V, dV, and d", those of Dy be d), d¥, and d”; and those of Ds

be d(()3), d§3), and d;g). Table |4] indicates that d§” and dg?’) are fold-over



designs with less aberration than d§2) has. Similarly, d§2) and dég) are three-
quarter fractional designs with less aberration than dgl) has. Therefore, D3

is preferable to D; and D, in practice.

This example demonstrates that row permutations of the switch matrix
P produce SFDs with the same SGWLP, but their subdesigns may exhibit
distinct generalized wordlength patterns. To further distinguish the SFDs,
we propose a secondary criterion as recommended by one reviewer: sum-
ming the generalized wordlength patterns of the separate slices. Using this
approach, the summed A, values for Dy, Dy, and D3 are 5.22, 6.33, and
4.33, respectively. Clearly, D3 is the best of these three optimal (6-16,2°3)-
designs among E(dj,P). Specifically, we recommend using d; as a fold-over
design when the run size of the subdesign d; is twice that of the initial design
d, in which case d; achieves the lowest GWLP. Similarly, we recommend
selecting d; as a three-quarter design if the run size of d; is three times that

of d§. For details on fold-over and three-quarter designs, see Mee| (2009)).

6. Concluding remarks

Sliced factorial designs are useful for online experiments conducted across
multiple platforms. The construction of such designs for any number of

platforms is an urgent problem in practice. To address this modern chal-



lenge, we provide a sliced generalized wordlength pattern based on the sliced
effect hierarchy principle to assess the overall aliasing between all effects.
We presented the sliced factorial designs for online multi-platform experi-
ments, where the interactions between the slice factor and the design fac-
tors are not only nonnegligible but also important. Sliced factorial designs
equally apply to physical experiments, such as experiments run in parallel
on a collection of bioreactors or parallel production lines in manufactur-
ing. For information on parallel bioreactors, see |Akgiin et al.| (2004)), |Gill
et al. (2008), Bareither and Pollard (2011), Mandenius| (2016)); for parallel
production lines, see |Burman| (1995), [Nahas et al. (2009)), |Verbiest et al.
(2019), and Xi et al.| (2022]).

Owing to the numerous potential SFD candidates for certain parameter
settings, conducting an exhaustive search for the optimal SFD is impracti-
cal. Therefore, we focused only on constructing the PFD-based SFDs, and
provided some theoretical results on their characteristics, as well as a con-
struction method for obtaining optimal PFD-based SFDs. We discuss the
cases where the run sizes of all slices are either equal or unequal in Sections
4 and 5, respectively.

For online experiments, the sample size on each platform depends on the

traffic flow to the page, resulting in unbalanced sample sizes. In practice,



experimental designs are typically formulated before users are assigned to
different versions, and the exact sample size per platform is often unknown.
In such cases, an unequal variance model or a random effects model can
be used for the analysis. Certainly, as the referees pointed out, when prior
information on sample sizes is available, the design criterion can be further
refined to account for unbalanced data, potentially leading to more efficient
designs. We have identified this extension as a promising direction for future
research.

In practice, if the numbers m and s are not too large, we can obtain the
optimal PFD-based SFDs by Algorithm [I] We briefly mention an idea for
constructing optimal PFD-based SFDs when m and s are relatively large.
For u € G, if the numbers of Os and 1s are the same or differ by one, then
Ju(P) is minimized. We construct a specific switch matrix P, incorporating
P.,, such that the sequence (Bs, ..., B,,) can be minimized sequentially. We

plan to further study this construction in a follow-up project.

Supplementary Material

The online Supplementary Material provides optimal (s/V, 2"s)-designs among

E(dy, P) and proofs of the theoretical results.
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