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Abstract:

Directed acyclic graph (DAG) models are widely used to discover causal relationships

among random variables. However, most existing DAG learning algorithms are not di-

rectly applicable to heavy-tailed data which are commonly observed in finance and other

fields. In this article, we propose a two-step efficient algorithm based on topological lay-

ers, referred as TopHeat, to learn linear DAGs with heavy-tailed error distributions which

include Pareto, Fréchet, log-normal, Cauchy distributions, and so on. First, we reconstruct

the topological layers hierarchically in a top-down fashion based on the new reconstruction

criteria for heavy-tailed DAGs without assuming the popularly-employed faithfulness con-

dition. Second, we recover the directed edges via the modified conditional independence

testing for heavy-tailed distributions. We theoretically demonstrate the consistency of the

exact DAG structures. Monte Carlo simulations validate the outstanding finite-sample per-

formance of the proposed algorithm compared with competing methods. In the real data

analysis, we analyze the exchange rates among 17 countries and uncover the source of fi-

nancial contagion and the pathways, which indicates that the financial risk contagion effect

became increasingly stable among European countries as the euro was introduced.
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1. Introduction

Directed acyclic graphs (DAG) provide a powerful tool to describe the causal

relationships via the directional parent-child arrows among random variables,

which has received growing attention in many application domains (Pearl, 2000).

Despite the success, existing DAG learning methods are developed largely rely-

ing on the assumption of Gaussian, sub-Gaussian, and moment bounded distri-

butions. Yet, heavy-tailed data frequently appear in finance and insurance due to

the occurrence of rare events (Resnick, 2007; Peng and Qi, 2017), which brings

great challenges to existing methods for learning DAG structures.

Recently, only a few studies have explored DAG learning in heavy-tailed

financial data. For instance, the popular PC algorithm (Spirtes et al., 2000) pro-

duces a partial DAG when learning the causal structures of the credit risk among

financial institutions (Yang and Zhou, 2013), and of the implied volatilities of

U.S. Treasury bonds, global stock indices, and commodities (Yang and Zhou,

2017). In the seminal work, Gnecco et al. (2021) proposed the extremal an-

cestral search (EASE) algorithm to recover causal orderings among returns of

the Euro Swiss franc exchange rate and three largest Swiss stocks. However,

the aforementioned methods fail to recover complete DAG structures, which is
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of great importance to understand the systemic risk. Specifically, the financial

contagion pathway can be represented with the directed relationships in a DAG,

which shows the propagation of financial shocks or disturbance from one cur-

rency to another in the financial exchange market.

In literature, structure learning methods of DAGs are mainly of two types,

including constraint-based algorithms (Spirtes et al., 2000) and score-based meth-

ods (Chickering, 2003). Recently, identifying a unique DAG from the joint

distribution by imposing a structural causal model (SCM, Peters et al., 2017)

has been extensively studied (Peters and Bühlmann, 2014). Heavy-tailed distri-

butions are special examples of non-Gaussian DAG models, early attempts of

which include Shimizu et al. (2006, 2011); Hyvärinen and Smith (2013), and

high-dimensional non-Gaussian DAGs are also considered in Wang and Drton

(2020) with the moment quantities and Zhao et al. (2022) with the precision ma-

trix, respectively. However, these aforementioned methods designed for learning

non-Gaussian DAGs often lead to underestimation of extremal events in heavy-

tailed distributed data, such as the financial risk (Klüppelberg and Krali, 2021)

and flooding in river network (Asadi et al., 2015).

In this paper, we propose a two-step learning algorithm for heavy-tailed

DAGs based on topological layers. Explicitly, a DAG can be reformulated via

the layer structure with the number of layers defined by the longest length of a
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directed path from a root node to a leaf node, and the parents of each node must

lie in its upper layers. In particular, we first show that the topological layers

can be fully reconstructed in a top-down fashion based on a modified expected

shortfall measure. Second, the directed edges can be determined by applying

the refined conditional independence testing (CIT) procedure for heavy-tailed

distributions hierarchically. The proposed method, denoted as TopHeat, is com-

putationally efficient and its asymptotic properties are provided in terms of exact

DAG recovery. The superior performance is supported by simulation studies and

real-life examples, where we study the exchange rates data of 17 countries and

discover financial contagion paths arising from the foreign exchange market.

The main contribution of this paper is the proposed efficient learning algo-

rithm for a heavy-tailed DAG with a diverging number of nodes and its statis-

tical guarantees of the recovery consistency for the underlying DAG structures.

Specifically, we first show that the topological layers of a heavy-tailed DAG can

be sequentially reconstructed in Lemma 1. Secondly, we establish the asymp-

totic normality of the reconstruction measure in Theorem 2 with the help of

extreme value theory and tail empirical process, which is particularly attractive

in line of the research in actuarial science and risk management. More impor-

tantly, we connect the heavy-tailed DAG learning with the CIT measure (Azad-

kia and Chatterjee, 2021), by extending it from sub-exponential distributions to
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accommodate heavy-tailed distributions, and derive the tail bound for the sam-

ple CIT measure in Proposition 1. Overall, we establish the statistical guarantees

in terms of exact DAG recovery, which is among first attempts in heavy-tailed

DAG learning literature. We need to emphasize the differences between the pro-

posed method and some existing works, which fail to give solutions to obtain

the complete DAG structures (Gnecco et al., 2021), or cannot adapt to a general

heavy-tailed distribution family (Zhao et al., 2022). Further, TopHeat is com-

putationally efficient among related methods when dealing with shallow graphs

for large node size. More details for the comparison with recent DAG learning

methods are provided in Section 1.1.

The rest of this paper is organized as follows. In Section 2, we introduce

the heavy-tailed DAG models. In Section 3, we propose an efficient learning

algorithm for heavy-tailed DAGs by developing the criteria to reconstruct the

topological layers. In Section 4, we investigate the consistency of recovering the

underlying DAG structures under regularity conditions. In Section 5, we conduct

numerical studies to compare the proposed algorithm with competing methods.

Section 6 applies the proposed method to analyze the foreign exchange rates

data. Section 7 contains a brief discussion. The proof of theoretical results and

additional experimental results are presented in the supplementary material.
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1.1 Related methods
1.1 Related methods

In this subsection, we mainly compare the proposed TopHeat method with some

existing competitors in terms of theoretical results and computational complex-

ity. Specifically, Gnecco et al. (2021) proposed EASE to learn the causal or-

dering of a heavy-tailed DAG sequentially. Most recently, Zhao et al. (2022)

developed a non-Gaussian DAG learning method, named by TL, by utilizing the

topological layers in a bottom-up fashion.

Theoretically, EASE only investigates the reconstruction criteria of the causal

ordering and its consistency when the number of nodes is fixed, without provid-

ing solutions for complete DAG structures. However, the proposed TopHeat

overcomes these obstacles, with consistency DAG structure recovery that allows

the number of nodes and layers to diverge with the sample size. Moreover, the

established consistency result of TL largely depends on the maximum cardinality

of Markov blankets (Peters et al., 2017) and only accommodates some special

distributions, which cannot adapt to a general heavy-tailed distribution family

we consider in this paper, not to mention that the violation of the conditions for

the precision matrix to produce false layers and edges. Interestingly, TopHeat

imposes no additional assumptions on the graph structures.

The computational complexity of TopHeat is much smaller than EASE in a

shallow graph, and they become the same when the number of layers is equiv-

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0199



alent to the number of nodes in a chain graph. Further, TopHeat is computa-

tionally much more efficient than TL for small sample size or small ancestors.

Detailed complexity comparisons analytically and numerically are provided in

Sections 3.2 and 5.2, respectively.

Further, we give some guidance on when to choose these algorithms in real-

world application. In practice, practitioners should first conduct descriptive sta-

tistical analysis and give a basic idea about the data distribution. If the histogram

shows a light tail, then various DAG learning methods can be used. However, if

the histogram shows polynomial decaying tail, which is heavier than Gaussian,

and the probabilty of tail is relatively small, TL is recommended to learn a DAG.

Furthermore, if the probabilty of tail is not small, then we may choose TopHeat

and EASE to estimate the causal graphs. Clearly, methods designed for learn-

ing heavy-tailed DAGs can reveal more information in real-world financial data

compared with general non-Gaussian DAGs learning algorithms. Therefore, we

strongly recommend using TopHeat to obtain a complete DAG for heavy-tailed

data, out of its efficiency and superior performance over EASE.

2. Heavy-tailed DAG

A DAG model is widely used to encode the joint distribution of X = (X1, ..., Xp)
⊤.

Precisely, let G = (V , E) denote a DAG, where V = {1, ..., p} represents a set of

nodes each corresponding to one Xj , and E ⊂ V × V denotes a set of directed
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edges without directed cycles. A directed edge from node j to node m is de-

noted as j → m, and then node j is a parent of node m. We denote node m’s

parents in a DAG G as pam, and let Xpam := {Xj : j ∈ pam ⊂ V}. In general,

for any subset S ⊂ V , we denote XS := {Xj : j ∈ S ⊂ V}. We also define

a directed path from node m1 to node mq in G as a sequence of distinct nodes

m1, . . . ,mq such that mj ∈ pamj+1
for j = 1, . . . , q − 1. If there is a directed

path from node j to node m, we say j is an ancestor of m in G. We denote the

set of ancestors of node m as anm, and Anm = anm ∪ {m}. Assume that the

joint distribution P (X) satisfies the Markov property with respect to G, and thus

it allows for the factorization, P (X) =
∏

j∈V P (Xj|Xpaj), where P (Xj|Xpaj)

denotes the conditional distribution of Xj given its parents Xpaj . We also assume

causal minimality (Peters et al., 2017) holds.

Next, we consider a linear structural causal model (SCM)

Xm =
∑
j∈pam

βmjXj + εm, m = 1, . . . , p, (2.1)

where βmj is assumed to be strictly positive. Assume that ε1, . . . , εp are inde-

pendently sampled from a (right) heavy-tailed distribution with regularly vary-

ing tails with the tail index θ, given in Definitions S1–S2 in Section S1 of the

supplementary material. That is, there exists cm > 0 and for each m ∈ V ,
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P (εm > x) ∼ cmh(x)x
−θ, as x→∞, (2.2)

for some h ∈ RV0, where RV0 is a slowly regulary varying function defined in

Definitions S2. Here, for any functions f and g, we denote f ∼ g if limx→∞ f(x)/g(x)→

1. In the sequel, we denote the model in (2.1) and (2.2) as the heavy-tailed

SCM. Heavy-tailed distributions have been frequently employed in analyzing

real-world financial data, including Pareto, Fréchet, log-Gamma, Student’s-t,

Cauchy distribution, and many others. It is worthy noting that some other dis-

crete distributions are also included in the heavy-tailed distribution. For exam-

ple, the insurer’s net loss (the total number of claims less premiums) is quantified

as a discrete real-valued random variable within time periods and assumed with

a regularly varying tail in literature (Li and Tang, 2015). The literature has also

documented substantial heavy-tailed distributed datasets, such as stock market

returns, exchange rates, and interest rates, which have infinite fourth moments

and are collected to capture complex relationships for financial forecasting, risk

management, and portfolio optimization (Lee, 1992; Chen and Schienle, 2022).

The linear SCM model in (2.1) can be rewritten as a matrix form X =

BX+ε with B = (βmj) ∈ Rp×p and ε = (ε1, . . . , εp)
T , where βmj is considered

as the direct causal effect of Xj on Xm. This implies that X = (I − B)−1ε :=

Πε, where Π = (πmj) ∈ Rp×p with πmj as the total effect of Xj on Xm and
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πjj = 1 for all j. To read off the dependence from the graph, faithfulness is

commonly assumed (Peters et al., 2017) and it is required that πmj ̸= 0. Note

that if all βmj’s in (2.1) are positive, then πmj > 0 for any m ̸= j, and thus

the faithfulness assumption is automatically satisfied. In this paper, we first

investigate the positive-valued coefficients case, and then extend it to the real-

valued scenario with βmj ∈ R in Section S8 of the supplementary material.

3. Two-step DAG learning algorithm

In this section, we first introduce the concept and reconstruction criteria of topo-

logical layers for a heavy-tailed DAG, and then the proposed two-step efficient

learning algorithm to recover the exact DAG structures.

3.1 Reconstruction of topological layers

The definition of topological layers of a DAG is explicitly given in Section S1

of the supplementary material. In literature, the topological layers have been

widely employed for learning DAG structures (Gao et al., 2020; Zhao et al.,

2022; Zhou et al., 2022). Examples of the topological layers structure of a DAG

are displayed in Figure 1. However, the distribution classes considered in Gao

et al. (2020); Zhou et al. (2022) fail to satisfy regularly varying conditions and

the precision matrix in Zhao et al. (2022) for non-Gaussian DAGs is not identifi-

able for heavy-tailed random variables (Zhao and Liu, 2014). Next, we provide
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3.1 Reconstruction of topological layers
the provable reconstruction result of topological layers for a heavy-tailed DAG.

We first introduce some notations. Let Fj(Xj) denote the marginal cumula-

tive distribution function (cdf) of Xj , and define the causal tail coefficient matrix

Γ = (Γjm)
p
j,m=1 ∈ Rp×p with

Γjm = lim
u→1−

E{Fm(Xm)|Fj(Xj) > u}. (3.1)

Note that Γjm ∈ [0, 1] by definition, and it can be used to capture the causal

relationship between nodes j and m. Intuitively, Γjm tends to 1, if j has a di-

rected path to m, which means that extremes of Xj are more likely to lead to

those of Xm. However, if there is no directed path from j to m and no causal

relationships exist between j and m, then we expect that Γjm is strictly much

smaller than 1. It is worth pointing out that the measure Γjm is developed from

the expected shortfall where the tail-dependent variables are replaced with their

marginal cdfs, and proposed to describe the ancestor-descendant relationship be-

tween two variables in Gnecco et al. (2021) in terms of the causal ordering.

Lemma 1. We consider the heavy-tailed linear SCM model in (2.1)–(2.2). Given

A0, . . . ,At−1, we let C0 = V and Ct = V\
⋃t−1

d=0Ad, and then it holds true that

At = {m ∈ Ct : maxj∈Ct Γjm < 1}.

Lemma 1 provides a constructive proof of reconstructing the topological
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3.1 Reconstruction of topological layers
layers of a heavy-tailed DAG via mathematical induction. Particularly, we first

identify A0 = {m ∈ V : maxj∈V Γjm < 1}, since anm = ∅ if m ∈ A0 and thus

Γjm < 1 for all j ∈ V and j ̸= m. Otherwise, Γjm = 1 holds for any j ∈ Anm if

m /∈ A0. Then we apply the similar treatment to C1 = V\A0 to identify A1, and

proceed to identify other layers sequentially until all the nodes are assigned. In-

terestingly, Lemma 1 ensures that the layers can be reconstructed in a top-down

fashion, whereas Theorem 1 of Gnecco et al. (2021) shows the causal ordering

can be recovered by searching each root node greedily in the current subgraph

with Γ. It is important to remark that Lemma 1 holds true without assuming the

popularly-employed faithfulness condition in literature (Spirtes et al., 2000).

Generally, suppose that A0, . . . ,At are identified. For node m ∈ At, we

have pam ⊂ St = ∪t−1
d=0Ad and dem ∩ St = ∅. Further, the causal minimality

holds if and only if Xm ̸⊥⊥ Xj|Xpam\{j} for j ∈ pam (Peters et al., 2017), yield-

ing that Xm ̸⊥⊥ Xj|XSt\{j}. Thus, pam is the set of nodes with conditional de-

pendence. It is interesting to notice that in Section 4, the minimal signal strength

for the measure to test the conditional dependence is required in Assumption 5

to establish the asymptotic consistency under the finite sample setting.

Theorem 1. Suppose that all the assumptions in Lemma 1 are satisfied and the

causal minimality holds. Then, the heavy-tailed DAG G is uniquely identifiable.

Theorem 1 establishes the identifiability of the heavy-tailed DAG under the
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3.2 TopHeat
linear SCM model (2.1) and (2.2), regardless of continuous or discrete distribu-

tions. The proof of Theorem 1 directly follows from Lemma 1 that all the topo-

logical layers can be exactly recovered by comparing Γ, and from the causal

minimality assumption that the underlying directed edges can be exactly re-

constructed by testing the conditional dependence if the true layers are given.

Therefore, the details are omitted here. Note that we are the first to establish

identifiability results for the heavy-tailed DAG, but only the causal ordering is

identified in Gnecco et al. (2021). To the best of our knowledge, since no off-the-

shelf regularized regression techniques can be applied to determine parent-child

relationships for heavy-tailed data in our setting (2.1), we refine a conditional

independence testing (CIT) measure to recover the exact DAG structures.

3.2 TopHeat

We now develop a two-step efficient algorithm to learn a heavy-tailed DAG. The

first step is to recover the topological layers in a top-down fashion, motivated by

Lemma 1, and then the directed edges can be reconstructed by applying a CIT

method among layers for the heavy-tailed data in a parallel fashion.

Given a random sample Xn = (Xn
i )

n
i=1 with Xn

i = (Xn
i,1, ..., X

n
i,p)

T , we first

estimate the causal tail dependence as

Γ̂jm =
1

k

n∑
i=1

F̂m(X
n
i,m)1{Xn

i,j > Xn
(n−k),j}, j ̸= m, (3.2)
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3.2 TopHeat
where F̂m(X

n
i,m) = n−1

∑n
i=1 1{Xn

i,m < x} with x > 0, 1{·} is an indicator

function, and X(n−k),j is the (n− k)-th order statistic of Xj , satisfying Xn
(1),j ≤

Xn
(2),j ≤ Xn

(n−k),j ≤ Xn
(n),j with the integer 0 < k ≤ n− 1.

With Γ̂jm, it is assured by Lemma 1 that Â0 can be estimated as Â0 =
{
m ∈

C0 : minj∈C0 |Γ̂jm − 1| > ϵ0
}
, where ϵ0 is a small positive constant. Note that

we expect Γ̂jm is strictly smaller than 1 with a tolerance ϵ0 for all j ∈ C0, if m is

estimated as a root node such that m ∈ Â0. Therefore, all the root nodes located

in Â0 should keep the distance from 1 at least ϵ0. Suppose that the topological

layers Â0, . . . , Ât−1 have been estimated and Ĉt = V\Ŝt with Ŝt = ∪t−1
d=0Âd, we

next estimate the topological layer Ât in a similar manner. That is, it follows

from Lemma 1 that Ât =
{
m ∈ Ĉt : minj∈Ĉt |Γ̂jm − 1| > ϵt

}
, where ϵt is a

small positive constant. We repeat these procedures until Ĉt = ∅.

After Ât’s are reconstructed, the task of DAGs learning boils down to esti-

mation of the skeletons (Shojaie and Michailidis, 2010), as directed edges can

only point from upper layers to lower layers and no edges are allowed within the

same layer. One direct way is to apply the regression-based methods. However,

to the best of our knowledge, no suitable regression methods can be used here,

since Huber loss based methods require the finite moment condition for the error

(Fan et al., 2017; Sun et al., 2020), which is difficult to satisfy for heavy-tailed

distributions we consider in this paper. Therefore, we turn to perform a CIT
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3.2 TopHeat
procedure to estimate the parents of each node m ∈ At from St,

Hm,j,0 : Xm ⊥⊥ Xj|XSt\{j} v.s. Hm,j,1 : Xm ̸⊥⊥ Xj|XSt\{j}, (3.3)

for each j ∈ St. There is a vast and rapidly growing literature on CIT. Existing

methods fall roughly into four main categories. The metric-based tests (Wang

et al., 2015) may suffer from the curse of dimensionality as kernel smoothers

are involved, and thus the kernel-based tests (Zhang et al., 2011) also have in-

flated type-I errors. Instead, the conditional randomization-based tests (Candes

et al., 2018) require that the conditional distribution Xm|XSt\{j} is known as a

prior. If unknown, the type-I error rates largely depend on the approximation

of the conditional distribution. Regression-based tests (Shah and Peters, 2020)

may not have sufficient power to detect the alternative hypothesis. Interestingly,

Azadkia and Chatterjee (2021) proposed a novel and rather different conditional

dependence measure,

Qm,j,t =

∫
E[V ar{P (Xm ≥ t|XSt)|XSt\{j}}]dFm(t)∫

E{V ar(I{Xm≥t}|XSt)}dFm(t)
, (3.4)

where I(·) is an indicator function. Out of its simplicity, computational effi-

ciency, and asymptotically properties, we employ this measure to perform a CIT

in (3.3). Note that the null and alternative hypotheses in (3.3) correspond to
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3.2 TopHeat
Qm,j,t = 0 and Qm,j,t ̸= 0, respectively (Azadkia and Chatterjee, 2021).

The sample CIT measure is denoted as Q̂m,j,t and its asymptotic normality

is also established in Theorem 3.1 of Shi et al. (2024) with 1/
√
n convergence

rate and asymptotic variance σ2. For testing whether Q̂m,j,t is zero or not, we

apply the t-type test statistic
√
nQ̂m,j,t/σ̂

2, where the details of the estimator

σ̂2 is given in the Section S6 of the supplementary material. The equivalent

null hypothesis Hm,j,0 : Qm,j,t = 0 is rejected against the two-sided alternative

Hm,j,1 : Qm,j,t ̸= 0 if
√
nQ̂m,j,t/σ̂

2 > Φ−1(1 − α/2), where Φ(·) is the cdf of

the standard normal distribution and α is the significance level.

It is important to remark that the CIT measure can be adopted for heavy-

tailed distributions, which is shown in Section S6. Also, the CIT measure can not

adapt to the unconditional independence testing. To circumvent this difficulty, a

random error ε is generated and included as the conditional variable, so that an

unconditional independence testing is transformed into a CIT. Particularly, when

|Ŝt| = 1, we generate a heavy-tailed distributed error ϵ to perform a CIT.

The proposed two-step learning algorithm for Topological layers based Heavy-

Tailed DAGs is summarized in Algorithm 1, denoted as the TopHeat algorithm.

In terms of the computational complexity, the input Γ̂ in Algorithm 1 in-

volves the ranks of observations and the calculations of pairwise causal tail

coefficients, which have the complexity of O(pn log n) and O(kp2), respec-
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3.2 TopHeat

Algorithm 1: The TopHeat algorithm

Input: Xn ∈ Rn×p, Γ̂ ∈ Rp×p, t = 0, Ĉ = {1, 2, . . . , p}, and Ŝ0 = ∅;
Output: {Ât}T̂−1t=0 and Ê = ∪m∈{A1,...,AT̂−1

} ∪j∈p̂am (j,m).

1 while Ĉ ̸= ∅ do
2 Estimate Ât =

{
m ∈ Ĉ : minj∈Ĉ |Γ̂jm − 1| > ϵt

}
;

3 Update Ĉ ← Ĉ\Ât, Ŝt+1 ← Ŝt ∪ Ât, and t← t+ 1;
4 end
5 Denote T̂ = t;
6 for t = 1, 2, . . . , T̂ − 1 do
7 for m ∈ Ât and j ∈ Ŝt do
8 if

√
nQ̂m,j,t/σ̂

2 > Φ−1(1− α/2) then
9 Denote j ∈ p̂am and (j,m) ⊆ Ê ;

10 end
11 end
12 end

tively (Gnecco et al., 2021). The computational complexity of Step 1 in the

TopHeat algorithm to reconstruct the topological layers is of order O(
∑T−1

t=0 (p−

|St|)) = O(p). In the second step of TopHeat, the complexity is of order

O(
∑T−1

t=1 (n
2|St|+ n log n)|St||At|) = O(n2

∑T−1
t=1 |St|2|At|+ dn log n), where

the complexity of the Euclidean distance is of order O(n2|St|) and the rank of ob-

servations is of order O(n log n) for the k-nearest neighbor in each CIT, and we

denote d =
∑T−1

t=1 |At||St|. Therefore, the overall computational complexity of

estimating Γ̂ and running the TopHeat algorithm is O(max(kp2, n2
∑T−1

t=1 |St|2|At|)).

For a chain graph with T = p, the complexity becomes O(n2p3). When T = 2

in a shallow hub graph, the complexity of TopHeat is O(max(kp2, n2p)). In con-
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trast, EASE needs O(p2) to compute the order and O(
∑T−1

t=1 (n
2|St|+n log n)p2)

in the CIT procedure, and thus the total complexity of EASE is O(n2p3) in

practice. It is clear that EASE is more expensive than TopHeat, if T is much

smaller than p, and their computational cost becomes the same when T =

p. It is also interesting to note that the computational complexity of TL is

O(
∑T−1

t=0 (R|Ct|3 + n log n|Ct|2)) where R denotes the number of coordinate de-

scent cycles until convergence. When the DAG is relatively sparse, R is consid-

ered as a constant and the complexity is O(p4+np3 log n) in the worst case with

T = p. For T = 2, the complexity of TL becomes O(p3 + np2 log n). Since the

complexity of TopHeat depends on k, |St|, |At| and the complexity of TL relies

on |Ct|, they cannot be directly compared and their relationship also depends on

n and p. However, it is expected that if each node in a DAG has less ancestors,

TopHeat is more efficient than TL. Runtime comparisons of these algorithms are

provided in Section 5.2.

Note that the numerical performance of TopHeat largely depends on the

choice of the hyperparameters, including k, α, and ϵt. More details are provided

in Section S2 of the supplementary material.

4. Theoretical Guarantees

In this section, the asymptotic theory of the proposed method is investigated. We

first give notations below. We define the true and estimated topological layers
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as L = {A0, ...,AT−1} and L̂ = {Â0, ..., ÂT̂−1}, respectively, and Ĝ = (V , Ê)

as the estimated DAG. The right-hand upper tail dependence between two ran-

dom variables Xj and Xm is introduced, denoted as limt→∞ tP (1 − Fj(Xj) ≤

x/t, 1− Fm(Xm) ≤ y/t) = R(x, y) for (x, y) ∈ [0,∞]2\{(∞,∞)} and j,m ∈

{1, . . . , p}. We define a Gaussian process WR on [0,∞]2\{∞,∞} with mean 0

and covariance structure E{WR(x1, y1)WR(x2, y2)} = R(x1 ∧ x2, y1 ∧ y2), and

thus WR is a Wiener process. We denote the tail function by Uj = (1/(1−Fj))
←,

where the left-continuous inverse of a non-decreasing function f is defined as

f←(x) = inf{y ∈ R : f(y) ≥ x}. Note that the heavy-tailed assumption

in (2.2) indicates that limt→∞{1 − Fj(tx)}/{1 − Fj(t)} = x−θ, equivalent to

limt→∞ Uj(tx)/Uj(x) = x1/θ. The probability density function of Xj is written

as fj . For two positive random sequences an and bn, we denote an = Ω(bn) if

an ≥ cbn for sufficiently large n. Let k be an intermediate sequence of integers

such that k/n → 0 holds as k, n → ∞. The following technical conditions are

required to establish the layer recovery consistency of the proposed algorithm.

Assumption 1. There exist τ1, τ2 < 0 and τ3 < −1 such that as t→∞,

sup
0<x<∞,1/2≤y≤2

|tP{1− Fj(Xj) ≤ x/t, 1− Fm(Xm) ≤ y/t}/R(x, y)− 1| = O (tτ1) ,

(4.1)

sup
0<x<∞

|gt(x)− θx1+1/θ| = O (tτ2) , (4.2)
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|E{Fm(Xm)|Fj(Xj) > 1− 1/t} − Γjm| = O
(
t(τ3−1)/2

)
, (4.3)

with gt(xj) = tUj(t)fj
(
Uj(t)x

−1/θ
j

)
for xj > 0.

Assumption 2. There exist ρ < 0 and a function A1 such that as t → ∞,

A1(tx)/A1(t)→ xρ for all x > 0 and supx>1

∣∣∣x−1/θ Uj(tx)

Uj(x)
− 1

∣∣∣ = O(A1(t)).

Assumption 3. As n → ∞, k = O(nγ) for some γ satisfying 0 < γ <

min
{

2τ1
2τ1−1 ,

2τ2
2τ2−1 ,

2ρ
2ρ+θ(ρ−1)

}
.

To derive the convergence rate by controlling the estimation bias in The-

orem 2, Assumption 1 provides some technical conditions. Specifically, (4.1)

is the second-order strengthening of the upper tail dependence limt→∞ tP{1 −

Fj(Xj) ≤ x/t, 1 − Fm(Xm) ≤ y/t} = R(x, y), similar to condition (7.2.8)

in De Haan and Ferreira (2006); (4.2) is the second-order strengthening of the

density convergence result dsn(x)/dx → 1, equivalent to limn→∞ gn
k
(x) →

θx1+1/θ, since limt→∞ Um(tx)/Um(t) = x1/θ implies sn(x) := (n/k)[1−Fm{Um(n/k)x
−1/θ}]→

x as n → ∞ for x > 0; (4.3) also imposes the second-order strengthening of

Γjm = limu→1− E{Fm(Xm)|Fj(Xj) > u} in (3.1). Assumption 2 is a second-

order condition for Uj and implied by Theorem B.2.2 in De Haan and Ferreira

(2006). Assumption 3 imposes conditions on the upper bound of γ, which is a

typical constraint in the extreme value theory literature to guarantee that the first

k+1 largest observations for estimation are actually in the tail (Cai et al., 2015).
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Theorem 2. Assume that Assumptions 1–3 hold and θ > 2. We have n√
k

(
Γ̂jm −

Γjm

) d→ Θ, where Θ = (1/θ−1)WR(∞, 1)
∫∞
0

R(s, 1)ds−
∫∞
0

WR(s, 1)ds
−1/θ.

With the help of tail empirical process and extreme value theory, Theorem 2

establishes the asymptotic normality for Γ̂jm, extending the convergence result

for fixed p in Gnecco et al. (2021), which helps to derive the consistency of the

topological layers estimation in Theorem 3. The assumption θ > 2 in Theorem

2 is the tail rate condition for the error term and also commonly used in finance

(Daouia et al., 2018). The main challenge of Theorem 2 comes from the tail

dependence between random variables Xj and Xm, which is introduced by (3.2).

Theorem 3. (Layer recovery consistency) Suppose that Assumptions 1–3 hold

and θ > 2, and for all ϵt, we take ϵt = ηmin
2

with ηmin ≤ 1−minj∈Ct,m∈At,j /∈anm Γjm.

Then, there holds that for some constant C0 > 0,

P (L̂ = L) ≥1− C0Tp
2
√
k/n = 1− C0Tp

2/n1−γ/2. (4.4)

Theorem 3 shows that the topological layers of a heavy-tailed DAG can

be exactly reconstructed with high probability. Note that the layer consistency

result depends on the threshold ϵt and its upper bound could improve the preci-

sion of layer recovery, as many spurious nodes may be included in the current

layer if ϵt is too large. However, small ϵt increases the computational cost in

TopHeat. It is worth pointing out that the consistency result also holds if we take
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ϵt ∈ (c1
Tp2
√
k

n
, ηmin

2
] for some positive constant c1. Therefore, we take a stability

procedure to choose ϵt adaptively for each layer At and verify that Assumptions

1 and 2 in Sun et al. (2013) are satisfied with their λ replaced with λ = 1/ϵt;

More details are provided in Section S2 of the supplementary material.

Next, we assume mild conditions about the CIT method to reconstruct di-

rected edges and derive the graph consistency result.

Assumption 4. There are nonnegative real numbers C1 and C2 such that for any

t ∈ R, and xSt ,x
′
St ∈ R|St|,

∣∣P (Xm ≥ t|XSt = xSt)− P (Xm ≥ t|XSt = x′St)
∣∣

≤C1

(
1 + ∥[xSt ]j∥

C2 +
∥∥[x′St ]j∥∥C2 + ∥[xSt ]−j∥

C2 +
∥∥[x′St ]−j∥∥C2

)
×

(∥∥[xSt ]j − [x′St ]j
∥∥+

∥∥[xSt ]−j − [x′St ]−j
∥∥) ,

where [xSt ]j is denoted as the element of xSt corresponding to node j and

[xSt ]−j = xSt\{[xSt ]j}.

Assumption 5. For any t = 1, . . . , T−1, there holds that infm∈At,j∈St{|Qm,j,t| :

Qm,j,t ̸= 0} ≥ ϕn where ϕn = O(n−c) for some 1−ξ
2

< c < 1
2

with ξ ∈

(0,min{1
2
, 2
|St|}].

Assumption 4 is exactly condition (A1) in Azadkia and Chatterjee (2021)

and a locally Lipschitz condition of the conditional distribution of Xm given its
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upper layers with a polynomial rate. Assumption 5 gives a stronger condition for

the lower bound for the non-zero CIT measure in the finite sample setting. Sim-

ilar conditions as Assumption 5 are imposed in Kalisch and Bühlmann (2007).

Proposition 1. Suppose that the heavy-tailed distribution assumption (2.2) and

Assumption 4 hold. Then, for any η > 0 and t = 1, . . . , T − 1, there exist

positive constants C3, C4 > 0 such that supm∈At,j∈St P
(
|Q̂m,j,t−Qm,j,t| > η

)
≤

C3 exp(−C4nη
2).

Proposition 1 establishes the tail bound for the sample CIT measure for

heavy-tailed distributions, which replaces the sub-exponential decaying rate con-

dition in Azadkia and Chatterjee (2021).

Theorem 4. (Graph recovery consistency) Suppose that Assumptions 1–5 are

satisfied and θ > 2. If n = Ω
(
p4/(2−γ)

)
, we have

P (Ĝ = G)→ 1, as n→∞.

Theorem 4 guarantees that TopHeat consistently recovers the exact DAG

structure while allowing p to diverge with n at a certain rate, which is in sharp

contrast to the literature only recovering causal orderings for a heavy-tailed DAG

for fixed p (Gnecco et al., 2021). To investigate the relationship between n and

the tail index θ, TopHeat has the sample complexity n = Ω
(
p

4(2ρ+θ(ρ−1))
2ρ+2θ(ρ−1)

)
where

ρ < 0 and 4(2ρ+θ(ρ−1))
2ρ+2θ(ρ−1) > 1 holds. However, Corollary 4 in Zhao et al. (2022)
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shows that TL has the sample complexity n = Ω
(
pmax{ 4

m−τ+4
, 2m
(2mϕ−1)(m−τ+4)

})
with m + 4 > τ > 4 and ϕ > 1

2m
for 4m-th bounded moment distributions.

It is worthy to note that their sample complexities depend on the relationship

of θ and m. If θ becomes smaller and thus m may be also smaller, the order

of p in TopHeat can be much smaller than that in TL. If m becomes larger and

thus θ may be also larger, the order of p in TL can be much smaller than that in

TopHeat. Also, Theorem 4 requires no graph structure restrictions by controlling

the number of parents or the Markov blankets, which are needed in non-Gaussian

DAG literature (Wang and Drton, 2020; Zhao et al., 2022). It is worthy to note

that our work is the first to provide a solid theoretical guarantee for learning a

heavy-tailed DAG in terms of the exact DAG recovery.

5. Simulation Studies

In this section, we demonstrate the performance of TopHeat and compare it

against some common baselines: EASE (Gnecco et al., 2021), TL (Zhao et al.,

2022), the ICA-LiNGAM algorithm (Shimizu et al., 2006), the Direct LiNGAM

algorithm (Shimizu et al., 2011), the high-dimensional LiNGAM (HD-LiNGAM;

Wang and Drton, 2020) and the Rank PC algorithm (Harris and Drton, 2013).

Particularly, EASE and Rank PC are implemented in the R package “causalX-

treme” (Gnecco et al., 2021). Since EASE only returns a causal order, we follow
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5.1 Simulated examples
the CIT procedure in TopHeat to output a complete DAG for fair comparison.

Further, Rank PC returns a completed partially DAG, which is transformed into a

DAG by applying the function pdag2dag in the R package “pcalg” (Kalisch et al.,

2012). Note that TL, Direct-LiNGAM, and ICA-LiNGAM are implemented in

the R packages “TransGraph”, “rlingam”, and “highDLingam”, respectively.

To evaluate the performance of these methods, we adopt commonly-used

measures, including the normalized Hamming distance (HM), Recall, Precision,

and F1-score to evaluate the accuracy of estimating a DAG. Note that HM mea-

sures the number of adding, removing, and reversing directed edges to make the

estimated DAG into the true one. Therefore, a smaller HM value indicates better

accuracy in graph estimation. The remaining three measures assess the accuracy

of estimated directed edges, with higher values indicating better performance.

5.1 Simulated examples

In the following numerical studies, we consider three generating schemes for

graphs, including a hub graph in Example 1 and two random graphs in Exam-

ples 2–3, generated from the Barabási-Albert (BA) model (Barabási and Albert,

1999) and the Erdös-Rényi (ER) model Erdös and Rényi (1960), respectively.

Example 1. A hub graph with T = 2 is considered withA0 = {1} andA1 =

{2, 3, . . . , p}, and node 1 directs to all other nodes, shown in Figure 1(a). Note
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5.1 Simulated examples
that these highly connected hub nodes are of great interest in social networks.

Example 2. The BA graph is a scale-free network model where nodes are

preferentially attached to existing ones with higher degrees. We generate a BA

graph where one directed edge is added for each node, and the corresponding

DAG is illustrated in Figure 1(b).

Example 3. The ER graph is a random graph model where edges are con-

nected with probability pc. We consider a sparse ER graph with pc = 1/(p− 1),

and thus the mean of the number of neighbors is 1 for each node.

(a) The hub graph (b) The random graph

Figure 1: The illustration for the topological layers of the DAG structure in
Examples 1–2.

For each example, we generate p independent errors from a Cauchy distri-

bution with the location parameter of 3 and the scale parameter of 3, and from

a Student-t distribution with 1 degree of freedom, respectively. We consider a

linear SCM and a simple nonlinear model, replacing Xi with the empirical cdf
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5.2 Results
F̂i(Xi) in (2.1) by the transformation in Gnecco et al. (2021). The coefficients

for each directed edge are sampled from a uniform distribution U [0.3, 0.7].

5.2 Results

To select an optimal value of k for estimating Γ, we choose k = ⌊nγ⌋ with

different choices of γ ∈ {0.2, 0.25, · · · , 0.7} and evaluate the performance of

TopHeat in Figure S1. In practice, we take k = ⌊n0.5⌋ since it is located within

the best range of γ under different settings. More discussion are provided in

Section S11 of the supplementary material.

To choose the tuning parameter ϵt from the grids {10−2+0.05s, s = 0, 1, . . . , 35},

we apply the stability selection method in Section S2. The performance is given

in Figure S2, which indicates that we set (a,B) = (10−1, 5) for p ∈ {5, 20}, and

(a,B) = (10−1.5, 25) for p = 50 in subsequent experiments.

During the CIT procedure of TopHeat, the conditional variable is considered

to follow a standard normal distribution when |Ŝt| = 1. This is verified by pre-

liminary experiments depicted in Figure S3, which suggests that the estimation

accuracy of TopHeat is not significantly affected by different choices of the dis-

tribution. In order to control the graph-wise false discoveries, the significance

level α, should be smaller and tend towards zero as p and n approach infinity.

Therefore, we set (α, p) ∈ {(10−2, 5), (10−5, 20), (10−10, 50)} here. More de-

tails are referred to Section S11 the supplementary material.
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5.2 Results
In the sequel, we conduct the experiments for 50 repetitions under the set-

tings with (n, p) ∈ {(500, 5), (2000, 20), (5000, 50)}. The averaged perfor-

mance metrics of all methods, along with their standard errors, are reported.

Here, Table 1 displays the results of the simulations for a hub graph in Exam-

ple 1 with the Student-t distribution. Additional results are provided in Tables

S3–S7 in Section S11 of the supplementary material.

It is evident that TopHeat demonstrates superior numerical performance and

outperforms other competitors across almost all metrics with hub graphs in Ex-

ample 1 and BA graphs in Example 2, except that the Recall of TopHeat is a

little lower than LiNGAM-based methods for small graphs in the linear case.

However, Directed-LiNGAM, ICA-LiNGAM, and HD-LiNGAM achieve much

lower Precision and F1-score, since they estimate many false edges in dense

graphs. In Example 3 for ER graphs, TopHeat exhibits comparable performance

with EASE with smaller (n, p) and yields better performance than other meth-

ods as n and p increase, which is also supported by the theoretical consistency

result in Section 4. Note that TL achieves much lower Recall and F1-score com-

pared with TopHeat, even though higher Precision for hub and BA graphs in

a linear SCM, and completely fails in the nonlinear setting, since its violation

of the required data distribution conditions for the precision matrix to produce

false layers and edges. In conclusion, TopHeat keeps its superiority across var-
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5.2 Results
Table 1: The averaged performance metrics of various methods, as well as their
standard errors in parentheses, are presented for a hub graph in Example 1 with
the Student-t distribution.

Model (n, p) Methods HM (%) Recall Precision F1-score

linear

(500, 5)

TopHeat 3.30(0.65) 0.88(0.02) 0.95(0.02) 0.91(0.02)
EASE 12.00(0.77) 0.54(0.02) 0.83(0.03) 0.63(0.02)

TL 6.20(1.14) 0.69(0.06) 0.78(0.06) 0.73(0.06)
Directed-LiNGAM 3.30(0.66) 0.98(0.01) 0.89(0.02) 0.93(0.01)

ICA-LiNGAM 3.80(0.66) 0.98(0.01) 0.87(0.02) 0.92(0.01)
HD-LiNGAM 30.00(0.00) 1.00(0.00) 0.40(0.00) 0.57(0.00)

Rank PC 31.70(0.55) 0.28(0.01) 0.25(0.01) 0.26(0.01)

(2000, 20)

TopHeat 1.30(0.21) 0.75(0.04) 0.97(0.01) 0.82(0.03)
EASE 4.52(0.03) 0.10(0.00) 0.96(0.02) 0.18(0.01)

TL 1.85(0.31) 0.64(0.06) 0.70(0.07) 0.67(0.06)
Directed-LiNGAM 7.72(0.43) 1.00(0.00) 0.42(0.01) 0.58(0.01)

ICA-LiNGAM 8.54(0.45) 0.99(0.00) 0.39(0.01) 0.55(0.01)
HD-LiNGAM 45.00(0.00) 1.00(0.00) 0.10(0.00) 0.18(0.00)

Rank PC 7.41(0.04) 0.05(0.00) 0.09(0.00) 0.07(0.00)

(5000, 50)

TopHeat 0.68(0.15) 0.91(0.03) 0.83(0.04) 0.86(0.03)
EASE 2.07(0.01) 0.06(0.00) 0.41(0.02) 0.10(0.00)

TL 0.42(0.09) 0.80(0.05) 0.85(0.05) 0.82(0.05)
Directed-LiNGAM 8.66(0.39) 1.00(0.00) 0.20(0.01) 0.33(0.01)

ICA-LiNGAM 9.92(0.36) 1.00(0.00) 0.18(0.01) 0.30(0.01)
HD-LiNGAM 48.00(0.00) 1.00(0.00) 0.04(0.00) 0.08(0.00)

nonlinear

(500, 5)

TopHeat 4.30(0.77) 0.82(0.03) 0.95(0.02) 0.88(0.02)
EASE 12.00(0.65) 0.55(0.03) 0.82(0.03) 0.64(0.02)

TL 20.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Directed-LiNGAM 54.30(2.19) 0.13(0.03) 0.09(0.02) 0.11(0.02)

ICA-LiNGAM 20.20(3.07) 0.64(0.05) 0.60(0.06) 0.62(0.05)
HD-LiNGAM 25.00(0.00) 0.25(0.00) 0.33(0.00) 0.29(0.00)

Rank PC 31.70(0.55) 0.28(0.01) 0.25(0.01) 0.26(0.01)

(2000, 20)

TopHeat 1.93(0.41) 0.85(0.03) 0.83(0.04) 0.83(0.03)
EASE 4.80(0.06) 0.15(0.01) 0.62(0.03) 0.23(0.01)

TL 5.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Directed-LiNGAM 23.44(0.81) 0.38(0.02) 0.09(0.01) 0.15(0.01)

ICA-LiNGAM 33.56(1.17) 0.17(0.03) 0.04(0.01) 0.06(0.01)
HD-LiNGAM 9.21(0.00) 0.05(0.00) 0.06(0.00) 0.05(0.00)

Rank PC 9.69(0.15) 0.07(0.01) 0.07(0.01) 0.07(0.01)

(5000, 50)

TopHeat 0.66(0.15) 0.91(0.03) 0.83(0.04) 0.86(0.03)
EASE 2.04(0.01) 0.06(0.00) 0.45(0.02) 0.11(0.00)

TL 2.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Directed-LiNGAM 21.69(0.24) 0.51(0.01) 0.05(0.00) 0.09(0.00)

ICA-LiNGAM 24.88(0.82) 0.32(0.05) 0.03(0.01) 0.06(0.01)
HD-LiNGAM 3.88(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00)
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5.2 Results
ious sample and node sizes, graph types, and (non)linear model settings, which

makes it a good choice for learning the DAG structure in heavy-tailed data.

To investigate the exact recovery rates of TopHeat, we consider the same

data generating scheme as Example 1. Here, we set B = 25 and γ = 1
2
, replicate

the experiments for 100 times, and fix p = 10 with n/p8/3 ∈ {1, 2, 3, 5, 10, 15, 20, 25, 30, 35}.

Figure S5 displays the exact recovery rates, which grow with the ratio n/p4/(2−γ)

and converge to 1. This validates the theoretical consistency result for the pro-

posed TopHeat algorithm in Theorem 4.

In terms of the computational comparison, we only compare the average

running time of the proposed TopHeat algorithm with EASE and TL by repeating

50 times, while considering the same data generating mechanisms as Examples

1–3. Figure S6 reports that TopHeat is much more efficient than EASE in terms

of computational cost, where all the tuning parameters chosen procedures are

included. Overall, TopHeat costs half the time that EASE takes. Besides, the

average running time of TopHeat is less than TL when n is relatively small,

which is suggested by the complexity analysis in Section 3.2. Further, TopHeat

is also more efficient than TL as |St| may tend to be smaller, when p become

smaller or the number of ancestors decreases from random graphs to hub graphs,

which also echoes the computational complexity analysis.
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6. Financial data analysis

In this section, we apply TopHeat to analyze the financial contagion among 17

currencies, and investigate the effect of the euro’s introduction from 1999 in the

financial market, since the euro has been the second most widely held interna-

tional reserve currency after the U.S. dollar. This helps to find a currency as

a good option for risk diversification and thus reduce the systemic risk. DAGs

can reveal the financial contagion effect encoded with the causal relationships

among currencies, with directed edges from one currency to another.

The exchange rates data for the empirical analysis are available in supple-

mentary material of Chen and Schienle (2022). The bilateral exchange rate Xn
i,j

is recorded as the exchange rate of country j against 1 U. S. dollar in the end

of i-th each quarter. We consider the period from the first quarter of 1973 to

that of 2008 with n = 141 quarters in total, and p = 17 OECD (Organization

for Economic Co-operation and Development) countries, including Australia,

Canada, Denmark, Great Britain, Japan, Korea, Norway, Sweden, Switzerland,

Austria, Belgium, France, Germany, Spain, Italy, Finland, and the Netherlands.

Since the U.S. brought the Bretton Woods system to an end in 1971, then IMF

members were free to choose any forms of exchange arrangements they wish,

and the financial crisis broke out in 2008, the exchange rate during 1973 to 2007

relatively floated and the causal relations actually existed.
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It is commonly assumed the distribution of the exchange rates follows from

the log-normal distribution in empirical studies, which satisfies the heavy-tailed

distributions assumption in (2.2). Figure S7 displays the histograms of exchange

rates for 17 currencies, illustrate the tendency to log-normal distributions.

This dataset is firstly processed by adopting a three-quarter moving average

of the recorded quarterly exchange rates to remove the seasonality of the original

data. We take the tail index k = 0.28, consider the standard normal distribution

as the conditional distribution suggested by Section 5 when |Ŝt| = 1, and then

apply the TopHeat algorithm to estimate the DAG structures of the financial

contagion from the foreign exchange rates.

Figure 2 displays the estimated DAGs among currencies, which consist of

24 and 7 directed edges in pre-euro system and post-euro system, respectively.

Clearly, there are more estimated directed edges among European countries in

the pre-euro DAG than that in the post-euro one. This finding is supported by the

fact that close trade exchanges and economic connections lead to frequent fluc-

tuation among currencies in the pre-euro era, which indicates the financial risk

spreads rapidly. However, the strong relevance between these individual curren-

cies declines since countries began to use the Euro, which reflects that risk prop-

agation becomes more stable in the regional level. Furthermore, in the pre-euro

era, the hub nodes of the contagion network are Japan, UK, and some European
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(a) The estimated DAG before 1999

(b) The estimated DAG after 1999

Figure 2: The estimated spillover networks for the financial contagion from the
exchange rates of 17 OECD countries by our proposed TopHeat method. The top
in (a) and bottom in (b) display all the estimated directed edges for the pre-euro
system and post-euro era, respectively. Countries from the same continent are
drawed with lines of the same type and in the same shaded box, and the nodes
with a dark gray background are the countries in (b) that firstly became members
of the euro area in 1999.

countries, since Japan’s highly development was fueled by its robust manufac-

turing sector and export-oriented economy, UK’s strong connections with Spain
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and Finland stemmed from historical ties and trade relationships within the Eu-

ropean Economic Community, and the connections between Scandinavian coun-

tries like Norway, Sweden, and Denmark reflects the strong economic and trade

links within the Nordic region. The Republic of Korea’s accession to the World

Trade Organization (WTO) in 1995 also influenced the financial market, leading

to the growing importance of East Asian economies in global trade and finance

during the late 20th and early 21st centuries. It is worth to noting that the use of

the euro removed the causal relations from the intra-European countries as the

launch of the euro in 1999, and we conjecture that dependence may exist, which

fails to be captured by DAGs and deserves to be studied in future work.

7. Conclusion

In this paper, we propose an efficient learning method to learn the DAG struc-

tures in heavy-tailed data. The proposed TopHeat method utilizes a concept of

topological layers to facilitate learning in a two-step algorithm where we first

reconstruct the topological layers hierarchically in a top-down fashion and then

recover the directed edges via modified CIT for heavy-tailed distributions. The

asymptotic consistency of TopHeat is established to recover the underlying ex-

act DAG structures under mild conditions when the number of nodes diverges.

The simulation studies and real data analysis support the advantages of TopHeat

against the existing learning algorithms in literature. It is interesting to point out
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that one of the possible future work is to develop the regression-based methods

to learn the skeletons under the heavy-tailed SCM setting.

Supplementary Material

The online Supplementary Material contains all the technical details and addi-

tional results.
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Peters, J. and P. Bühlmann (2014). Identifiability of Gaussian structural equation models with equal error

variances. Biometrika 101(1), 219–228.

Peters, J., D. Janzing, and B. Schölkopf (2017). Elements of Causal Inference: Foundations and Learning

Algorithms. Cambridge, Massachusetts: The MIT Press.

Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Berlin, Germany:

Springer Science & Business Media.

Shah, R. D. and J. Peters (2020). The hardness of conditional independence testing and the generalised

covariance measure. The Annals of Statistics 48(3), 1514–1538.

Shi, H., M. Drton, and F. Han (2024). On Azadkia–Chatterjee’s conditional dependence coefficient.

Bernoulli 30(2), 851–877.

Shimizu, S., P. O. Hoyer, A. Hyvärinen, and A. J. Kerminen (2006). A linear non-Gaussian acyclic model

for causal discovery. The Journal of Machine Learning Research 7(72), 2003–2030.

Shimizu, S., T. Inazumi, Y. Sogawa, A. Hyvärinen, Y. Kawahara, T. Washio, P. O. Hoyer, and K. Bollen

(2011). DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0199



REFERENCES
model. The Journal of Machine Learning Research 12(33), 1225–1248.

Shojaie, A. and G. Michailidis (2010). Penalized likelihood methods for estimation of sparse high-

dimensional directed acyclic graphs. Biometrika 97(3), 519–538.

Spirtes, P., C. N. Glymour, and R. Scheines (2000). Causation, Prediction, and Search. Cambridge,

Massachusetts: MIT Press.

Sun, Q., W. Zhou, and J. Fan (2020). Adaptive huber regression. Journal of the American Statistical

Association 115(529), 254–265.

Sun, W., J. Wang, and Y. Fang (2013). Consistent selection of tuning parameters via variable selection

stability. The Journal of Machine Learning Research 14(107), 3419–3440.

Wang, X., W. Pan, W. Hu, Y. Tian, and H. Zhang (2015). Conditional distance correlation. Journal of the

American Statistical Association 110(512), 1726–1734.

Wang, Y. S. and M. Drton (2020). High-dimensional causal discovery under non-Gaussianity.

Biometrika 107(1), 41–59.

Yang, J. and Y. Zhou (2013). Credit risk spillovers among financial institutions around the global credit

crisis: Firm-level evidence. Management Science 59(10), 2343–2359.

Yang, Z. and Y. Zhou (2017). Quantitative easing and volatility spillovers across countries and asset classes.

Management Science 63(2), 333–354.

Zhang, K., J. Peters, D. Janzing, and B. Schölkopf (2011). Kernel-based conditional independence test

and application in causal discovery. In 27th Conference on Uncertainty in Artificial Intelligence (UAI

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0199



REFERENCES
2011), pp. 804–813. AUAI Press.

Zhao, R., X. He, and J. Wang (2022). Learning linear non-Gaussian directed acyclic graph with diverging

number of nodes. The Journal of Machine Learning Research 23(269), 1–34.

Zhao, T. and H. Liu (2014). Calibrated precision matrix estimation for high-dimensional elliptical distri-

butions. IEEE transactions on Information Theory 60(12), 7874–7887.

Zhou, W., X. He, W. Zhong, and J. Wang (2022). Efficient learning of quadratic variance function directed

acyclic graphs via topological layers. Journal of Computational and Graphical Statistics 31(4), 1269–

1279.

Joint Laboratory of Data Science and Business Intelligence, School of Statistics and Data Science, South-

western University of Finance and Economics, China

E-mail: zhouwei23@swufe.edu.cn

Paula and Gregory Chow Institute for Studies in Economics, Xiamen University, China

E-mail: kangxueqian@stu.xmu.edu.cn

MOE Key Lab of Econometrics, WISE and Department of Statistics and Data Science, School of Eco-

nomics, Xiamen University, China

E-mail: wzhong@xmu.edu.cn

Department of Statistics, Chinese University of Hong Kong, Hong Kong

E-mail: junhuiwang@cuhk.edu.hk

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0199


	Introduction
	Related methods

	Heavy-tailed DAG
	Two-step DAG learning algorithm
	Reconstruction of topological layers
	TopHeat 

	Theoretical Guarantees
	Simulation Studies
	Simulated examples
	Results

	Financial data analysis
	Conclusion



