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Abstract: Functional data analysis holds transformative potential across fields
but often relies on mean regression, with limited focus on quantile regression.
Furthermore, the infinite-dimensional nature of the functional predictors neces-
sitates the use of dimension reduction techniques. Therefore, in this work, we
address this gap by developing dimension reduction techniques for the conditional
quantiles of functional data. The idea is to replace the functional predictors with
a few finite predictors without losing important information on the conditional
quantile while maintaining a flexible nonparametric model. We derive the con-
vergence rates of the proposed estimators and demonstrate their finite sample
performance using simulations and a real dataset from fMRI studies.
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1. Introduction

Functional data analysis (FDA) considers data as realizations of random

functions, impacting fields like finance (Miller, Sen, and Stadmuller, 2011)),

natural language processing (NLP) (Gubian, Torreira, and Bovwes, 2015)),

electric grid stabilization (Elias, Jiménez, and Shang,|2022; Fontana, Tavoni]

and Vantini, 2019), and notably medicine (Li and Luo|, 2017; Pratt, Su,

Hayes, Clancy, and Szczesniak, 2021)). For example, neuroimaging studies

on disorders like attention deficit hyperactivity (ADHD) or Alzheimer’s, aim
to understand neural development, substance use, and brain structure and
function. These studies often collect functional data such as functional mag-
netic resonance imaging (fMRI) and electroencephalogram (EEG). While
traditionally analyzed using conventional methods, FDA offers a more pre-

cise representation along the continuum.

FDA, first coined by Ramsay and Dalzell (1991), has been a very active

research area. Key works on functional linear regression include |Cardot,

Ferraty and Sardal (2003), Yao, Miiller and Wang (2005), |Cai and Hall

(2006)), Hall and Horowitz| (2007)), (Crambes, Kneip and Sarda; (2009), Shin|

(2009), James, Wang and Zhu/ (2009), and [Yuan and Cai (2010); see also the

monographs of Ramsay and Silverman| (2005) and Kokoszka and Reimherr|

(2017)). Nonparametric models have been applied to chemometrics, meteo-



rology, speech recognition, and medicine; see |Besse, Cardot and Stephenson|

(2000), [Ferraty and Vieu (2002)), Ferraty and Vieul (2003), |[Ferraty and Vieu

(2004), and |Aneiros Pérez, Cardot, Estévez Pérez and Vieu (2004). Other

works include extensions to multiple functional predictors (Chiou, Yang

and Chen| 2016; Happ and Greven) 2018)), and to generalized linear models

with functional predictors (Marx and Eilers, 1999 |James, 2002; Miiller and

Stadmiller, |2005; |James and Silverman), 2005]).

Functional data, though infinite-dimensional, can be reduced to finite

data using operators. Ferré and Yao| (2003) extended sliced inverse regres-

sion (SIR) of |Li (1991) to functional sliced inverse regression (FSIR), and

later introduced functional inverse regression (FIR) using kernel smooth-

ing (Ferré and Yao, 2005). FSIR was revisited by Lian and Li (2014)),

who also extended sliced average variance estimation (SAVE) of

‘Weisberg| (1991) to the functional context. |Wang, Lin and Zhang| (2013)

extended contour regression (Li, Zha and Chiaromonte, 2005) to functional

contour regression (FCR), while Amato, Antoniadis and De Feis (2006)

proposed a wavelet based minimum average variance estimation (MAVE).

‘Ait-Saidi, Ferraty, Kassa and Vieu| (2008) and (Chen, Hall and Miiller| (2011))

explored single and multiple index functional models, respectively.

(2022) developed dimension reduction for random response and pre-



dictor functions using weak conditional expectation, and Mahzarnia and|

(2022) addressed simultaneous functional predictor selection and co-

efficient estimation. For a review, see (2019).

Many functional data exhibit features like skewness and outliers, mak-

ing quantile regression (QR) essential. However, QR for functional data

is underexplored. For functional linear QR, Cardot, Crambes and Sarda

(2005) used smoothing splines, while (2012)) applied functional princi-

pal component analysis (FPCA). Nonparametric approaches via inversion

of the conditional distribution were considered by [Ferraty, Rabhi and Vieul

(2005)) and |Chen and Miller| (2012). Other works include functional par-

tially linear QR (Lu, Du and Sun| 2014; Yao, Sue-Chee and Wangj, [2017;

Ma, Li, Zhu and Zhu, 2019)), functional quadratic QR (Shi, Xie and Zhang

2020)), functional linear semiparametric models (Qingguo and Kong|, 2017)),

and generalized regression quantiles (Guo, Zhou, Huang and Hardle, 2015)).

Existing QR methods for functional data are either parametric or over-
look its infinite-dimensional nature. To address this gap, we propose a novel
approach that reduces the functional predictors to a few finite ones, while
preserving crucial information about the conditional quantiles, enabling the
use of flexible, nonparametric QR models. Our contribution is twofold: it

introduces the first supervised dimension reduction technique for functional



conditional quantiles, and it facilitates nonparametric QR modeling.

To enhance clarity, we review the basics of Hilbert spaces in Section
and sufficient dimension reduction in both classical and functional settings
in Section [3} The proposed methodology on dimension reduction for the
conditional quantiles of functional data is introduced in Section[d, However,
Sections 2| and [3|are essential for establishing the foundational notation used
in the paper. The remainder of the paper is organized as follows: Section
presents asymptotic results, Section [6] details the algorithm, Section [7]
covers simulations, and Section |8 applies the method to neuroimaging data

on ADHD. Proofs and additional simulations are in the supplementary file.

2. Basics on Hilbert space

Let (€2, F, P) be a probability space, and H a separable Hilbert space with
inner product (-,-)y and norm ||-|[,,. If U : Q@ — H is measurable with
respect to the Borel o-field B, it is called a random element in H. For
this paper, H is a space of functions of time, so U is viewed as a random
function. If E||U||,, < oo, the linear functional H — R, f — E(f,U)y is
bounded. By Riesz’s representation theorem, there exists a unique mean

element uy = E(U) € H, such that

(s flu = E(f,U)y, for all feH. (2.1)



If E||U|[5, < oo, the covariance operator of U is Yy = E[{U—~E(U)}&{U—
EU)}=EUU)—{EU)}®{E(U)}, where ® is the tensor product on
H: for f,g,h € H, (f®g)(h) = f(g,h). Under the assumption F HUHZ <
00, Yy is a trace-class operator that satisfies the spectral decomposition
Yoo, 0rp @y, where {0, },>1 are the eigenvalues satisfying d; > 6 > -+ >
0, and {¢, },>1 are the eigenfunctions forming an orthonormal basis in H.

Then, the Karhunen—Loeve expansion of U — py is

oo
U—pu=Y 8", (2.2)
r=1
where &, = 5T_1/2<U — pu, &r)n, ¥ = 1,2,... are zero mean, unit variance,

and uncorrelated random variables, called the scores (Bosq, [2000)).

In this study, we consider a multivariate functional predictor and extend
the above to vector-valued random functions. Let 2 = @F_, H; be the
direct sum of Hi,...,H,, i.e., the Cartesian product H; x --- x H,. A
member f € @Y H; is f = (f1,..., fp), where f; € H;. Then, for f,g €

P_ M;, the inner product is (f, 9)gu = Doy (fi, 9i)n,. Note that, this
additivity assumption aids the mathematical derivations and asymptotic
analysis and is a common practice for multivariate functional predictors;
see, for example, |1 and Song (2017)), Song and Li (2021), Mahzarnia and
Song (2022)), Solea, Christou and Song] (2026)).

Let U= (U',...,UP?) be a random element in @} | H;, where U, i =



1,...,p, is the ith component of U. The mean of U is uy = (ugn, - - ., pue),
where gy is as defined in . Moreover, for 7,7 = 1,...,p, the covariance
operator between U and U7 is Xy = E{(U" — py:) @ (U7 — pys)}. Note
that, Xyiys € B(H;, H;), where B(H;, ;) denotes the set of all bounded
operators from H; to H;. Then, Yyy is the p x p matrix whose (7, j)th entry
is Xrips and is linear, self-adjoint, positive semi-definite, and compact. Its
decomposition is Xyy = > 2 %, ® 1, where eigenvalues {7, },>1 satis-
fying 71 > 72 > --- > 0, and eigenfunctions {¢, },>1 form an orthonormal

basis in @?_; H;. The Karhunen-Lo¢ve expansion of U — uy is

U- Hu = Z%W,Or%, (23>
r=1

—1/2 . .
where p, = v, / (U—pw, Yr)g@n, r = 1,2,..., are zero mean, unit variance,

and uncorrelated random variables (Happ and Greven, 2018).

3. Basics on Sufficient Dimension Reduction

3.1 Scalar-on-scalar

We start with the case where the response variable Y : 0 — R and the px 1
vector of predictors X : {0 — RP are scalars. Assume there exists a p X d
matrix A, d < p, such that Y 1L X|ATX, i.e., Y and X are independent

given ATX. This allows replacing X with the reduced d x 1 vector ATX



3.2 Scalar-on-function

without loss of information on the regression. The space spanned by A
is called the dimension reduction subspace for the regression of Y on X;
the smallest such subspace is called the central subspace. Techniques by |Li
(1991) (SIR) and |Cook and Weisberg (1991)) (SAVE) are commonly used.
For heteroscedastic data, focus is often on estimating conditional quan-
tiles. Let Q-(Y[x) = inf{y : P(Y < y[X = x) > 7} be the 7th conditional
quantile of Y given X = x, satisfying Q. (Y'|x) = arg min, E{p-(Y —¢)|X =
x}, where p.(u) = {7 — I(u < 0)}u is the loss function (check function).
We seek a p x d, matrix B, d, < p, such that Y 1L Q.(Y|X)/B!X. The
space spanned by B, is the 7th quantile dimension reduction subspace for
the regression of Y on X, with the smallest being the 7th central quantile
subspace (T-CQS). Methods for estimating the 7-CQS include |Luo, Li and

Yin| (2014), Kong and Xia) (2014), (Christou| (2020), |Lee and Hilafu (2022).

3.2 Scalar-on-function

Continuing with X as a functional predictor, we introduce additional no-
tation and terminology involving Hilbert spaces H and K. For a linear
operator A € B(H,K), denote ker(A) = {h : A(h) = 0} the kernel of A,
ran(A) = {A(h) : h € H} the range of A, tan(A) the closure of ran(A),

and A* the adjoint operator of A. For a self-adjoint operator A € ZB(H),



3.2 Scalar-on-function

let Alger(ay: : ker(A)* — H be the restriction of A on ker(A)*. Then, the
operator A" : ran(A4) — ker(A)t that maps each g € ran(A) to the unique
element f € ker(A)* such that Af = g is called the Moore-Penrose inverse
of A (Hsing and Eubank| (2015), Definition 3.5.7). If, in addition, A is
positive semi-definite, then, for any a > 0, we define AT = (A%)T.

For « = 1,...,p, let H; be a separable Hilbert space of real-valued
functions on 7T, a bounded closed interval in R. Let ¥ :  — R be a
univariate response and X = (X',...,X?) : Q — @, H; be a random
element. Following Li and Song (2022)’s formulation, assume a finite rank

linear operator L € B(P"_, H;,RY), d € N, such that
Y 1 X|L(X). (3.1)

Then, Tan(L*) is called the functional dimension reduction subspace.

Li and Song (2022) noted that aligns with [Ferré and Yao (2003)
since, by Riesz’s representation theorem, there exists fi,..., fs € BF_, H;
such that, L(X) = (Li(X),...,Li(X)) = ([, X)Dpn,-- -+ (e X)pn),
and, hence, for any v € R, v L(X) = 2?21 0i(f5, X)pwn = <Zj:1 0 fi, X)@n.
Then, L*(v) = Z?:1 v; f; and Tan(L*) = span(fi,..., fa).

Define N{ran(L*) : L satisfies (3.1)}, which we assume also satisfies

(3.1). The assumption that this intersection is a functional dimension re-

duction subspace can be proved similarly to Proposition 6.4 of Cook| (1998))



for the classical setting and Lee and Li| (2022)) for the functional data set-
ting. The condition is mild and taken for granted without further devel-
opment. We call this intersection the functional central subspace (FCS),
denoted by %| x. We assume %| y exists and satisfies , and that
L € B(@"_, Hi,R%) denotes an operator such that .A7x = ran(L*).
Ferré and Yao (2003) proposed FSIR and proved that, under model
and Assumptiongiven below, F(X|Y)—E(X) belongs to X xx %p(,

where Yy x is the covariance operator of X.

Assumption 1. There is a bounded linear operator A : ran(L) — @F_, H,;

such that E{X|L(X)} = AL(X).

To our knowledge, no work focuses on supervised dimension reduction
for conditional quantiles of functional predictors. This paper introduces the

Tth functional central quantile subspace (T-FCQS) and its estimation.

4. The 7th functional central quantile subspace

4.1 The Methodology

We formalize the setting of the paper as follows: For each ¢ = 1,...,p,
‘H; is a separable Hilbert space of real-valued functions on 7', which is a

bounded closed interval in R. Let Y : 2 — R be a univariate response and



4.1 The Methodology

X =(X'...,X?): Q— @ H; be a random element, such that

Assumption 2. E|X|%, < oo,

where, from now on, # denotes @!_, H;, i.e., # = PL_| H,.

Definition 1. For a finite rank linear operator L, € Z(7,R%), d, € N,

such that
Y L Q(Y|X)|L. (), (4.1)
ran(L¥) is called the Tth functional quantile dimension reduction subspace.

This formulation is equivalent to assuming that there exist functional

parameters 3,1, ..., frq. € J,suchthat Y L Q- (Y|X)|[(Br1, X))oy (Bra., X) .

Definition 2. Under the assumption that N{ran(L?) : L, satisfies (4.1)}
satisfies (4.1)), we call it the 7th functional central quantile subspace (7-

FCQS) and denote it by %T(yp().

Remark 1. The assumption that the intersection of all 7th functional
quantile dimension reduction subspaces is itself a functional quantile di-
mension reduction subspace is mild and can be proven similarly to the
functional dimension reduction subspace case. Henceforth, we assume that
%T(Y‘X) exists, satisfies , and that L, € (¢, R%) is an operator

such that %fmx) = Tan(L}).



4.1 The Methodology

Remark 2. It is evident that %T(Y|X) - %I)ﬁ for any 7. Thus, the 7-
FCQS can offer additional dimension reduction when these subspaces differ.
For example, Model I from Section is a case where %T(Yl X) = %‘ x =
span{f }, for all 7. However, in Model IV, %T(yp() = span{f; + Q- ()P}

for any 7, while :%| x = span{f, B2}; see Section H for details.

Assumption [1] is necessary for the FCS. However, when focusing on a
specific conditional quantile, the assumption must hold for each quantile

level 7 under consideration. This leads to the following modification.

Assumption 3. For a given 7, there is a bounded linear operator A, :

ran(L,) — ¢ such that E{X|L,(X)} = A, L. (X).

Assumption [3| implies that, for any function b, € 7, there exist con-
stants ¢, 0, Cr 1, - - -, Cr.a,, Such that E((b;, X) .| (Br1, X)or, - s (Bra., X))
cro+ cr1(Br1, X)w + - -+ Ccra, (Bra,. X ), and it is satisfied by elliptical
distributions [Eaton| (1986)). |Ferré and Yao (2003) provided a discussion
and stated that this assumption ‘is similar to the one used in the finite-
dimensional case, where it holds when the explanatory variables have a
symmetric elliptical distribution.” The proof of how the elliptically dis-
tributed Hilbertian variables satisfy the condition is available upon request

from Ferré and Yao (2003)).



4.1 The Methodology

The following theorem is analogous to a known result in the classical
setting (see, e.g. |Cook (1998), page 57) and is necessary to ensure that
the functional parameters derived in Theorems [2{and 3| belong to g (v|x).
Essentially, Theorem 1| states that F{X|L,(X)} is equal to the projection

of X onto the subspace spanned by L, (X).

Theorem 1. Under Assumptions[d,[3, and E(X) = 0, we have E{X|L.(X)} =

SxxLi(LSxx L)L (X).

We now focus on retrieving 5,1, ..., 8.4, , such that S5 (v|x) = span{f-1,
ooy Bra, }- Our methodology relies on two main theorems. Theorem
shows that given one functional parameter b, in g (v|x), we can con-
struct another one using E({b,, X) »X). Since the 7-FCQS is spanned by
d, functional parameters, we can use Theorem |3| to construct as many as
needed. However, Theorem [3|requires an initial b, to start the iterative pro-
cess. Theorem [2| provides a starting point by showing that one functional
parameter can be extracted through minimizing arg min,, ) F{Q,(Y[X)—
a; — (by, X) }?, for a, € R and b, € . Note that, in practice, this min-
imization problem requires estimating Q,(Y|X), which is challenging due
to the infinite-dimensional nature of X. Therefore, since Y 1 X|L(X), we

perform an initial dimension reduction by replacing X with L(X).



4.2 Population Level

Theorem 2. For a given 7 € (0,1), assume that Y 1L Q.(Y|X)|L,(X),
where L, € B(H,RI¥") is such that %fmx) =Ttan(L}). Under Assump-

tions |9 and[3, and if

(03,7) = arg min EQAYIL(X)} —ar = (b, X) o' (42

ar,0r

where L € B(H,R?) is such that L%p( =rtan(L*), then B € %T(Y‘X).

Theorem [ retrieves one functional parameter such that Y 1L Q. (Y'|X) (35, X) .
If a single-index functional QR model is assumed (d, = 1), then 55 = (3,1,
and the process ends. However, if d, > 1, Theorem [2 is insufficient, and
more functional parameters are required, provided by the next theorem. We

note that the idea for constructing these additional parameters originates

from |Cook and Li (2002)); see their Theorem 3.

Theorem 3. For a given 7 € (0,1), assume that Y L Q.(Y|X)|L-(X),
where L, € B(H# ,R¥) is such that %me) = tan(L}). If Assumptions

[4 and[s hotd, and b, € S5 vix), then E((b;, X)»X) € Sxx T, v1x)-

4.2 Population Level

Theorem |3| suggests a method for constructing the 7-FCQS. Specifically, if

bro € %T (v|x), then, for j =1,..., we can construct additional functional



4.2 Population Level

parameters in %T(Y‘X) using
E((bry 1, X) 2 X). (4.3)

Hence, it is enough to find an initial b, , and we can use b,y = 3. Then:

1. Set by o = (%, where 3 is given in (4.2)).

2. Choose an integer m and, for j = 1,...,m, sequentially form b,; =

E((brj—1, X) o X).

3. Let B, = Z;n:[) br; @ b ;.

4. For v;1,...,v,4, the set of solutions to the generalized eigenvalue prob-

lem Brv,; = AXxxvrj, j=1,...,d-, vrj € %T(yp(). This is because, for

=1, dr, vy = A Bruy € Sl gspan{bro, .. bem} € T vix)-
Note that, an eigenvector v of a generalized eigenvalue problem Av =

ABv implies that v = B~2u, where u is an eigenvector of B~1/2AB~1/2.

Thus, the eigenvectors v, ;, j = 1,...,d,, of Step 4 that satisfy

argmax (v,, Brv;)

subject to v, € 2, <UT,EXXvT>jf =1, (vT,EXva)%a =0,7=1,...,d, —1,

can be expressed as v, ; = Ej%? 1., leading to the following problem

argmax (1, EEQBTZEQUT>%

subject to 0, € , (N ) =1, (e, 0rj) e =0,5 =1,...,d; — 1.

(4.4)



4.3 Sample Level

Remark 3. Step 2 of the algorithm requires an integer m. Simulation
studies show that the algorithm is robust across different values of m; see
Supplementary [S6 For this study, we chose m = pg—1, where p is the num-
ber of predictors and ¢ is the number of basis functions used to approximate

the functional predictors.

Remark 4. In this paper, we assume the structural dimension d. is known.
However, in practice, it is unknown and must be estimated. One approach
is the cross-validation Bayesian information criterion (CVBIC) from |Li and

Song] (2017)); details and simulations are provided in Supplementary .

4.3 Sample Level

We now derive the sample estimates of the expressions and
when the functions are fully observed. Specifically, for u = 1,... n, let
Y, be an independent and identically distributed (iid) sample from Y,
and X1,...,X, be an independent sample from the random element X =
(X1, ..., XP), with X, = (X},...,XP)".

To achieve , we apply the FSIR method from [Ferré and Yao (2003)
and replace X with the new d-dimensional predictor vector Z(X ); see [Ferré

and Yao| (2003)) for details. Then, we use the data {Y,, X,}”_, to obtain

~

(@, 5r) = arg min 3 [Q-AYIL(X.)} = ar = (br Xa)or ', (45)

ar,br



4.3 Sample Level

where Q. {Y|L(X,)} is a nonparametric estimate of Q. {Y|L(X,)}. For that
we use the local linear conditional quantile estimation method of|Guerre and
Sabbah| (2012), where Q,{Y|L(X,)} = ¢:{L(X,)} and

@AL(X)), 8L(X.)}) = arg min 37 pr Vi — g — sT{L(X0) ~ L(X.))]

h

Here, K(-) is a d-dimensional kernel function, and h > 0 is the bandwidth.
We use a Gaussian kernel and select h based on the rule-of-thumb in Yu
and Jones| (1998). Specifically, h = h,,[7(1 — 7)/[¢{® (7)}]}]*/°, where
¢(-) and ®(-) are the standard normal density and cumulative distribution
functions, and h,, is the optimal bandwidth for local mean regression.

Next, to achieve (4.3), we set //B\T,O L BT, and, for j =1,...,m, we form
Bry =11 (Brj1, Xu) o X (4.7)
u=1
After obtaining 37,07 Eﬂl, o ETM, set B, = P Bm- ® Bm- and solve prob-
lem 1} which implies solving EEQ BTEEQ N = An, and v, = Zj%? Nr-
At the sample level, we estimate ¥ x x using the p x p matrix 5 xx, Where
Sxivi = Eo{XT — Eo(X)} @ {X9 — E,(X9)}Y], 4,5 = 1,...,p, and S%

—-1/2

using the regularized inverse (Xxx + €,/ where {¢, },>1 1s a sequence
p ) =

of positive numbers approaching zero as n — oo, and I, is the p X p identity



matrix. Thus, we aim to find the first d. eigenfunctions 7,1, ...,7,q, of

o~

M, = (Sxx + e ]) 2B (Sxx + e 1) ? (4.8)

and transform back to the eigenfunctions v, ; = (f] xx + e, )Y N,.; and

the sufficient predictors (v, ;, X)», j =1,...,d;.

5. Asymptotic Theory

To derive the consistency and convergence rate of ]/\/.I'\T7 where the popu-
: : 1/2 1/2 .
lation counterpart is M, = Xy B;X %, we introduce a commonly used

assumption, as seen in Assumption 7 of |Li and Song (2022)).
Assumption 4. %T(y‘x) Cran(Xxx).

This assumption is not restrictive and suggests that the 7-FCQS is iden-
tifiable up to the range of ¥ xx. This is because if 8, L Tan(Xxy), then

Var({p., X).») = 0, implying 3, is orthogonal to the support of X — E(X).

Theorem 4. Let Assumptions |3, [3 [, and S1-S6 from the Supplementary
hold. Then, if E(X) =0, Z(X) is consistent of the directions of the FCS,
andn~Y* <€, < 1, for a given T € (0, 1), ]\/4:, given in , 18 a consistent

estimate of M,, and

|77 = ar|| = 0,071 26:2) + O(el),




where M, = ZTXIQBTEEQ, and ||-|| is the operator norm.

Next, the first d, eigenvalues and eigenfunctions of ]/\4\7 converge to those

of M, at the same rate, as in Corollary 2 of |Li and Song| (2022).

Corollary 1. Under the assumptions of Theorem [f, and for a given 7 €

(0,1) and j =1,...,d;,

~

)‘J' - >‘j = Op(nil/QEZQ) + 0(6111/2)7 and Hﬁﬂj - 7773]’”% = Op(n71/2€7;2> + O(Eim)a

where Xj and 1, ; are the eigenvalues and eigenfunctions of ]\//TT, respectively,

and \j and n,; are the eigenvalues and eigenfunctions of M, respectively.

The eigenfunctions of interest are v, ; = (f) xx + €, 1)7Y?7, 4, and the
next theorem gives the convergence rates of v,; and of the predictors

<a7'7j7X>4%”7 .] = ]‘7"'7d7'~

Theorem 5. Let Assumptions |2, [3 [, and S1-S6 from the Supplementary
hold. Then, if E(X) =0, L(X) is consistent of the directions of the FCS,

and n=Y> < e, <1, for a given 7 € (0,1) and for j =1,...,d.,

2o = 0p(n™12672) + 0(e?),

075 — vr 4]

(Orjs X)or — (075, X) e = Op(n™%€,%%) + O(el)?),

where U, ; = Exx + end) V20,5 and v, = E;é?nm'-



6. Implementation

In practice, the functions X,(¢), v = 1,...,n, are observed at a finite set
of points, t,1,...,tun,, and need to be estimated using the observed data
{(t, Xu(t)) : t = tus, ..., tun, }- Common methods for estimating X, (t) use
coordinate representation with a finite number of basis functions, converting
a function to a vector, a linear operator to a matrix, and an eigenfunction
problem to an eigenvector problem. Preliminaries on coordinate representa-
tion are provided in Supplementary [S5, We omit indices like g, [-]g, and []g,,
as the bases for the coordinates can be identified by the operators’ domain
and range. In this section, square brackets are reserved for coordinates.
For ¢« = 1,...,p, assume that H; is spanned by a finite set of basis
functions G; = {g{,...,g;, }, such that each X}, u = 1,...,n, can be ap-
proximated by [X?]" gl . Although )A(ZL could be used for clarity, we omit
this distinction for simplicity. Let @, = I, — n~'1,1] be the projection
onto the orthogonal complement of the subspace spanned by 1,,, where [, is
the n x n identity matrix and 1,, is the n-dimensional vector of ones, and let
G =diag(G; i =1,...,p) € RPF=>PEn where G; is the Gram matrix of H,.
Then, [X,] = ([X}]T,...,[XP]T)T € RP* is the coordinate representation

of Xy, u=1,...,n, i.e., the ¢th block is the coordinate representation of

X!. Therefore, the matrix [X1.,] is the pk, x n matrix ([Xi],...,[X,]).



The coordinates of (4.5) and (4.7) with respect to G = @?_, G, are

(@, [3)) = ag gglgz[@{m D} = e = BTG 6)
where Q-{Y|L(X,)} = G-{L(X,)} for
GAL(X)}LSALIX)Y) = arg mmzpf[yk—qf sT{L(X) — LX)}

(gr,s7)

and, for j =1,...,m,

n

Bril =™ [Brya] TGIXL[X), (6.3)

u=1

where 37,0 = 3. from 1) Then, for B, = > im0 Bm' ® Bm'? we have
[B] = YtolBry @ Brgl = S5eolBrsllBr] TG = [Brom][Brom] "G and the
eigenvalue problem becomes

avgmax (1] GERKNBromlBrom)  GERY 0]

subject to  [1:]"Gn] =1, -] "Gl j] = 0,5 =1,....dry.
Let w, = G'/2[n,], then we get the eigenvector problem

argmax (JJ:Gl/2 [ETl/Q] [BT 0: m] [/BT 0: m]TG[ET1/2]GT1/2

T

subject to w:wT =lw w,;=0,7=1,...,d;_1.

Using [S147] = G1V2{n 2 GY2([X1.0]Qn [ X1:n]) ) GY2HY2GH2 proven in Sup-

plementary and A = {n7'GV2([X1.0)Qn[ X1 G212 we get



argmax WIAGUQ [B\T,O:m] [//B\T,O:m]TGl/QAwT
(6.4)

subject to w:wT = 1,wTTwm- =0,7=1,...,d,_1.
Then, [0,] = [EREIG 2w, = G2Aw, and (X,,5.)r = [X,]TG[0,] =

[X.]TGY? Aw,. See Algorithm 1 for the details.

7. Simulation studies

7.1 Computational Remarks

Algorithm and parameters. Step 1 computes the coordinates of X,
using a B-spline basis with ¢ = 4. Step 2 applies FSIR (Ferré and Yaol
2003)) with H = 10 slices. Step 3 performs local linear conditional quantile
estimation, selecting the kernel and bandwidth as in Section [4.3] Finally,
Step 5 generates additional directions with m = pg — 1, as in Remark [3]

Simulation Setting. The simulation setting is an extension of Wang, Liu,
Han and Di| (2023) to multivariate data. First, create 101 equally spaced
time points in [0, 1], separated by 0.01. Then, for ¢ = 1,...,p and u =
1,...,n, generate X' () using the Karhunen-Lo¢ve expansion , where
pxe = 0 and Xi(t) = Yor_, €,04(), t € [0,1], with ¢(t) = v/2sin(2rt),
P4 (t) = V2cos(2mt), ¢i(t) = V2sin(4nt), ¢4(t) = V2cos(4nt), and &,

independent random variables with zero mean and variance var(¢: ) = \,,
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Algorithm 1

1:

Let {Y,, (t, Xu(t)) : t = tu1, ..., tun, }1—; iid sample.

: For each u = 1,...,n, obtain the coordinates of X, relative to the basis

G ="_, G; of A and derive the gram matrix G.

: Use FSIR of Ferré and Yao| (2003) to compute the d-dimensional pre-

dictors E(Xu)

. For each u = 1,...,n, estimate Q,{Y|L(X,)} using the local lincar

conditional quantile estimation method of |Guerre and Sabbah (2012).

That is, take Q,{Y|L(X,)} = ¢-{L(X,)}, where ¢ {L(X,)} is in (6.2).

: Compute [BT] according to 1) and set [BT,O] = [BT]

: For j =1,...,m, compute [Bm] according to 1'

Compute the matrix A = {n'GY2([X1.,)Qn[X1.n]T) G2 }11/2,

: Solve the eigenvalue problem ((6.4]) and obtain w,;, j =1,...,d,.

. Obtain [0,;] = GT/2Aw, ; and the sufficient predictors (X, v,;)» =

(X, GYV?Aw, 4, j=1,...,dryu=1,... n.

7":1,...,4, with )\1:2,)\2:1,)\3:1/2,)\4:1/4.

To simulate multivariate functional data X,(t) = (X.(¢),..., XP(t))

using the Karhunen-Loéve expansion (2.3, we follow Proposition 5 of

Happ and Greven, (2018) and use the multivariate FPCA eigenfunctions

through an orthogonalization of the univariate eigenfunctions. Specifi-



7.1 Computational Remarks

cally, for i = 1,...,p and w = 1,...,n, let & = (&,,...,&,)" and
€, = ((€HT,...,(€9)1)T. Moreover, define Z € R**% to be the co-
variance matrix of the univariate FPCA scores &, with (j, j')th entry the
matrix Z7 = cov(&, &) € R4, Then, the kth eigenfunction v, (t) =
(Wi(t), ..., ()T of Sxx is defined by ¥i(t) = @'(t) 2k, k = 1,...,4p,
where ¢'(t) = (¢i(t),...,¢(t))" and 2t = (z,,...,2,)" denotes the ith

7

block of the eigenvector zj, of Z. Finally, the scores are py, = > ¢, Z;‘le 2 &

k=1,...,4p and v = 1,...,n, where the coordinate-wise scores & are
standard normal random variables.

Estimation accuracy is measured using the multiple correlation be-
tween true and estimated predictors (Li and Song, 2022): mcorr(U,V) =
tr(C";‘l,/ QCVUC&l]CUVC’;‘l/ %), where U and V are random vectors of dimen-
sion d. It ranges from 0 to d, with values near d indicating better per-
formance. Unless stated otherwise, simulations use N = 100 iterations,
n =400, p=>5, 7=0.1,0.25,0.5,0.75,0.9, and assume d, to be known.

Models under consideration. We consider the following models.

1

M = TG )

5 + 0.2,

M-IT: Y = arctan(w (51, X)»/2) + ¢,

M-TIT: Y = exp({f1, X).»)e,
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M-IV: Y = (81, X)r + (B2, X) e,

M-V: Y = arctan(mw (51, X)) + 0.5sin(mw (52, X) »/6) + 0.1¢,

M-VI. Y = <ﬁ1,X>;;ﬂ + <,62,X>f + \/05 + <51,X>?yf -+ <62,X>?yf€,
M-VIL Y = (B, X)% + exp({B2, X)) + (B3, X) e,

M-VIIL: Y = (B, X}, + (B2, X)or + {Ba, X) €,

where B1(t) = ¥1(t), B2(t) = Yo(t), and S3(t) = 13(t) are the first three
eigenfunctions of X xx, X is simulated as described above, and the error
e is generated from standard normal (N'), chi-square with three degrees of
freedom (X?), and exponential with rate of 0.5 (Exp(0.5)) distributions.
Note that %T(Y‘X) = span{f } for Models I-I1I, %me) = span{f, B2}
for Models V-VI, %T(Yp() = span{f, B2, 83} for Models VII, %T(yp() =
span{ 5 + Q- (g)B2} for Model 1V, and %T(yp() = span{f, B2 + Q,(¢)Fs}
for Model VIII. Results for all models are available, but we report selective

ones for brevity and since they exhibit similar patterns.

7.2 Results

Example 1 - Effect of n and p. We evaluate the algorithm for sample
sizes n = 200, 400, 1000, and number of predictors p = 5, 10, 20, 40, primar-

ily focusing on Model I. Table [I|reports the means and standard deviations
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Table 1: Mean (and standard deviation) of multiple correlation for Model

I, when the error follows a standard normal distribution.

nop

0.1

0.25

0.5

0.75

0.9

200 5

10

20

40

400 5

10

20

40

1000 5

10

20

40

0.9957 (0.0039)
0.9912 (0.0105)
0.9848 (0.0542)
0.9692 (0.0827)
0.9964 (0.0045)
0.9948 (0.0048)
0.9926 (0.0055)
0.9898 (0.0092)
0.9974 (0.0018)
0.9966 (0.0027)
0.9952 (0.0035)

0.9935 (0.0045)

0.9956 (0.0042)
0.9911 (0.0108)
0.9849 (0.0565)
0.9680 (0.0825)
0.9965 (0.0039)
0.9948 (0.0047)
0.9927 (0.0053)
0.9897 (0.0095)
0.9974 (0.0017)
0.9966 (0.0027)
0.9950 (0.0035)

0.9936 (0.0044)

0.9957 (0.0040)
0.9913 (0.0106)
0.9911 (0.0146)
0.9722 (0.0657)
0.9965 (0.0035)
0.9949 (0.0047)
0.9926 (0.0054)
0.9892 (0.0137)
0.9974 (0.0017)
0.9966 (0.0026)
0.9951 (0.0035)

0.9935 (0.0044)

0.9957 (0.0039)
0.9913 (0.0105)
0.9907 (0.0173)
0.9726 (0.0698)
0.9966 (0.0034)
0.9949 (0.0046)
0.9926 (0.0054)
0.9898 (0.0092)
0.9974 (0.0017)
0.9966 (0.0026)
0.9950 (0.0034)

0.9935 (0.0045)

0.9957 (0.0038)
0.9910 (0.0105)
0.9908 (0.0155)
0.9538 (0.1210)
0.9966 (0.0032)
0.9949 (0.0047)
0.9927 (0.0054)
0.9897 (0.0097)
0.9974 (0.0016)
0.9966 (0.0026)
0.9950 (0.0034)

0.9934 (0.0046)

of the multiple correlation for various 7 values when the error follows a
normal distribution; Tables [S1]and [S2]in the Supplementary [S6| present the
results for chi-square and exponential error distributions, respectively. The
efficiency of the methodology increases with n and decreases with p, and is
consistent across different quantile levels and error distributions.

Example 2 - Performance of the algorithm. We evaluate the per-

formance of the algorithm across all models. Table [2| reports the means
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and standard deviations of the multiple correlation for various 7 and error

distributions. The mean multiple correlation is close to d..

Table 2: Mean (and standard deviation) of multiple correlation for Models

I-VIII.

0.1

0.25

0.5

0.75

0.9

11

111

v

VI

VII

VIII

Example 3 - Methods to compare. We compare our method with FSIR

0.9967 (0.0033)
0.9952 (0.0056
0.9965 (0.0031)
0.9975 (0.0016)
0.9961 (0.0048)
0.9967 (0.0032)
0.9975 (0.0020)
0.9970 (0.0024)
0.9969 (0.0023)
0.6305 (0.0393)
0.9426 (0.0660)
0.9340 (0.0991)
1.9692 (0.0852)
1.9492 (0.1383)
1.9679 (0.0869)
1.9802 (0.0425)
1.9549 (0.1063)
1.9676 (0.1039)
2.3663 (0.3282)
2.8988 (0.1798)
2.8644 (0.2028)
1.3976 (0.1730)
1.604 (0.2456)

1.4798 (0.2692)

(Ferré and Yao, 2003)) and robust FSIR (R-FSIR; [Solea, Christou and Song

0.9967 (0.0035)
0.9953 (0.0054)
0.9966 (0.0030)
0.9975 (0.0016)
0.9961 (0.0047)
0.9967 (0.0032)
0.9973 (0.0031)
0.9970 (0.0022)
0.9969 (0.0022)
0.8380 (0.0270)
0.9176 (0.0828)
0.9604 (0.0346)
1.9591 (0.1186)
1.9448 (0.1537)
1.9629 (0.0967)
1.9808 (0.0404)
1.9569 (0.1006)
1.9680 (0.1034)
2.4085 (0.3093)
2.9270 (0.1569)
2.8925 (0.1689)
1.6780 (0.1561)
1.8709 (0.1626)

1.7974 (0.1893)

0.9967 (0.0035)
0.9952 (0.0053)
0.9966 (0.0031)
0.9975 (0.0017)
0.9961 (0.0045)
0.9967 (0.0032)
0.9955 (0.0082)
0.9971 (0.0020)
0.9969 (0.0022)
0.9969 (0.0035)
0.7953 (0.1576)
0.8205 (0.1053)
1.9538 (0.1353)
1.9352 (0.1763)
1.9625 (0.0829)
1.9805 (0.0410)
1.9549 (0.0884)
1.9659 (0.1053)
2.4119 (0.3117)
2.9400 (0.1270)
2.9173 (0.1231)
1.9568 (0.0816)
1.9040 (0.1342)

1.9124 (0.1116)

0.9967 (0.0035)
0.9953 (0.0053)
0.9966 (0.0031)
0.9975 (0.0016)
0.9961 (0.0046)
0.9967 (0.0032)
0.9971 (0.0038)
0.9971 (0.0020)
0.9969 (0.0023)
0.8373 (0.0292)
0.7018 (0.1972)
0.6547 (0.1619)
1.9637 (0.0971)
1.9423 (0.1489)
1.9619 (0.0931)
1.9793 (0.0438)
1.9269 (0.1210)
1.9571 (0.1197)
2.4280 (0.3098)
2.9380 (0.1144)
2.9084 (0.1369)
1.6614 (0.1481)
1.8619 (0.1563)

1.8273 (0.1653)

0.9968 (0.0031)
0.9954 (0.0052)
0.9966 (0.0031)
0.9975 (0.0016)
0.9961 (0.0043)
0.9965 (0.0037)
0.9975 (0.0018)
0.9971 (0.0021)
0.9969 (0.0023)
0.6297 (0.0413)
0.6628 (0.2151)
0.5882 (0.1979)
1.9690 (0.0881)
1.9425 (0.1561)
1.9688 (0.0813)
1.9751 (0.0496)
1.8588 (0.2145)
1.9054 (0.1754)
2.4434 (0.3042)
2.9234 (0.1185)
2.8836 (0.1693)
1.3793 (0.1805)
1.8475 (0.1684)

1.7864 (0.2003)




(2026)). Since FSIR and R-FSIR target FCS while we focus on FCQS, we
limit comparisons to Models I-IIT and V-VII, where subspaces coincide,
and fix 7 = 0.5. Table [3| reports the means and standard deviations of
the multiple correlation. Our method consistently outperforms the others,
except in Model I1I, where FSIR performs slightly better with normal errors,

excelling especially in multi-index models.

8. Application

We apply our method to the ADHD-200 resting-state fMRI (rs-fMRI) data
from 222 ADHD patients (2 predominantly hyperactive/impulsive, 44 pre-
dominantly inattentive, and 77 combined), and 99 controls, obtained from
the NYU Child Study Center. The data are publicly available from the
ADHD-200 Consortium (http://fcon_1000.projects.nitrc.org/indi/
adhd200/index.html). We focus on the ADHD-C group, removing five
subjects due to missing information. Pre-processing was done by the Neuro
Bureau organization using the Athena pipeline (http://www.theneurobureau.
org/). The 116 regions of interest were defined by the automated anatom-
ical labeling atlas (AAL; |Craddock, James, Holtzheimer, Hu and Mayberg
(2012)). Time series were extracted by averaging voxel signals within each

region, yielding 116 regional fMRI time series observed at 172 time points.


http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html
http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html
http://www.theneurobureau.org/
http://www.theneurobureau.org/

Table 3: Mean (and standard deviation) of multiple correlation for Models

I-VII, for FSIR, R-FSIR, and 0.5-FCQS and various error distributions.

error

FSIR

R-FSIR

0.5-FCQS

0.9652 (0.0138)
0.9414 (0.0263)

0.9532 (0.0207)

0.9623 (0.0156)
0.9151 (0.0458)

0.9373 (0.0315)

0.9968 (0.0033)
0.9964 (0.0027)

0.9961 (0.0059)

11

0.9821 (0.0071)
0.9519 (0.0207)

0.9703 (0.0124)

0.9829 (0.0070)
0.8963 (0.0803)

0.9568 (0.0217)

0.9972 (0.0019)
0.9967 (0.0030)

0.9968 (0.0032)

II1

0.9900 (0.0039)
0.9926 (0.0028)

0.9887 (0.0046)

0.9898 (0.0036)
0.9926 (0.0031)

0.9874 (0.0057)

0.9872 (0.0555)
0.9972 (0.0020)

0.9969 (0.0032)

1.9287 (0.0235)
1.9009 (0.0414)

1.9141 (0.0298)

1.9300 (0.0242)
1.8945 (0.0428)

1.9122 (0.0336)

1.9666 (0.0606)
1.9476 (0.1281)

1.9626 (0.0685)

VI

1.0634 (0.1199)
1.0116 (0.1265)

1.0603 (0.1446)

1.0213 (0.0735)
0.9403 (0.1256)

1.0003 (0.0959)

1.9856 (0.0243)
1.9563 (0.0778)

1.9713 (0.0765)

VII

We analyze the association between rs-fMRI brain activity, X,(t)

1.9413 (0.1792)
2.1001 (0.2947)

2.1188 (0.2686)

1.7187 (0.2106)
1.7029 (0.2785)

1.7358 (0.2709)

2.5043 (0.3515)
2.9454 (0.0856)

2.9289 (0.1420)

(XL(t),..., XM6(t)), and ADHD scores, Y, for 72 subjects. The right-

skewed distribution and extreme ADHD scores highlight the suitability of

QR and our method; see Figure [S1] in Supplementary [S6]



We apply our method to derive the first d sufficient predictors (U1, X) s,
ooy (Ura,, X) s for 7 =0.1,0.25,0.5,0.75,0.9. For all 7, we choose d, = 5
and estimate the fMRI data using 15 B-splines basis functions of order 4.
Figure 1| shows scatterplots of the first two sufficient predictors by quan-
tile, with different colors indicating different ADHD scores. The distinct
grouping of lighter and darker colors demonstrate a clear separation of sub-
ject based on their ADHD scores. These groupings effectively highlight the
separation of subjects with low, moderate, and high severity ADHD scores.

To compare our method with FSIR, we split the data into training
(80%) and test (20%) sets and fit the local linear QR (Guerre and Sabbahl,
2012)) for various quantiles (7 = 0.1,0.25,0.5,0.75,0.9). We use the first five
sufficient predictors from FSIR and 7-FCQS, aligning 7 with the quantile
of the local linear model. Table [4] reports the average mean square error,
indicting that our methodology outperforms FSIR, except for 7 = 0.25.

Our results agree with |Joshi, Li, Akrami and Leahy| (2019), demonstrating

that dimension reduction in rs-fMRI data can predict ADHD scores.

Supplementary Material

The online Supplementary Material contains additional assumptions, pre-

liminary results and lemmas, proofs, and additional simulation results.



0.1

First predictor First predictor

First predictor

Figure 1: Scatterplots of the first two sufficient predictors for the fMRI
data set across quantile levels 7 = 0.1,0.25,0.5,0.75,0.9. Each point rep-
resents an observation, with colors indicating ADHD scores. Lighter colors
correspond to higher ADHD scores. The axes represent the values of the

first and second sufficient predictors.
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