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Abstract: Functional data analysis holds transformative potential across fields

but often relies on mean regression, with limited focus on quantile regression.

Furthermore, the infinite-dimensional nature of the functional predictors neces-

sitates the use of dimension reduction techniques. Therefore, in this work, we

address this gap by developing dimension reduction techniques for the conditional

quantiles of functional data. The idea is to replace the functional predictors with

a few finite predictors without losing important information on the conditional

quantile while maintaining a flexible nonparametric model. We derive the con-

vergence rates of the proposed estimators and demonstrate their finite sample

performance using simulations and a real dataset from fMRI studies.
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1. Introduction

Functional data analysis (FDA) considers data as realizations of random

functions, impacting fields like finance (Müller, Sen, and Stadmüller, 2011),

natural language processing (NLP) (Gubian, Torreira, and Bovwes, 2015),

electric grid stabilization (Eĺıas, Jiménez, and Shang, 2022; Fontana, Tavoni,

and Vantini, 2019), and notably medicine (Li and Luo, 2017; Pratt, Su,

Hayes, Clancy, and Szczesniak, 2021). For example, neuroimaging studies

on disorders like attention deficit hyperactivity (ADHD) or Alzheimer’s, aim

to understand neural development, substance use, and brain structure and

function. These studies often collect functional data such as functional mag-

netic resonance imaging (fMRI) and electroencephalogram (EEG). While

traditionally analyzed using conventional methods, FDA offers a more pre-

cise representation along the continuum.

FDA, first coined by Ramsay and Dalzell (1991), has been a very active

research area. Key works on functional linear regression include Cardot,

Ferraty and Sarda (2003), Yao, Müller and Wang (2005), Cai and Hall

(2006), Hall and Horowitz (2007), Crambes, Kneip and Sarda (2009), Shin

(2009), James, Wang and Zhu (2009), and Yuan and Cai (2010); see also the

monographs of Ramsay and Silverman (2005) and Kokoszka and Reimherr

(2017). Nonparametric models have been applied to chemometrics, meteo-
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rology, speech recognition, and medicine; see Besse, Cardot and Stephenson

(2000), Ferraty and Vieu (2002), Ferraty and Vieu (2003), Ferraty and Vieu

(2004), and Aneiros Pérez, Cardot, Estévez Pérez and Vieu (2004). Other

works include extensions to multiple functional predictors (Chiou, Yang

and Chen, 2016; Happ and Greven, 2018), and to generalized linear models

with functional predictors (Marx and Eilers, 1999; James, 2002; Müller and

Stadmüller, 2005; James and Silverman, 2005).

Functional data, though infinite-dimensional, can be reduced to finite

data using operators. Ferré and Yao (2003) extended sliced inverse regres-

sion (SIR) of Li (1991) to functional sliced inverse regression (FSIR), and

later introduced functional inverse regression (FIR) using kernel smooth-

ing (Ferré and Yao, 2005). FSIR was revisited by Lian and Li (2014),

who also extended sliced average variance estimation (SAVE) of Cook and

Weisberg (1991) to the functional context. Wang, Lin and Zhang (2013)

extended contour regression (Li, Zha and Chiaromonte, 2005) to functional

contour regression (FCR), while Amato, Antoniadis and De Feis (2006)

proposed a wavelet based minimum average variance estimation (MAVE).

Ait-Säıdi, Ferraty, Kassa and Vieu (2008) and Chen, Hall and Müller (2011)

explored single and multiple index functional models, respectively. Li and

Song (2022) developed dimension reduction for random response and pre-
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dictor functions using weak conditional expectation, and Mahzarnia and

Song (2022) addressed simultaneous functional predictor selection and co-

efficient estimation. For a review, see Song (2019).

Many functional data exhibit features like skewness and outliers, mak-

ing quantile regression (QR) essential. However, QR for functional data

is underexplored. For functional linear QR, Cardot, Crambes and Sarda

(2005) used smoothing splines, while Kato (2012) applied functional princi-

pal component analysis (FPCA). Nonparametric approaches via inversion

of the conditional distribution were considered by Ferraty, Rabhi and Vieu

(2005) and Chen and Müller (2012). Other works include functional par-

tially linear QR (Lu, Du and Sun, 2014; Yao, Sue-Chee and Wang, 2017;

Ma, Li, Zhu and Zhu, 2019), functional quadratic QR (Shi, Xie and Zhang,

2020), functional linear semiparametric models (Qingguo and Kong, 2017),

and generalized regression quantiles (Guo, Zhou, Huang and Härdle, 2015).

Existing QR methods for functional data are either parametric or over-

look its infinite-dimensional nature. To address this gap, we propose a novel

approach that reduces the functional predictors to a few finite ones, while

preserving crucial information about the conditional quantiles, enabling the

use of flexible, nonparametric QR models. Our contribution is twofold: it

introduces the first supervised dimension reduction technique for functional
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conditional quantiles, and it facilitates nonparametric QR modeling.

To enhance clarity, we review the basics of Hilbert spaces in Section 2

and sufficient dimension reduction in both classical and functional settings

in Section 3. The proposed methodology on dimension reduction for the

conditional quantiles of functional data is introduced in Section 4. However,

Sections 2 and 3 are essential for establishing the foundational notation used

in the paper. The remainder of the paper is organized as follows: Section

5 presents asymptotic results, Section 6 details the algorithm, Section 7

covers simulations, and Section 8 applies the method to neuroimaging data

on ADHD. Proofs and additional simulations are in the supplementary file.

2. Basics on Hilbert space

Let (Ω,F , P ) be a probability space, and H a separable Hilbert space with

inner product ⟨·, ·⟩H and norm ∥·∥H. If U : Ω → H is measurable with

respect to the Borel σ-field B, it is called a random element in H. For

this paper, H is a space of functions of time, so U is viewed as a random

function. If E ∥U∥H < ∞, the linear functional H → R, f → E⟨f, U⟩H is

bounded. By Riesz’s representation theorem, there exists a unique mean

element µU = E(U) ∈ H, such that

⟨µU , f⟩H = E⟨f, U⟩H, for all f ∈ H. (2.1)
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If E ∥U∥2H <∞, the covariance operator of U is ΣUU = E[{U−E(U)}⊗{U−

E(U)}] = E(U ⊗U)−{E(U)}⊗{E(U)}, where ⊗ is the tensor product on

H: for f, g, h ∈ H, (f⊗g)(h) = f⟨g, h⟩H. Under the assumption E ∥U∥2H <

∞, ΣUU is a trace-class operator that satisfies the spectral decomposition∑∞
r=1 δrϕr⊗ϕr, where {δr}r≥1 are the eigenvalues satisfying δ1 ≥ δ2 ≥ · · · ≥

0, and {ϕr}r≥1 are the eigenfunctions forming an orthonormal basis in H.

Then, the Karhunen–Loève expansion of U − µU is

U − µU =
∞∑
r=1

δ1/2r ξrϕr, (2.2)

where ξr = δ
−1/2
r ⟨U − µU , ϕr⟩H, r = 1, 2, . . . are zero mean, unit variance,

and uncorrelated random variables, called the scores (Bosq, 2000).

In this study, we consider a multivariate functional predictor and extend

the above to vector-valued random functions. Let H =
⊕p

i=1 Hi be the

direct sum of H1, . . . ,Hp, i.e., the Cartesian product H1 × · · · × Hp. A

member f ∈
⊕p

i=1Hi is f = (f1, . . . , fp), where fi ∈ Hi. Then, for f, g ∈⊕p
i=1Hi, the inner product is ⟨f, g⟩⊕H =

∑p
i=1⟨fi, gi⟩Hi

. Note that, this

additivity assumption aids the mathematical derivations and asymptotic

analysis and is a common practice for multivariate functional predictors;

see, for example, Li and Song (2017), Song and Li (2021), Mahzarnia and

Song (2022), Solea, Christou and Song (2026).

Let U = (U1, . . . , Up) be a random element in
⊕p

i=1 Hi, where U
i, i =
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1, . . . , p, is the ith component of U. The mean of U is µU = (µU1 , . . . , µUp),

where µU i is as defined in (2.1). Moreover, for i, j = 1, . . . , p, the covariance

operator between U i and U j is ΣU iUj = E{(U i − µU i)⊗ (U j − µUj)}. Note

that, ΣU iUj ∈ B(Hj,Hi), where B(Hj,Hi) denotes the set of all bounded

operators from Hj to Hi. Then, ΣUU is the p×p matrix whose (i, j)th entry

is ΣU iUj and is linear, self-adjoint, positive semi-definite, and compact. Its

decomposition is ΣUU =
∑∞

r=1 γrψr ⊗ ψr, where eigenvalues {γr}r≥1 satis-

fying γ1 ≥ γ2 ≥ · · · ≥ 0, and eigenfunctions {ψr}r≥1 form an orthonormal

basis in
⊕p

i=1Hi. The Karhunen–Loève expansion of U− µU is

U− µU =
∞∑
r=1

γ1/2r ρrψr, (2.3)

where ρr = γ
−1/2
r ⟨U−µU, ψr⟩⊕H, r = 1, 2, . . . , are zero mean, unit variance,

and uncorrelated random variables (Happ and Greven, 2018).

3. Basics on Sufficient Dimension Reduction

3.1 Scalar-on-scalar

We start with the case where the response variable Y : Ω → R and the p×1

vector of predictors X : Ω → Rp are scalars. Assume there exists a p × d

matrix A, d ≤ p, such that Y ⊥⊥ X|A⊤X, i.e., Y and X are independent

given A⊤X. This allows replacing X with the reduced d × 1 vector A⊤X
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3.2 Scalar-on-function

without loss of information on the regression. The space spanned by A

is called the dimension reduction subspace for the regression of Y on X;

the smallest such subspace is called the central subspace. Techniques by Li

(1991) (SIR) and Cook and Weisberg (1991) (SAVE) are commonly used.

For heteroscedastic data, focus is often on estimating conditional quan-

tiles. Let Qτ (Y |x) = inf{y : P (Y ≤ y|X = x) ≥ τ} be the τth conditional

quantile of Y given X = x, satisfying Qτ (Y |x) = argminq E{ρτ (Y −q)|X =

x}, where ρτ (u) = {τ − I(u < 0)}u is the loss function (check function).

We seek a p × dτ matrix Bτ , dτ ≤ p, such that Y ⊥⊥ Qτ (Y |X)|B⊤
τ X. The

space spanned by Bτ is the τ th quantile dimension reduction subspace for

the regression of Y on X, with the smallest being the τ th central quantile

subspace (τ -CQS). Methods for estimating the τ -CQS include Luo, Li and

Yin (2014), Kong and Xia (2014), Christou (2020), Lee and Hilafu (2022).

3.2 Scalar-on-function

Continuing with X as a functional predictor, we introduce additional no-

tation and terminology involving Hilbert spaces H and K. For a linear

operator A ∈ B(H,K), denote ker(A) = {h : A(h) = 0} the kernel of A,

ran(A) = {A(h) : h ∈ H} the range of A, ran(A) the closure of ran(A),

and A∗ the adjoint operator of A. For a self-adjoint operator A ∈ B(H),
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3.2 Scalar-on-function

let A|ker(A)⊥ : ker(A)⊥ → H be the restriction of A on ker(A)⊥. Then, the

operator A† : ran(A) → ker(A)⊥ that maps each g ∈ ran(A) to the unique

element f ∈ ker(A)⊥ such that Af = g is called the Moore-Penrose inverse

of A (Hsing and Eubank (2015), Definition 3.5.7). If, in addition, A is

positive semi-definite, then, for any α > 0, we define A†α = (Aα)†.

For i = 1, . . . , p, let Hi be a separable Hilbert space of real-valued

functions on T , a bounded closed interval in R. Let Y : Ω → R be a

univariate response and X = (X1, . . . , Xp) : Ω →
⊕p

i=1 Hi be a random

element. Following Li and Song (2022)’s formulation, assume a finite rank

linear operator L ∈ B(
⊕p

i=1Hi,Rd), d ∈ N, such that

Y ⊥⊥ X|L(X). (3.1)

Then, ran(L∗) is called the functional dimension reduction subspace.

Li and Song (2022) noted that (3.1) aligns with Ferré and Yao (2003)

since, by Riesz’s representation theorem, there exists f1, . . . , fd ∈
⊕p

i=1Hi

such that, L(X) = (L1(X), . . . , Ld(X)) = (⟨f1, X⟩⊕H, . . . , ⟨fd, X⟩⊕H),

and, hence, for any v ∈ Rd, v⊤L(X) =
∑d

j=1 vj⟨fj, X⟩⊕H = ⟨
∑d

j=1 vjfj, X⟩⊕H.

Then, L∗(v) =
∑d

j=1 vjfj and ran(L∗) = span(f1, . . . , fd).

Define ∩{ran(L∗) : L satisfies (3.1)}, which we assume also satisfies

(3.1). The assumption that this intersection is a functional dimension re-

duction subspace can be proved similarly to Proposition 6.4 of Cook (1998)
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for the classical setting and Lee and Li (2022) for the functional data set-

ting. The condition is mild and taken for granted without further devel-

opment. We call this intersection the functional central subspace (FCS),

denoted by SY |X . We assume SY |X exists and satisfies (3.1), and that

L ∈ B(
⊕p

i=1 Hi,Rd) denotes an operator such that SY |X = ran(L∗).

Ferré and Yao (2003) proposed FSIR and proved that, under model

(3.1) and Assumption 1 given below, E(X|Y )−E(X) belongs to ΣXXSY |X ,

where ΣXX is the covariance operator of X.

Assumption 1. There is a bounded linear operator Λ : ran(L) →
⊕p

i=1Hi

such that E{X|L(X)} = ΛL(X).

To our knowledge, no work focuses on supervised dimension reduction

for conditional quantiles of functional predictors. This paper introduces the

τ th functional central quantile subspace (τ -FCQS) and its estimation.

4. The τth functional central quantile subspace

4.1 The Methodology

We formalize the setting of the paper as follows: For each i = 1, . . . , p,

Hi is a separable Hilbert space of real-valued functions on T , which is a

bounded closed interval in R. Let Y : Ω → R be a univariate response and
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4.1 The Methodology

X = (X1, . . . , Xp) : Ω →
⊕p

i=1 Hi be a random element, such that

Assumption 2. E ∥X∥2H <∞,

where, from now on, H denotes
⊕p

i=1Hi, i.e., H =
⊕p

i=1 Hi.

Definition 1. For a finite rank linear operator Lτ ∈ B(H ,Rdτ ), dτ ∈ N,

such that

Y ⊥⊥ Qτ (Y |X)|Lτ (X), (4.1)

ran(L∗
τ ) is called the τ th functional quantile dimension reduction subspace.

This formulation is equivalent to assuming that there exist functional

parameters βτ,1, . . . , βτ,dτ ∈ H , such that Y ⊥⊥ Qτ (Y |X)|⟨βτ,1, X⟩H , . . . , ⟨βτ,dτ , X⟩H .

Definition 2. Under the assumption that ∩{ran(L∗
τ ) : Lτ satisfies (4.1)}

satisfies (4.1), we call it the τ th functional central quantile subspace (τ -

FCQS) and denote it by SQτ (Y |X).

Remark 1. The assumption that the intersection of all τth functional

quantile dimension reduction subspaces is itself a functional quantile di-

mension reduction subspace is mild and can be proven similarly to the

functional dimension reduction subspace case. Henceforth, we assume that

SQτ (Y |X) exists, satisfies (4.1), and that Lτ ∈ B(H ,Rdτ ) is an operator

such that SQτ (Y |X) = ran(L∗
τ ).
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4.1 The Methodology

Remark 2. It is evident that SQτ (Y |X) ⊆ SY |X , for any τ . Thus, the τ -

FCQS can offer additional dimension reduction when these subspaces differ.

For example, Model I from Section 7.1 is a case whereSQτ (Y |X) =SY |X =

span{β1}, for all τ . However, in Model IV,SQτ (Y |X) = span{β1+Qτ (ε)β2}

for any τ , while SY |X = span{β1, β2}; see Section 7.1 for details.

Assumption 1 is necessary for the FCS. However, when focusing on a

specific conditional quantile, the assumption must hold for each quantile

level τ under consideration. This leads to the following modification.

Assumption 3. For a given τ , there is a bounded linear operator Λτ :

ran(Lτ ) → H such that E{X|Lτ (X)} = ΛτLτ (X).

Assumption 3 implies that, for any function bτ ∈ H , there exist con-

stants cτ,0, cτ,1, . . . , cτ,dτ , such thatE(⟨bτ , X⟩H | ⟨βτ,1, X⟩H , . . . , ⟨βτ,dτ , X⟩H ) =

cτ,0 + cτ,1⟨βτ,1, X⟩H + · · ·+ cτ,dτ ⟨βτ,dτ , X⟩H , and it is satisfied by elliptical

distributions Eaton (1986). Ferré and Yao (2003) provided a discussion

and stated that this assumption ‘is similar to the one used in the finite-

dimensional case, where it holds when the explanatory variables have a

symmetric elliptical distribution.’ The proof of how the elliptically dis-

tributed Hilbertian variables satisfy the condition is available upon request

from Ferré and Yao (2003).
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4.1 The Methodology

The following theorem is analogous to a known result in the classical

setting (see, e.g. Cook (1998), page 57) and is necessary to ensure that

the functional parameters derived in Theorems 2 and 3 belong to SQτ (Y |X).

Essentially, Theorem 1 states that E{X|Lτ (X)} is equal to the projection

of X onto the subspace spanned by Lτ (X).

Theorem 1. Under Assumptions 2, 3, and E(X) = 0, we have E{X|Lτ (X)} =

ΣXXL
∗
τ (LτΣXXL

∗
τ )

†Lτ (X).

We now focus on retrieving βτ,1, . . . , βτ,dτ , such that SQτ (Y |X) = span{βτ,1,

. . . , βτ,dτ}. Our methodology relies on two main theorems. Theorem 3

shows that given one functional parameter bτ in SQτ (Y |X), we can con-

struct another one using E(⟨bτ , X⟩H X). Since the τ -FCQS is spanned by

dτ functional parameters, we can use Theorem 3 to construct as many as

needed. However, Theorem 3 requires an initial bτ to start the iterative pro-

cess. Theorem 2 provides a starting point by showing that one functional

parameter can be extracted through minimizing argmin(aτ ,bτ )E{Qτ (Y |X)−

aτ − ⟨bτ , X⟩H }2, for aτ ∈ R and bτ ∈ H . Note that, in practice, this min-

imization problem requires estimating Qτ (Y |X), which is challenging due

to the infinite-dimensional nature of X. Therefore, since Y ⊥⊥ X|L(X), we

perform an initial dimension reduction by replacing X with L(X).
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4.2 Population Level

Theorem 2. For a given τ ∈ (0, 1), assume that Y ⊥⊥ Qτ (Y |X)|Lτ (X),

where Lτ ∈ B(H ,Rdτ ) is such that SQτ (Y |X) = ran(L∗
τ ). Under Assump-

tions 2 and 3, and if

(α∗
τ , β

∗
τ ) = arg min

(aτ ,bτ )
E[Qτ{Y |L(X)} − aτ − ⟨bτ , X⟩H ]2, (4.2)

where L ∈ B(H ,Rd) is such that SY |X = ran(L∗), then β∗
τ ∈SQτ (Y |X).

Theorem 2 retrieves one functional parameter such that Y ⊥⊥ Qτ (Y |X)|⟨β∗
τ , X⟩H .

If a single-index functional QR model is assumed (dτ = 1), then β∗
τ = βτ,1,

and the process ends. However, if dτ > 1, Theorem 2 is insufficient, and

more functional parameters are required, provided by the next theorem. We

note that the idea for constructing these additional parameters originates

from Cook and Li (2002); see their Theorem 3.

Theorem 3. For a given τ ∈ (0, 1), assume that Y ⊥⊥ Qτ (Y |X)|Lτ (X),

where Lτ ∈ B(H ,Rdτ ) is such that SQτ (Y |X) = ran(L∗
τ ). If Assumptions

2 and 3 hold, and bτ ∈SQτ (Y |X), then E(⟨bτ , X⟩H X) ∈ ΣXXSQτ (Y |X).

4.2 Population Level

Theorem 3 suggests a method for constructing the τ -FCQS. Specifically, if

bτ,0 ∈SQτ (Y |X), then, for j = 1, . . . , we can construct additional functional
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4.2 Population Level

parameters in SQτ (Y |X) using

E(⟨bτ,j−1, X⟩H X). (4.3)

Hence, it is enough to find an initial bτ,0, and we can use bτ,0 = β∗
τ . Then:

1. Set bτ,0 = β∗
τ , where β

∗
τ is given in (4.2).

2. Choose an integer m and, for j = 1, . . . ,m, sequentially form bτ,j =

E(⟨bτ,j−1, X⟩H X).

3. Let Bτ =
∑m

j=0 bτ,j ⊗ bτ,j.

4. For vτ,1, . . . , vτ,dτ the set of solutions to the generalized eigenvalue prob-

lem Bτvτ,j = λΣXXvτ,j, j = 1, . . . , dτ , vτ,j ∈SQτ (Y |X). This is because, for

j = 1, . . . , dτ , vτ,j = λ−1Σ†
XXBτvτ,j ∈ Σ†

XXspan{bτ,0, . . . , bτ,m} ⊆SQτ (Y |X).

Note that, an eigenvector v of a generalized eigenvalue problem Av =

λBv implies that v = B−1/2u, where u is an eigenvector of B−1/2AB−1/2.

Thus, the eigenvectors vτ,j, j = 1, . . . , dτ , of Step 4 that satisfy

argmax ⟨vτ , Bτvτ ⟩H

subject to vτ ∈ H , ⟨vτ ,ΣXXvτ ⟩H = 1, ⟨vτ ,ΣXXvτ,j⟩H = 0, j = 1, . . . , dτ − 1,

can be expressed as vτ,j = Σ
†1/2
XX ητ,j, leading to the following problem

argmax ⟨ητ ,Σ†1/2
XXBτΣ

†1/2
XX ητ ⟩H

subject to ητ ∈ H , ⟨ητ , ητ ⟩H = 1, ⟨ητ , ητ,j⟩H = 0, j = 1, . . . , dτ − 1.

(4.4)
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4.3 Sample Level

Remark 3. Step 2 of the algorithm requires an integer m. Simulation

studies show that the algorithm is robust across different values of m; see

Supplementary S6. For this study, we chosem = pq−1, where p is the num-

ber of predictors and q is the number of basis functions used to approximate

the functional predictors.

Remark 4. In this paper, we assume the structural dimension dτ is known.

However, in practice, it is unknown and must be estimated. One approach

is the cross-validation Bayesian information criterion (CVBIC) from Li and

Song (2017); details and simulations are provided in Supplementary S6.

4.3 Sample Level

We now derive the sample estimates of the expressions (4.2) and (4.3)

when the functions are fully observed. Specifically, for u = 1, . . . , n, let

Yu be an independent and identically distributed (iid) sample from Y ,

and X1, . . . , Xn be an independent sample from the random element X =

(X1, . . . , Xp), with Xu = (X1
u, . . . , X

p
u)

⊤.

To achieve (4.2), we apply the FSIR method from Ferré and Yao (2003)

and replace X with the new d-dimensional predictor vector L̂(X); see Ferré

and Yao (2003) for details. Then, we use the data {Yu, Xu}nu=1 to obtain

(α̂τ , β̂τ ) = arg min
(aτ ,bτ )

n∑
u=1

[Q̂τ{Y |L̂(Xu)} − aτ − ⟨bτ , Xu⟩H ]2, (4.5)
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4.3 Sample Level

where Q̂τ{Y |L̂(Xu)} is a nonparametric estimate ofQτ{Y |L̂(Xu)}. For that

we use the local linear conditional quantile estimation method of Guerre and

Sabbah (2012), where Q̂τ{Y |L̂(Xu)} = q̂τ{L̂(Xu)} and

(
q̂τ{L̂(Xu)}, ŝτ{L̂(Xu)}

)
= arg min

(qτ ,sτ )

n∑
k=1

ρτ

[
Yk − qτ − s⊤τ {L̂(Xk)− L̂(Xu)}

]
×K

(
L̂(Xk)− L̂(Xu)

h

)
. (4.6)

Here, K(·) is a d-dimensional kernel function, and h > 0 is the bandwidth.

We use a Gaussian kernel and select h based on the rule-of-thumb in Yu

and Jones (1998). Specifically, h = hm[τ(1 − τ)/[ϕ{Φ−1(τ)}]2]1/5, where

ϕ(·) and Φ(·) are the standard normal density and cumulative distribution

functions, and hm is the optimal bandwidth for local mean regression.

Next, to achieve (4.3), we set β̂τ,0 = β̂τ , and, for j = 1, . . . ,m, we form

β̂τ,j = n−1

n∑
u=1

⟨β̂τ,j−1, Xu⟩H Xu. (4.7)

After obtaining β̂τ,0, β̂τ,1, . . . , β̂τ,m, set B̂τ =
∑m

j=0 β̂τ,j⊗ β̂τ,j and solve prob-

lem (4.4), which implies solving Σ
†1/2
XXBτΣ

†1/2
XX ητ = λητ and vτ = Σ

†1/2
XX ητ .

At the sample level, we estimate ΣXX using the p×pmatrix Σ̂XX , where

Σ̂XiXj = En[{X i − En(X
i)} ⊗ {Xj − En(X

j)}], i, j = 1, . . . , p, and Σ
†1/2
XX

using the regularized inverse (Σ̂XX + ϵnIp)
−1/2, where {ϵn}n≥1 is a sequence

of positive numbers approaching zero as n→ ∞, and Ip is the p×p identity
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matrix. Thus, we aim to find the first dτ eigenfunctions η̂τ,1, . . . , η̂τ,dτ of

M̂τ = (Σ̂XX + ϵnI)
−1/2B̂τ (Σ̂XX + ϵnI)

−1/2 (4.8)

and transform back to the eigenfunctions v̂τ,j = (Σ̂XX + ϵnI)
−1/2η̂τ,j and

the sufficient predictors ⟨v̂τ,j, X⟩H , j = 1, . . . , dτ .

5. Asymptotic Theory

To derive the consistency and convergence rate of M̂τ , where the popu-

lation counterpart is Mτ = Σ
†1/2
XXBτΣ

†1/2
XX , we introduce a commonly used

assumption, as seen in Assumption 7 of Li and Song (2022).

Assumption 4. SQτ (Y |X) ⊆ ran(ΣXX).

This assumption is not restrictive and suggests that the τ -FCQS is iden-

tifiable up to the range of ΣXX . This is because if βτ ⊥ ran(ΣXX), then

V ar(⟨βτ , X⟩H ) = 0, implying βτ is orthogonal to the support of X−E(X).

Theorem 4. Let Assumptions 2, 3, 4, and S1-S6 from the Supplementary

hold. Then, if E(X) = 0, L̂(X) is consistent of the directions of the FCS,

and n−1/4 ≺ ϵn ≺ 1, for a given τ ∈ (0, 1), M̂τ , given in (4.8), is a consistent

estimate of Mτ , and

∥∥∥M̂τ −Mτ

∥∥∥ = Op(n
−1/2ϵ−2

n ) +O(ϵ1/2n ),
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where Mτ = Σ
†1/2
XXBτΣ

†1/2
XX , and ∥·∥ is the operator norm.

Next, the first dτ eigenvalues and eigenfunctions of M̂τ converge to those

of Mτ at the same rate, as in Corollary 2 of Li and Song (2022).

Corollary 1. Under the assumptions of Theorem 4, and for a given τ ∈

(0, 1) and j = 1, . . . , dτ ,

λ̂j − λj = Op(n
−1/2ϵ−2

n ) +O(ϵ1/2n ), and ∥η̂τ,j − ητ,j∥H = Op(n
−1/2ϵ−2

n ) +O(ϵ1/2n ),

where λ̂j and η̂τ,j are the eigenvalues and eigenfunctions of M̂τ , respectively,

and λj and ητ,j are the eigenvalues and eigenfunctions of Mτ , respectively.

The eigenfunctions of interest are v̂τ,j = (Σ̂XX + ϵnI)
−1/2η̂τ,j, and the

next theorem gives the convergence rates of v̂τ,j and of the predictors

⟨v̂τ,j, X⟩H , j = 1, . . . , dτ .

Theorem 5. Let Assumptions 2, 3, 4, and S1-S6 from the Supplementary

hold. Then, if E(X) = 0, L̂(X) is consistent of the directions of the FCS,

and n−1/5 ≺ ϵn ≺ 1, for a given τ ∈ (0, 1) and for j = 1, . . . , dτ ,

∥v̂τ,j − vτ,j∥H = Op(n
−1/2ϵ−5/2

n ) +O(ϵ1/2n ),

⟨v̂τ,j, X⟩H − ⟨vτ,j, X⟩H = Op(n
−1/2ϵ−5/2

n ) +O(ϵ1/2n ),

where v̂τ,j = (Σ̂XX + ϵnI)
−1/2η̂τ,j and vτ,j = Σ

†1/2
XX ητ,j.
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6. Implementation

In practice, the functions Xu(t), u = 1, . . . , n, are observed at a finite set

of points, tu1, . . . , tuNu , and need to be estimated using the observed data

{(t,Xu(t)) : t = tu1, . . . , tuNu}. Common methods for estimating Xu(t) use

coordinate representation with a finite number of basis functions, converting

a function to a vector, a linear operator to a matrix, and an eigenfunction

problem to an eigenvector problem. Preliminaries on coordinate representa-

tion are provided in Supplementary S5. We omit indices like Gj
[·]Gi

and [·]Gi
,

as the bases for the coordinates can be identified by the operators’ domain

and range. In this section, square brackets are reserved for coordinates.

For i = 1, . . . , p, assume that Hi is spanned by a finite set of basis

functions Gi = {gi1, . . . , gikn}, such that each X i
u, u = 1, . . . , n, can be ap-

proximated by [X i
u]

⊤gi1:kn . Although X̂
i
u could be used for clarity, we omit

this distinction for simplicity. Let Qn = In − n−11n1
⊤
n be the projection

onto the orthogonal complement of the subspace spanned by 1n, where In is

the n×n identity matrix and 1n is the n-dimensional vector of ones, and let

G = diag(Gi : i = 1, . . . , p) ∈ Rpkn×pkn , where Gi is the Gram matrix of Hi.

Then, [Xu] = ([X1
u]

⊤, . . . , [Xp
u]

⊤)⊤ ∈ Rpkn is the coordinate representation

of Xu, u = 1, . . . , n, i.e., the ith block is the coordinate representation of

X i
u. Therefore, the matrix [X1:n] is the pkn × n matrix ([X1], . . . , [Xn]).
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The coordinates of (4.5) and (4.7) with respect to G =
⊕p

i=1 Gi are

(α̂τ , [β̂τ ]) = arg min
(aτ ,bτ )

n∑
u=1

[
Q̂τ{Y |L̂(Xu)} − aτ − [bτ ]

⊤G[Xu]
]2
, (6.1)

where Q̂τ{Y |L̂(Xu)} = q̂τ{L̂(Xu)} for

(q̂τ{L̂(Xu)}, ŝτ{L̂(Xu)}) = arg min
(qτ ,sτ )

n∑
k=1

ρτ

[
Yk − qτ − s⊤τ {L̂(Xk)− L̂(Xu)}

]
×K

(
L̂(Xk)− L̂(Xu)

h

)
, (6.2)

and, for j = 1, . . . ,m,

[β̂τ,j] = n−1

n∑
u=1

[β̂τ,j−1]
⊤G[Xu][Xu], (6.3)

where β̂τ,0 = β̂τ from (6.1). Then, for B̂τ =
∑m

j=0 β̂τ,j ⊗ β̂τ,j, we have

[B̂τ ] =
∑m

j=0[β̂τ,j ⊗ β̂τ,j] =
∑m

j=0[β̂τ,j][β̂τ,j]
⊤G = [β̂τ,0:m][β̂τ,0:m]

⊤G and the

eigenvalue problem (4.4) becomes

argmax [ητ ]
⊤G[Σ̂

†1/2
XX ][β̂τ,0:m][β̂τ,0:m]

⊤G[Σ̂
†1/2
XX ][ητ ]

subject to [ητ ]
⊤G[ητ ] = 1, [ητ ]

⊤G[ητ,j] = 0, j = 1, . . . , dτ−1.

Let ωτ = G1/2[ητ ], then we get the eigenvector problem

argmax ω⊤
τ G

1/2[Σ̂
†1/2
XX ][β̂τ,0:m][β̂τ,0:m]

⊤G[Σ̂
†1/2
XX ]G†1/2ωτ

subject to ω⊤
τ ωτ = 1, ω⊤

τ ωτ,j = 0, j = 1, . . . , dτ−1.

Using [Σ̂
†1/2
XX ] = G†1/2{n−1G1/2([X1:n]Qn[X1:n]

⊤)G1/2}†1/2G1/2, proven in Sup-

plementary S4.6, and A = {n−1G1/2([X1:n]Qn[X1:n]
⊤)G1/2}†1/2, we get
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argmax ω⊤
τ AG

1/2[β̂τ,0:m][β̂τ,0:m]
⊤G1/2Aωτ

subject to ω⊤
τ ωτ = 1, ω⊤

τ ωτ,j = 0, j = 1, . . . , dτ−1.

(6.4)

Then, [v̂τ ] = [Σ̂
†1/2
XX ]G†1/2ωτ = G†1/2Aωτ and ⟨Xu, v̂τ ⟩H = [Xu]

⊤G[v̂τ ] =

[Xu]
⊤G1/2Aωτ . See Algorithm 1 for the details.

7. Simulation studies

7.1 Computational Remarks

Algorithm and parameters. Step 1 computes the coordinates of Xu

using a B-spline basis with q = 4. Step 2 applies FSIR (Ferré and Yao,

2003) with H = 10 slices. Step 3 performs local linear conditional quantile

estimation, selecting the kernel and bandwidth as in Section 4.3. Finally,

Step 5 generates additional directions with m = pq − 1, as in Remark 3.

Simulation Setting. The simulation setting is an extension of Wang, Liu,

Han and Di (2023) to multivariate data. First, create 101 equally spaced

time points in [0, 1], separated by 0.01. Then, for i = 1, . . . , p and u =

1, . . . , n, generate X i
u(t) using the Karhunen–Loève expansion (2.2), where

µXi = 0 and X i
u(t) =

∑4
r=1 ξ

i
urϕ

i
r(t), t ∈ [0, 1], with ϕi

1(t) =
√
2 sin(2πt),

ϕi
2(t) =

√
2 cos(2πt), ϕi

3(t) =
√
2 sin(4πt), ϕi

4(t) =
√
2 cos(4πt), and ξiur

independent random variables with zero mean and variance var(ξiur) = λr,
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7.1 Computational Remarks

Algorithm 1

1: Let {Yu, (t,Xu(t)) : t = tu1, . . . , tuNu}nu=1 iid sample.

2: For each u = 1, . . . , n, obtain the coordinates of Xu relative to the basis

G =
⊕p

i=1 Gi of H and derive the gram matrix G.

3: Use FSIR of Ferré and Yao (2003) to compute the d-dimensional pre-

dictors L̂(Xu).

4: For each u = 1, . . . , n, estimate Qτ{Y |L̂(Xu)} using the local linear

conditional quantile estimation method of Guerre and Sabbah (2012).

That is, take Q̂τ{Y |L̂(Xu)} = q̂τ{L̂(Xu)}, where q̂τ{L̂(Xu)} is in (6.2).

5: Compute [β̂τ ] according to (6.1) and set [β̂τ,0] = [β̂τ ].

6: For j = 1, . . . ,m, compute [β̂τ,j] according to (6.3).

7: Compute the matrix A = {n−1G1/2([X1:n]Qn[X1:n]
⊤)G1/2}†1/2.

8: Solve the eigenvalue problem (6.4) and obtain ωτ,j, j = 1, . . . , dτ .

9: Obtain [v̂τ,j] = G†1/2Aωτ,j and the sufficient predictors ⟨Xu, v̂τ,j⟩H =

[Xu]
⊤G1/2Aωτ,j, j = 1, . . . , dτ , u = 1, . . . , n.

r = 1, . . . , 4, with λ1 = 2, λ2 = 1, λ3 = 1/2, λ4 = 1/4.

To simulate multivariate functional data Xu(t) = (X1
u(t), . . . , X

p
u(t))

using the Karhunen–Loève expansion (2.3), we follow Proposition 5 of

Happ and Greven (2018) and use the multivariate FPCA eigenfunctions

through an orthogonalization of the univariate eigenfunctions. Specifi-
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7.1 Computational Remarks

cally, for i = 1, . . . , p and u = 1, . . . , n, let ξiu = (ξiu1, . . . , ξ
i
u4)

⊤ and

ξu = ((ξ1u)
⊤, . . . , (ξpu)

⊤)⊤. Moreover, define Z ∈ R4p×4p to be the co-

variance matrix of the univariate FPCA scores ξu with (j, j′)th entry the

matrix Zjj′ = cov(ξju, ξ
j′

u ) ∈ R4×4. Then, the kth eigenfunction ψk(t) =

(ψ1
k(t), . . . , ψ

p
k(t))

⊤ of ΣXX is defined by ψi
k(t) = ϕi(t)⊤zik, k = 1, . . . , 4p,

where ϕi(t) = (ϕi
1(t), . . . , ϕ

i
4(t))

⊤ and zik = (zik1, . . . , z
i
k4)

⊤ denotes the ith

block of the eigenvector zk of Z. Finally, the scores are ρuk =
∑p

i=1

∑4
r=1 z

i
krξ

i
ur,

k = 1, . . . , 4p and u = 1, . . . , n, where the coordinate-wise scores ξiur are

standard normal random variables.

Estimation accuracy is measured using the multiple correlation be-

tween true and estimated predictors (Li and Song, 2022): mcorr(U, V ) =

tr(C
−1/2
V V CV UC

−1
UUCUVC

−1/2
V V ), where U and V are random vectors of dimen-

sion d. It ranges from 0 to d, with values near d indicating better per-

formance. Unless stated otherwise, simulations use N = 100 iterations,

n = 400, p = 5, τ = 0.1, 0.25, 0.5, 0.75, 0.9, and assume dτ to be known.

Models under consideration. We consider the following models.

M-I: Y =
1

0.5 + (⟨β1, X⟩H + 1)2
+ 0.2ε,

M-II: Y = arctan(π⟨β1, X⟩H /2) + ε,

M-III: Y = exp(⟨β1, X⟩H )ε,
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7.2 Results

M-IV: Y = ⟨β1, X⟩H + ⟨β2, X⟩H ε,

M-V: Y = arctan(π⟨β1, X⟩H ) + 0.5 sin(π⟨β2, X⟩H /6) + 0.1ε,

M-VI: Y = ⟨β1, X⟩H + ⟨β2, X⟩H +
√

0.5 + ⟨β1, X⟩2H + ⟨β2, X⟩2H ε,

M-VII: Y = ⟨β1, X⟩3H + exp(⟨β2, X⟩H ) + ⟨β3, X⟩H ε,

M-VIII: Y = ⟨β1, X⟩3H + ⟨β2, X⟩H + ⟨β3, X⟩H ε,

where β1(t) = ψ1(t), β2(t) = ψ2(t), and β3(t) = ψ3(t) are the first three

eigenfunctions of ΣXX , X is simulated as described above, and the error

ε is generated from standard normal (N ), chi-square with three degrees of

freedom (X 2
3 ), and exponential with rate of 0.5 (Exp(0.5)) distributions.

Note that SQτ (Y |X) = span{β1} for Models I-III, SQτ (Y |X) = span{β1, β2}

for Models V-VI, SQτ (Y |X) = span{β1, β2, β3} for Models VII, SQτ (Y |X) =

span{β1 +Qτ (ε)β2} for Model IV, and SQτ (Y |X) = span{β1, β2 +Qτ (ε)β3}

for Model VIII. Results for all models are available, but we report selective

ones for brevity and since they exhibit similar patterns.

7.2 Results

Example 1 - Effect of n and p. We evaluate the algorithm for sample

sizes n = 200, 400, 1000, and number of predictors p = 5, 10, 20, 40, primar-

ily focusing on Model I. Table 1 reports the means and standard deviations
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7.2 Results

Table 1: Mean (and standard deviation) of multiple correlation for Model

I, when the error follows a standard normal distribution.

n p 0.1 0.25 0.5 0.75 0.9

200 5 0.9957 (0.0039) 0.9956 (0.0042) 0.9957 (0.0040) 0.9957 (0.0039) 0.9957 (0.0038)

10 0.9912 (0.0105) 0.9911 (0.0108) 0.9913 (0.0106) 0.9913 (0.0105) 0.9910 (0.0105)

20 0.9848 (0.0542) 0.9849 (0.0565) 0.9911 (0.0146) 0.9907 (0.0173) 0.9908 (0.0155)

40 0.9692 (0.0827) 0.9680 (0.0825) 0.9722 (0.0657) 0.9726 (0.0698) 0.9538 (0.1210)

400 5 0.9964 (0.0045) 0.9965 (0.0039) 0.9965 (0.0035) 0.9966 (0.0034) 0.9966 (0.0032)

10 0.9948 (0.0048) 0.9948 (0.0047) 0.9949 (0.0047) 0.9949 (0.0046) 0.9949 (0.0047)

20 0.9926 (0.0055) 0.9927 (0.0053) 0.9926 (0.0054) 0.9926 (0.0054) 0.9927 (0.0054)

40 0.9898 (0.0092) 0.9897 (0.0095) 0.9892 (0.0137) 0.9898 (0.0092) 0.9897 (0.0097)

1000 5 0.9974 (0.0018) 0.9974 (0.0017) 0.9974 (0.0017) 0.9974 (0.0017) 0.9974 (0.0016)

10 0.9966 (0.0027) 0.9966 (0.0027) 0.9966 (0.0026) 0.9966 (0.0026) 0.9966 (0.0026)

20 0.9952 (0.0035) 0.9950 (0.0035) 0.9951 (0.0035) 0.9950 (0.0034) 0.9950 (0.0034)

40 0.9935 (0.0045) 0.9936 (0.0044) 0.9935 (0.0044) 0.9935 (0.0045) 0.9934 (0.0046)

of the multiple correlation for various τ values when the error follows a

normal distribution; Tables S1 and S2 in the Supplementary S6 present the

results for chi-square and exponential error distributions, respectively. The

efficiency of the methodology increases with n and decreases with p, and is

consistent across different quantile levels and error distributions.

Example 2 - Performance of the algorithm. We evaluate the per-

formance of the algorithm across all models. Table 2 reports the means
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7.2 Results

and standard deviations of the multiple correlation for various τ and error

distributions. The mean multiple correlation is close to dτ .

Table 2: Mean (and standard deviation) of multiple correlation for Models

I-VIII.

M error 0.1 0.25 0.5 0.75 0.9

I N 0.9967 (0.0033) 0.9967 (0.0035) 0.9967 (0.0035) 0.9967 (0.0035) 0.9968 (0.0031)

X2
3 0.9952 (0.0056 0.9953 (0.0054) 0.9952 (0.0053) 0.9953 (0.0053) 0.9954 (0.0052)

Exp 0.9965 (0.0031) 0.9966 (0.0030) 0.9966 (0.0031) 0.9966 (0.0031) 0.9966 (0.0031)

II N 0.9975 (0.0016) 0.9975 (0.0016) 0.9975 (0.0017) 0.9975 (0.0016) 0.9975 (0.0016)

X2
3 0.9961 (0.0048) 0.9961 (0.0047) 0.9961 (0.0045) 0.9961 (0.0046) 0.9961 (0.0043)

Exp 0.9967 (0.0032) 0.9967 (0.0032) 0.9967 (0.0032) 0.9967 (0.0032) 0.9965 (0.0037)

III N 0.9975 (0.0020) 0.9973 (0.0031) 0.9955 (0.0082) 0.9971 (0.0038) 0.9975 (0.0018)

X2
3 0.9970 (0.0024) 0.9970 (0.0022) 0.9971 (0.0020) 0.9971 (0.0020) 0.9971 (0.0021)

Exp 0.9969 (0.0023) 0.9969 (0.0022) 0.9969 (0.0022) 0.9969 (0.0023) 0.9969 (0.0023)

IV N 0.6305 (0.0393) 0.8380 (0.0270) 0.9969 (0.0035) 0.8373 (0.0292) 0.6297 (0.0413)

X2
3 0.9426 (0.0660) 0.9176 (0.0828) 0.7953 (0.1576) 0.7018 (0.1972) 0.6628 (0.2151)

Exp 0.9340 (0.0991) 0.9604 (0.0346) 0.8205 (0.1053) 0.6547 (0.1619) 0.5882 (0.1979)

V N 1.9692 (0.0852) 1.9591 (0.1186) 1.9538 (0.1353) 1.9637 (0.0971) 1.9690 (0.0881)

X2
3 1.9492 (0.1383) 1.9448 (0.1537) 1.9352 (0.1763) 1.9423 (0.1489) 1.9425 (0.1561)

Exp 1.9679 (0.0869) 1.9629 (0.0967) 1.9625 (0.0829) 1.9619 (0.0931) 1.9688 (0.0813)

VI N 1.9802 (0.0425) 1.9808 (0.0404) 1.9805 (0.0410) 1.9793 (0.0438) 1.9751 (0.0496)

X2
3 1.9549 (0.1063) 1.9569 (0.1006) 1.9549 (0.0884) 1.9269 (0.1210) 1.8588 (0.2145)

Exp 1.9676 (0.1039) 1.9680 (0.1034) 1.9659 (0.1053) 1.9571 (0.1197) 1.9054 (0.1754)

VII N 2.3663 (0.3282) 2.4085 (0.3093) 2.4119 (0.3117) 2.4280 (0.3098) 2.4434 (0.3042)

X2
3 2.8988 (0.1798) 2.9270 (0.1569) 2.9400 (0.1270) 2.9380 (0.1144) 2.9234 (0.1185)

Exp 2.8644 (0.2028) 2.8925 (0.1689) 2.9173 (0.1231) 2.9084 (0.1369) 2.8836 (0.1693)

VIII N 1.3976 (0.1730) 1.6780 (0.1561) 1.9568 (0.0816) 1.6614 (0.1481) 1.3793 (0.1805)

X2
3 1.604 (0.2456) 1.8709 (0.1626) 1.9040 (0.1342) 1.8619 (0.1563) 1.8475 (0.1684)

Exp 1.4798 (0.2692) 1.7974 (0.1893) 1.9124 (0.1116) 1.8273 (0.1653) 1.7864 (0.2003)

Example 3 - Methods to compare. We compare our method with FSIR

(Ferré and Yao, 2003) and robust FSIR (R-FSIR; Solea, Christou and Song
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(2026). Since FSIR and R-FSIR target FCS while we focus on FCQS, we

limit comparisons to Models I-III and V-VII, where subspaces coincide,

and fix τ = 0.5. Table 3 reports the means and standard deviations of

the multiple correlation. Our method consistently outperforms the others,

except in Model III, where FSIR performs slightly better with normal errors,

excelling especially in multi-index models.

8. Application

We apply our method to the ADHD-200 resting-state fMRI (rs-fMRI) data

from 222 ADHD patients (2 predominantly hyperactive/impulsive, 44 pre-

dominantly inattentive, and 77 combined), and 99 controls, obtained from

the NYU Child Study Center. The data are publicly available from the

ADHD-200 Consortium (http://fcon_1000.projects.nitrc.org/indi/

adhd200/index.html). We focus on the ADHD-C group, removing five

subjects due to missing information. Pre-processing was done by the Neuro

Bureau organization using the Athena pipeline (http://www.theneurobureau.

org/). The 116 regions of interest were defined by the automated anatom-

ical labeling atlas (AAL; Craddock, James, Holtzheimer, Hu and Mayberg

(2012)). Time series were extracted by averaging voxel signals within each

region, yielding 116 regional fMRI time series observed at 172 time points.
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Table 3: Mean (and standard deviation) of multiple correlation for Models

I-VII, for FSIR, R-FSIR, and 0.5-FCQS and various error distributions.

M error FSIR R-FSIR 0.5-FCQS

I N 0.9652 (0.0138) 0.9623 (0.0156) 0.9968 (0.0033)

X 2
3 0.9414 (0.0263) 0.9151 (0.0458) 0.9964 (0.0027)

Exp 0.9532 (0.0207) 0.9373 (0.0315) 0.9961 (0.0059)

II N 0.9821 (0.0071) 0.9829 (0.0070) 0.9972 (0.0019)

X 2
3 0.9519 (0.0207) 0.8963 (0.0803) 0.9967 (0.0030)

Exp 0.9703 (0.0124) 0.9568 (0.0217) 0.9968 (0.0032)

III N 0.9900 (0.0039) 0.9898 (0.0036) 0.9872 (0.0555)

X 2
3 0.9926 (0.0028) 0.9926 (0.0031) 0.9972 (0.0020)

Exp 0.9887 (0.0046) 0.9874 (0.0057) 0.9969 (0.0032)

V N 1.9287 (0.0235) 1.9300 (0.0242) 1.9666 (0.0606)

X 2
3 1.9009 (0.0414) 1.8945 (0.0428) 1.9476 (0.1281)

Exp 1.9141 (0.0298) 1.9122 (0.0336) 1.9626 (0.0685)

VI N 1.0634 (0.1199) 1.0213 (0.0735) 1.9856 (0.0243)

X 2
3 1.0116 (0.1265) 0.9403 (0.1256) 1.9563 (0.0778)

Exp 1.0603 (0.1446) 1.0003 (0.0959) 1.9713 (0.0765)

VII N 1.9413 (0.1792) 1.7187 (0.2106) 2.5043 (0.3515)

X 2
3 2.1001 (0.2947) 1.7029 (0.2785) 2.9454 (0.0856)

Exp 2.1188 (0.2686) 1.7358 (0.2709) 2.9289 (0.1420)

We analyze the association between rs-fMRI brain activity, Xu(t) =

(X1
u(t), . . . , X

116
u (t)), and ADHD scores, Yu, for 72 subjects. The right-

skewed distribution and extreme ADHD scores highlight the suitability of

QR and our method; see Figure S1 in Supplementary S6.
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We apply our method to derive the first dτ sufficient predictors ⟨v̂τ1, X⟩H ,

. . . , ⟨v̂τdτ , X⟩H for τ = 0.1, 0.25, 0.5, 0.75, 0.9. For all τ , we choose dτ = 5

and estimate the fMRI data using 15 B-splines basis functions of order 4.

Figure 1 shows scatterplots of the first two sufficient predictors by quan-

tile, with different colors indicating different ADHD scores. The distinct

grouping of lighter and darker colors demonstrate a clear separation of sub-

ject based on their ADHD scores. These groupings effectively highlight the

separation of subjects with low, moderate, and high severity ADHD scores.

To compare our method with FSIR, we split the data into training

(80%) and test (20%) sets and fit the local linear QR (Guerre and Sabbah,

2012) for various quantiles (τ = 0.1, 0.25, 0.5, 0.75, 0.9). We use the first five

sufficient predictors from FSIR and τ -FCQS, aligning τ with the quantile

of the local linear model. Table 4 reports the average mean square error,

indicting that our methodology outperforms FSIR, except for τ = 0.25.

Our results agree with Joshi, Li, Akrami and Leahy (2019), demonstrating

that dimension reduction in rs-fMRI data can predict ADHD scores.

Supplementary Material

The online Supplementary Material contains additional assumptions, pre-

liminary results and lemmas, proofs, and additional simulation results.
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Figure 1: Scatterplots of the first two sufficient predictors for the fMRI

data set across quantile levels τ = 0.1, 0.25, 0.5, 0.75, 0.9. Each point rep-

resents an observation, with colors indicating ADHD scores. Lighter colors

correspond to higher ADHD scores. The axes represent the values of the

first and second sufficient predictors.
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