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Abstract: In multivariate heavy tail estimation, the support of the limit measure

provides information on the asymptotic dependence structure of the random vec-

tor with the heavy tail distribution. This asymptotic dependence structure may

be difficult to discern, even in favorable cases of R2
+-valued data since exploratory

methods can be ambiguous and heavily dependent on threshold choice. We re-

strict ourselves to techniques that help distinguish between the following asymp-

totic models for heavy tails on R2
+: (i) full dependence where the limit measure

concentrates on a ray from the origin; (ii) strong dependence where the support

of the limit measure is a proper connected subcone of the positive quadrant; (iii)

weak dependence where the limit measure concentrates on the whole positive

quadrant. We propose two test statistics, analyze their asymptotically normal

behavior under full and not-full dependence, and discuss method implementation

using bootstrap methods. The methodology is illustrated with both simulated

and real data.

Key words and phrases: Multivariate extremes, asymptotic dependence, hidden

regular variation
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1. Introduction

In multivariate heavy tail estimation, the support of the limit measure

provides information on the dependence structure of the random vector with

the heavy tail distribution (Lehtomaa and Resnick, 2020). However, even

in simple circumstances in R2
+, the positive quadrant in two dimensions,

exploratory methods such as scatter, diamond or density estimation plots

may have trouble distinguishing between cases:

• Full dependence where the limit measure concentrates on a ray of the

form {(x, y) ∈ R2
+ : y/x = m > 0};

• Strong dependence (See Figure 2) where the support of the limit mea-

sure is a proper connected subcone of R2
+ of the form {(x, y) ∈ R2

+ :

y/x ∈ [ml,mu] ( [0, 1]};

• Weak dependence where the support of the limit measure is all of R2
+;

and

• Asymptotic independence where the limit measure concentrates on the

axes R+ × {0} ∪ {0} × R+.

Estimation and visualization techniques reasonably detect lack of con-

nectedness in the second bullet so we downplay that possibility. However,

exploratory techniques can struggle to distinguish the bulleted cases, the

most obvious reason being the requirement that data be thresholded ac-
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cording to the distance from the origin. Plots can look rather different

depending on the choice of threshold. This is illustrated by diamond plots

Das and Resnick (2017); Lehtomaa and Resnick (2020) in Figure 1 of Exxon

(XOM) returns vs returns from Chevron (CVX) from January 04, 2016 to

December 30, 2022. The data {(xi, yi); 1 ≤ i ≤ 1761} is mapped to the L1-

unit sphere via (x, y) 7→ (x, y)/(|x| + |y|) and then subsetted by retaining

only the points with k largest values of (|x| + |y|) where k = 100 (left) or

k = 500 (right). The two plots give different impressions of where the limit

measure concentrates.
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Figure 1: Left: Diamond plot using the 100 points furthest from the origin.

Right: Diamond plot using 500 most remote points.

Threshold selection is addressed by a data-driven technique, popular

in computer and network science (Clauset et al., 2009; Virkar and Clauset,

2014) and implemented in Csardi and Nepusz (2006) or Gillespie (2015).

This technique is consistent (Bhattacharya et al., 2020; Drees et al., 2020)
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and may increase comfort level with threshold selection. However, the se-

lection method offers no guarantee of optimal threshold choice and has the

additional drawback of preventing tail estimators such as Hill from being

asymptotically normal (Drees et al., 2020). Sensitivity of exploratory meth-

ods to threshold choice means test statistics capable of assisting choice of

model from the bulleted list above would be welcome.

Figure 2: The concentration cone

Ca,b. Concentration on Ca,b is strong

dependence. If a = b we have full

dependence.

One motivation for thinking

about distinguishing between the

bulleted cases above came from pre-

vious efforts to fit preferential attach-

ment (PA) models of directed social

networks to data consisting of in- and

out-degree of each node. The classi-

cal PA model of directed edge growth

(Krapivsky and Redner, 2001; Bol-

lobás et al., 2003) when standardized

to equal tail indices for each compo-

nent gives a heavy tail model with

limit measure concentrating on all of

R2
+ (Samorodnitsky et al., 2016), the case of weak dependence. However,

adding the reciprocity feature to the theoretical model leads to a limit

measure that concentrates on a ray, the full dependence case (Wang and
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Resnick, 2022a,b; Cirkovic et al., 2023; Wang and Resnick, 2024). If there

were a statistical test for full dependence, it would provide guidance on

whether one needs to add the reciprocity feature to the model to obtain a

satisfactory statistical fit for social network data.

We understand that network data or financial returns are not the same

as iid observations but the theory in this paper starts with the basic case

and assumes all observations come from a heavy tailed iid model by re-

peated sampling. Because preferential attachment network data does not

satisfy the independent assumption, we reserve consideration of this case

for a future project. Also, there is current interest in the topic of extremal

clustering (Drees et al., 2021; Drees and Sabourin, 2021; Janßen and Wan,

2020; Fomichov and Ivanovs, 2023; Davis et al., 2023) which has some philo-

sophical connections to the current work but is less focused on identifying

correct asymptotic models.

We give two test statistics Dn and Tn which help distinguish full vs

not-full asymptotic dependence and show the statistics are asymptotically

normal but with different asymptotic variances, depending on the case. As

is typical in heavy tail analysis, to get asymptotic normality with a constant

centering for estimators requires not only the regular variation assumption

for the underlying distribution but also second order regular variation (2RV)

which controls deviations between a finite sample mean and an asymptotic

mean; this is explained in de Haan and Ferreira (2006); Resnick (2007);
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1.1 Guidance for distinguishing between cases.

de Haan and Resnick (1996); de Haan (1996); Peng (1998). Our multivari-

ate version of the 2RV condition, (2.6) or (2.8), is similar to one used in

Einmahl et al. (2021) but we gain some theoretical flexibility by posing the

condition as M-convergence of signed measures. Interestingly, 2RV coupled

with multivariate regular variation with limit measure concentrating on a

proper subset of the state space imply hidden regular variation (HRV) and

this derived HRV is employed in our proofs. This is explained in Section 2.

See also (de Haan and Resnick, 1993; de Haan and de Ronde, 1998; Resnick,

2002; Das and Kratz, 2020).

The proposed hypothesis testing framework is discussed in more detail

in Section 5 and here is a sketch of our procedure where we also explain the

necessity of using bootstrap techniques.

1.1 Guidance for distinguishing between cases.

Suppose we have heavy tailed data in R2
+ from the iid model {Zi = (Xi, Yi) :

1 ≤ i ≤ n} with L1-polar coordinates Ri = X1 +Yi, Θi = Xi/(Xi+Yi), 1 ≤

i ≤ n. The limit measure of regular variation of P[Z1 ∈ · ] is η(·), the

angular measure on [0, 1] is S(·), the Pareto measure is να(x,∞) = x−α and

for some regularly varying scaling function b(t) → ∞, as t → ∞, we have

tP [
(
R1/b(t),Θ1

)
∈ · ] → να × S(·). More complete explanations are in the

next section.

Now consider the following tests where a, b are given (but later esti-
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1.1 Guidance for distinguishing between cases.

mated). We begin in Step 1 by using a fairly crude distance based statistic

Dn to perform a preliminary screen based on hypotheses formulated from

exploratory plots or estimates of a, b.

Step 1: H
(1)
0 : S([a, b]) = 1 vs H

(1)
a : S([a, b]) < 1, for some [a, b] ( [0, 1].

Failure to reject H
(1)
0 could be due to S(·) concentrating at θ0 ∈ [a, b]

so we proceed to test for full dependence using an asymptotically normal

statistic Tn:

Step 2: For some θ0 ∈ [0, 1], H
(2)
0 : S({θ0}) = 1 vs H

(2)
a : S([0, 1] \ {θ0}) > 0.

However, since the distance-based test in Step 1 is crude, if either

(a) the test statistic Tn rejects H
(2)
0 in favor of H

(2)
a or

(b) we erroneously accepted H
(1)
0 even though S(·) concentrates on an

interval containing [a, b] as a sub-interval (see for example the data

example in Section 5.3.2,

then we want to test for strong vs weak dependence, so we move to Step 3:

Step 3: H
(3)
0 : suppS(·) = [a, b] vs H

(3)
a : suppS(·) = [0, 1].

Here suppS(·) means the support of the measure S(·) which we assume is

connected. This third step relies on a variance comparison.

The asymptotically normal statistics Dn and Tn are specified in Sections

3 and 4. More detail on methodology is in Section 5.1.
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2. Background: Multivariate, Hidden and Second Order Regular

Variation

Here is a review of notation and concepts necessary for formulating and

proving results. We particularize the concept of regular variation of mea-

sures on a complete, separable metric space X for the case of X = R2
+

where visualization is most informative (Lindskog et al. (2014); Hult and

Lindskog (2006); Das et al. (2013); Kulik and Soulier (2020); Basrak and

Planinić (2019); Resnick (2024)).

Recall {Zi = (Xi, Yi); 1 ≤ i ≤ n} are iid random vectors of R2
+ sampled

from a regularly varying distribution. Based on observing these vectors, we

analyze asymptotic dependence.

2.1 Multivariate regular variation.

We begin with the concept of M-convergence of measures which is extended

to M-convergence of signed measures in Section 2.3 on 2RV.

Definition 2.1. For a closed subcone C of X, let M(X \ C) be the set of

Borel measures on X\C which are finite on sets bounded away from C, and

C(X\C) be the set of continuous, bounded, non-negative functions on X\C

whose supports are bounded away from C. Then for µn, µ ∈M(X \ C), we

say µn → µ in M(X \ C), if
∫
fdµn →

∫
fdµ for all f ∈ C(X \ C).

Without loss of generality (Lindskog et al., 2014), we can take functions

in C(X \ C) to be uniformly continuous. The modulus of continuity of a
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2.1 Multivariate regular variation.

uniformly continuous function f : Rp
+ 7→ R+ is

∆f (δ) = sup{|f(x)− f(y)| : d(x,y) < δ} (2.1)

where d(·, ·) is an appropriate metric on the domain of f . Uniform conti-

nuity means limδ→0 ∆f (δ) = 0.

Denote by RVc, the class of regularly varying functions f : R+ 7→ R+

with index c ∈ R and write f ∈ RVc. The formal definition of multivariate

regular variation (MRV) of distributions for the classical case X = R2
+ and

C = {0} is next.

Definition 2.2. The distribution P[Z1 ∈ · ] of a random vector Z1 =

(X1, Y1) on R2
+, is (standard) regularly varying on R2

+ \ {0} with index

α > 0 if there exists some regularly varying scaling function b(t) ∈ RV1/α

and a not identically zero limit measure η(·) ∈ M(R2
+ \ {0}) such that as

t→∞,

tP[Z1/b(t) ∈ · ]→ η(·), in M(R2
+ \ {0}). (2.2)

It is sometimes convenient to write P[Z1 ∈ · ] ∈ MRV(α, b(t), η,R2
+ \ {0}).

2.1.1 Cartesian to polar and back.

When analyzing the asymptotic dependence between components of a bi-

variate random vector Z satisfying (2.2), it is often informative to make a

polar coordinate transform and consider the transformed points located on
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2.2 Hidden regular variation.

the L1-unit sphere

(x, y) 7→
(

x

x+ y
,

y

x+ y

)
, (2.3)

after thresholding the data according to the L1 norm. The plot of such

data is the (positive-quadrant) diamond plot. (Figure 1 is the 4-quadrant

version using data whose components could be positive or negative under

the map (x, y) 7→ (x, y)/(|x| + |y|).) In R2
+, the convenient version of the

L1-polar coordinate transformation is T : R2
+ \ {0} 7→ (R+ \ {0}) × [0, 1],

defined by

T (x, y) =
(
x+ y, x/(x+ y)

)
= (r, θ).

The inverse transformation from polar to Cartesian coordinates is (r, θ) 7→

(rθ, r(1−θ)). The map T disintegrates η(·) in (2.2) into the product measure

η ◦ T−1(·) = να × S(·),

where S(·) can be taken to be a probability measure on [0, 1] called the

angular measure, and να(·) is the Pareto measure with να(x,∞) = x−α, x >

0.

2.2 Hidden regular variation.

Denote by Ca,b the subcone of R2
+ such that (see Figure 2 for a visual aid)

Ca,b = {(x, y) ∈ R2
+ : θ := x/(x+ y) ∈ [a, b]}, 0 ≤ a ≤ b ≤ 1.

When the limit measure of regular variation η(·) concentrates on a proper

subcone Ca,b ⊂ X = R2
+ of the full state space, we may improve estimates of
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2.2 Hidden regular variation.

probabilities in the complement of the subcone, if there is a second hidden

regular variation regime after removing the subcone.

Definition 2.3. The random vector Z1 in R2
+ has a distribution that is

regularly varying on R2
+ \{0} and has hidden regular variation on R2

+ \Ca,b

if there exist 0 < α ≤ α0, scaling functions b(t) ∈ RV1/α and b0(t) ∈ RV1/α0

with b(t)/b0(t)→∞ and limit measures η concentrating on Ca,b and another

limit measure η0, such that

P(Z1 ∈ ·) ∈ MRV(α, b(t), η,R2
+ \ {0}) ∩MRV(α0, b0(t), η0,R2

+ \ Ca,b).

(2.4)

It is sometimes useful to characterize HRV through the generalized polar

coordinate transformation for R2
+\Ca,b, assuming use of an associated metric

d(·, ·) satisfying d(cx, cy) = cd(x, y) for scalars c > 0. The metric d(·, ·)

that we use in practice is a scaled L1-metric. When using generalized polar

coordinates with respect to the forbidden zone Ca,b, we define ℵCa,b
:= {z ∈

R2
+ \Ca,b : d(z,Ca,b) = 1}, the locus of points at distance 1 from Ca,b. Then

the generalized polar coordinates are specified through the transformation,

GPOLAR : R2
+ \ Ca,b 7→ (0,∞)× ℵCa,b

with

GPOLAR(z) =

(
d(z,Ca,b),

z

d(z,Ca,b)

)
. (2.5)

In Figure 2, the length of the arrow from z to the boundary of Ca,b is a

scaled version of d(z,Ca,b). For a probability measure S0(·) on ℵCa,b
, the
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2.3 Second order regular variation.

generalized polar coordinates allow re-writing the second MRV in (2.4) as

tP
[(

d(Z1,Ca,b)

b0(t)
,

Z1

d(Z1,Ca,b)

)
∈ ·
]
→ (να0 × S0)(·)

in M
(
(R+ \ {0}) × ℵCa,b

)
. In particular P[d(Z1,Ca,b) > x] ∈ RV−α0 is a

lighter tail than P[‖Z1‖ > x] ∈ RV−α. See Das et al. (2013) and Lindskog

et al. (2014) for details.

2.3 Second order regular variation.

In one dimension, second order regular variation (2RV) controls deviation of

finite sample means from asymptotic means and allows asymptotic normal-

ity for estimators such as the Hill estimator. Our test statistics are derived

from two dimensional tail empirical measures and so it is natural to expect

that asymptotic normality requires two dimensional second order regular

variation conditions and the condition we use is similar to what appears in

Einmahl et al. (2021).

2.3.1 The second order condition.

There are several ways to state this condition which strengthens multivari-

ate regular variation. The first uses M-convergence. We need a function

A ∈ RV−ρ, ρ > 0, and a signed measure χ(·) which is not identically 0 and

is the difference of two measures in M
(
(R+ \ {0}) × [0, 1]

)
, such that in
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2.3 Second order regular variation.

M
(
(R+ \ {0})× [0, 1]

)
,

1

A(t)

(
tP
(

(R/b(t),Θ) ∈ ·
)
− να × S(·)

)
→ χ(·), (2.6)

meaning that evaluation of the signed measure on the left at a function

f ∈ C(
(
(R+ \ {0})× [0, 1]

)
converges to the evaluation χ(f); or in symbols

1

A(t)

(
tEf

(
R/b(t),Θ

)
−
∫∫

R+\{0}×[0,1]

f(r, θ)να(dr)S(dθ)

)
→ χ(f). (2.7)

The second way to phrase condition (2.6) which looks more like con-

vergence of distribution functions is

1

A(t)

(
tP
( R

b(t)
> r,Θ ≤ θ

)
− r−αS[0, θ]

)
→ χ

(
(r,∞)× [0, θ]

)
(2.8)

locally uniform in r ∈ (0,∞) for each θ ∈ [0, 1] where the limit is specified

before (2.6).

If f1(r) ∈ M(R+ \ {0}), set f(r, θ) := f1(r)θ ∈ M
(
(R+ \ {0}) × [0, 1]

)
and inserting this into (2.7) gives

1

A(t)

(
tEΘf1

(
R/b(t)

)
−
∫

[0,1]

θS(dθ)να(f1)

)
→
∫

(0,∞)×[0,1]

θf1(r)χ(dr, dθ).

(2.9)

or in convergence of signed measures formulation,

1

A(t)

(
tEΘεR/b(t)(·)−

∫
[0,1]

θS(dθ)να(·)

)
→
∫∫

(·)×[0,1]

θχ(dr, dθ). (2.10)

Note that (2.6) and (2.8) are formulated so they can be marginalized and

therefore the regularly varying distribution of R is 2RV in one dimension.
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2.3 Second order regular variation.

Also, straightforward extension of (2.9) allows control of the expectation of

Θ on the set where R is large. If we set

v(t) = EΘ11[R1>t], µS =

∫
[0,1]

θS(dθ),

then (2.10) gives as t→∞,

tv(b(t)x)− µSx−α

A(t)
→ h(x) :=

∫∫
((x,∞))×[0,1]

θχ(dr, dθ). (2.11)

which leads to the more traditional form of the 2RV condition for v(t),

namely: for b←(·) denoting the generalized inverse of b(·), we have

lim
s→∞

v(sx)
v(s)
− x−α

A ◦ b←(s)
= h(x)/µS, (2.12)

where A ◦ b← ∈ RV−ρα and the limit function h(x) must be of the form

(de Haan and Stadtmueller (1996); Peng (1998); de Haan and Ferreira

(2006)),

h(x) = cx−α
(1− x−ρα

ρα

)
, x > 0, c 6= 0.

2.3.2 2RV and HRV

We discuss why the second order condition (2.6) together with the assump-

tion S([a, b]) = 1 for [a, b] ( [0, 1] implies HRV. The essentials of the ar-

gument in the context of asymptotic independence are in (de Haan and

de Ronde, 1998; Resnick, 2002).

Theorem 2.1 (2RV can imply HRV). Assume the 2RV condition (2.6) or

(2.8) hold and S([a, b]) = 1 for [a, b] ( [0, 1]. Set U(t) = t/A(t) ∈ RV1+ρ,
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so that U←(t) ∈ RV1/(1+ρ) and therefore

b0(t) := b ◦ U←(t) ∈ RV1/(α(1+ρ)), ρ > 0. (2.13)

Then provided χ(·) is not identically 0 on (0,∞)× ([0, 1] \ [a, b]),

P [(R,Θ) ∈ ·] ∈ MRV(α(1 + ρ), b0(t), χ(·), (R+ \ {0})× ([0, 1] \ [a, b])).

(2.14)

The proof of Theorem 2.1 is given in Section S2 of the supplement.

3. Testing the existence of strong dependence

For strong convergence, we assume that 0 ≤ a ≤ b ≤ 1 fixed, with [a, b] (

[0, 1] and S([a, b]) = 1. The condition θ = x/(x+ y) ∈ [a, b] translates to

(x, y) ∈ {(u, v) ∈ R2
+ : v/u ∈ [b−1 − 1, a−1 − 1]} ≡ Ca,b.

So the closed cone Ca,b is the set of first quadrant points between the two

rays y = mux and y = mlx, x > 0, where the slopes are mu = a−1 − 1,

ml = b−1− 1 and since a ≤ b, we have mu ≥ ml. Define the scaled distance

from z = (x, y) ∈ R2
+ to Ca,b (see Figure 2) as

d((x, y),Ca,b) := max
{

(b−1 − 1)x− y, y − (a−1 − 1)x, 0
}
. (3.1)

Note that when (x, y) is above cone Ca,b so that y/x > mu and thus y >

(a−1−1)x, d((x, y),Ca,b) = y−(a−1−1)x. When (x, y) is below the cone Ca,b

so that y/x < ml and y < (b−1−1)x, d((x, y),Ca,b) = (b−1−1)x−y. When
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(x, y) ∈ Ca,b, d((x, y),Ca,b) = 0. When Ca,b = {(x, y) : y = (θ−1
0 − 1)x, x >

0} because S{θ0} = 1, then d((x, y),Ca,b) = |(θ−1
0 − 1)x− y|.

Using generalized polar coordinates, the HRV assumption for the dis-

tribution of Z1 = (X1, Y1) on R2
+ \ Ca,b reads

tP

((
d
(
Z1,Ca,b

)
b0(t)

,
Z1

d(Z1,Ca,b)

)
∈ ·

)
−→ να0 × S0(·)

in M((R+ \ {0})×ℵCa,b
) and in particular P[d

(
Z1,Ca,b

)
> x] ∈ RV−α0 and

assuming 2RV from the previous section, α0 = α(1 + ρ).

Let {Zj = (Xj, Yj) : j ≥ 1} be iid, set Rj := Xj + Yj, and define

Z∗i = (X∗i , Y
∗
i ) to be the vector such that X∗i + Y ∗i is the i-th largest order

statistic of {Rj : 1 ≤ j ≤ n}, which we denote R(i). Consider the following

hypotheses: for fixed and known (for now) 0 < a ≤ b < 1, [a, b] ( [0, 1],

H
(1)
0 : S([a, b]) = 1, H(1)

a : S([a, b]) < 1. (3.2)

We now propose a test statistic for (3.2). Define

Dn :=
1

k(n)

k(n)∑
i=1

(
1 +

d
(
Z∗i ,Ca,b

)
R(k(n))

)
log

R(i)

R(k(n))

=Hk(n),n +
1

k(n)

kn∑
i=1

(
d
(
Z∗i ,Ca,b

)
R(k(n))

)
log

R(i)

R(k(n))

(3.3)

where Hk(n),n is the Hill estimator of 1/α applied to {Rj, 1 ≤ j ≤ n} based

on k(n) upper order statistics. Of course, Dn depends on a, b but this

dependence is suppressed in the notation. The proposal of Dn is motivated

by the reasoning that if S([a, b]) = 1, then the second term of (3.3) should

be small so that Dn must have similar asymptotic behavior as Hk(n),n.
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A consistent estimator of a, b is suggested in Section 5.1.1 but for now

we assume a, b are fixed and known. Theorem 3.1 gives the asymptotic

normality of Dn.

Theorem 3.1. Assume the 2RV condition (2.8) holds, α0 ≡ α(1 + ρ) >

1, b0(t) is defined in (2.13) and {k(n)} is an intermediate sequence (i.e.

k(n)→∞, n/k(n)→∞, n→∞) satisfying

√
k(n)

b0(n/k(n))

b(n/k(n))
→ 0, n→∞. (3.4)

Under H
(1)
0 as given in (3.2), we have

√
k(n)(Dn − 1/α)⇒ 1

α
N(0, 1). (3.5)

Note that the condition α0 = α(1+ρ) > 1 is mild as it is rare in practice

for tails to be so heavy that α < 1. The proof of Theorem 3.1 is based on

asymptotic normality of the tail empirical measure, and is in Section S3 of

the supplement. For treatments explaining the need for the second order

condition, see (Resnick, 2007, Section 9.1) or de Haan and Ferreira (2006).

Here we give some remarks.

First, under H
(1)
0 , for Zi corresponding to large Ri, the distance from

Zi to Ca,b should be small with high probability and therefore Dn should

be close to the Hill estimator which is asymptotically normal. The proof of

Theorem 3.1 shows that when S[a, b] = 1,

√
k(n)(Dn−Hk(n),n)=

1√
k(n)

kn∑
i=1

(
d
(
Z∗i ,Ca,b

)
R(k(n))

)
log

R(i)

R(k(n))

⇒ 0, (3.6)
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as n → ∞. Equation (3.6) thus confirms that under strong dependence,

distance to Ca,b must be negligible. However, (3.6) also means that in (3.5)

we cannot replace 1/α by the plug-in estimate, necessitating the use of

bootstrap methods in Section 5.1.2.

In addition, Theorem 3.1 suggests that for fixed a, b, we reject H
(1)
0 in

(3.2) if |Dn − 1/α| > 1.96/(α/
√
k(n)). If we choose too wide an interval

[a, b] ( [0, 1], then the test statistic Dn becomes closer to Hk,n as more data

points are included in Ca,b. Failure to reject for the fixed interval means

also that one fails to reject for any bigger interval. So using only Dn, we

cannot distinguish whether the support of S(·) is in [a, b] or a subset of

[a, b] and, in particular, if we fail to reject H
(1)
0 , it could be the support is

{θ0} for some θ0 ∈ [a, b]. Therefore, in the next section, we give another

test statistic that helps decide whether P[Z1 ∈ · ] is asymptotically fully or

strongly dependent.

4. Full vs strong dependence

Now consider the hypothesis test as formed in Step 2: For some θ0 ∈ [0, 1],

H
(2)
0 : S({θ0}) = 1 H(2)

a : S([0, 1] \ {θ0}) > 0. (4.1)

where θ0 ∈ [a, b], and to capitalize on hidden regular variation resulting

from 2RV, we need the assumption that [a, b] ( [0, 1] is a proper subset of

[0, 1]. Since θ0 ∈ [a, b] and Dn given in Theorem 3.1 is unable to distinguish

between the two hypotheses in (4.1), we propose another test statistic. Let
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4.1 Full dependence

Θ∗i := X∗i /(X
∗
i + Y ∗i ) be the concomitant of R(i), and define

Tn :=

∑k(n)
i=1 Θ∗i log

R(i)

R(k(n))∑k(n)
i=1 Θ∗i

. (4.2)

The next two results recommend we distinguish between strong and

full dependence by assessing the asymptotic variance of Tn. Under H
(2)
0 the

asymptotic variance of Tn is 1/α2 but under H
(2)
a the asymptotic variance

is strictly greater than 1/α2.

4.1 Full dependence

The next Theorem 4.1 is posed under the assumption H
(2)
0 in (4.1) of full

dependence where the limit angular measure concentrates at a point θ0 ∈

(0, 1).

Theorem 4.1. Assume H
(2)
0 holds and the angular measure S(·) = εθ0(·),

for θ0 ∈ (0, 1). Suppose the 2RV condition in (2.6) holds with A(t) ∈ RV−ρ,

ρ > 0. Define b0(t) as in (2.13) so b0(t) ∈ RV1/(α(1+ρ)) and α0 = α(1 + ρ).

Let {k(n)} be an intermediate sequence satisfying (3.4), then we have

√
k(n)

(
Tn −

1

α

)
⇒ N(0, 1/α2). (4.3)

The proof is reserved for Section S4 of the supplementary material but is

somewhat truncated since the proof of Theorem 4.2 is similar. Additionally,

the proof of Theorem 4.1 indicates that when H
(2)
0 holds, we have in R,

√
k(n)(Tn −Hk(n),n)⇒ 0, (4.4)
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4.2 Strong dependence

precluding the use of the plug-in estimator for 1/α. Tests based on Tn will

require bootstrap methods.

4.2 Strong dependence

Under strong dependence, the asymptotic variance of Tn is strictly larger

than 1/α2.

Theorem 4.2. Assume strong dependence exists such that suppS(·) =

[a, b]. Suppose also the 2RV condition in (2.6) holds with a limiting signed

measure χ(·) and A(t) ∈ RV−ρ, ρ > 0. Define b0(t) as in (2.13), so

b0(t) ∈ RV1/(α(1+ρ)) and α0 = α(1+ρ). As before, {k(n)} is an intermediate

sequence satisfying (3.4). Define

µ :=

∫ b

a

xS(dx), σ2 :=

∫ b

a

(x− µ)2S(dx),

and under strong dependence assumption H
(2)
a , we have

√
k(n)

(
Tn −

1

α

)
⇒ N

(
0,

1

α2
(1 + σ2/µ2)

)
. (4.5)

Proofs use a functional central limit theorem for row sums of a triangu-

lar array of D[0, 1]-functions (Pollard, 1990, Theorem 10.6) that generalizes

the sequential result of Hahn (1978) and are discussed in Section S5 of the

supplement. We also give details for the proof of Theorem 4.2 in the sup-

plementary material since it showcases the key steps to show Theorem 4.1.
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5. Implementation of testing

Applying the test statistics to data requires estimating a minimal length

interval [a, b] containing the support of the angular measure. On the one

hand, choosing an unnecessarily wide interval [a, b] leads Dn to conclude

S([a, b]) = 1 but only shows the support is a subset of [a, b]. Also making

[a, b] too wide may mean there are few points in [0, 1] \ [a, b], so that even if

the true support of S is [0, 1], we could falsely accept the existence of strong

dependence. On the other hand, fixing an excessively narrow interval [a, b]

may lead to Dn inaccurately rejecting existence of strong dependence.

We begin with a method for estimating a, b and then proceed to boot-

strap methods for implementing the tests. This is followed in Sections 5.2

and 5.3 by illustrations using simulated and real data.

5.1 Methodology

5.1.1 Estimating [a, b]

We estimate a, b as the minimizer of an objective function gn(a, b) subject

to the constraint 0 ≤ a ≤ b ≤ 1 where

gn(a, b) := (b− a) +
√
k(n)

∣∣Dn −Hk(n),n

∣∣ (5.1)

The first part of the objective function, b− a, favors a narrow interval [a, b]

the second part requires a wide enough interval [a, b] so that
∣∣Dn −Hk(n),n

∣∣ ≈
0. Hence, by minimizing gn, we obtain an estimated interval [â, b̂] of reason-
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5.1 Methodology

able length and satisfying
∣∣Dn −Hk(n),n

∣∣ ≈ 0. In practice, the constrOptim

function in R suffices for the minimization.

Theorem 5.1 gives the consistency of â and b̂ for α > 1.

Theorem 5.1. Suppose the support of S is [a, b], α > 1 and the interme-

diate sequence {k(n)} satisfies (3.4). Let â and b̂ be the minimizer of (5.1).

Then as n→∞,

â
p−→ a, b̂

p−→ b.

The proof of Theorem 5.1 is provided in Section S6 of the supplement.

In fact, the consistency result in Theorem 5.1 also holds if we redefine for

some λ > 0,

gn(s, t) = (t− s) + λ
√
k(n)

∣∣Dn −Hk(n),n

∣∣ . (5.2)

Note that when λ is large, the penalty term in (5.2) suggests the optimiza-

tion problem favor a wide estimated interval.

5.1.2 Bootstrap methods

Formulating tests based on either Theorem 3.1 or 4.1 requires knowing the

values of α, a, b, which, however, is unlikely to be true for real datasets.

Substitution methods suggest replacing α with the corresponding Hill esti-

mator, 1/Hk(n),n and investigating the effect on the limit distribution but

this will not work here due to (3.6) and (4.4). Thus, we propose bootstrap

methods to implement the proposed tests and try the approach on simu-

lated and real datasets. We will report elsewhere on justifications for the
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5.1 Methodology

bootstrap methods and here we show numerical experiments that suggest

its applicability.

Assume an intermediate sequence {k(n)} is chosen. According to Fei-

gin and Resnick (1997) and Chapter 6.4 of Resnick (2007), bootstrapping

of heavy-tailed phenomena requires taking a bootstrap sample size m =

m(n) ≈ n/k(n) so thatm(n)/n→ 0 andm(n)→∞. Let {I1(n), . . . , Im(n)}

be iid discrete uniform random variables on {1, . . . , n}, independent from

{(Xi, Yi) : i ≥ 1}. We construct a bootstrap resample of size m by

ZIj(n) = (XIj(n), YIj(n)), j = 1, . . . ,m.

Define Rboot
(i) as the i-th largest order statistic among {RIj(n) ≡ XIj(n) +

YIj(n) : 1 ≤ j ≤ m}, and let Z∗Ii(n) = (X∗Ii(n), Y
∗
Ii(n)) be the pair of random

variables such that X∗Ii(n) + Y ∗Ii(n) ≡ Rboot
(i) .

(1) Test H
(1)
0 . For the test in (3.2), we first solve (5.2) with a proper choice

of λ using the whole sample of size n to estimate the support of the angular

measure, [â, b̂], from the sample. Then we obtain Câ,b̂ := {(x, y) ∈ R2
+ : â ≤

x/(x+ y) ≤ b̂} and

D̂m =
1

k(m)

k(m)∑
i=1

(
1 +

d
(
Z∗Ii(n),Câ,b̂

)
Rboot

(k(m))

)
log

Rboot
(i)

Rboot
(k(m))

.

Conditioning on the original sample, we presume from Theorem 3.1 that

for large n,
√
k(m)

(
D̂m −Hk(n),n

)
≈ N(0, H2

k(n),n). Therefore, we use the

z-test by computing the Hill estimator Hk(n),n from the full sample and
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5.1 Methodology

reject H
(1)
0 in (3.2) if

∣∣∣D̂m −Hk(n),n

∣∣∣ > 1.96
Hk(n),n√
k(m)

. (5.3)

In practice we would generate B bootstrap samples and reject if more than

5% satisfy (5.3).

(2) Full vs strong dependence. For the test in (4.1), generate B boot-

strap resamples indexed by t = 1, . . . , B. For each t, let Rboot
(i),t be the

i-largest order statistic in the t-th resample; Θ∗i,t is the corresponding con-

comitant. Compute the corresponding test statistics for each resample,

T (t)
m =

∑k(m)
i=1 Θ∗i,t log

Rboot
(i),t

Rboot
(k(m)),t∑k(m)

i=1 Θ∗i,t
, t = 1, . . . , B.

Based on Theorem 4.1, we presume under H
(2)
0 that conditional on the orig-

inal sample,
√
k(m)

(
T

(t)
m −Hk(n),n

)
is approximately normal with mean 0

and variance H2
k(n),n for large n. Using all B resamples, we obtain the

bootstrap estimate of the standard error of Tn:

SEboot(m) :=

(
1

B − 1

B∑
t=1

(
T (t)
m − T̄m

)2

)1/2

,

where T̄m = 1
B

∑B
t=1 T

(t)
m . Then due to the presumed asymptotic normality

of T
(t)
m , we use the chi-square test for normal variance and reject H

(2)
0 in

(4.1) if

k(m)
SE2

boot(m)

H2
k(n),n

> χ2
0.95,B−1/(B − 1),

where χ2
0.95,B−1 denotes the 95% quantile of a chi-square distribution with

B − 1 degrees of freedom.
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5.1 Methodology

(3) Strong vs weak dependence. When testing for strong vs weak

dependence, we rely on Theorem 4.2 and define Θ̃j := Θj1{Θj∈[a,b]}, R̃j :=

Rj1{Θj∈[a,b]}. Let R̃(i) be the i-th largest order statistic of {R̃j : 1 ≤ j ≤ n},

and Θ̃∗i be the concomitant of R̃(i). By assuming 0/0 ≡ 1 we define also

T̃n :=

∑k(n)
i=1 Θ̃∗i log

(
R̃(i)

R̃(k(n))
∨ 1
)

∑k(n)
i=1 Θ̃∗i

. (5.4)

For [a, b] ( [0, 1], we want to test strong vs weak dependence, i.e.

H
(3)
0 : suppS(·) = [a, b] v.s. H(3)

a : suppS(·) = [0, 1]. (5.5)

Under H
(3)
0 , T̃n must have the same asymptotic distribution as Tn. Here

we apply the bootstrap method again to test whether Tn and T̃n have the

same asymptotic variance. Again estimate [â, b̂] from (5.2). To obtain the t-

th resample, we generate {I1,t(n), . . . , Im,t(n)} iid discrete uniform random

variables on {1, . . . , n}, and compute

Θ̃i,t := ΘIi,t(n)1{ΘIi,t(n)∈[â,b̂]}, T̃ (t)
m =

∑k(m)
i=1 Θ̃∗i,t log

(
R̃(i),t

R̃(k(m)),t
∨ 1
)

∑k(m)
i=1 Θ̃∗i,t

.

We repeat the bootstrap resampling scheme twice to obtain T
(1)
m , . . . , T

(B)
m ,

T̃
(1)
m , . . . , T̃

(B)
m . Due to the presumed asymptotic normality of T

(t)
m , we use

the F-test to compare variances, and reject H
(3)
0 if

1
B−1

∑B
t=1

(
T

(t)
m − T̄m

)2

1
B−1

∑B
s=1

(
T̃

(s)
m − ¯̃

Tm

)2 > F0.975,B−1,B−1 or < F0.025,B−1,B−1, (5.6)

where
¯̃
Tm = 1

B

∑B
t=1 T̃

(t)
m and Fp,B−1,B−1 denotes the 100p%-percentile of an

F -distribution with numerator and denominator degrees of freedom both

equal to B − 1.
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5.2 Simulation study

5.2 Simulation study

5.2.1 Example

Consider a simulated data example as below. Set a = 0.25, b = 0.75.

Suppose R1 ∼ Pareto(2), R2 ∼ Pareto(6), Z ∼ Beta(0.1, 0.1), Θ2 ∼

Unif([0, 1] \ [a, b]), and B ∼ Bernoulli(0.5). Assume the random variables

are all independent, and let Θ1 := a+ (b− a)Z2. Define

X := BR1Θ1 + (1−B)R2Θ2

Y := BR1(1−Θ1) + (1−B)R2(1−Θ2).

By construction, (X, Y ) is MRV on R2
+ \ {0} with tail parameter α = 2.

The second order condition (2.6) also holds since

1

t−1

(
tP
[(

R

b(t)
,Θ

)
∈ ·
]
− pν2 × P[Θ1 ∈ ·]

)
→ (1− p)ν6 × P[Θ2 ∈ ·].

Furthermore, for Ca,b = {(x, y) ∈ R2
+ : x/(x + y) ∈ [0.25, 0.75]}, the vector

(X, Y ) has HRV on R2
+ \ Ca,b with tail parameter α0 = 6.

We then generate n = 2,500 iid observations from the distribution of

(X, Y ). Applying the minimum distance method in Clauset et al. (2009)

to {|xj| + |yj| : 1 ≤ j ≤ 2,500} chooses k(n) = 226 ≈ d10.6n0.39e (which

satisfies (3.4)), and the Hill plot (cf. left panel of Figure 3) shows a stable

pattern around such a chosen k(n) (Resnick, 2007, Chapter 4.4). Then

thresholding with k(n) = 226 yields the histogram of angles in the middle

panel of Figure 3. The histogram describes the dependence structure of

(X, Y ), and is consistent with the construction that [a, b] = [0.25, 0.75].
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Figure 3: Left: Hill plot of |x|+ |y|; the red line denotes 1/α = 0.5 and the

blue line denotes k(n) = 226. Middle: Histogram of Θ1 with n = 2,500 and

k(n) = 226. Right: Histogram of rejection rates of H
(1)
0 : S([â, b̂]) = 1 by

D̂m among 100 simulated trials.

We then estimate [a, b] by solving (5.2) using the constrOptim function

in R with λ = 1. To assess the consistency of the estimated â and b̂, we

generate 100 simulated samples, each of which consists of n = 2,500 iid

observations, leading to small MSE values of 2.87× 10−12 and 1.12× 10−8,

respectively.

Next, set m = d5n/k(n)e and k(m) = d2m0.39e. For each of the 100

simulated samples of size 2,500, we obtain the corresponding [â, b̂], and

generate B = 200 bootstrap resamples. For each resample, compute D̂m

and use (5.3) to test

H
(1)
0 : S([â, b̂]) = 1, H(1)

a : S([â, b̂]) < 1.

For every simulated trials, we look at the rejection rate among the 200
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5.2 Simulation study

bootstrap resamples, and plot the histogram in the right panel of Figure 3.

Although 22 of the 100 simulated trials are rejecting H
(1)
0 : S([â, b̂]) = 1,

our numerical results also give an average rejection rate as 0.0427 with a

standard deviation of 0.0195. When we further test H
(3)
0 using (5.6), only

8% of the trials reject the null, thus confirming the existence of strong

dependence on R2
+ \ Câ,b̂. To check the existence of full dependence, we

compute SEboot(m) based on the bootstrap resamples, and among the 100

trials, 35% of them reject H
(2)
0 , showing a reasonable power of the proposed

test using T
(t)
m .

5.2.2 Power analysis

Now we consider another simulated example of asymptotic weak dependence

to examine the power of all three tests proposed in the paper. Define two

independent random variables B0 ∼ Bernoulli(0.1) and Z0 ∼ Beta(1, 2),

both of which are independent from all other random variables specified in

the previous example. Then redefine Θ1 := B0(a+ (b− a)Z) + (1−B0)Z0,

and keep all other setup identical to the previous section.

We again generate 100 simulated samples with n = 2,500, and the left

panel of Figure 4 gives the Hill plot from one specific sample. The red

dashed line represents 1/α = 0.5, and the blue line marks k(n) = 311,

chosen by the minimum distance method (Clauset et al., 2009). Given the

stable shape of the Hill plot, we proceed by keeping k(n) = 311. Then
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Figure 4: Left: Hill plot of |x| + |y|, and the red line denotes 1/α = 0.5.

Middle: Histogram of Θ1 with n = 2,500 and k(n) = 311. Right: Boxplot

of â and b̂ among 100 simulated trials.

the histogram of angles based on the thresholded data is presented in the

middle panel of Figure 4, and the boxplot in the right panel of Figure 4

gives distributions of the estimated â and b̂. Different from the previous

case, we see that when asymptotic weak dependence exists, values of b̂ vary

a lot and are different from the true value of 1.

Next, for each sample, we obtain B = 200 resamples of size m =

d5n/k(n)e, and set k(m) = d2m0.39e. The rejection rates for H
(i)
0 , i = 1, 2, 3,

are 33%, 74%, and 23%, respectively. Similar to the previous case, the pro-

posed test of asymptotic full dependence (H
(2)
0 ) shows a good power when

we assume asymptotic weak dependence. When testing asymptotic strong

dependence, the boxplot in Figure 4 suggests that the estimated interval

[â, b̂] can be so wide that one may fail to detect significant differences in the
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variances, thus leading to a lower power while testing H
(1)
0 and H

(3)
0 .

5.3 Real data examples

We now consider the application of the bootstrap method to real data.

We download the daily adjusted stock prices of Chevron (CVX), Exxon

(XOM) and Apple (AAPL) during the time period from January 04, 2016

to December 30, 2022. To lessen the possible serial dependence of stock

returns, we compute the log returns of these three stocks using their every-

other-day prices. The acf plots in Figure 5 show little serial dependence for

all three stocks. This leads to a reduced dataset of n = 880 observations for

each stock. We realize a stylized fact about such data does not accord with

the independence assumption but the acf-plots encourage us to continue

with the analysis.
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Figure 5: Acf plots for the log returns of every-other-day stock prices.
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5.3.1 CVX vs XOM

In the left panel of Figure 6, we present the scatter plot of the log returns of

CVX and XOM. To understand the dependence structure between absolute

log returns of CVX and XOM, we also graph the histogram of |x|/(|x|+ |y|)

in the right panel of Figure 6, where the threshold is chosen as k(n) =

97. The threshold k(n) = 97 is again suggested by the minimum distance

method (Clauset et al., 2009), and the stable shape of Hill plot in the right

panel of Figure 6 confirms the choice.
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Figure 6: CVX vs XOM. Left: Scatter plot of CVX and XOM returns.

Middle: Histogram of angles (absolute returns of CVX) with k(n) = 97.

Right: Hill plot of |x|+ |y|.

Based on the histogram of angles, we want to test whether there exists

asymptotic strong or full dependence. Hence, we pick a large λ = 4 when

solving (5.2), which gives estimates â = 0.257 and b̂ = 0.853 (estimates

remain the same for λ ≥ 4). Then generate 200 bootstrap resamples with
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5.3 Real data examples

m = d6n/k(n)e and k(m) = d2m0.4e to test H
(1)
0 : S([0.257, 0.853]) = 1 v.s.

H
(1)
a : S([0.257, 0.853]) < 1. For each bootstrap resample, we compute the

corresponding test statistic D̂m, and see that only 2.5% of the 200 bootstrap

trials reject H
(1)
0 . In addition, consider strong vs weak dependence (i.e. H

(3)
0

vs H
(3)
a ), and calculate

1
B−1

∑B
t=1

(
T

(t)
m − T̄m

)2

1
B−1

∑B
t=1

(
T̃

(t)
m − ¯̃

Tm

)2 = 0.975 ∈ [0.757, 1.321].

Therefore, we accept the existence of strong dependence and conclude

S([0.257, 0.853]) = 1.

To distinguish between full and strong dependence, we obtain

k(m)
SE2

boot(m)

H2
k(n),n

= 1.038 < χ2
0.95,199/199 = 1.204.

So we fail to reject the hypothesis of full dependence. Hence, we conclude

that the absolute returns of CVX and XOM show full asymptotic depen-

dence.

5.3.2 CVX vs AAPL

We now inspect the dependence structure between absolute returns of CVX

and AAPL. The minimum distance method and the Hill plot (right panel

of Figure 7) together suggest choosing k(n) = 101. We give the scatter plot

and the histogram of |x|/(|x|+ |y|) in the left and middle panels Figure 7,

respectively.
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Figure 7: CVX vs AAPL. Left: Scatter plot of CVX and AAPL returns.

Middle: Histogram of angles (absolute returns of CVX) with k(n) = 101.

Right: Hill plot of |x|+ |y|.

Different from the previous case, setting λ = 4 gives [â, b̂] = [0.011, 0.928],

which is already a wide interval. As before, choose also that m = d6n/k(n)e

and k(m) = d2m0.4e. When testing

H
(1)
0 : S([0.011, 0.928]) = 1 vs H(1)

a : S([0.011, 0.928]) < 1,

we compute D̂m for each of the 200 resamples and 8.5% of them rejects

H
(1)
0 . In addition, generate two sets of 200 bootstrap resamples to test

H
(3)
0 : suppS(·) = [0.011, 0.928] vs H(3)

a : suppS(·) = [0, 1].

This gives a test statistic

1
B−1

∑B
t=1

(
T

(t)
m − T̄m

)2

1
B−1

∑B
t=1

(
T̃

(t)
m − ¯̃

Tm

)2 = 0.709 /∈ [0.757, 1.321],

indicating the existence of weak dependence. We therefore conclude that

considering the absolute returns of CVX and AAPL, the support of the
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angular measure is likely to be [0, 1]. Thus, underlying economic conditions

bind both securities but not in such a way that large return changes are

heavily dependent.

6. Final comments

The implementation Section 5 relies on bootstrap methods which need the-

oretical justification. We are completing such justifications and will report

elsewhere. The data analyses in Sections 5.2, 5.3 utilizing bootstrap meth-

ods seem quite reasonable and promising and offer information about what

range of models are consistent with data.

We approach finite sample inference about what is essentially an asymp-

totic model with caution and modest goals. We will broaden investigations

of this paper to extend methodology from the classical iid setting to network

data analysis and financial returns.

Supplementary Material

The online supplementary material contains additional simulation results

and technical details for all theoretical results in the main paper.
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