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Abstract: For measuring tail risk with scarce extreme events, extreme value anal-

ysis is often invoked as the statistical tool to extrapolate to the tail of a distribu-

tion. The presence of large datasets benefits tail risk analysis by providing more

observations for conducting extreme value analysis. However, large datasets can

be stored distributedly preventing the possibility of directly analyzing them. In

this paper, we introduce a comprehensive set of tools for examining the asymp-

totic behavior of tail empirical and quantile processes in the setting where data

is distributed across multiple sources, for instance, when data are stored on mul-

tiple machines. Utilizing these tools, one can establish the oracle property for

most distributed estimators in extreme value statistics in a straightforward way.

We provide various examples to demonstrate the practicality and value of our

proposed toolkit.

Keywords: oracle property, tail empirical process, tail quantile process, KMT

inequality
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1. Introduction

Financial and climate risk management requires risk forecasting for rare

but high-impact events, typically referred to as extreme events. Extreme

value analysis, statistical methods for analyzing the tail of a distribution,

is a useful tool for modeling and analyzing such extremes (de Haan and

Ferreira, 2006). In this paper, we consider tail risk analysis using a large

dataset that is distributedly stored at various locations.

While the availability of large datasets in general benefits statistical

analysis, such as extreme value analysis, it also presents at least three prac-

tical challenges to implementing conventional statistical procedures. Firstly,

a combined dataset might not be available to one end user due to privacy

concerns such as analyzing large insurance claims across various insurance

companies (Embrechts et al., 2013). Since insurance companies are con-

tracted for protecting privacy of their customers, it is impossible to combine

all claims from different insurers into one massive dataset. Secondly, the

computation cost to analyze a massive dataset can be expensive when im-

plementing statistical procedures involving an optimization algorithm, such

as maximum likelihood or loss minimization. Thirdly, storage constraints

can arise when dealing with massive datasets, for instance, when the size

of a dataset exceeds a computer’s memory. Another example is to analyze
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online stream data, where data become available in a sequential manner

(Gama et al., 2013).

One solution to overcome these challenges is to handle the massive

datasets in batches, sometimes referred to as “distributedly stored”. Di-

vide and Conquer (DC) algorithms are often invoked when data are dis-

tributedly stored in multiple machines. Assume that the N observations

are distributedly stored in m machines with n observations in each machine

with N = nm. More specifically, let Dj =
(
X

(j)
1 , . . . , X

(j)
n

)
denote the ob-

servations in machine j, with j = 1, 2, . . . ,m. Further denote D =
⋃m

j=1 Dj

as the hypothetically combined sample, sometimes referred to as the oracle

sample.

Let θ̂(Dj) be an estimator for the parameter of interest based on data

Dj. Without prior knowledge on the structure of the estimator, a stan-

dard DC algorithm averages these local estimators to obtain a distributed

estimate, θ̂D := m−1
∑m

j=1 θ̂(Dj). The DC algorithm has at least three

advantages. Firstly, it preserves privacy. For example, insurance compa-

nies can share some statistical results provided that that other companies

cannot infer client level data from the shared results. Moreover, thanks

to the independent computation on each individual machine, the DC algo-

rithm can significantly improve computational efficiency by utilizing parallel
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computing. Lastly, the DC algorithm can overcome the challenge of storage

constraint by analyzing a massive dataset in batches.

The DC algorithm has been increasingly applied across various statis-

tical procedures in recent years. For example, Li et al. (2013) investigated

the use of the DC algorithm for kernel estimation, while Chang et al. (2017)

explored its application to local smoothing estimators. In the context of

high-dimensional data, Lee et al. (2017) employed the DC algorithm for

the LASSO problem, and Lian and Fan (2018) applied it to support vec-

tor machines. Additionally, Fan et al. (2019) applied the DC algorithm to

principal component analysis, and Volgushev et al. (2019) used it for quan-

tile regression. We refer readers to Gao et al. (2022) for a comprehensive

overview of the applications of the DC algorithm in statistics.

Let θ̂Oracle := θ̂(D) denote the oracle estimator, i.e., the same statistical

procedure applied to the oracle sample D. Theoretically, the DC algorithm

can be applied to a given statistical procedure only if θ̂D and θ̂Oracle share

the same asymptotic behavior, which we call oracle property.

The DC estimator in extreme value analysis may not achieve the oracle

property. For example, considering a distribution with a finite endpoint, a

natural estimator for the endpoint is the sample maxima. The oracle esti-

mator θ̂Oracle can be obtained by taking the maximum of the local estima-
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tors as θ̂Oracle = max1≤j≤m

{
θ̂(Dj)

}
, with θ̂(Dj) = max

(
X

(j)
1 , . . . , X

(j)
n

)
.

However, taking the maximum of all the local estimators is based on the

prior knowledge of the structure of this estimator. Without such struc-

tural knowledge, the standard DC algorithm would result in an estimator

θ̂D = m−1
∑m

j=1 θ̂(Dj), which may fail the oracle property.

The application of the DC algorithm in extreme value statistics has

primarily focused on the Hill estimator (Hill, 1975) for the extreme value

index γ > 0. Chen et al. (2022) proposed the distributed Hill estima-

tor and study the asymptotic behavior of the distributed Hill estimator,

demonstrating sufficient, sometimes also necessary, conditions under which

the distributed Hill estimator possesses the oracle property. Daouia et al.

(2024) extended this work by proving a stronger result: the difference be-

tween the distributed Hill estimator and the oracle Hill estimator diminishes

faster than the speed of convergence of the oracle Hill estimator. However,

the proofs in both papers rely heavily on the specific structure of the Hill

estimator, and cannot be generalized to validate the oracle property of other

estimators in extreme value statistics.

In this paper, we provide a set of tools to prove the oracle property

for most estimators in extreme value analysis. Instead of focusing on a

specific estimator θ̂, our approach allows for proving the oracle property
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for most estimators based on the peak-over-threshold (POT) approach in a

straightforward manner. We illustrate this by providing examples for the

Hill estimator (Hill, 1975), the probability weighted moment (PWM) esti-

mator (Hosking and Wallis, 1987), and the maximum likelihood estimator

(MLE, Drees et al. (2004)).

To achieve this, we establish weighted approximations of tail empir-

ical processes and tail quantile processes for the distributed subsamples

jointly, with linking these approximations to that for the oracle sample.

Observing that with equal subsample sizes across different machines, the

tail empirical process for the oracle sample is the average of the tail em-

pirical processes based on the distributed subsamples, it seems trivial that

they can be approximated by the same asymptotic limits. However, to ag-

gregate the tail empirical processes in different machines, we need to make

sure that the approximation errors in different machines are uniformly neg-

ligible. We achieve this mathematically difficult result by invoking Komlós-

Major-Tusnády type inequalities (see e.g. Komlós et al. (1975)). Linking

the weighted approximation of the tail empirical process based on the or-

acle sample to those of the tail empirical processes on each machine is an

important intermediate step towards establishing similar links between the

corresponding tail quantile processes.
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By contrast, when handling tail quantile processes, we cannot follow

similar steps as for tail empirical processes. The main difference is that

the average of the tail quantile processes based on distributed subsamples

in different machines is not equal to the tail quantile process based on the

oracle sample. Linking the approximations of the tail quantile processes

based on the distributed subsamples to that based on the oracle sample

poses an additional layer of technical difficulty, which we will handle in

Section 4.

The rest of this paper is organized as follows. In Section 2, we review

the extreme value analysis, tail empirical process, tail quantile process and

DC algorithms. Section 3 shows the weighted approximations of the tail

empirical processes based on the distributed subsamples in a joint man-

ner and links that to the weighted approximation of tail empirical process

based on the oracle sample. Section 4 shows the analogous result for the

weighted approximations of the tail quantile processes. We provide various

examples in Section 5 to show how these tools can be used to prove the or-

acle property of extreme value estimators such as the estimators of extreme

value index, high quantile, tail probability and endpoint. Section 6 extends

the theoretical results to the case of heterogeneous subsample sizes. A real

data application is given in Section 7. A concluding remark is made in Sec-
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tion 8. The technical proofs are deferred to the Supplementary Material,

along with a simulation study showing the performance of the distributed

estimators for the extreme value index and the high quantile.

Throughout the paper, a(t) ∼ b(t) means that a(t)/b(t) → 1 as t → ∞;

a(t) ≍ b(t) means that both |a(t)/b(t)| and |b(t)/a(t)| are O(1) as t → ∞.

2. Background

2.1 Extreme Value Statistics

LetX1, . . . , XN be independently and identically distributed (i.i.d.) random

variables with distribution function F , which is in the maximum domain of

attraction of an extreme value distribution Gγ with index γ ∈ R, i.e. there

exist a positive function a and a real function b such that,

lim
N→∞

FN {a(N)x+ b(N)} = Gγ(x) := exp
{
− (1 + γx)−1/γ

}
,

for all 1+γx > 0. We denote this assumption as F ∈ D (Gγ), where γ is the

so called extreme value index. Extreme value statistics considers estimating

the extreme value index γ, the functions a and b, as well as other practically

relevant quantities such as high quantile of F . For established results in

extreme value statistics, we refer interested readers to monographs such as

de Haan and Ferreira (2006) and Resnick (2007).
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2.1 Extreme Value Statistics

Write U = {1/(1− F )}←, where ← denotes the left-continuous inverse

function. Then the necessary and sufficient condition for F ∈ D(Gγ) with

γ ∈ R is

lim
t→∞

U(tx)− U(t)

a(t)
=

xγ − 1

γ
, (2.1)

for all x > 0. We further assume that U satisfies the second order condition,

which quantifies the speed of convergence in (2.1) as follows: there exists

an eventually positive or negative function A with limt→∞A(t) = 0 and a

real number ρ < 0 such that for all x > 0,

lim
t→∞

U(tx)−U(t)
a(t)

− xγ−1
γ

A(t)
=

1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
. (2.2)

Although the limits in (2.1) and (2.2) appear unnecessarily specific,

they are in fact the only possible non-degenerate limits of the expressions;

see de Haan and Stadtmüller (1996). The second order condition (2.2) is

satisfied by commonly used parametric distributions; see, e.g., Alves et al.

(2007).

Under this condition, one can find suitable normalizing functions such

that the convergence in (2.2) holds uniformly as follows, see Corollary 2.3.7

in de Haan and Ferreira (2006). There exists functions a0(t) ∼ a(t), A0(t) ∼

A(t) and b0(t) such that, for any ε, δ > 0, there exists t0 = t0(ε, δ) such
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2.2 Tail Empirical Process and Tail Quantile Process

that, for all t, tx ≥ t0,∣∣∣∣∣
U(tx)−b0(t)

a0(t)
− xγ−1

γ

A0(t)
−Ψ(x)

∣∣∣∣∣ ≤ εxγ+ρ max
(
xδ, x−δ

)
, (2.3)

where

Ψ(x) :=


xγ+ρ

γ+ρ
, γ + ρ ̸= 0,

log x, γ + ρ = 0.

For the details of the expression of a0, b0 and A0, see Corollary 2.3.7 in

de Haan and Ferreira (2006).

2.2 Tail Empirical Process and Tail Quantile Process

In classical extreme value statistics, two key tools for establishing asymp-

totic theories are the tail empirical process and the tail quantile process. Let

l = l(N) be an intermediate sequence such that as N → ∞, l → ∞, l/N →

0. The tail empirical process is defined as

YN,l (x) =
N

l
F̄N {a0 (N/l)x+ b0 (N/l)} , x ∈ R,

where F̄N := 1− FN and FN denotes the empirical cumulative distribution

function FN(x) := N−1
∑N

i=1 I (Xi ≤ x).

Under the second order condition (2.2) and
√
lA (N/l) = O(1) as N →

∞, Drees et al. (2006) showed that, under proper Skorokhod construction,

there exists a sequence of Brownian motions {W ∗
N , N ≥ 1}, such that, for
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2.2 Tail Empirical Process and Tail Quantile Process

any v > 0,

sup
x∈D

{z(x)}v−1/2
∣∣∣√l {YN,l(x)− z(x)} −W ∗

N {z(x)}

−
√
lA0(N/l) {z(x)}1+γ Ψ {1/z(x)}

∣∣∣ = oP (1),

(2.4)

where z(x) and D are defined in Theorem 1 below. The approximation of

the tail empirical process is a useful tool in a wider context. For example,

Drees et al. (2006) proposed a test for the extreme value condition, de Haan

and Ferreira (2006, Example 5.1.5) established the asymptotic normality of

the Hill estimator, both by using this result.

Analogous to the tail empirical process, Drees (1998) showed a weighted

approximation of the tail quantile process. The tail quantile process is

defined as

QN,l(s) =
XN−[ls],N − b0 (N/l)

a0 (N/l)
, s ∈ [0, 1],

whereXN,N ≥ · · · ≥ X1,N are the order statistics of the sample (X1, . . . , XN).

Here and thereafter, we use [x] to denote the largest integer less than or

equal to x. Assume the second order condition (2.2) and
√
lA (N/l) = O(1)

as N → ∞, with the same Brownian motions {W ∗
N , N ≥ 1} in (2.4), we

have that, for any v > 0,

sup
1/l≤s≤1

sv+1/2+γ
∣∣∣√l

{
QN,l(s)−

s−γ − 1

γ

}
− s−γ−1W ∗

N(s)−
√
lA0 (N/l)Ψ(s−1)

∣∣∣ = oP (1).

(2.5)

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0222



Note that the POT approach in extreme value statistics often uses high

order statistics XN,N , . . . , XN−l,N . Consequently, compared to the tail em-

pirical process, the tail quantile process is more straightforward for proving

asymptotic theory for estimators in extreme value statistics based on the

POT approach. By writing such estimators as a functional of QN,l(s) and

using the weighted approximation of the tail quantile process, one can de-

rive their asymptotic behavior.

3. Distributed Tail Empirical Process

The result (2.4) is based on the oracle sample. We intend to provide an

analogous result for the tail empirical processes based on the distributed

subsamples in a joint manner. Recall that the N observations are distribut-

edly stored in m machines with n observations in each machine. We will

extend our analysis to the case of heterogeneous subsample sizes in Section

6. The tail empirical process based on the observations
(
X

(j)
1 , . . . , X

(j)
n

)
in

machine j is defined as

Y
(j)
n,k (x) =

n

k
F̄ (j)
n {a0 (n/k)x+ b0 (n/k)} , j = 1, . . . ,m,

where F̄
(j)
n := 1− F

(j)
n and F

(j)
n denotes the empirical distribution function

based on the observations in machine j. Here k = k(N) is an intermediate

sequence such that k → ∞ and k/n → 0, as N → ∞.
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We intend to relate the asymptotics of YN,l(x) and m−1
∑m

j=1 Y
(j)
n,k (x)

where l = km. Without causing any ambiguity, we use the simplified

notation YN(x) and Y
(j)
n (x) for the tail empirical processes based on the

oracle sample and the sample in machine j, respectively.

Throughout this paper, let m,n, k be sequences of integers such that,

m = m(N) → ∞, n = n(N) → ∞, k = k(N) → ∞ and k/n → 0 as

N → ∞. We assume the following conditions for the sequences k and m:

(A1)
√
kmA(n/k) = O(1) as N → ∞.

(A2) η := lim infN→∞ log k/ logm− 1 > 0.

(A3) km(log k)2/n = O(1) as N → ∞.

Remark 1. Note that n/k = N/(km) and hence
√
kmA(n/k) =

√
kmA {N/(km)}. Condition (A1) is a typical condition assumed in ex-

treme value analysis to guarantee finite asymptotic bias in the oracle esti-

mator. Condition (A2) states that, the number of machines (m) should be

smaller than the number of observations used in each machine (k). Similar

conditions are assumed in the literature of distributed inference for other

statistical procedures, see e.g. Corollary 3.4 in Volgushev et al. (2019) and

Theorem 4 in Zhu et al. (2021). Condition (A3) is an additional techni-
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cal condition, which requires that the number of observations (n) in each

machine is at a sufficiently high level for given k and m.

Remark 2. One example for k and m satisfying conditions (A1)-(A3) can

be given as follows. Let m ≍ na for some 0 ≤ a < − (−1)∨ρ
1−(−1)∨ρ , where ρ is

the second parameter in (2.2), and k ≍ nb for some

a < b < min

(
1− a,

−2ρ− a

−2ρ+ 1

)
,

then conditions (A1)-(A3) hold with η = b/a− 1 > 0.

The following theorem shows the weighted approximations of the tail

empirical processes based on the distributed subsamples in a joint manner.

Theorem 1. Suppose that the distribution function F satisfies the second

order condition (2.2) with γ ∈ R and ρ < 0. Let m,n, k be sequences

of integers satisfying conditions (A1)-(A3) and x0 > −1/(γ ∨ 0). Then

under suitable Skorokhod construction, there exist m independent sequences

of Brownian motions
{
W

(j)
n , n ≥ 1

}
, j = 1, . . . ,m, such that for any v ∈

((2 + η)−1, 2−1), as N → ∞,

max
1≤j≤m

sup
x∈D

{z(x)}v−1/2
∣∣∣√km

{
Y (j)
n (x)− z(x)

}
−
√
mW (j)

n {z(x)}

−
√
kmA0(n/k) {z(x)}1+γ Ψ {1/z(x)}

∣∣∣ = oP (1),

where

z(x) = (1 + γx)−1/γ, D =

{
x : x0 ≤ x <

1

(−γ) ∨ 0

}
.
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Moreover, as N → ∞,

sup
x∈D

{z(x)}v−1/2
∣∣∣√km {YN(x)− z(x)} −WN {z(x)}

−
√
kmA0(n/k) {z(x)}1+γ Ψ {1/z(x)}

∣∣∣ = oP (1),

where WN = m−1/2
∑m

j=1W
(j)
n is a version of the Brownian motion W ∗

N in

(2.4).

For γ > 0, a similar but simpler result is given as follows.

Theorem 2. Suppose that the distribution function F satisfies the second

order condition (2.2) with γ > 0 and ρ < 0. Let m,n, k be sequences of real

numbers that satisfy conditions (A1)-(A3) and x̃0 > 0. Then under suitable

Skorokhod construction, there exist m independent sequences of Brownian

motions
{
W

(j)
n , n ≥ 1

}
, j = 1, . . . ,m, such that for any v ∈ ((2+η)−1, 2−1),

as N → ∞,

max
1≤j≤m

sup
x≥x̃0

x(1/2−v)/γ
∣∣∣√km

[n
k
F̄ (j)
n {xU(n/k)} − x−1/γ

]
−

√
mW (j)

n (x−1/γ)−
√
kmA0 (n/k)x

−1/γ x
ρ/γ − 1

γρ

∣∣∣ = oP (1).

Moreover, as N → ∞,

sup
x≥x̃0

x(1/2−v)/γ
∣∣∣√km

[n
k
F̄N {xU(n/k)} − x−1/γ

]
−WN(x

−1/γ)−
√
kmA0 (n/k)x

−1/γ x
ρ/γ − 1

γρ

∣∣∣ = oP (1),

where WN = m−1/2
∑m

j=1 W
(j)
n .
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Theorems 1 and 2 show that the tail empirical process for the oracle

sample YN,l(x) and the average of the tail empirical processes Y
(j)
n,k (x) across

all machines can be approximated by the same Brownian motion. To prove

these theorems, we need a fundamental inequality to bound the approxima-

tion error of the tail empirical process Y
(j)
n (x) to the Gaussian process in

machine j, which is of independent interest. Consider a positive sequence

t = t(N) → 0 as N → ∞, satisfying

(n/k)−1/2 log k/t = O(1), (3.1)

k1/2A0(n/k)/t = O(1), (3.2)

for some ε̃ > 0, {A0(n/k)}1/2−ε̃ /t = o(1). (3.3)

Proposition 1. Suppose that the distribution function F satisfies the sec-

ond order condition (2.2) with γ ∈ R and ρ < 0. Let t be a sequence of real

numbers satisfying conditions (3.1)-(3.3) and x0 > −1/(γ ∨ 0). Then for

sufficiently large n, under suitable Skorokhod construction, there exist m

independent sequences of Brownian motions
{
W

(j)
n , n ≥ 1

}
, j = 1, . . . ,m

and a constant C1 = C1(v) > 0 such that, for any v ∈ (0, 1/2),

P
(
δ(j)n ≥ t

)
≤ C1r

− 1
1/2−v ,
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where

δ(j)n = sup
x∈D

{z(x)}v−1/2
∣∣∣√k

{
Y (j)
n (x)− z(x)

}
−W (j)

n {z(x)} −
√
kA0(n/k) {z(x)}1+γ Ψ {1/z(x)}

∣∣∣,
and r = r(t, k) is defined by k−vr log r = t.

Proposition 1 guarantees that the approximation errors δ
(j)
n , j = 1, . . . ,m

are uniformly negligible, which is a key step to prove Theorems 1 and 2.

4. Distributed Tail Quantile Processes

Most estimators in extreme value statistics cannot be expressed as the func-

tional of the tail empirical processes in a straightforward way, except the

Hill estimator. Therefore, the two theorems in Section 3, focusing on the

asymptotic expansion of the tail empirical processes jointly, cannot be di-

rectly applied to prove oracle properties of extreme value estimators, except

for the Hill estimator. For the exceptional Hill estimator, we show, in the

proof of Corollary 2 below, the usefulness of Theorem 2. By contrast, most

estimators based on the POT approach can be written as functionals of tail

quantile process. For that reason, we further investigate the distributed tail

quantile processes.

Again, the result in (2.5) is based on the oracle sample. We intend to

provide weighted approximations of the tail quantile processes based on the

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0222



distributed subsamples in a joint manner. The tail quantile process based

on the observations in machine j is defined as

Q
(j)
n,k(s) =

X
(j)
n−[ks],n − b0 (n/k)

a0 (n/k)
, j = 1, . . . ,m,

where X
(j)
n,n ≥ · · · ≥ X

(j)
1,n are the order statistics of the observations in

machine j.

We aim at linking the asymptotics of QN,l(s) and m−1
∑m

j=1 Q
(j)
n,k(s)

where l = km. Again, without causing any ambiguity, we use the simplified

notation QN(s) and Q
(j)
n (s) for the tail quantile process based on the oracle

sample and the sample in machine j, respectively. Since the average of the

tail quantile processes based on distributed subsamples in m machines is

not equal to the tail quantile process of the oracle sample, we cannot follow

similar steps as in Section 3. Instead, we achieve our goal by “inverting”

the result for the tail empirical processes. More specifically, we intend to

replace x in Theorem 1 by Q
(j)
n (s) for s ∈ [k−1+δ, 1].

The following theorem shows that, with the same sequences of Brownian

motions defined in Theorem 1:
{
W

(j)
n , n ≥ 1

}
, j = 1, . . . ,m, the approx-

imation errors of the tail quantile processes are uniformly negligible for

1 ≤ j ≤ m.

Theorem 3. Assume the same conditions as in Theorem 1. Then for any
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v ∈ ((2 + η)−1, 1/2) and δ ∈ (0, 1), as N → ∞,

max
1≤j≤m

sup
k−1+δ≤s≤1

sv+1/2+γ
∣∣∣√km

(
Q(j)

n (s)− s−γ − 1

γ

)
−

√
ms−γ−1W (j)

n (s)−
√
kmA0 (n/k)Ψ(s−1)

∣∣∣ = oP (1).

Moreover, as N → ∞,

sup
k−1+δ≤s≤1

sv+1/2+γ
∣∣∣√km

(
QN(s)−

s−γ − 1

γ

)
− s−γ−1WN(s)−

√
kmA0 (n/k)Ψ(s−1)

∣∣∣ = oP (1).

Here,
{
W

(j)
n , n ≥ 1

}
, j = 1, . . . ,m are the same Brownian motions con-

structed as in Theorem 1 and WN = m−1/2
∑m

j=1W
(j)
n . Consequently,

m−1
∑m

j=1 Q
(j)
n (s) has the same asymptotic expansion as that for QN(s),

uniformly for s ∈ [k−1+δ, 1].

For γ > 0, a similar but simpler result is given as follows.

Theorem 4. Assume the same conditions as in Theorem 2. Then for any

v ∈ ((2 + η)−1, 1/2) and δ ∈ (0, 1), as N → ∞,

max
1≤j≤m

sup
k−1+δ≤s≤1

sv+1/2+γ
∣∣∣√km

(
X

(j)
n−[ks],n

U(n/k)
− s−γ

)

−
√
mγs−γ−1W (j)

n (s)− γ
√
kmA0 (n/k) s

−γ s
−ρ − 1

ρ

∣∣∣ = oP (1).

Moreover, as N → ∞,

sup
k−1+δ≤s≤1

sv+1/2+γ
∣∣∣√km

(
XN−[kms],N

U(n/k)
− s−γ

)
− γs−γ−1WN(s)− γ

√
kmA0 (n/k) s

−γ s
−ρ − 1

ρ

∣∣∣ = oP (1).
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Here,
{
W

(j)
n , n ≥ 1

}
, j = 1, . . . ,m are the same Brownian motions con-

structed as in Theorem 1 and WN = m−1/2
∑m

j=1W
(j)
n .

Theorem 3 and 4 provide useful tools for establishing the oracle prop-

erty of extreme value estimators based on the POT approach. For example,

using Theorem 3, one can immediately show that, the distributed Pickands

estimator (Pickands III, 1975) achieves the oracle property since the dis-

tributed Pickands estimator is a functional of the tail quantile processes

Q
(j)
n (s) at three points s = 1, 1/2 and 1/4. We leave this to the readers.

The following corollary, which is a direct consequence of Theorem 4 with

applying the Cramér’s delta method, can be used for proving asymptotic

theory of the distributed Hill estimator. Again, we leave such a proof to

the readers. The final oracle property is the same as stated in Corrolary 2

below.

Corollary 1. Assume the same conditions as in Theorem 2. By the Cramér’s

delta method, we can obtain that, as N → ∞,

max
1≤j≤m

sup
k−1+δ≤s≤1

sv+1/2
∣∣∣√km

(
logX

(j)
n−[ks],n − logU (n/k)

γ
+ log s

)

−
√
mγs−1W (j)

n (s)− γ
√
kmA0 (n/k)

1

γ

s−ρ − 1

ρ

∣∣∣ = oP (1).

Our ultimate goal is to develop a tool for establishing the asymptotic

theories and oracle property for a broad range of estimators beyond the
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Pickands estimator and the Hill estimator. However, Theorem 3 alone may

not be sufficient to achieve this goal. We use the probability weighted

moment (PWM) estimator as an example to explain the remaining issue.

The PWM estimator in machine j is defined as

γ̂
(j)
PWM :=

P
(j)
n − 4Q

(j)
n

P
(j)
n − 2Q

(j)
n

,

where

P (j)
n :=

1

k

k∑
i=1

X
(j)
n−i+1,n−X

(j)
n−k,n, Q(j)

n :=
1

k

k∑
i=1

i− 1

k

(
X

(j)
n−i+1,n −X

(j)
n−k,n

)
.

The distributed PWM estimator is defined as the average of them estimates

from each machine:

γ̂D
PWM =

1

m

m∑
j=1

γ̂
(j)
PWM .

To establish the asymptotic theory for γ̂D
PWM , we need to handle the asymp-

totic expansions of P
(j)
n and Q

(j)
n for j = 1, . . . ,m in a joint manner. For

s ∈ [0, 1], define

f (j)
n (s) = Q(j)

n (s)− s−γ − 1

γ
− 1√

k
s−γ−1W (j)

n (s)− A0 (n/k)Ψ(s−1). (4.1)
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Then we can write P
(j)
n as

P
(j)
n

a0 (n/k)
=

∫ 1

0

X
(j)
n−[ks],n −X

(j)
n−k,n

a0 (n/k)
ds

=

∫ 1

0

s−γ − 1

γ
ds+

∫ 1

0

{
s−γ−1W

(j)
n (s)−W

(j)
n (1)

}
ds

√
k

+ A0 (n/k)

∫ 1

0

{
Ψ(s−1)−Ψ(1)

}
ds

+

∫ 1

k−1+δ

{
f (j)
n (s)− f (j)

n (1)
}
ds+

∫ k−1+δ

0

{
f (j)
n (s)− f (j)

n (1)
}
ds

= : I1 + I2 + I3 + I4 + I5.

The three terms I1, I2 and I3 can be handled in a similar way as handling

analogous terms in the oracle PWM estimator. The integral I4 can be

handled using Theorem 3. However, handling the last integral I5 requires

some additional tools to deal with the “corner” of the tail quantile processes.

Similarly, for Q
(j)
n , we need to handle a different integral in the “corner”:∫ k−1+δ

0
s
{
f
(j)
n (s)− f

(j)
n (1)

}
ds. To complete the toolkit for our purpose, we

provide a general result regrading the joint asymptotic behavior of weighted

integrals of the tail quantile processes in the corner area [0, k−1+δ].

Proposition 2. Assume the same conditions as in Theorem 1. Assume

that a function g defined on (0,1) satisfies 0 < g(s) ≤ Csβ with β >

γ − η
2(1+η)

+ 1
1+η

γI{γ>0}. Then, there exists a sufficiently small constant
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δ > 0, such that, as N → ∞,

√
m max

1≤j≤m

∫ k−1+δ

0

g(s)
∣∣∣√k

(
Q(j)

n (s)− s−γ − 1

γ

)
− s−γ−1W (j)

n (s)−
√
kA0 (n/k)Ψ(s−1)

∣∣∣ds = oP (1).

The oracle property of most extreme value estimators based on the POT

approach, including the PWM estimator, can be established by applying

Theorem 3 and Proposition 2 together.

5. Application

In this section, we provide examples illustrating how to apply our tools to

establish asymptotic theories, particular the oracle property, for the dis-

tributed versions of various estimators in extreme value statistics. Specif-

ically, we focus on the Hill estimator, PWM estimator and MLE for the

extreme value index, and estimators for high quantiles, endpoints, and tail

probabilities.

5.1 Distributed inference for the Hill estimator

In this subsection, we apply the approximations of the tail empirical pro-

cesses based on the distributed subsamples to establish the oracle property

of the distributed Hill estimator. The Hill estimator in machine j is defined

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0222



5.1 Distributed inference for the Hill estimator

as

γ̂
(j)
H :=

1

k

k∑
i=1

logX
(j)
n−i+1,n − logX

(j)
n−k,n, j = 1, . . . ,m.

The distributed Hill estimator is defined as the average of the m estimates

from each machine: γ̂D
H := m−1

∑m
j=1 γ̂

(j)
H . And the oracle Hill estimator

using the top l = km exceedance ratios is

γ̂Oracle
H :=

1

km

km∑
i=1

logXN−i+1,N − logXN−km,N .

Corollary 2. Suppose that the distribution function F satisfies the second

order condition (2.2) with γ > 0 and ρ < 0. Let m,n, k be sequences of

real numbers that satisfy conditions (A1)-(A3). Then, the distributed Hill

estimator achieves the oracle property, i.e.
√
km
(
γ̂D
H − γ̂Oracle

H

)
= oP (1),

as N → ∞.

Remark 3. Although Chen et al. (2022) and Daouia et al. (2024) both

established the oracle property of the distributed Hill estimator, we provide

a much shorter and more straightforward proof using the tools developed

in Section 3. A different proof using the tools developed in Section 4 is also

possible and even simpler, which we leave to the readers. Chen et al. (2022)

only showed that the limiting distribution of the distributed Hill estimator

coincides with that of the oracle Hill estimator, but does not investigate

the difference between the two estimators. By contrast, using the tools
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5.2 Distributed inference for the PWM estimator

developed in Section 3 and Section 4, we obtain a stronger result.

5.2 Distributed inference for the PWM estimator

In this subsection, we take the distributed PWM estimator as an example

to show how to apply Theorem 3 and Proposition 2 to establish its oracle

property. The oracle PWM estimator is defined as

γ̂Oracle
PWM :=

PN − 4QN

PN − 2QN

,

where PN and QN are counterparts of P
(j)
n and Q

(j)
n based on the oracle

sample, respectively.

Corollary 3. Suppose that the distribution function F satisfies the second

order condition (2.2) with γ < 1/2 and ρ < 0. Assume that conditions (A1)-

(A3) hold with η > max
(
0, 2γ

1/2−γ

)
. Then, the distributed PWM estimator

achieves the oracle property, i.e.,
√
km
(
γ̂D
PWM − γ̂Oracle

PWM

)
= oP (1) as N →

∞.

5.3 Distributed inference for the MLE

The MLE for the extreme value index and the scale parameter based on the

sample on machine j (γ
(j)
mle, σ

(j)
mle), is defined as the solution of the following
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5.3 Distributed inference for the MLE

equations:

1

k

k∑
i=1

1

γ2
log
{
1 +

γ

σ

(
X

(j)
n−i+1,n −X

(j)
n−k,n

)}

−
(
1

γ
+ 1

) (1/σ)
(
X

(j)
n−i+1,n −X

(j)
n−k,n

)
1 + (γ/σ)

(
X

(j)
n−i+1,n −X

(j)
n−k,n

) = 0,

k∑
i=1

(
1

γ
+ 1

) (γ/σ)
(
X

(j)
n−i+1,n −X

(j)
n−k,n

)
1 + (γ/σ)

(
X

(j)
n−i+1,n −X

(j)
n−k,n

) = k.

(5.1)

The distributed MLE for the extreme value index and the scale parameter

are defined as

γ̂D
mle =

1

m

m∑
j=1

γ̂
(j)
mle, σ̂D

mle =
1

m

m∑
j=1

σ̂
(j)
mle.

The oracle MLE for the extreme value index and the scale parameter

(γ̂Oracle
mle , σ̂Oracle

mle ) are defined in a similar way by using the oracle sample.

Corollary 4. Suppose that the distribution function F satisfies the second

order condition (2.2) with γ > −1/2 and ρ < 0. Assume that conditions

(A1)-(A3) hold with η > max
(
0, 2γ, −2γ

1+2γ

)
. Then, the distributed MLE for

the extreme value index and the scale parameter achieve the oracle property,

i.e., as N → ∞,
√
km
(
γ̂D
mle − γ̂Oracle

mle

)
= oP (1).

√
km

σ̂D
mle − σ̂Oracle

mle

a(n/k)
= oP (1).

Solving the likelihood equations (5.1) involves an optimization algo-

rithm. The computation cost can be high when implementing an optimiza-
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5.4 Distributed inference for the high quantile, endpoint and tail
probability

tion algorithm for the oracle sample. We provide a simulation study to

compare the computation cost of the oracle MLE and the distributed MLE

in the Supplementary Material.

5.4 Distributed inference for the high quantile, endpoint and tail

probability

In this subsection, we show how to establish the oracle property of the

estimators for the high quantile, endpoint and tail probability. In order

to estimate these quantities, we need to estimate the extreme value index

γ, the scale parameter a(n/k) and the location parameter b(n/k), see e.g.

de Haan and Ferreira (2006, Chapter 4). We focus on the PWM estimators

for γ and a(n/k) as an example. Other estimators based on the POT

approach can be treated in a similar way.

Based on the oracle sample, since N/(km) = n/k, one can estimate

a(n/k) and b(n/k) as

âOracle (n/k) =
2PNQN

PN − 2QN

, b̂Oracle (n/k) = XN−[km],N ,

see e.g. Hosking and Wallis (1987).

We apply the DC algorithm to estimate a(n/k) and b(n/k) based on
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5.4 Distributed inference for the high quantile, endpoint and tail
probability

distributed subsamples. Define the distributed scale estimator as

âD (n/k) :=
1

m

m∑
j=1

â(j) (n/k) =
1

m

m∑
j=1

2P
(j)
n Q

(j)
n

P
(j)
n − 2Q

(j)
n

,

and the distributed location estimator as

b̂D (n/k) =
1

m

m∑
j=1

X
(j)
n−k,n.

Following similar steps as in proving the oracle property of γ̂D
PWM , we can

show that, as N → ∞,

√
km

âD (n/k)− âOracle (n/k)

a (n/k)
= oP (1),

√
km

b̂D (n/k)− b̂Oracle (n/k)

a (n/k)
= oP (1).

5.4.1 High quantile

Let x (pN) := U(1/pN), where pN = o(k/n) as N → ∞, be the quantile

we want to estimate. In finance management, the high quantile is often

referred to as value at risk, which is the most prominent risk measure. The

detailed procedures of the distributed estimator for high quantile x (pN) are

given as follows:

• On each machine j, we calculate γ̂
(j)
PWM , â(j) (n/k) , X

(j)
n−k,n and trans-

mit these values to the central machine.

• On the central machine, we take the average of the γ̂
(j)
PWM , â(j) (n/k) , X

(j)
n−k,n

statistics collected from themmachines to obtain γ̂D
PWM , âD (n/k) , b̂D (n/k).
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5.4 Distributed inference for the high quantile, endpoint and tail
probability

• On the central machine, we estimate x (pN) with pN → 0 by

x̂D(pN) = b̂D (n/k) + âD (n/k)

(
k

npN

)γ̂D
PWM − 1

γ̂D
PWM

. (5.2)

The oracle high quantile estimator x̂Oracle(pN) is defined in an analogous

way as x̂D(pN), with replacing γ̂D
PWM , âD (n/k) and b̂D (n/k) by γ̂Oracle

PWM ,

âOracle (n/k) and b̂Oracle (n/k) in (5.2), respectively. Following the lines of

the proof for the asymptotics of the oracle high quantile estimator, we

can obtain the asymptotic normality of x̂D(pN). Moreover, since γ̂D
PWM ,

âD (n/k) and b̂D (n/k) possess the oracle property, x̂D(pN) also achieves

the oracle property due to applying the Cramér delta method. We present

the result in the following corollary while omitting the proof.

Corollary 5. Assume the same conditions as in Corollary 3. Suppose that

npN = o(k) and log(NpN) = o(
√
km) as N → ∞. Then, as N → ∞,

√
km

x̂D(pN)− x̂Oracle(pN)

a (n/k) qγ(dN)
= oP (1),

where dN = k/(npN) and for t > 1, qγ(t) :=
∫ t

1
sγ−1 log sds.

5.4.2 Endpoint

Next, we consider the problem of estimating the endpoint of the distribution

function F . Assume that F ∈ D(Gγ) for some γ < 0. In this case the
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5.4 Distributed inference for the high quantile, endpoint and tail
probability

endpoint x∗ = sup {x : F (x) < 1} is finite. The endpoint can be treated as

a specific case of quantile by regarding pN as 0. The distributed endpoint

estimator can be defined as

x̂∗,D = b̂D (n/k)− âD (n/k)

γ̂D
PWM

.

The definition of the oracle endpoint estimator x̂∗,Oracle is in an analogous

way. Again, the distributed endpoint estimator achieves the oracle property

as in the following corollary.

Corollary 6. Assume the same conditions as in Corollary 3 and γ < 0.

Then, as N → ∞,

√
km

x̂∗,D − x̂∗,Oracle

a (n/k)
= oP (1).

5.4.3 Tail probability

Lastly, we consider the dual problem of estimating the high quantile: given a

large value of xN , how to estimate p(xN) = 1−F (xN) under the distributed

inference setup. The detailed procedures for estimating the tail probability

are similar to that for estimating the high quantile, except that on the

central machine, we estimate the tail probability p(xN) by

p̂D(xN) =
k

n

{
max

(
0, 1 + γ̂D

PWM

xN − b̂D (n/k)

âD (n/k)

)}−1/γ̂D
PWM

.
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The definition of the oracle tail probability estimator p̂Oracle(xN) is in an

analogous way. Note that p̂Oracle(xN) is valid only for γ > −1/2 (cf. Remark

4.4.3 in de Haan and Ferreira (2006)). The oracle property of p̂D(xN) is

established in the following corollary.

Corollary 7. Assume the same conditions as in Corollary 3 and γ ∈

(−1/2, 1/2). Denote dN = k
np(xN )

and wγ(t) = t−γ
∫ t

1
sγ−1 log sds for t > 0.

Suppose that dN → ∞ and wγ(dN) = o(
√
km) as N → ∞, then

√
km

wγ(dN)

p̂D(xN)− p̂Oracle(xN)

p(xN)
= oP (1).

6. Heterogeneous subsample sizes

In this section, we extend our results to the case of heterogeneous subsample

sizes. We assume that the N observations are distributedly stored in m ma-

chines with nj observations in machine j, j = 1, . . . ,m, i.e. N =
∑m

j=1 nj.

Moreover, we assume that all nj, j = 1, . . . ,m diverge in the same order.

Mathematically, that is,

c1 ≤ min
1≤j≤m

njm/N ≤ max
1≤j≤m

njm/N ≤ c2 (6.1)

for some positive constants c1 and c2 and all N ≥ 1.

The tail empirical process based on the observations in machine j is
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now defined as

Y
(j)
nj ,kj

(x) =
nj

kj
F̄ (j)
nj

{
a0

(
nj

kj

)
x+ b0

(
nj

kj

)}
, j = 1, . . . ,m,

where F̄
(j)
nj := 1− F

(j)
nj and F

(j)
nj denotes the empirical distribution function

based on the observations in machine j.

We choose kj, j = 1, . . . ,m such that the ratios kj/nj are homogenous

across all the m machines, i.e.,

k1/n1 = · · · = km/nm. (6.2)

Denote K =
∑m

j=1 kj, clearly kj/nj = K/N, j = 1, . . . ,m. Then, we have

that,

YN,K(x) =
m∑
j=1

nj

N
Y

(j)
nj ,kj

(x).

In other words, the oracle tail empirical process is a weighted average of

the tail empirical processes based on the distributed subsamples, where the

weights equal to the fraction of the observations on each machine.

Following similar steps as in proving Theorem 1, we obtain the following

result.

Theorem 5. Assume the same conditions as in Theorem 1 and conditions

(6.1) and (6.2). Then under proper Skorokhod construction, there exist m

independent sequences of Brownian motions
{
W

(j)
nj , nj ≥ 1

}
, j = 1, . . . ,m,
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such that for any v ∈ ((2 + η)−1, 1/2), as N → ∞,

max
1≤j≤m

sup
x∈D

{z(x)}v−1/2
∣∣∣√kjm

{
Y

(j)
nj ,kj

(x)− z(x)
}

−
√
mW (j)

nj
{z(x)} −

√
kjmA0(N/K) {z(x)}1+γ Ψ {1/z(x)}

∣∣∣ = oP (1).

Moreover, as N → ∞,

sup
x∈D

{z(x)}v−1/2
∣∣∣√K {YN,K(x)− z(x)}

−WN {z(x)} −
√
KA0(N/K) {z(x)}1+γ Ψ {1/z(x)}

∣∣∣ = oP (1),

where WN =
∑m

j=1

√
nj

N
W

(j)
nj is also a Brownian motion.

Similar results hold for the tail quantile processes as in Theorem 3.

Eventually, we can re-establish the oracle property of the distributed estima-

tors as follows. Suppose the oracle estimator is based on K top order statis-

tics in the oracle sample. On each machine, we use the top kj = (nj/N)K

order statistics in the estimation. By taking a weighted average of the esti-

mates from all machines using the weights nj/N, j = 1, . . . ,m, to obtain the

distributed estimator, the oracle property holds under the same conditions

as in the homogenous case with similar proofs.

7. Real Data Application

We use a dataset containing car insurance claims in five states of United

States: Iowa (n1 = 2601), Kansas (n2 = 798), Missouri (n3 = 3150),
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Nebraska (n4 = 1703), and Oklahoma (n5 = 882). The total sample size

is N = 9134. We work under a hypothesis scenario: each state cannot

share its own data to others, but they are willing to share their statistical

results. Then one can apply a DC algorithm for conducting extreme value

statistics. Our target is to estimate the common extreme value index of

the total claim amount. We consider the MLE instead of the Hill estimator

considered by Chen et al. (2022) since we do not assume heavy tail at the

first place.

Let K =
∑5

j=1 kj be the total number of exceedances used by the five

states. As suggested in Section 6, we choose kj as kj = [Knj/N ], and apply

the MLE for each of the five states to obtain γ̂
(j)
mle, j = 1, 2, . . . , 5. Then,

we combine these five estimates to obtain the distributed MLE by

γ̂D
mle =

5∑
j=1

nj

N
γ̂
(j)
mle.

The distributed MLE is plotted against different values of K in Figure

1, along with its 95% confidence interval. We also plot the oracle MLE in

this figure. The distributed MLE is close to the oracle MLE for almost all

levels of K and the oracle MLE always falls into the 95% confidence interval

constructed based on the distributed MLE.

By choosing K = 1000, we obtain that the distributed MLE for the

extreme value index is about 0.05. And we cannot reject the hypothesis
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Figure 1: Car insurance data.

that the extreme value index is 0 under the 5% significance level for this

choice of K. This result shows that the insurance claims may not be heavy

tailed. In turn, the distributed Hill estimator adopted in Chen et al. (2022)

may not be suitable for this application.

8. Discussion

In this paper, we investigate the problem of distributed inference in extreme

value analysis when the oracle sample (X1, X2, . . . , XN) are i.i.d.. In fact,

the assumption that all the data are drawn from the same distribution

can be relaxed. In real applications, observations from different machines

may follow different distributions, but nevertheless share some common
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properties such as the extreme value index.

We assume that all observations are independent, but only observations

on the same machine follow the same distribution. Denote the common

distribution function of the observations in machine j as Fn,j, j = 1, . . . ,m.

We assume that, there exists a continuous function F which satisfies the

second order condition (2.2) with γ > 0. In addition, assume that the

series of constants {cn,j}1≤j≤m satisfies that 0 < c ≤ cn,j ≤ c̄ < ∞ for all

1 ≤ j ≤ m and n ∈ N, and A1(t) is a positive regularly varying function

with index ρ̃ < 0 such that as t → ∞,

sup
m∈N

max
1≤j≤m

∣∣∣∣1− Fn,j(t)

1− F (t)
− cn,j

∣∣∣∣ = O(A1(t)).

By restricting that
√
kmA1(n/k) → 0, Chen et al. (2022) gives a theo-

retical proof for the asymptotic theories of the distributed Hill estimator.

Following similar steps, we can also handle tail empirical processes and tail

quantile processes. The details are omitted.

Supplementary Material

The Supplementary Material contains all the technical proofs and simula-

tion studies.
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