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Abstract: Digital marketing is an integral part of digital transformation in indus-

try. It is critical to use design of experiments to conduct online experiments for

various forms of digital marketing including web design, email marketing, social

network and others. Online experiments often involve multiple platforms, includ-

ing desktop computers from different manufacturers, different types of mobiles

and smart watches of different brands. A sliced factorial design is a suitable choice

for designing online experiments with multiple platforms. We provide a general

theory for sliced factorial designs and propose sliced generalized wordlength pat-

terns to construct such designs for any number of platforms. The theory uses the

characteristics of parallel flat design-based sliced factorial designs to construct

optimal sliced factorial designs. For practical use, several constructed designs

are provided in the Supplementary Material, enabling practitioners to efficiently

design and analyze online experiments across multiple platforms.

Key words and phrases: Design of experiments, J-characteristics, Digital mar-
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keting, Sliced effect hierarchy principle.

1. Introduction

With the increasing growth of the internet, online experiments are being

conducted for various forms of digital marketing including website opti-

mization, mobile apps, social networks, video recommendation and email

campaigns (Haizler and Steinberg, 2021).

Typical A/B testing refers to experiments whose goal is to identify

whether a proposed change is effective. The term “A/B testing” was in-

vented for online experiments in which a sample population is randomly

divided into two mutually exclusive sets (runs), A and B, allowing for

comparative analysis. Some online experiments test features one-at-a-time,

which is called “one-factor-at-a-time” (OFAT) in the design of experiments.

Since the pioneering work of Fisher, it has been well known that factorial

experiments outperform OFAT (see section 4.7 in Wu and Hamada (2021)).

This form of testing is called a multivariate test in online experiments. In

a simple example, consider the following three website factors, each at two

levels, corresponding to two different versions: the “Navigation” tab on top

left, the “Login” tab on top right, and the “Research” tab in the middle.

To find the best combination of these three attributes, one can create eight
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versions of the website for a full factorial design. To avoid confusion, we

define “run size” as the number of distinct level combinations, and “sample

size” as the number of users assigned to the level combinations. As the

number of factors increases, it is necessary in online experiments to use a

fraction of all possible combinations to conduct multivariate tests (Wu and

Hamada, 2021) (Haizler and Steinberg, 2021). Fractional factorial designs

as such are particularly advantageous in the online space for the following

reasons:

1. Cost Considerations: The setup and execution costs for each factor

level combination are significant and increase as the number of factors

increases.

2. High-dimensional Inputs: In online experiments with high-dimensional

input spaces, higher-order interaction effects are often negligible. This

makes fractional factorial design both a practical and cost-effective

choice. By reducing the number of combinations tested, researchers

can allocate larger sample sizes to each combination, improving infer-

ence accuracy.

From an experimental design point of view, a new challenge in the

digital space is that online experiments are often conducted across multiple
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platforms including different electronic devices and different operational sys-

tems. For example, Sadeghi et al. (2020) used a multi-platform experiment

for an empirical email optimization application to maximize engagement

for a digital magazine. They proposed sliced factorial designs for multi-

platform experiments. The slicing idea in such a design came from sliced

space-filling designs in computer experiments where the focus is on low-

dimensional projections. References in this direction include Qian and Wu

(2009), Qian (2012), Yang et al. (2014), and Kong et al. (2018), among oth-

ers. Sadeghi et al. (2020) introduced the idea of sliced wordlength pattern

to construct sliced factorial designs (SFDs) with a factorial structure. Guo

et al. (2025) extended such designs to handle multiple layers with two plat-

forms and Sadeghi et al. (2024) constructed these designs for an industrial

email campaign with four platforms.

Figure 1: Web site tested across many devices: https://www.smash

ingmagazine.com/2014/07/testing-and-responsive-web-design/.
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However, these existing SFDs are only for two or four platforms and

do not provide an explicit expression of the sliced wordlength pattern. As

shown in Figure 1, many modern online experiments are conducted across

many devices. For example, responsive web design or responsive design is

an approach to web design that aims to make web pages render well on a

variety of devices and window or screen sizes from minimum to maximum

display size to ensure usability and satisfaction (Wikipedia). A quick search

on Amazon or BestBuy would show many smartphones, laptops, notebooks,

smart watches and other electric devices for internet use. To address this

practical challenge, we propose a method for constructing new SFDs for

any number of platforms. This method views a sliced factorial design with

n design factors and a slice factor as an asymmetrical fractional factorial

design through the lens of the generalized minimum aberration (GMA, Wu

and Xu (2001)), which provides a new sliced generalized wordlength pattern

for SFDs for multi-platform experiments.

We construct SFDs via parallel flats design (PFD) to accommodate

any number of platforms. Connor and Young (1961) first proposed the idea

of PFD, in which each single flat is a regular fractional factorial design

(FFD) and the complete design is a nonregular design that retains some

properties of regular fractional factorial designs. For more details of PFDs,
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see Section 15.12 in Cheng (2014) and references therein. Recently, Edwards

and Mee (2023) proposed a Kronecker product construction for nonregular

designs, which essentially refers to PFDs. Wang and Mee (2021) provided

a comprehensive review of two-level PFDs and developed a general theory.

The remainder of the article is organized as follows. Section 2 introduces

the generalized minimum aberration criterion and design criteria for select-

ing factorial designs. Section 3 proposes the sliced generalized wordlength

pattern and the sliced generalized minimum aberration criterion on the basis

of the sliced effect hierarchy principle. Section 4 presents theoretical results

on the characteristics of PFD-based sliced factorial designs and the meth-

ods for constructing optimal sliced factorial designs. Section 5 discusses the

proposed designs with subdesigns of different run sizes. Section 6 concludes

the article with a discussion and suggestions for future work. Some optimal

SFDs are tabulated in the Supplementary Material for practical use.

2. Notation and definitions

An asymmetrical design of N runs, n factors and levels s1, . . . , sn is denoted

the (N, s1 · · · sn)-design. An (N, s1 · · · sn)-design D is a set of N row vectors

or an N × n matrix in which each row represents a run and each column

represents a factor. The jth column of D takes values from a set of sj

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0224



symbols, e.g., {0, 1, . . . , sj −1} denoted as Zsj , which is the integer ring

with modulo sj, and each row of D is a point from H = Zs1 × · · · × Zsn .

Consider the general ANOVAmodel E{Y (x)} =
∑

u∈H χu(x)βu, where

Y (x) is the response of the design point x ∈ H, βus are factorial effects,

and {χu,u ∈ H} are orthonormal contrast coefficients such that

∑
x∈H

χu(x)χv(x) = |H|δu,v,

where χv(·) is the complex conjugate of χv(·). |H| is the number of elements

in the set H, and δu,v is the Kronecker delta function, which equals 1 if

u = v and 0 otherwise. As in Wu and Xu (2001), only contrasts defined by

tensor products are considered:

χu(x) =
n∏

i=1

χ(si)
ui

(xi) for u = (u1, . . . , un) ∈ H, x = (x1, . . . , xn) ∈ H,

where {χ(si)
ui , ui ∈ Zsi} are orthonormal contrasts for the ith factor with si

levels satisfying ∑
xi∈Zsi

χ(si)
ui

(xi)χ
(si)
vi (xi) = siδui,vi

for any ui, vi ∈ Zsi . Following Wu and Xu (2001),

Aj(D) = N−2
∑

wt(u)=j

|χu(D)|2 for j = 1, . . . , n (2.1)

where the summation is over all u ∈ H with j nonzero elements and

χu(D) =
∑

xxx∈D χu(xxx). The vector (A1(D), . . . , An(D)) is called the general-
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ized wordlength pattern, which results in the GMA criterion by sequentially

minimizing Aj(D) in (2.1) for j = 1, . . . , n.

Designs with two-level factors are widely used in practice. We now

focus on SFDs with two-level subdesigns conducted on each platform. That

is s1 = · · · = sn = 2. For the special case with s1 = · · · = sn = 2,

D is considered an (N, 2n)-design, and Aj(D) in (2.1) has the following

equivalent representation:

Aj(D) = N−2
∑

wt(u)=j

Ju(D)2 for j = 1, . . . , n, (2.2)

where the summation is over all n-tuple binary vectors u with j nonzero

elements and Ju(D) =
∑

x∈D(−1)⟨u,x⟩ with ⟨u,x⟩ =
∑n

i=1 uixi. Tang and

Deng (1999) defined Ju(D)’s as J-characteristics of D and proposed the

minimum G2-aberration (MG2A) criterion to sequentially minimize Aj(D)

in (2.2) for j = 1, . . . , n. GMA is the generalized version of MG2A.

3. A new sliced generalized wordlength pattern

Consider the sliced factorial design for a multi-platform experiment con-

ducted on s platforms. Assume that the number of runs for the s platforms

is N0, N1, . . . , Ns−1, and for each platform, the number of design factors and

the corresponding level setting are the same, resulting in n design factors

with two levels. The sliced factorial designs are defined as follows.
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Definition 1. We consider a multi-platform experiment for studying n

design factors, denoted F1, . . . , Fn, on s platforms P0, . . . , Ps−1. Suppose

that the design factor Fj has two levels, j = 1, . . . , n, and that the slice

factor S has s levels, with the level i being associated with Pi, i ∈ Zs.

Let di be an (Ni, 2
n)-design conducted on Pi, i ∈ Zs. The sliced factorial

design (SFD) is then defined as an (
∑s−1

i=0 Ni, 2
ns)-design D that contains

s subdesigns d0, . . . , ds−1 corresponding to the s levels of the slice factor S.

In particular, if Ni = N for i = 0, . . . , s− 1, SFD is an (sN, 2ns)-design.

Online experiments are used for treatment comparisons, variable screen-

ing, system optimization and other purposes. The multi-platform experi-

ments defined above differ from the experiments with blocking as follows.

For the latter, the block factor is assumed to have no interaction with the

treatment factor (Zhang and Park (2000)). In the former, the interactions

between the slice factor and a design factor are not only nonnegligible but

also important. Thus, multi-platform experiments are much more com-

plex than experiments with blocking. In addition, because of the need to

run across multiple platforms, the optimal level combination of the design

factors often varies with the platform. It is important for sliced factorial

designs to screen out the active design factors and accurately estimate the

design factor effects in addition to the slice factor effect and interactions of
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the design factors and the slice factor. Hereinafter, all the effects involving

the slice factor are referred to as slice factor effects. To be more precise,

we present the following sliced effect hierarchy principle from Sadeghi et al.

(2020):

(i) All the lower-order effects are more likely to be important than the

higher-order effects are;

(ii) For the slice factor or any design factor, effects of the same order

are equally likely to be important;

(iii) Any slice factor effect is likely to be more important than is a design

factor effect that is of the same order.

To thoroughly examine the confounding structure of a sliced factorial

design, we propose the following new sliced generalized wordlength pattern

to measure the overall aliasing between all effects and the grand mean.

For j = 1, . . . , n, define

Aj,0(D) =
1

(
∑s−1

i=0 Ni)2

∑
wt(u)=j

{ s−1∑
i=0

Ju(di)

}2

, (3.1)

Aj,1(D) =
1

(
∑s−1

i=0 Ni)2

s−1∑
v=1

∑
wt(u)=j−1

{ s−1∑
i=0

Ju(di)χ
(s)
v (i)

}2

. (3.2)

where Ju(di) and u ∈ Zn
2 are the J-characteristics of subdesign di and

where χ
(s)
v (·) is the orthonormal contrast for the slice factor. The value Aj,0

measures the overall aliasing between all j-factor interactions Fi1 ×· · ·×Fij
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and the general mean, whereas Aj,1 measures the overall aliasing between all

j-factor interactions Fi1×· · ·×Fij−1
×S and the general mean. According to

the sliced effect hierarchy principle defined in Sadeghi et al. (2020), Aj+1,1

is less important than is Aj,0 but more important than is Aj+1,0. Thus, we

define a sliced generalized wordlength pattern and the corresponding sliced

generalized minimum aberration criterion.

Definition 2. For the sliced factorial (
∑s−1

i=0 Ni, 2
ns)-design D, the vector

(A1,1, A1,0, A2,1, . . . , An,0, An+1,1) (3.3)

Is defined as the sliced generalized wordlength pattern (SGWLP). Then,

the sliced generalized minimum aberration (SGMA) criterion sequentially

minimizes each term in (3.3).

We provide one example to illustrate the definition of the SGWLP.

Example 1. For a multi-platform experiment with eight two-level design

factors and a five-level slice factor, a (5 ·16, 285)-design D, which consists

of five subdesigns d0, . . . , d4, is appropriate. Two SFDs D1 and D2 are

constructed. D1 contains the same subdesigns as di = d0, i = 1, 2, 3, 4

contains, and d0 is 2
8−4 regular MA designs with generators E = ABC,F =

ABD,G = ACD and H = BCD. Design D2 with five subdesigns defined

as follows contains the same d0 that D1 contains, but d1, d2, d3 and d4 are
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isomorphic designs of d0.

d0 : A B C D E=ABC F =ABD G=ACD H=BCD

d1 : A B C D E=ABC F =ABD G=ACD+1 H=BCD+1

d2 : A B C D E=ABC F =ABD+1 G = ACD H=BCD+1

d3 : A B C D E=ABC+1 F =ABD G=ACD+1 H = BCD

d4 : A B C D E=ABC+1 F =ABD+1 G=ACD H=BCD

The addition operation is performed over GF (2), and the +1 operation

switches elements 0 and 1 in the corresponding columns.

The SGWLPs of D1 and D2 are (07, 14, 07, 1, 0) and (07, 1.2, 12.8, 06, 1,

0), and 0t is used to represent t successive zero components in SGWLP

hereafter. Thus, D2 is better than is D1 on the basis of the SGMA criterion.

The design in this example can be used for digital marketing across five

different mobiles, such as the top five mobiles in Global, Apple, Samsung,

Xiaomi, OPPO and TRANSSION, as shown in Figure 2.

4. PFD-based sliced factorial design

In fact, D2 in Example 1 is a PFD if the slice factor is deleted. This

example implies the possibility of using the concise structure of PFDs to

construct suitable SFDs under the SGMA criterion. Additionally, because

the number of all possible candidates of SFDs for some specific parameters
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4.1 Characteristics of the PFD-based sliced factorial design

Figure 2: Top five mobiles in Global: https://www.canalys.com/newsroom/

worldwide-smartphone-market-2023.

is very large, an exhaustive search is not feasible. We focus on constructing

PFD-based sliced factorial designs.

4.1 Characteristics of the PFD-based sliced factorial design

We study the characteristics of the SGWLP for PFD-based SFDs to simplify

the SGWLP and facilitate the construction of SGMA (sN, 2ns)-designs. All

the designs di are isomorphic via level permutation on columns and thus

Ni = N for i = 0, . . . , s− 1.

For convenience, a switch matrix P = (pij)s×n with pij = 0, 1 for i =

0, . . . , s − 1, where j = 1, . . . , n. Without loss of generality, let p0j = 0,
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4.1 Characteristics of the PFD-based sliced factorial design

where j = 1, . . . , n. Then, the jth column of subdesign di is defined as

dij = pij ⊕ d0j, for i = 0, . . . , s− 1, j = 1, . . . , n. (4.1)

Furthermore, Ju(pi) = (−1)⟨u,pi⟩ and Ju(P ) =
∑s−1

i=0 Ju(pi), where pi is the

(i+ 1)th row of the switch matrix P , and the J-characteristic of subdesign

di can be expressed as

Ju(di) = Ju(d0)Ju(pi), i = 0, . . . , s− 1. (4.2)

The following theorem shows that the sliced generalized wordlength

pattern of D is determined by the initial design d0 and the switch matrix

P .

Theorem 1. For an (sN, 2ns)-design consisting of s subdesigns d0, . . . , ds−1

defined in (4.1),

Aj,0(D) =
1

(sN)2

∑
wt(u)=j

Ju(d0)
2Ju(P )2, (4.3)

Aj+1,1(D) = Aj(d0)− Aj,0(D). (4.4)

Theorem 1 gives the following corollary.

Corollary 1. For an (sN, 2ns)-design consisting of s subdesigns d0, . . . , ds−1

defined as (4.1),

(i) Aj,0(D) = 0 if and only if for any Ju(d0) ̸= 0 with wt(u) = j the corre-

sponding Ju(P ) = 0;
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4.2 Construction of optimal PFD-based sliced factorial designs

(ii) Aj+1,1(D) = 0 if and only if for any Ju(d0) ̸= 0 with wt(u) = j the

corresponding Ju(P ) = ±s.

Clearly, A1,0 = 0 if and only if either any column of d0 or that of P is

balanced; A2,1 = 0 if and only if either column of d0 is balanced or that

of P is (0, . . . , 0)T or (1, . . . , 1)T . Therefore, d0 is set to a balanced design

with A1,0(D) = A2,1(D) = 0.

Furthermore, considering the first five terms in (3.3), the initial design

d0 is set to a regular 2
n−m design with resolution R ≥ III and Ju(d0) = 0 for

all u’s with wt(u) = 1, 2. Then A1,0(D) = A2,1(D) = A2,0(D) = A3,1(D) =

0. For the topic of regular fractional factorial designs, see Mukerjee and

Wu (2006) and Wu and Hamada (2021). Therefore, the SGMA criterion is

equivalent to sequentially minimizing

(A3,0, A4,1, . . . , An,0, An+1,1). (4.5)

In the following constructions, we focus on the situation where d0 is a given

regular design of resolution R ≥ III.

4.2 Construction of optimal PFD-based sliced factorial designs

E(d0,P) is used to denote the group of PFD-based SFDs generated by the

regular factorial 2n−m design d0 and a switch matrix P from P , where P con-

tains all possible switch matrices. The switch matrix P is an s×nmatrix, in
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4.2 Construction of optimal PFD-based sliced factorial designs

which the elements p0j = 0 for j = 1, . . . , n and pij = 0, 1 for i = 1, . . . , s−1,

j = 1, . . . , n. Thus, an exhaustive search over all possible P configurations

requires up to O(2n(s−1)) operations. For example, considering a scenario

with 10 factors and 5 platforms, an exhaustive search across all possible

configurations of P would necessitate 240 operations, which is impractical.

To address this issue, we propose a systematic construction method for the

switch matrix P to reduce computational complexity and generate the de-

sign of the optimal PFD-based (sN, 2ns)-design among E(d0,P) for a given

d0.

Suppose that the defining contrast subgroup of d0 is G = {u0,u1, . . . ,u2m−1}

with capacity 2m. Without loss of generality, assume

(1) The vectors u1, . . . ,um are linearly independent pencils and u0 is

n-dimensional zero vector;

(2) Note that

Um×n =


u1

...

um

 =
(
Vm×(n−m), W T

m×m

)
, (4.6)

and the matrix Wm×m is invertible on GF (2), where T represents the

transposition of a matrix.
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4.2 Construction of optimal PFD-based sliced factorial designs

According to the (4.4) of Theorem 1, for a given regular d0, sequentially

minimizing SGWLP

(A3,0, A4,1, . . . , An,0, An+1,1)

=(A3,0(D), A3(d0)− A3,0(D), . . . , An,0, An(d0)− An,0(D)),

is equivalent to sequentially minimizing (A3,0(D), A4,0(D), . . . , An,0(D)).Ac-

cording to the (4.3) of Theorem 1,

Aj,0(D) =
1

(sN)2

∑
wt(u)=j

Ju(d0)
2Ju(P )2

=
1

(sN)2

∑
wt(u)=j
Ju(d0)̸=0

Ju(d0)
2Ju(P )2

=
1

s2

∑
wt(u)=j
Ju(d0)̸=0

Ju(P )2

=
1

s2

∑
wt(u)=j
u∈G

Ju(P )2.

Thus, sequentially minimizing the SGWLP is equivalent to sequentially

minimizing (B3, . . . , Bn), where Bj =
∑

wt(u)=j
u∈G

Ju(P )2.

Although there are 2n(s−1) different switch matrices P , they may result

in SFDs with the same SGWLP. Two SFDs whose corresponding switch

matrices can be obtained from one another by a sequence of row permu-

tations have the same SGWLP and are called equivalent. Consequently, a

representative can be computed from each equivalence class. This leads to

the following result.
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4.2 Construction of optimal PFD-based sliced factorial designs

Proposition 1. For a given regular d0, there are at most
(
2m+s−2

s−1

)
different

sequences (B3, . . . , Bn) determined by Ju(P ) for all different switch matrices

P .

For a given pu1
, . . . ,pum

,

P =
{
0s×(n−m), (pu1

, . . . ,pum
)W−1

}
, (4.7)

where W is defined in Equation (4.6) and PuT
i = pui

, i = 1, . . . ,m. The

construction steps for the optimal (sN, 2ns)-design among E(d0,P) are

given in Algorithm 1. We provide two examples for this algorithm.

When s ⩽ 2m, the optimal (sN, 2ns)-design among E(d0,P) obtained

by Algorithm 1 never includes repeats of the same flats, whereas when

s > 2m, although some of the flats must repeat, the maximum difference

in the frequency of occurrence of each flat is at most 1. This observation

is confirmed by Tables 1 and 2 in the Supplementary Material. To prove

this result, it is necessary to consider not only the structure of the switch

matrix P but also the defining contrast subgroup of d0. We intend to closely

investigate this topic in future work.
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4.2 Construction of optimal PFD-based sliced factorial designs

Algorithm 1

1: Given d0 and the corresponding independent pencils u1, . . . ,um.

2: Given pu1
, . . . ,pum

, obtain a sequence (B3, . . . , Bn). Collect all(
2m+s−2

s−1

)
sequences (B3, . . . , Bn).

3: Choose the best sequence (B3, . . . , Bn) from all
(
2m+s−2

s−1

)
sequences with

the corresponding values of pu1
, . . . ,pum

, denoted by popt
u1
, . . . ,popt

um
.

4: Obtain the optimal switch matrix

P =
{
0s×(n−m), (popt

u1
, . . . ,popt

um
)W−1

}
. (4.8)

Ensure: The optimal SFD among E(d0,P) consists of s subdesigns

d0, . . . , ds−1 with di defined in (4.1), i = 0, . . . , s− 1.
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4.2 Construction of optimal PFD-based sliced factorial designs

Example 2. Consider the case of (3 · 8, 253)-design. Let the initial de-

sign d0 be a regular MA 25−2 design with two independent pencils u1 =

(1, 1, 0, 1, 0), and u2 = (1, 0, 1, 0, 1). The defining contrast subgroup is G =

{u0,u1,u2,u3} with u0 = (0, 0, 0, 0, 0) and u3 = u1 + u2 = (0, 1, 1, 1, 1).

Taking pu1
= (0, 0, 1)T ,pu2

= (0, 1, 0)T as an example, the switch ma-

trix P can be obtained by (4.7). Then, B3 = Ju1(P )2 + Ju2(P )2 = 2,

B4 = Ju3(P )2 = 4, and B5 = 0. Similarly, all eight sequences of (B3, B4, B5)

can be calculated with the best sequence being (2, 4, 0) with respect to

popt
u1

= (0, 0, 1)T , popt
u2

= (0, 1, 0)T . Thus, we obtain the optimal (3 · 8, 253)-

design among E(d0,P) given in Table 1 with the corresponding SGWLP

(0.22, 1.78, 0.11, 0.89, 0, 0).

Using the MA design d0 for all platforms yields another design given

in Table 2, denoted SMA.SS, where all subdesigns are the same as the

regular 25−2 MA design. The SGWLP of SMA.SS is (2, 0, 1, 0, 0, 0), and the

constructed design in Table 1 is better.
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4.2 Construction of optimal PFD-based sliced factorial designs

Table 1: Optimal (3·8, 253)-design

among E(d0,P)

F1 F2 F3 F4 F5 S

d0

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 1 0

1 0 1 1 0 0

1 1 0 0 1 0

1 1 1 0 0 0

d1

0 0 0 0 1 1

0 0 1 0 0 1

0 1 0 1 1 1

0 1 1 1 0 1

1 0 0 1 0 1

1 0 1 1 1 1

1 1 0 0 0 1

1 1 1 0 1 1

d2

0 0 0 1 0 2

0 0 1 1 1 2

0 1 0 0 0 2

0 1 1 0 1 2

1 0 0 0 1 2

1 0 1 0 0 2

1 1 0 1 1 2

1 1 1 1 0 2

Table 2: SMA.SS (3·8, 253)-design

F1 F2 F3 F4 F5 S

d0

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 1 0

1 0 1 1 0 0

1 1 0 0 1 0

1 1 1 0 0 0

d1

0 0 0 0 0 1

0 0 1 0 1 1

0 1 0 1 0 1

0 1 1 1 1 1

1 0 0 1 1 1

1 0 1 1 0 1

1 1 0 0 1 1

1 1 1 0 0 1

d2

0 0 0 0 0 2

0 0 1 0 1 2

0 1 0 1 0 2

0 1 1 1 1 2

1 0 0 1 1 2

1 0 1 1 0 2

1 1 0 0 1 2

1 1 1 0 0 2
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4.2 Construction of optimal PFD-based sliced factorial designs

Algorithm 1 does not require d0 to be an MA design. However, our

search indicates that when the initial design is an MA design, the resulting

optimal SFD among E(d0,P) tends to yield the best performance. The

corresponding results are presented in Section S1 of the Supplementary

Material. For further clarification, we provide Example 3.

Example 3. Consider the case of (6 ·16, 2106)-design. Construct two SFDs

D1 and D2. The initial designs of D1 and D2, denoted d
(1)
0 and d

(2)
0 , respec-

tively, are Design 10-6.1 and 10-6.3, respectively as listed in Table 3A.2 of

Mukerjee and Wu (2006). Obtain the optimal (6 · 16, 2106)-designs among

E(d
(1)
0 ,P) and E(d

(2)
0 ,P) via Algorithm 1. The optimal switch matrices are

as follows:

Table 3: Optimal switch matrices of D1 and D2

Optimal switch matrix of D1 Optimal switch matrix of D2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1

0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1

0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 1 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1

The SGWLPs of D1 and D2 are (0, 8, 2, 16, 3.56, 12.44, . . .) and (0, 10,

1.67, 13.33, 3.56, 8.44, . . .), respectively. Thus, D1 outperformsD2 according
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to the SGMA criterion.

Note that d
(1)
0 is an MA design, but as shown in Table 7 in Wang and

Mee (2021), the 6-PFD with the initial design of d
(2)
0 is the best. Our

conclusion differs because the SGWLP includes the term Aj,1(D), which

measures the overall aliasing between all j-factor Fi1 × · · · × Fij−1
× S and

the general mean.

In general, when the SGMA criterion is considered, if the initial design

d0 is the design with less aberration, the corresponding optimal PFD-based

(sN, 2ns)-design among E(d0,P) is better with some exceptions. For ex-

ample, consider Design 10-6.4, as listed in Table 3A.2 of Mukerjee and Wu

(2006), as an initial design, denoted d
(3)
0 . Although d

(2)
0 in Example 3 has

less aberration than does d
(3)
0 , the optimal PFD-based (4 · 16, 2104)-designs

among E(d
(3)
0 ,P) is better than those among E(d

(2)
0 ,P) based on the SGMA

criterion, as shown in Table 2 of the Supplementary Material.

5. Sliced factorial designs with subdesigns of different run sizes

The previous section addresses the case where the run sizes of the subdesigns

are equal. However, for some platforms, it might need to estimate additional

effects. This situation requires increased degrees of freedom, which can be

achieved by implementing multiple PFDs on those platforms. For instance,
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some platforms may require more observations than others. For this reason,

not all factor combinations are feasible on every platform. For example, a

smartwatch may not be able to accommodate two image-based factors and

a brand logo on the same screen, whereas this combination is feasible on

a desktop. Now revisit the example in Section 1. Let the three factors be

labeled as 1, 2, and 3. Factors 1 and 2 (“Navigation” tab and “Login” tab)

each have two levels, indicating whether or not all secondary menus are

included, whereas factor 3 (“Research” tab) has two levels, representing

the presence or absence of a hyperlink. Due to screen size limitation, a

smartwatch cannot display all secondary menus and a hyperlink at the same

time, whereas a desktop can accommodate this. Therefore, if the sample

size is sufficient, all eight versions can be tested on the desktop platform.

On the smartwatch, however, a fractional factorial design with generator

C=AB +1 can be used to test a subset of these combinations.

To solve the above problem, we explore the case where a platform may

consist of multiple flats. Here the initial design may differ from any individ-

ual subdesign. Let d∗0 represent the initial design to distinguish it from the

previous section. For i = 0, . . . , s−1, each subdesign di is either isomorphic

with respect to the initial design d∗0 or contains multiple such isomorphic

designs. Obviously, the run size of di is an integral multiple of that of d∗0.
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Let vi ⩾ 1, i = 0, . . . , s− 1, represent the number of isomorphic designs of

d∗0 in di with v0 + v1 + · · ·+ vs−1 = q. SFD is a (qN, 2ns)-design, where N

is the run size of d∗0.

Similar to Section 4.1, the jth column of subdesign di is defined as

dij = pij ⊕ d∗
0j, (5.1)

where pij = (p
(1)
ij , . . . , p

(vi)
ij )T , p

(h)
ij = 0, 1 for i = 0, . . . , s − 1, j = 1, . . . , n

and h = 1, . . . , vi. Here, without loss of generality, let p
(1)
0j = 0 for all

j = 1, . . . , n. For convenience, let Pi = (pi1, . . . ,pin) for i = 0, . . . , s−1, and

combine them together to obtain a switch matrix P = (P T
0 , P

T
1 , . . . , P

T
s−1)

T .

Furthermore, according to the definition of J - characteristics, Ju(P ) =∑s−1
i=0 Ju(Pi) and Ju(Pi) =

∑
x∈Pi

(−1)⟨u,x⟩, where x is a row vector of the

submatrix Pi. Then, we obtain the following lemma.

Lemma 1. The J-characteristic of subdesign di can be expressed as

Ju(di) = Ju(d
∗
0)Ju(Pi), i = 0, . . . , s− 1. (5.2)

Lemma 1 gives the following theorem. This shows that, even if the

run sizes of the subdesigns are different, the SGWLP of an SFD is still

determined by the initial design d∗0 and the switch matrix P . The proof of

Theorem 2 is similar to that of Theorem 1 and thus omitted.
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Theorem 2. For a (qN, 2ns)-design consisting of s subdesigns d0, . . . , ds−1

defined in (5.1),

Aj,0(D) =
1

(qN)2

∑
wt(u)=j

Ju(d
∗
0)

2Ju(P )2, (5.3)

Aj+1,1(D) =
(
s/q

)2
Aj(d

∗
0)− Aj,0(D). (5.4)

From Theorem 2, we obtain the following corollary.

Corollary 2. For a (qN, 2ns)-design consisting of s subdesigns d0, . . . , ds−1

defined as (5.1),

(i) Aj,0(D) = 0 if and only if for any Ju(d
∗
0) ̸= 0 with wt(u) = j the

corresponding Ju(P ) = 0;

(ii) Aj+1,1(D) = 0 if and only if Ju(d
∗
0) = 0 with wt(u) = j;

(iii) If Ju(d
∗
0) ̸= 0 with wt(u) = j exists, the minimum value of Aj+1,1(D)

is
(
(s/q)2 − 1

)
Aj(d

∗
0) if and only if for any Ju(d

∗
0) ̸= 0 with wt(u) = j the

corresponding Ju(P ) = ±q.

Consider the first five terms in (3.3). The values of vi, i = 0, . . . , s− 1

are given and are not all one, implying that the slice factor is not balanced.

Thus, A1,1 is a positive constant. We can select the initial design d∗0 to be

a regular 2n−m design with resolution R ≥ III; then Ju(d
∗
0) = 0 for all

us with wt(u) = 1, 2, and A1,0(D) = A2,1(D) = A2,0(D) = A3,1(D) = 0.
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In this case, the SGMA criterion is equivalent to sequentially minimizing

(4.5).

Example 4. Consider the case of an (6 · 16, 263)-design, where the run

sizes of d0, d1 and d2 are 16, 32 and 48, respectively. The initial design d∗0

is Design 6-2.1 as listed in Table 3A.2 of Mukerjee and Wu (2006).

Using Algorithm 1, we can obtain three nonisomorphic optimal (6 ·

16, 263)-designs, D1, D2 and D3, among E(d∗0,P), in which the SGWLPs

are all the same. The switch matrices of D1, D2 and D3 are listed as below.

Table 4: Optimal switch matrices of D1, D2 and D3

Optimal switch matrix of D1 Optimal switch matrix of D2 Optimal switch matrix of D3

P0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P1

0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

P2

0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

On the basis of the SGMA criterion, D1, D2 and D3 are optimal (6 ·

16, 263)-designs among E(d∗0,P). However, their subdesigns may not be

optimal. To maintain consistency with Table 4, let the subdesigns of D1

be d
(1)
0 , d

(1)
1 , and d

(1)
2 , those of D2 be d

(2)
0 , d

(2)
1 , and d

(2)
2 ; and those of D3

be d
(3)
0 , d

(3)
1 , and d

(3)
2 . Table 4 indicates that d

(1)
1 and d

(3)
1 are fold-over
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designs with less aberration than d
(2)
1 has. Similarly, d

(2)
2 and d

(3)
2 are three-

quarter fractional designs with less aberration than d
(1)
2 has. Therefore, D3

is preferable to D1 and D2 in practice.

This example demonstrates that row permutations of the switch matrix

P produce SFDs with the same SGWLP, but their subdesigns may exhibit

distinct generalized wordlength patterns. To further distinguish the SFDs,

we propose a secondary criterion as recommended by one reviewer: sum-

ming the generalized wordlength patterns of the separate slices. Using this

approach, the summed A4 values for D1, D2, and D3 are 5.22, 6.33, and

4.33, respectively. Clearly, D3 is the best of these three optimal (6 ·16, 263)-

designs among E(d∗0,P). Specifically, we recommend using di as a fold-over

design when the run size of the subdesign di is twice that of the initial design

d∗0, in which case di achieves the lowest GWLP. Similarly, we recommend

selecting di as a three-quarter design if the run size of di is three times that

of d∗0. For details on fold-over and three-quarter designs, see Mee (2009).

6. Concluding remarks

Sliced factorial designs are useful for online experiments conducted across

multiple platforms. The construction of such designs for any number of

platforms is an urgent problem in practice. To address this modern chal-
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lenge, we provide a sliced generalized wordlength pattern based on the sliced

effect hierarchy principle to assess the overall aliasing between all effects.

We presented the sliced factorial designs for online multi-platform experi-

ments, where the interactions between the slice factor and the design fac-

tors are not only nonnegligible but also important. Sliced factorial designs

equally apply to physical experiments, such as experiments run in parallel

on a collection of bioreactors or parallel production lines in manufactur-

ing. For information on parallel bioreactors, see Akgün et al. (2004), Gill

et al. (2008), Bareither and Pollard (2011), Mandenius (2016); for parallel

production lines, see Burman (1995), Nahas et al. (2009), Verbiest et al.

(2019), and Xi et al. (2022).

Owing to the numerous potential SFD candidates for certain parameter

settings, conducting an exhaustive search for the optimal SFD is impracti-

cal. Therefore, we focused only on constructing the PFD-based SFDs, and

provided some theoretical results on their characteristics, as well as a con-

struction method for obtaining optimal PFD-based SFDs. We discuss the

cases where the run sizes of all slices are either equal or unequal in Sections

4 and 5, respectively.

For online experiments, the sample size on each platform depends on the

traffic flow to the page, resulting in unbalanced sample sizes. In practice,
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experimental designs are typically formulated before users are assigned to

different versions, and the exact sample size per platform is often unknown.

In such cases, an unequal variance model or a random effects model can

be used for the analysis. Certainly, as the referees pointed out, when prior

information on sample sizes is available, the design criterion can be further

refined to account for unbalanced data, potentially leading to more efficient

designs. We have identified this extension as a promising direction for future

research.

In practice, if the numbers m and s are not too large, we can obtain the

optimal PFD-based SFDs by Algorithm 1. We briefly mention an idea for

constructing optimal PFD-based SFDs when m and s are relatively large.

For u ∈ G, if the numbers of 0s and 1s are the same or differ by one, then

Ju(P ) is minimized. We construct a specific switch matrix P , incorporating

pu, such that the sequence (B3, . . . , Bm) can be minimized sequentially. We

plan to further study this construction in a follow-up project.

Supplementary Material

The online Supplementary Material provides optimal (sN, 2ns)-designs among

E(d0,P) and proofs of the theoretical results.
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