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Abstract: Dynamic systems described by differential equations often involve feed-

back among system components. When there are time delays for components to

sense and respond to feedback, delay differential equation (DDE) models are

commonly used. This paper considers the problem of inferring unknown system

parameters, including the time delays, from noisy and sparse experimental data

observed from the system. We propose an extension of manifold-constrained

Gaussian processes to conduct parameter inference for DDEs, whereas the time

delay parameters have posed a challenge for existing methods that bypass numer-

ical solvers. Our method uses a Bayesian framework to impose a Gaussian process

model over the system trajectory, conditioned on the manifold constraint that

satisfies the DDEs. For efficient computation, a linear interpolation scheme is

developed to approximate the values of the time-delayed system outputs, along

with corresponding theoretical error bounds on the approximated derivatives.

Two simulation examples, based on Hutchinson’s equation and the lac operon

system, together with a real-world application using Ontario COVID-19 data,
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are used to illustrate the efficacy of our method.

Key words and phrases: Bayesian inference, dynamic systems, Hutchinson’s equa-

tion, lac operon, parameter estimation.

1. Introduction

Delay differential equations (DDEs) are commonly used to model dynamic

processes with time delays in ecology (Hutchinson, 1948), biology (Yildirim

and Mackey, 2003), and epidemiology (Ma et al., 2004). In this setting,

components of the system require time to respond to feedback, thereby

introducing time delay parameters into the model. For example, when

modeling disease transmission mechanisms, the system of DDEs could in-

corporate constant time delays to accommodate the incubation period of

the infectious disease (Ma et al., 2004). In models for gene regulation, the

time required for transcription and translation activities could be encoded

via time delay parameters (Yildirim and Mackey, 2003).

Our focus lies in models described by a set of DDEs,

dxi(t)/dt = fi {x(t),x(t− τ ),θ, t} , t ∈ [0, T ], i ∈ {1, · · · ,m}, (1.1)

where m is the number of system components and the vector x(t) =

(x1(t), x2(t), · · · , xm(t)) denotes the system output at time t. Here, we

let τ = (τ1, τ2, · · · , τm) denote the vector of time delay parameters for the
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system components (with τi = 0 if the i-th component does not involve a

time delay) and θ denote the l-dimensional vector of other unknown model

parameters. The term x(t − τ ) = (x1(t − τ1), x2(t − τ2), · · · , xm(t − τm))

refers to the time-delayed system output at time t− τ , or historical output

for short. In many applications, the m DDEs share the same vector of time

delay parameters (Glass et al., 2021), which we write as τ for simplicity of

notation throughout this paper; if there are equation-specific time delays,

we may instead write τ i = (τi,1, τi,2, . . . , τi,m) to denote the vector of time

delay parameters in the i-th equation.

In contrast to ordinary differential equations (ODEs), DDEs require in-

formation about the history of the system dynamics: we letHτi = {xi(t), t ∈

[−τi, 0]} denote the values of the i-th system component prior to t = 0. The

widely-used history function Hτi = {xi(t) = xi(0), t ∈ [−τi, 0]} is assumed

throughout this paper, which sets xi(t− τi) = xi(0) for all t ≤ τi (Yildirim

and Mackey, 2003; Ma et al., 2004; Bihorel, 2011; Wang and Cao, 2012;

Wang et al., 2022). The functions fi(·) : Rm × Rm × Rl × R → R are

treated as known from the scientific context. Due to experimental limi-

tations, data observed from the system are usually noisy and collected at

a discrete set of time points γ. Letting y(γ) denote the observations, we

assume y(γ) = x(γ) + ϵ(γ), where ϵ(γ) is Gaussian noise. The goal is to
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infer the unknown parameters in θ and τ given the observations y(γ).

Inferring parameters in differential equations (DEs) can be a difficult

task, as nonlinear systems tend to lack analytic solutions. Thus, the first

and oldest general category of methods for the parameter inference prob-

lem uses (deterministic) numerical solvers. Horbelt et al. (2002) minimized

the weighted sum of squares between the observed data and the model

trajectories with respect to the unknown parameters; this nonlinear least

squares (NLS) approach does not require distributional assumptions. A

likelihood-based approach, which estimates the parameters by maximizing

the likelihood function of the observed data given the numerical solution,

can be used (Bihorel, 2011). A corresponding Bayesian approach imposes

priors on the parameters and can use Markov chain Monte Carlo (MCMC)

samplers for inference (Boersch-Supan et al., 2017). While these numerical

solver-based methods are better known in the context of ODEs, they are

also generally applicable to DDE parameter inference with the help of a

numerical solver that supports DDEs (Bellen and Zennaro, 2013). Even

in the ODE setting, the repeated use of numerical solvers required for pa-

rameter estimation incurs a high computational cost. Numerically solving

DDE systems further requires an appropriate interpolation scheme for the

historical output; moreover, the historical output can reduce the stability of
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the system and introduce additional oscillations, so that the solver requires

smaller discretization time steps and higher computational cost. Even a sys-

tem that is stable when modeled with ODEs can become unstable with the

addition of a delay (Erneux, 2009). A simple DDE example is presented

in Section S1 and Figure 1 of the Supplementary Material, which illus-

trates the trajectory’s sensitivity to small variations in the delay parameter

and the increased cost of numerical solvers in the DDE setting. As noted

by Liang and Wu (2008), optimization-based algorithms using a numerical

solver (e.g., NLS) may only converge to local optima due to the sensitivity of

the numerical solution to the parameters and initial conditions. Therefore,

it is advantageous to consider methods that approximate the DE solution

and conduct parameter inference with the help of a statistical model.

Methods based on collocation and Gaussian processes encompass the

two main types of statistical approaches for DE inference without the use of

numerical solvers, which we subsequently review. Other related works in-

clude the recent development of Physics-Informed Neural Networks (PINNs)

in deep learning, which integrate physical laws into neural networks by

applying penalty terms to enforce differential equation constraints (Kar-

niadakis et al., 2021). However, unlike statistical approaches, PINNs fail

to properly quantify uncertainty in the estimated parameters and trajec-
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tories; while Bayesian PINNs have been proposed to partially address this

limitation (Yang et al., 2021), they nonetheless tend to be computationally

inefficient for inverse problems due to the complexity of training.

To bypass numerical solvers, the class of collocation methods approxi-

mates the DE solution via basis function expansion (Varah, 1982; Ramsay

et al., 2007; Wang and Cao, 2012; Wang et al., 2022). Introducing this idea

for ODEs, Varah (1982) used splines to first smooth the noisy data and then

in a second step applied least squares on the difference between the spline

derivative and the ODEs; doing so requires a relatively accurate estimate

of x(t) in the first step. Ellner et al. (1997) applied similar strategies for

the case of DDEs. Ramsay et al. (2007) pioneered a generalized profiling

procedure for ODEs, wherein the model parameters and spline coefficients

are optimized together using a penalized likelihood, to achieve a balance

between data fitting and fidelity to the ODE. Extending this approach to a

semiparametric method for inference of DDEs, Wang and Cao (2012) used

cross-validation to choose the smoothing parameter in the penalized likeli-

hood and noted that a denser set of knots may be needed to handle sharp

changes and oscillations in the DDE solution. Subsequently, Wang et al.

(2022) proposed a more comprehensive Bayesian approach to collocation for

ODE and DDE models, and developed an annealed sequential Monte Carlo
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(SMC) algorithm to draw posterior samples. By treating the smoothing

parameter as part of the posterior distribution, the method of Wang et al.

(2022) avoids the potential drawbacks of over-fitting and expensive com-

putation associated with cross-validation, and might be regarded as the

state-of-the-art collocation-based inference method for DDEs.

Within a Bayesian framework, Gaussian processes (GPs) can serve as an

alternative to collocation methods. For ODE inference, GP-based methods

begin by placing a GP prior with hyper-parameters ϕ on x(t), which gives a

closed form of the conditional distribution of x′(t) given x(t) to help bypass

numerical solvers (Calderhead et al., 2008; Dondelinger et al., 2013; Wenk

et al., 2019; Yang et al., 2021). The earliest GP-based method used gradient

matching together with heuristics to combine the GP and ODE specifica-

tions (Calderhead et al., 2008); an application to DDEs was also considered,

but in practice would require numerical solvers for the delay parameters.

Subsequent refinements to GP gradient matching (e.g., Dondelinger et al.,

2013; Wenk et al., 2019) nonetheless did not resolve the incompatible spec-

ification of x′(t) between the GP (via p {x′(t)|x(t), ϕ}) and the ODEs (via

the functions fi). To address this incompatibility, Yang et al. (2021) pro-

posed the manifold-constrained Gaussian process inference (MAGI) method

for ODEs. In contrast to gradient matching, MAGI explicitly conditions
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x(t) on the manifold that satisfies the ODEs, thereby providing a coherent

Bayesian framework for inference. MAGI demonstrated accurate parame-

ter estimation and fast computation speed on sparse and noisy data; Wong

et al. (2023) further showcased the promising performance of MAGI on a

larger ODE model with 10 components and 16 unknown parameters. It is

however challenging to incorporate historical outputs for DDEs into GP-

based methods, since system outputs at a non-fixed set of time points are

required (as τ is random), which is computationally demanding due to the

covariance structure of GPs. Historical outputs pose a similar challenge

for probabilistic ODE solvers that employ fixed time steps (Tronarp et al.,

2022; Wu and Lysy, 2024). To the best of our knowledge, the use of GPs

to facilitate parameter inference for DDEs, without any numerical solvers,

remains to be explored.

Therefore, as the main contribution of this paper, we develop method-

ology that extends the MAGI GP-based framework to DDEs, given its prin-

cipled Bayesian construction and favorable performance on ODEs. The key

challenge is to incorporate historical outputs of DDEs into the GP manifold

constraints, while achieving fast computation speed and estimation accu-

racy. We tackle this challenge by employing a linear interpolation scheme

that only involves sparse matrix computations and simplifies the formula-
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tion of the manifold constraints. Theoretical error bounds for the resulting

x′(t) along with numerical validations are provided to justify the approx-

imation. Our proposed method, MAnifold-constrained Gaussian process

inference for delay differential equations (MAGIDDE), is applied to simu-

lated and real data examples. We obtain fast and accurate inference for

the parameters and system trajectories, compared to other representative

methods for DDE inference. The R package and code and that provide

our method implementation for the examples in this paper are available at

https://github.com/YuxuanZhao1/magidde.

2. Review of the MAGI method for ODE inference

In this section, we review the MAGI method (Yang et al., 2021) as applied

to parameter inference for ODEs. In the ODE setting, (1.1) reduces to

dxi(t)/dt = fi {x(t),θ, t}, i = 1, . . . ,m, or dx(t)/dt = f {x(t),θ, t} in

vector form. MAGI imposes an independent GP prior on each component

xi(t) such that

xi(t) ∼ GP(µi,Ki), t ∈ [0, T ], (2.1)

where Ki : R×R → R is a positive definite covariance kernel and µi : R → R

is the mean function, usually taken to be µi(t) ≡ 0. Let π(·) generically

denote the prior on the model parameters θ.
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The data consist of the noisy observations y(γ) = (y1(γ1), · · · ,ym(γm)),

where γ = (γ1, · · · ,γm) denotes the collection of observation time points

for each component, i.e., component i is observed at the Ni time points

γi = (γi,1, · · · γi,Ni
). Assume that the observed data yi(γi) are subject to

additive Gaussian noise, i.e.,

yi(γi) = xi(γi) + ϵi(γi), ϵi(γi) ∼ N(0, σ2
i INi

), (2.2)

where INi
is an Ni×Ni dimensional identity matrix. (The notation t is used

to represent time generically, while γ denotes the observation time points.)

With a suitably chosen Ki, the conditional distribution of x′(t) given

x(t) is also a GP with a fully specified mean function and covariance kernel.

To link this GP-specified distribution of x′(t) with the ODE model struc-

ture, define W as a random variable measuring the uniform deviation be-

tween the stochastic process and ODE, i.e., W = supt∈[0,T ],i∈{1,··· ,m}
∣∣x′

i(t)−

fi {x(t),θ, t}
∣∣. Setting W = 0 thus constrains the GP to lie on the man-

ifold that satisfies the ODEs. In practice, W needs to be approximated

by taking the uniform deviation over a finite set of n discretization points

I = {t1, · · · , tn}, so we define WI = maxt∈I,i∈{1,··· ,m}
∣∣x′

i(t)−fi {x(t),θ, t}
∣∣,

with γ ⊂ I ⊂ [0, T ]. The key idea is to then condition the GP on the

manifold constraint W = 0, as approximated by setting WI = 0. Follow-

ing a Bayesian framework, the computable joint posterior of θ and x(I)
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conditional on WI = 0 and the noisy measurements y(γ) is given by

p {θ,x(I)|WI = 0,y(γ)} ∝ p {θ,x(I),WI = 0,y(γ)}

=π(θ)× p {x(I)} × p {y(γ)|x(I)} × p [x′(I) = f {x(I),θ, I} |x(I)] .
(2.3)

A brief description of these four terms follows, with details of the closed

forms for each term in (2.3) provided in Section S2 of the Supplementary

Material. The prior density of the model parameters is π(θ). As any finite

collection of random variables from the GP x(t) defined in (2.1) follows a

multivariate normal distribution, p {x(I)} is multivariate normal. Accord-

ing to (2.2), p {y(γ)|x(I)} is the normal likelihood of the noisy observations.

The last term evaluates the GP x′(I) at x′(I) = f {x(I),θ, I} to satisfy

WI = 0, and hence is also multivariate normal.

Hamiltonian Monte Carlo (HMC, Neal, 2011) is used to draw samples

of θ and x(I) from (2.3). Denser discretization sets I may provide more

accurate inference as the manifold constraint is better approximated, at the

cost of computation time. Yang et al. (2021) notes that as the cardinality

|I| increases, the terms involving the GP prior in (2.3), namely p {x(I)}

and p [x′(I) = f {x(I),θ, I} |x(I)], will become more dominant, while the

likelihood remains unchanged, i.e., only the points in the observation set

γ contribute to the likelihood term p {y(γ)|x(I)}. To achieve a balance

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0213



between the likelihood and GP prior, a tempering hyper-parameter β =

m|I|/
∑m

i=1 |γi| is introduced, i.e., the ratio between the total number of

discretization points and the total number of observations. The GP-related

terms are then tempered as (p {x(I)} × p [x′(I) = f {x(I),θ, I} |x(I)])1/β.

3. Methodology

Our main contribution is the MAGIDDE method which provides fast and

accurate inference for DDEs, built upon the MAGI inference framework.

To fix ideas, we begin by considering a fully Bayesian construction that

incorporates the time-delay parameters τ and historical outputs x(t − τ )

into the posterior distribution. A key challenge that becomes apparent is

that the historical outputs are not directly available and require a compu-

tationally intensive sampling step. To address this challenge, we consider

two approximation schemes and derive their corresponding theoretical error

bounds. Our practical implementation of MAGIDDE uses a linear interpo-

lation scheme for the historical outputs, which results in a computationally

efficient method that maintains estimation accuracy.
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3.1 Fully Bayesian Scheme

3.1 Fully Bayesian Scheme

We first consider a fully Bayesian scheme that extends MAGI to the DDE

setting. To incorporate the time-delay parameters, we place a general prior

π(·) on τ and define WI = maxt∈I,i∈{1,··· ,m} |x′
i(t)−fi {x(t),x(t− τ ),θ, t} |.

The full posterior distribution then consists of θ, τ ,x(I),x(I − τ ) and can

be written as

p {θ, τ ,x(I),x(I − τ )|WI = 0,y(γ)} ∝ p {θ, τ ,x(I),x(I − τ ),WI = 0,y(γ)} ,

(3.1)

where x(I − τ ) = (x1(I − τ1), · · · ,xm(I − τm)), and each xi(I − τi) =

(xi(t1 − τi), · · · , xi(tn − τi))
⊤.

Factorizing (3.1) yields

p {θ, τ ,x(I),x(I − τ ),WI = 0,y(γ)} = π(θ)× π(τ )︸ ︷︷ ︸
(1)

× p {x(I − τ ),x(I)|θ, τ}︸ ︷︷ ︸
(2)

× p {y(γ)|x(I − τ ),x(I),θ, τ}︸ ︷︷ ︸
(3)

× p {WI = 0|y(γ),x(I − τ ),x(I),θ, τ}︸ ︷︷ ︸
(4)

.

Due to the prior independence between the GP and parameters in θ, the

second term simplifies as p {x(I),x(I − τ )|τ}. Likewise, the likelihood

of the noisy observations at time points γ does not depend on θ, τ , and

x(I − τ ), so the third term simplifies to p {y(γ)|x(I)}. For the fourth

term, after substituting the definition of WI = 0, the resulting density of
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3.1 Fully Bayesian Scheme

x′(I) depends on x(I), x(I − τ ), and τ . Hence, we obtain

p {θ, τ ,x(I),x(I − τ ),WI = 0,y(γ)} = π(θ)× π(τ )︸ ︷︷ ︸
(1)

× p {x(I − τ ),x(I)|τ}︸ ︷︷ ︸
(2)

× p {y(γ)|x(I)}︸ ︷︷ ︸
(3)

× p [x′(I) = f {x(I),x(I − τ ),θ, I} |x(I − τ ),x(I), τ ]︸ ︷︷ ︸
(4)

.

The first term is the prior density of the parameters θ and τ . For the

second term, the joint distribution of xi(I − τi) and xi(I) given τi for the

i−th component is multivariate normal from the GP prior for xi(t), i.e.,

xi(I − τi),xi(I)|τi ∼ N
{(

µi(I−τi)
µi(I)

)
,
(

Ki(I−τi,I−τi) Ki(I−τi,I)
Ki(I,I−τi) Ki(I,I)

)}
, (3.2)

where µ(I − τi), Ki(I − τi, I − τi) and Ki(I, I − τi) respectively represent

the mean function at I − τi, covariance matrix of xi(I − τi) and cross-

covariance matrix between xi(I) and xi(I − τi). The third term is the

normal likelihood of the noisy observations. The fourth term evaluates the

density of x′(I) at f {x(I),x(I − τ ),θ, I}, and by the property of GPs

x′(I)|x(I − τ ),x(I), τ has a multivariate normal distribution, provided

the covariance kernel K is associated with twice-differentiable curves, i.e.,

x′
i(I)|xi(I−τi),xi(I), τi ∼ N

[
µ′

i(I) +mi

{(
xi(I−τi)
xi(I)

)
−
(

µi(I−τi)
µi(I)

)}
, ζi

]
,

(3.3)

wheremi = ( ′Ki(I,I−τi)
′Ki(I,I) )

(
Ki(I−τi,I−τi) Ki(I−τi,I)
Ki(I,I−τi) Ki(I,I)

)−1

, and ζi = K′′
i (I, I)−

mi

(
K′

i(I−τi,I)

K′
i(I,I)

)
with ′Ki =

∂
∂s
Ki(s, t),K′

i =
∂
∂t
Ki(s, t), and K′′

i = ∂2

∂s∂t
Ki(s, t)

for any two time points s and t.
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3.1 Fully Bayesian Scheme

In practice, we suggest using the Matern class where the covariance

of the i-th component between time points s and t is given by Ki(s, t) =

ϕi,1
21−ν

Γ(ν)

(√
2ν d

ϕi,2

)ν

Bν

(√
2ν d

ϕi,2

)
, where d = |s− t|, Γ is the Gamma func-

tion, Bν is the modified Bessel function of the second kind, and ν is the

degree of freedom. Reasonable values are ν = 2.01 or 2.5 to satisfy the

requirement of twice-differentiable curves; ν = 2.01 is a good default choice

that is suitable for rougher curves, while ν = 2.5 is adequate for smoother

curves and has faster computation speed (Wong et al., 2024). Ki(s, t) has

two hyper-parameters, ϕi,1 and ϕi,2, that respectively control the overall

variance and bandwidth of the i-th component.

However, sampling the historical outputs from the conditional distribu-

tion in (3.2) (and subsequently x′
i(I) from (3.3)) is a computational bot-

tleneck, as recalculation of cross-covariances and the conditional covariance

matrix ζi is required each time the value of τi is updated. Thus in what

follows, we describe two schemes for approximating x(I − τ ): conditional

expectation and linear interpolation. For both schemes, we construct the

approximation and derive theoretical error bounds for the derivatives of the

system outputs.
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3.2 Approximation of Historical Outputs

3.2 Approximation of Historical Outputs

To reduce the computational cost of the fully Bayesian scheme, we consider

deterministic approximations for x(I − τ ) in terms of x(I) and τ . Let

x̂(I − τ ) denote the approximated values of the historical outputs. By

dropping the explicit dependence on x(I − τ ) in (3.1) and treating it as

known, the factorization of the joint posterior simplifies to

p {θ, τ ,x(I)|WI = 0,y(γ)} ∝p {θ, τ ,x(I),WI = 0,y(γ)}

=π(θ)× π(τ )× p {x(I)|θ, τ} × p {y(γ)|x(I),θ, τ}

×p [x′(I) = f {x(I),x(I − τ ),θ, I} |y(γ),x(I),θ, τ ] .

Then, using the previous conditional independence properties and substi-

tuting the approximation x̂(I − τ ) for x(I − τ ) yields

p {θ, τ ,x(I)|WI = 0,y(γ)} ∝ π(θ)× π(τ )× p {x(I)} × p {y(γ)|x(I)}

× p [x′(I) = f {x(I), x̂(I − τ ),θ, I} |x(I), τ ] . (3.4)

A first approximation scheme for x(I−τ ) is via conditional expectation.

Specifically, E {xi(I − τi)|xi(I)} stands as a natural candidate to approx-

imate xi(I − τi), since it is the best linear predictor and has a closed-form

expression (Wang et al., 2020). Thus, we have the approximation

x̂i(I−τi) = E {xi(I − τi)|xi(I)} = µi(I−τi)+Ki(I, I−τi)Ki(I, I)
−1 {xi(I)− µi(I)} .

(3.5)
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3.2 Approximation of Historical Outputs

A second approximation scheme for x(I − τ ) uses linear interpolation.

Define the interpolated weight w(t) =
∑n−1

j=1 1(t ∈ [tj, tj+1])× t−tj
tj+1−tj

, where

1(·) is the indicator function. Then a linearly interpolated value of the i-th

component at any t ∈ {I − τi} is given by

x̂i(t) =
n−1∑
j=1

1(t ∈ [tj, tj+1])×{(1− w(t))× xi(tj) + w(t)× xi(tj+1)} . (3.6)

(3.6) can be written in matrix form. Define a n× n scalar matrix Si with

its (j, q)-th entry given by

Si(j, q) =


1− w(tj − τi) for j ∈ {1, · · · , n}, q = k(tj − τi)

w(tj − τi) for j ∈ {1, · · · , n}, q = k(tj − τi) + 1

0 otherwise

where k(tj − τi) denotes the integer c ∈ {1, · · · , n} satisfying tj − τi ∈

[tc, tc+1]. Then (3.6) can be rewritten as x̂i(I − τi) = Si · xi(I).

Note that both approximation schemes can be viewed as a determin-

istic linear transformation of x(I). Given the history function Hτi , the

approximation schemes are only applied to the historical output xi(t − τi)

for t ∈ I where t > τi, as we have xi(t− τi) = xi(0) for t ≤ τi. Conditional

expectation eliminates the need to work with the full covariance matrix of

(xi(I−τi),xi(I))
⊤ and draw samples of xi(I−τi) from the larger joint pos-

terior in (3.1). However, it still requires computation of the cross-covariance

Ki(I, I−τi) and dense matrix multiplication. The computation cost can be
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substantively reduced further using linear interpolation, as then only sparse

matrix (Si) operations are needed.

We next investigate the approximation error of f {x(I), x̂(I − τ ),θ, I}

under the two proposed schemes. It suffices to find the stochastic er-

ror bound for any i ∈ {1, · · · ,m}, of maxt∈I

∣∣∣∣fi {x(t),x(t− τ ),θ, t} −

fi {x(t), x̂(t− τ ),θ, t}
∣∣∣∣.Under some mild differentiability conditions (listed

in Section S3 of the Supplementary Material), we have Theorems 1 and 2,

with proofs provided in S4 and S5 of the Supplementary Material. These

results guarantee that the approximation fi {x(t), x̂(t− τ ),θ, t} will be rea-

sonable under either scheme, given that |I| is sufficiently large.

Theorem 1. Suppose xi(t) is a GP with mean function µi(t) and Matern

covariance kernel Ki with ν ∈ {2.01, 2.5}, for i = 1, · · · ,m, and that the

n points in the discretization set I are equally-spaced over [0, T ]. If the

values of the historical outputs are approximated by conditional expectation

as described in (3.5), then for any i ∈ {1, · · · ,m},

max
t∈I

∣∣∣∣fi {x(t),x(t− τ ),θ, t}−fi {x(t), x̂(t− τ ),θ, t}
∣∣∣∣ = OP

[
{log(n)}

1
2 n−ν

]
.

Theorem 2. Consider the same setup as in Theorem 1. If the values of

the historical outputs are approximated by linear interpolation as described
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in (3.6), then for any i ∈ {1, · · · ,m},

max
t∈I

∣∣∣∣fi {x(t),x(t− τ ),θ, t}−fi {x(t), x̂(t− τ ),θ, t}
∣∣∣∣ = OP

[
{log(n)}

1
2 n−1.5

]
.

Remark 1. Theorems 1 and 2 assume an equally-spaced discretization set

for I. While the MAGIDDE method does not require an equally-spaced I,

these results suggest that a good practical guideline is to choose an equally-

spaced (or approximately equally-spaced) set that includes the observation

times.

Remark 2. ν controls the level of smoothness of the Matern covariance;

larger values of ν provide smoother covariance functions. If the degree of

freedom in the Matern covariance kernel is set as ν = 1.5, the rate of con-

vergence of fi {x(t), x̂(t− τ ),θ, t} will be similar whether we approximate

the historical outputs by linear interpolation or conditional expectation.

Noting that MAGIDDE chooses ν ∈ {2.01, 2.5}, Theorems 1 and 2 indicate

that the conditional expectation scheme has a faster convergence rate than

linear interpolation.

Remark 3. If τ in (1.1) is replaced by an equation-specific vector of time-

delay parameters τ i = (τi,1, τi,2, . . . , τi,m) for the i-th DDE, the results of

Theorems 1 and 2 on maxt∈I

∣∣∣∣fi {x(t),x(t− τ i),θ, t}−fi {x(t), x̂(t− τ i),θ, t}
∣∣∣∣

still hold under the same differentiability conditions, by simply substituting
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τ with τ i.

Remark 2 suggests a trade-off between the faster theoretical convergence

rate of conditional expectation and faster computation speed of linear in-

terpolation. We numerically validate and compare the performance of the

three schemes on a benchmark system in Section S6 of the Supplementary

Material, using |I| = {16, 31, 61, 121} to illustrate. The results (Table 1,

Figures 2 and 3 in the Supplementary Material) indicate that linear in-

terpolation has a significant speed advantage over the other schemes and

yields comparable estimates of parameters and trajectories when |I| is large

enough, hence is our preferred choice in practice.

3.3 Practical Implementation

The practical steps to implement the MAGIDDE method with the linear

approximation scheme are as follows. We begin by initializing the required

parameter and hyper-parameter values needed for HMC sampling. First, we

fit a GP to the noisy observations y(γi) for each component i. If the noise

level σ2
i is unknown, we obtain values of ϕi,1, ϕi,2 and σ2

i by maximizing the

marginal likelihood p {ϕi,1, ϕi,2, σ
2
i |y(γi)}; if σ2

i is known, we maximize the

marginal likelihood p {ϕi,1, ϕi,2|y(γi)} instead. The obtained values of the

covariance hyper-parameters ϕi,1 and ϕi,2 are held fixed during subsequent
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HMC sampling, as in Yang et al. (2021). Second, we use the observations

y(γ) as the starting value of x(γ) for HMC sampling, and x(I) for time

points in I\γ is initialized at the mean of the GP fit to the noisy obser-

vations. Third, we optimize the posterior in (3.4) with respect to θ and τ

(holding other quantities fixed at their initialized values) to provide their

corresponding starting values for HMC sampling. Recall that under the

approximation scheme, it is not necessary to explicitly initialize x̂(I − τ ),

since it can be viewed as a function of τ and x(I).

We then proceed to jointly sample x(I), together with unknown pa-

rameters in θ, τ , and σ2 from their posterior distribution (3.4) using HMC

(Neal, 2011). Recall that we fix the GP hyper-parameters and use the tem-

pering scheme described in Section 2 to balance the contributions of the GP

prior and likelihood during HMC sampling. Our implementation of HMC

adjusts the step sizes of the leapfrog integrator automatically during the

burn-in phase to ensure that the acceptance rate falls within the range of

60% to 90%. After discarding the samples from the burn-in period, the

posterior means of θ and τ are treated as the parameter estimates. We

call the posterior mean of x(I) the inferred trajectory, which represents our

estimate of the system trajectory. The uncertainties of θ, τ , and x(I) are

quantified via 95% pointwise credible intervals.
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An important practical consideration is the choice of discretization set I

for computation. As a qualitative rule-of-thumb, I should be dense enough

to infer a smooth trajectory for the system. In cases where this is not

immediately apparent, we can follow the guideline suggested by Wong et al.

(2024): start with the smallest equally-spaced set I0 that contains the

observation time points γ; then, construct Ij ⊃ Ij−1, j ≥ 1 by inserting one

equally-spaced point between each adjacent pair of points in Ij and re-run

MAGIDDE, and stop when stable estimates are obtained (i.e., the credible

intervals based on Ij and Ij−1 largely overlap). Moreover, MAGIDDE

provides a natural way to generate future predictions: by extending I to

include time points beyond the last observation in γ, the samples of x(I) for

{t ∈ I | t > max(γ)} constitute the model predictions for the future time

points. Examples that illustrate these aspects of choosing I are provided

in Sections S7 and S11.4 of the Supplementary Material.

4. Simulation Studies

We assess the performance of MAGIDDE and compare with other repre-

sentative methods for DDE inference, using Hutchinson’s equation (May,

1976) as a benchmark system in Section 4.1. To further demonstrate the

capability of MAGIDDE to handle more complex models, we consider the
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lac operon system of Yildirim and Mackey (2003) in Section 4.2.

4.1 Benchmark System

As a benchmark system, we focus on parameter inference for Hutchinson’s

equation to evaluate the estimation accuracy of different methods under

varying observation sample sizes. Hutchinson’s equation was proposed for

modelling single-species population dynamics, and May (1976) introduced

the following DDE for the population size of blowflies (Nicholson, 1954),

dP (t)/dt = rP (t)× {1− P (t− τ)/(1000×K)} , where P (t) is the popula-

tion size at time t, r is the reproduction rate, τ is a time delay, and 1000×K

is the maximum population sustainable by the limited food supply. A noisy

observation taken at time t is assumed to follow a lognormal distribution

with mean P (t) and variance σ2 (Wang et al., 2022). Since blowfly counts

are strictly positive, we consider a logarithmic transformation by defining

P (t) = exp{N(t)}. Then, the log-transformed DDE is

dN(t)/dt = r × [1− exp {N(t− τ)} /(1000×K)] , (4.1)

and we can equivalently estimate r, K and τ in (4.1) based on the noisy

observations y(t) ∼ N {N(t), σ2} for t ∈ γ. Following Wang et al. (2022),

we set the true values of the parameters (θ, τ ) = (r,K, τ) = (0.8, 2, 3), the

initial condition on the log-scale as N(0) = log(3500), the noise level σ =
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0.1, and the history function Hτ = {N(t) = N(0), t ∈ [−τ, 0]}. We take the

time interval of interest as t ∈ [0, 30] (Wang and Cao, 2012), and consider

scenarios with |γ| = 16, 31, 61, and 121 equally-spaced observations. To

create the simulation data, the R package ‘deSolve’ (Soetaert et al., 2010)

is used to numerically solve the DDE trajectories as defined by (4.1).

We note that even for this simple DDE system, the NLS approach

with a numerical solver often yields incorrect parameter estimates, because

of convergence to local optima (as noted in the Introduction). The pres-

ence of local optima is associated with the numerical solution’s sensitivity

to the parameter values (especially the time delay τ , see Figure 1 in the

Supplementary Material) and initial condition. Running multiple tries of

NLS from different starting parameter values can only partially mitigate

the convergence issues, and becomes computationally inefficient compared

to model-based inference methods; see Supplementary Material S8.3 for a

detailed analysis of this system using NLS. This suggests the NLS approach

may not be recommended even for inferring simple DDE systems.

We compare MAGIDDE with two other representative methods for

DDE inference: the ‘deBInfer’ R package and the semiparametric Bayesian

collocation method (SMCDE, Wang et al., 2022). We describe these meth-

ods and how they are run to conduct parameter inference for each simulated
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dataset in Supplementary Material S8.1. We use two metrics to assess the

performance of a given method. First, we calculate the root mean square

error (RMSE) of the estimated parameters relative to the truth. Second,

following Yang et al. (2021), we also calculate the trajectory RMSE to assess

the accuracy of the system trajectory implied by the parameter estimates.

The trajectory RMSE is computed by the following steps: first, we use

a numerical solver to construct the true trajectory based on the true pa-

rameter values and history function; then, we use the numerical solver to

reconstruct the trajectory implied by the estimates of the parameters and

history function. Last, we calculate the RMSE between the true trajec-

tory and the reconstructed trajectory at the observation time points on the

original scale of the measurements.

For each of the three methods, we compute the RMSEs of the pa-

rameters and reconstructed trajectories, as summarized in Table 1 based

on 300 simulated datasets. Further discussion of these results, along with

boxplots of the parameter estimates and trajectory RMSEs for each indi-

vidual dataset, are provided in Supplementary Material S8.2. MAGIDDE

consistently outperforms the other two methods in terms of recovering the

trajectory and parameters with lower error. Sparse observations do not

inherently pose a problem for MAGIDDE, since the accuracy of the linear
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approximation scheme depends on the number of discretization points, and

not the number of observations. To visualize the quality of the inferred

trajectories, Figure 1 shows that MAGIDDE well-recovers the true under-

lying trajectory in the sparse 16 observation scenario; the 95% pointwise

credible interval becomes narrower for scenarios with denser observations,

e.g., Figure 9 in Supplementary Material S9 shows the corresponding plot

for 61 observations. MAGIDDE is also the fastest of the three methods;

while SMCDE is reasonably fast, deBInfer is an order of magnitude slower

due to its dependence on the numerical DDE solver.

0

2500

5000

7500

0 10 20 30
Time

P

Mean of inferred trajectories Truth 95% credible interval

Figure 1: Inferred trajectory of Hutchinson’s equation from 16 observa-
tions using MAGIDDE. The solid line represents the mean inferred trajec-
tory over 300 simulated datasets, and the dashed line is the truth. The
shaded area is the 95% pointwise credible interval, constructed by taking
the average 0.025 and 0.975 quantiles of the inferred trajectories across the
simulated datasets.
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Table 1: Average parameter estimates (with RMSEs in parentheses) for the
log-transformed Hutchinson’s equation and average trajectory RMSEs over
the 300 simulated datasets. The last column gives the average runtime (in
minutes, on a single CPU core).

|γ| Method r K τ N(0) σ Trajectory Runtime (min.)

16 MAGIDDE 0.80(< 0.01) 2.00(0.07) 3.00(0.01) 8.16(0.04) 0.11(0.02) 154.33 0.43

deBInfer 0.74(0.26) 1.79(0.62) 2.72(0.81) 8.04(0.33) 0.13(0.05) 618.48 14.4

SMCDE 0.70(0.10) 2.01(1.08) 3.14(0.15) 8.14(0.10) 0.16(0.06) 1376.95 1.55

31 MAGIDDE 0.80(< 0.01) 2.00(0.05) 3.00(0.01) 8.16(0.03) 0.10(0.01) 126.11 0.43

deBInfer 0.75(0.25) 1.81(0.60) 2.75(0.79) 8.01(0.45) 0.13(0.05) 591.18 19.1

SMCDE 0.76(0.05) 2.01(0.14) 2.96(0.07) 8.15(0.10) 0.16(0.06) 1233.87 1.99

61 MAGIDDE 0.80(< 0.01) 2.00(0.04) 3.00(0.01) 8.16(0.02) 0.10(0.01) 101.62 0.44

deBInfer 0.76(0.23) 1.83(0.55) 2.78(0.77) 7.99(0.42) 0.13(0.05) 598.99 27.0

SMCDE 0.76(0.04) 2.00(0.06) 2.94(0.07) 8.15(0.09) 0.16(0.06) 1363.14 2.76

121 MAGIDDE 0.80(< 0.01) 2.00(0.02) 3.00(0.01) 8.16(0.02) 0.10(0.01) 61.34 1.16

deBInfer 0.74(0.25) 1.79(0.61) 2.72(0.89) 7.96(0.54) 0.13(0.05) 662.11 38.9

SMCDE 0.77(0.04) 2.00(0.03) 2.94(0.07) 8.14(0.08) 0.16(0.06) 1325.22 3.91

4.2 Lac Operon System

Among previous methods for DDE inference, performance was typically

assessed using simple DDE models with only one or two components with

four or fewer parameters to be estimated (Wang and Cao, 2012; Dondelinger

et al., 2013; Wang et al., 2022), e.g., Hutchinson’s equation. In this sec-

tion, we showcase MAGIDDE’s capability to perform inference for a more

complex DDE model with a larger number of parameters. The setup is

sufficiently challenging such that the NLS approach struggles to converge
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to reasonable parameter values and the associated computational burden of

using the numerical solver becomes prohibitive; see Supplementary Material

S10.3 for a detailed investigation of this model using NLS.

The lac operon is a well-studied gene expression system that enables

bacteria to use lactose as an energy source when glucose is scarce (Pardee

et al., 1959). Yildirim and Mackey (2003) modelled the regulation of induc-

tion in the lac operon in Escherichia coli via the following system of DDEs

to describe the dynamics among five components, where β-galactosidase

(B) converts intracellular lactose (L) into allolactose (A), which allows

DNA transcription and mRNA (M) translation to increase the levels of

β-galactosidase (B) and permease (P ):

M ′(t) = αM ×
[
1 +K1 {e−µτMA(t− τM)}n

K +K1 {e−µτMA(t− τM)}n
]
+ Γ0 − (γM + µ)M(t)

B′(t) = αBe
−µτBM(t− τB)− (γB + µ)B(t)

A′(t) = αAB(t)
L(t)

KL + L(t)
− βAB(t)

A(t)

KA + A(t)
− (γA + µ)A(t)

L′(t) = αLP (t)
Le

KLe + Le

− βL1P (t)
L(t)

KL1 + L(t)
− βL2B(t)

L(t)

KL + L(t)
− (γL + µ)L(t)

P ′(t) = αP e
−µ(τB+τP )M {t− (τB + τP )} − (γP + µ)P (t)

.

Our goal is to estimate the time-delay parameters τB, τM , τP (which repre-

sent time required for transcription and translation), the model parameters

γA, αM , αB, αP , µ, and the initial conditions; other parameters are treated

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0213



4.2 Lac Operon System

as known. We simulate observations from the system at the collection of 23

unevenly-spaced time points γ = {0, 0.25, 0.5, · · · , 2, 3, 4, · · · , 10, 12, 14, · · · , 20, 25}.

To mimic noisy measurements, we add Gaussian noise with standard devi-

ation σM = 3× 10−5, σB = 1× 10−5, σA = 0.02, σL = 0.01, σP = 5× 10−4 to

the model trajectories of each component, which we assume to be known

from repeated measures. Further scientific background of the system, choice

of parameters to estimate and observation times, and a list of all the pa-

rameters and their corresponding values from Yildirim and Mackey (2003)

are provided in Supplementary Material S10.1.

We generate 100 simulated datasets based on the above setup for the

lac operon system. We provide the implementation details of MAGIDDE in

Section S10.2 of the Supplementary Material. Table 2 summarizes the av-

erage parameter estimates and standard deviations across the 100 simulated

datasets. MAGIDDE provides reasonable estimates of τB, τP , γA, αM , αB, αP ,

in terms of relatively low standard deviation and bias. However, τM tends

to be overestimated, while µ tends to be underestimated, and both have a

high standard deviation. A possible reason is that the observation set is not

dense enough to capture the short time-delay of 0.1. Moreover, µ is closely

related to τM as the product µ× τM appears in the exponential in the first

equation of the system. Indeed, the product of the estimated µ and τM is
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0.0032, which is relatively close to the true value of 0.0043.

Table 2: Average parameter estimates using MAGIDDE (with standard de-
viation after ± sign) for the lac operon model across 100 simulated datasets.

Parameter Truth Estimate Parameter Truth Estimate Parameter Truth Estimate

τB 2 2.0024± 0.3074 αB 0.0166 0.0143± 0.0011 A(0) 0.038 0.0319± 0.0124

τM 0.1 0.2990± 0.1275 αP 10 9.6792± 0.3904 L(0) 0.372 0.4018± 0.0131

τP 0.83 0.8283± 0.3063 µ 0.0226 0.0144± 0.0071 P (0) 0.0149 0.0143± 0.0004

γA 0.52 0.4916± 0.0255 102 ×M(0) 0.0626 0.0630± 0.0014

102 × αM 0.0997 0.0985± 0.0032 103 ×B(0) 0 0.0018± 0.0014
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Figure 2: Inferred trajectories obtained by MAGIDDE for each compo-
nent of the lac operon system over 100 simulated datasets. The solid line
is the mean of the inferred trajectories. The shaded area represents the
corresponding 95% pointwise credible interval, which is constructed by av-
eraging the 0.025 and 0.975 quantiles of the inferred trajectories across the
simulated datasets. The dots indicate the true model trajectory at the ob-
servation time points, which are unevenly spaced and relatively sparse for
the last 15 minutes.

Figure 2 shows the mean inferred trajectories and 95% pointwise cred-

ible intervals obtained by MAGIDDE across the 100 simulated datasets,
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which indicate that our method can reliably recover the trajectories for

the five components. Most of the true model outputs are well-covered by

the narrow interval, except for a few data points from the L and P com-

ponents during the first half minute. The 95% credible intervals for the

L component look different from the other four components, in terms of

having a more “bumpy” shape; this is due to a small estimated GP band-

width hyper-parameter (ϕ2) to accommodate the sharp increase from the

first observation point. The small GP bandwidth in the L component in

turn leads to greater uncertainty in its estimated trajectory at discretization

time points that are farther away from observations.

5. Application

This section applies MAGIDDE to estimate the parameters of a time-

delayed compartmental model using COVID-19 data from Ontario, Canada.

Omicron was the dominant variant in Ontario as of January 2022, and our

focus is to infer the parameters for the Omicron variant over the 30-day

observation period from January 24 to February 22, 2022, during the peak

of the Omicron wave. To account for the disease incubation period, a

time-delay parameter can be introduced to the basic SIR model (Ma et al.,

2004). Inspired by Ma et al. (2004), we adapt their delayed SIR model

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0213



to accommodate the Ontario COVID-19 data of interest. First, we add a

new compartment D to directly model the death counts associated with

COVID-19. Second, we represent the population in each compartment as

proportions. Third, we ignore natural birth and death rates since only a

short time period is considered. This leads to our DDE system of interest

as follows: 

S ′(t) = −β̃S(t)I(t− h)

I ′(t) = β̃S(t)I(t− h)− µdI(t)− λI(t)

R′(t) = λI(t)

D′(t) = µdI(t)

, (5.1)

where β̃ is the normalized disease transmission rate that governs the flow

from the susceptible (S) to the infected (I) compartment, µd represents

the death rate of infected individuals, and h is the time-delay accounting

for the incubation period of the disease (in days), λ is the recovery rate

that governs the flow from I to the recovered (R) compartment. Since

1 = S(t)+I(t)+R(t)+D(t), we drop the S ′(t) equation as it suffices to model

(I, R,D) and recover S using this relationship. In Sections S11.1–S11.3 of

the Supplementary Material, we describe the data processing steps to obtain

noisy observations of the daily population size in the compartments along

with other implementation details.
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Table 3: Estimated parameters obtained by MAGIDDE for the time-
delayed SIRD model, with 95% credible intervals, based on Ontario COVID-
19 data from January 24 to February 22, 2022.

Parameter Estimate 95% CI Parameter Estimate 95% CI Parameter Estimate 95% CI

β̃ 0.0254 (0.0227, 0.0285) I(0) 0.0145 (0.0142, 0.0148) 104 × σ2 3.4756 (2.6522, 4.6196)

h 3.0360 (1.2356, 4.7994) R(0) 0.0053 (0.0050, 0.0056) 107 × σ3 2.1557 (0.9873, 3.5252)

103 × µd 0.3327 (0.3258, 0.3397) 105 ×D(0) 7.4850 (7.4471, 7.5170)

λ 0.0751 (0.0730, 0.0774) 104 × σ1 3.4730 (2.6768, 4.5814)

Table 3 summarizes the parameter estimates with 95% credible inter-

vals. The model fitting results indicate that the estimated incubation period

(3.03 days) is slightly shorter than the prior mean of 3.5 days, and the es-

timated recovery period (1/0.0751 ≈ 13 days) exceeds the typical recovery

period (6.87 days) from the existing literature (Wise, 2022). Noting that

we used the number of patients admitted in hospital as a proxy to estimate

the current infected population, such patients may have needed more time

to recover. Shao et al. (2022) pointed out that the median recovery period

for patients with moderate or acute symptoms was 13 days, which aligns

with our model fitting result.

The trajectory of the S compartment is estimated by subtracting the

pointwise estimate of the I, R,D compartments from the total population;

the same technique is used to construct its 95% pointwise credible interval.

Figure 3 visualizes the estimated trajectories of all four compartments (in
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terms of population size) using MAGIDDE, which appear reasonable even

though the credible intervals do not cover all the observations. Notably,

we observe a weekend effect in the hospitalization data, evidenced by a

3-day flatter “ledge” after every four or five observations in the I and R

components. This contributes to the inherent noise within the data, and

thus the fitted trajectories appear smoother than the actual observations.
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Figure 3: Estimated trajectories of the time-delayed SIRD model based on
Ontario COVID-19 data from January 24 to February 22, 2022. The solid
line represents the inferred trajectory and the shaded area represents the
95% pointwise credible interval. The dots are the observed data.

Finally, we utilize this DDE system to showcase the predictive perfor-

mance of MAGIDDE, where we use the first half of the observations for

model fitting and the remainder for assessing model predictions. These re-

sults are presented in the Supplementary Material S11.4 and illustrate the

capability of MAGIDDE to predict “future” observations.
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6. Discussion

In this paper, we presented the MAGIDDE method for inference of DDE

models. The method provides fast and accurate inference with the help of

GPs and a linear interpolation scheme for handling historical outputs. Sim-

ulation results indicate that MAGIDDE well-recovers the parameters and

trajectory in a simple benchmark system compared to other representative

methods, and a larger lac operon system demonstrates the capability of

MAGIDDE to recover more complex dynamic systems with multiple time

delays. Finally, we fit a time-delayed compartmental model to Ontario

COVID-19 data as a practical application.

We outline some directions for future work. First, we focused on DDEs

with the history function Hτi = {xi(t) = xi(0), t ∈ [−τi, 0]}, primarily

due to its prevalence in both theoretical and practical applications (Kuang,

1993). However, more complex history functions also exist and could be

worthy of investigation, as they can significantly alter the dynamics and

stability of DDEs. Second, while DDEs with time-constant parameters

cover a broad range of examples, an extension of the method to DDEs

with time-varying parameters could also be considered. For example, Liu

and Wang (2020) studied the dynamics of genetic regulatory networks with

time-varying delays required for transcription and translation processes. In
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epidemiology, Pei and Liu (2023) introduced the delayed SIR model with a

time-varying disease transmission rate and removal rate.
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