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Abstract:

Multiple biomarkers are often combined for more accurate disease diagnosis. For

this purpose, one popular performance metric is the area under the receiving op-

erating characteristic (ROC) curve (AUC). Optimizing the empirical AUC over

linear combinations of biomarkers, however, faces two primary challenges. First,

AUC is scale-invariant to the linear combinations, creating difficulties in both

the computation and asymptotic study. Most available approaches actually con-

sider a restricted problem by setting one coefficient to a constant. Second, the

empirical AUC is piecewise-constant and standard gradient-based computational

algorithms are not applicable. Existing methods maximize kernel-smoothed AUC

instead, but they can be sensitive to bandwidth choice. In this article, we tackle

these challenges by developing a new empirical AUCmaximization method. Com-

putationally efficient algorithms are provided for both the point and variance

estimation of the estimated combination coefficients. Simulation studies show

good computational and statistical performance of the proposed methods. An

illustration is provided with a clinical application.
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1. Introduction

With advances in high-throughput sequencing and molecular profiling tech-

nologies, many biomarkers have been identified for the purpose of disease

diagnosis. As a single biomarker may not be sufficiently informative, com-

bining multiple biomarkers holds the promise for improved accuracy. For

this purpose, likelihood-based methods such as logistic regression are widely

adopted. Despite their good computational properties and wide acceptance,

such a combination may be suboptimal in the case of model misspecification.

As an alternative and more robust method, Pepe et al. (2006) considered

the area under the receiver operating characteristic curve (AUC) and sug-

gested combining biomarkers to maximize the empirical AUC. AUC is a

popular performance metric and can be interpreted as the probability that

a diseased individual has a larger biomarker combination than a healthy

individual.

Unfortunately, the empirical AUC maximization poses two major chal-

lenges. The first one pertains to the scale-invariance property of AUC to the

combination coefficient. To address this identifiability issue, the majority of
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existing methods designate one biomarker as an anchor to fix its coefficient

to a non-zero constant (Pepe and Thompson, 2000; Vexler et al., 2006; Ma

and Huang, 2007; Zhang et al., 2018; Chen et al., 2015). However, this is

a restricted problem since it requires a priori knowledge of a biomarker to

have a non-zero coefficient with a certain sign. A better solution, without

compromising the generality, is to impose a norm constraint on the combi-

nation coefficient. Unfortunately, such a norm constraint is difficult to deal

with computationally; see ad hoc solutions in Lin et al. (2011) and Fong

et al. (2016). Furthermore, the variance estimation becomes difficult with

the degenerate distribution of the estimated coefficients.

Another challenge stems from the fact that the empirical AUC is piece-

wise constant. Standard optimization algorithms, such as those gradient-

based, are not applicable. Most existing methods maximize a kernel-smoothed

empirical AUC instead by replacing the indicator function in the empirical

AUC with a smoothed kernel function, e.g., Gaussian kernel by Vexler et al.

(2006) and Lin et al. (2011), sigmoid kernel by Ma and Huang (2007), and

ramp kernel by Fong et al. (2016). Nevertheless, these estimators can be

sensitive to the choice of bandwidth. A small bandwidth may not suffi-

ciently improve the computational properties, but a large one can result in

a statistically different estimator. Sound procedures for bandwidth choice
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are typically lacking. Zhang et al. (2018) proposed a different smoothing

technique that can be applied to the empirical AUC maximization. Their

self-induced smoothing introduces random perturbation to the combination

coefficient, with the amount of perturbation adapted to the data to result

in asymptotically equivalent estimation. However, the computation can be

burdensome, and convergence is not always guaranteed for small sample

size. An alternative approach is to employ optimization techniques like

simulated annealing to directly maximize the empirical AUC. Simulated

annealing does not require the objective function to be differentiable or

continuous, making it suitable for optimizing piecewise constant functions.

However, it may suffer from slow convergence and high computational cost,

and its performance is sensitive to parameter choices like the cooling sched-

ule, which can be challenging to tune.

For inference of the combination coefficients, sandwich variance esti-

mation for coefficients as considered in Ma and Huang (2007) and Fong

et al. (2016) may also be sensitive to the bandwidth choice and may not

perform well, particularly with small to moderate sample sizes. Bootstrap

is applicable, but the computation is intensive (Ma and Huang, 2007). The

self-induced smoothing of Zhang et al. (2018) provides variance estimation

simultaneously with point estimation. However, again, the iterative proce-
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dure can be computationally intensive.

In this article, we develop a novel method for the empirical AUC max-

imization problem to tackle the various issues associated with the existing

methods. We work with the general problem, where a norm constraint is

imposed on the combination coefficients. As an innovation, we introduce

an equivalent unconstrained reformulation of the constrained optimization

problem to facilitate both the point estimation computation and variance

estimation. With point estimation, a novel algorithm is designed for effi-

cient and robust computation by developing a sequence of smoothed objec-

tive functions that converge to the target one. Furthermore, we present a

novel sandwich-type variance estimate with efficient computation.

The rest of the article is organized as follows. Section 2 describes the

proposed estimation procedure for the combination coefficients. Section

3 shows the numerical performance of our proposal in comparison with

existing methods through simulations and a real data example. Section 4

concludes with a discussion. Assumptions and technical proofs are deferred

to the Appendix.
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2. The Proposed Point and Variance Estimation Methods

Write Y = 1, 0 as the presence or absence of a disease, respectively, and

X ∈ Rd as a vector of d biomarkers of interest for d ≥ 2. In a cohort study,

the observed data consist of n independent and identically distributed (iid)

replicates of (Y,X): (Yi,Xi), i = 1, . . . , n. Consider a linear combination

bTX with coefficient b ∈ Rd. Adopt the convention that a larger biomarker

combination is associated with positive disease diagnosis. With combina-

tion coefficient b, the AUC is equal to A(b) = Pr(bTX1 > bTX2|Y1 =

1, Y2 = 0). The empirical AUC is given by:

Â(b) =
1

N1N0

∑
i̸=j

I(Yi > Yj)I(b
TXi > bTXj),

where N1 and N0 are the numbers of the diseased and healthy individuals,

respectively.

Since both A(b) and Â(b) are scale-invariant to b, we impose ∥b∥2 = 1

for identifiability without loss of generality. The optimal combination is

thus given by β0 = argmax∥b∥2=1A(b). For its estimation, we consider the

empirical AUC maximizer,

β̂ = argmax
∥b∥2=1

Â(b). (2.1)
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2.1 Point Estimation through Diminishing Smoothing

Han (1987) and Sherman (1993) studied this estimator or a related one

under a semiparametric model. Their strong consistency and asymptotic

normality results of the estimator can be extended to the current nonpara-

metric set-up.

2.1 Point Estimation through Diminishing Smoothing

The norm constraint ∥b∥2 = 1 causes computational challenges, which have

not been well addressed in existing methods, e.g., Fong et al. (2016). By

exploiting the scale-invariance of Â(b) to b, we obtain a novel unconstrained

reformulation through penalization:

β̂ = argmax
b

Â(b)− w(∥b∥2 − 1)2. (2.2)

where w is a positive constant. This new formulation also facilitates the

asymptotic study on weak convergence as the Hessian of the objective func-

tion is no longer singular in limit.
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2.1 Point Estimation through Diminishing Smoothing

Proposition 1. Denote

τ0(y,x; b) = E
[
I(y > Y )I{(x−X)Tb > 0}

+ I(y < Y )I{(x−X)Tb < 0}
]
,

H0 = 2{ρ(1− ρ)}−1E {∇2τ0(Y,X;β0)},

and V0 = {ρ(1− ρ)}−2E {∇τ0(Y,X;β0)}⊗2,

where ρ = E (Y ) with ρ ∈ (0, 1). If Assumptions 1 to 3 in the Appendix

hold, then

√
n(β̂ − β0)

d−→N(0,Σ0),

where Σ0 = H−1
P V0H

−1
P with HP = H0 − 2wβ⊗2

0 .

Another feature of the problem that contributes to the computational

difficulty is the indicator function involved in Â(b). To address that, we

develop a sequence of smoothed objective functions that converge to that

in (2.2). Such a smoothed objective function is obtained through kernel

smoothing, similar to existing methods, e.g., Ma and Huang (2007). How-

ever, our approach is distinct in adopting the sequence to overcome the need

for bandwidth choice. Specifically, for a given smoothing parameter σ > 0,

we approximate the indicator function I(x > 0) by gσ(x) − fσ(x), where
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2.1 Point Estimation through Diminishing Smoothing

gσ(x) and fσ(x) are both continuous, piecewise-quadratic, and convex; see

Figure 1:

gσ(x) =



− 1
σ
x− 1

4
ifx ∈ (−∞,−σ],

1
2σ2x

2 + 1
4

ifx ∈ (−σ, 0],

1
σ
x+ 1

4
ifx ∈ (0,∞),

and

fσ(x) =



− 1
σ
x− 1

4
ifx ∈ (−∞, 0],

1
2σ2x

2 − 1
4

ifx ∈ (0, σ],

1
σ
x− 3

4
ifx ∈ (σ,∞).

This approximation function is specifically designed to facilitate the sub-

sequent algorithm development. Then, Â(b) is approximated by Ãσ(b):

Ãσ(b) =
1

N1N0

∑
i̸=j

I(Yi > Yj){gσ(bTXi − bTXj)− fσ(b
TXi − bTXj)}.

Consequently, we have

ξ̃σ = argmax
b

Ãσ(b)− w(∥b∥2 − 1)2. (2.3)

Since Ãσ(b) is no longer scale-invariant to b, ∥ξ̃σ∥2 is not necessarily 1.
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2.1 Point Estimation through Diminishing Smoothing

x

fσ(x)
gσ(x)
gσ − fσ(x)
I(x>0)

− σ 0 σ

0
1

Figure 1: Approximation of the indicator function I(x > 0) by the difference
of two continuous, piecewise-quadratic, and convex functions gσ(x) and
fσ(x)

Nevertheless, with Ãσ(b) ∈ [0, 1], we have 1 − w(∥ξ̃σ∥2 − 1)2 ≥ 0, that is,

|∥ξ̃σ∥2 − 1| ≤ 1/
√
w. Provided w > 1, we have

ξ̃σ = arg max
∥b∥2=s

Ãσ(b)

for some data-dependent s ∈ [1 − 1/
√
w, 1 + 1/

√
w]. Equivalently, β̃σ,

defined as ξ̃σ/∥ξ̃σ∥2, has an alternative representation

β̃σ = arg max
∥b∥2=1

Ãs−1σ(b).

A similar technique was implemented in Huang and Sanda (2022) to address
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2.1 Point Estimation through Diminishing Smoothing

scale-invariance in their optimization problem.

Theorem 1. Suppose that w > 1. If Assumptions 1–3 in the Appendix hold

and σ = o(n−1/2), then β̃σ is asymptotically equivalent to β̂ in the sense

that β̃σ = β̂ + op(n
−1/2).

With a sufficiently small σ, Theorem 1 shows that the difference between

β̃σ and β̂ is asymptotically negligible. We shall let σ approach 0 in our

computation algorithm so as to spare the need to choose a small value for

σ.

Now, focus on the optimization algorithm for problem (2.3). We con-

sider an equivalent minimization problem as being more standard in the

optimization literature:

min
b
−Ãσ(b) + w(∥b∥2 − 1)2. (2.4)

Notice that the penalty can be written as the difference of w(∥b∥22 + 1)

and 2w∥b∥2, both of which are convex. On the other hand, Ãσ(b) is also

a difference of two convex functions by design. Therefore, the objective

function in problem (2.4) is readily written as the difference of two convex
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2.1 Point Estimation through Diminishing Smoothing

functions Fσ(b) and Gσ(b):

Fσ(b) =
1

N1N0

N1∑
i=1

N0∑
j=1

fσ(b
TXi − bTXj) + w(bTb+ 1).

Gσ(b) =
1

N1N0

N1∑
i=1

N0∑
j=1

gσ(b
TXi − bTXj) + 2w∥b∥2,

Consequently, we can implement the concave-convex procedure (CCCP) by

Yuille and Rangarajan (2003), which constitutes the core of Algorithm 1.

At each iteration, we convexify the objective function in (2.4) by linearizing

Gσ, i.e., replacing it by its tangent plane at the current coefficient estimate.

The resulting unconstrained convex problem can be solved with the New-

ton method or quasi-Newton method. The current combination coefficient

estimate is updated with the optimizer with guaranteed improvement of the

objective function. Such iterations are repeated until the objective function

cannot be further improved.

We have so far focused on the optimization algorithm for problem (2.4)

with a fixed σ. To approach the original objective function, a sequence of

decreasing σ values is adopted in the outer loop of Algorithm 1. With a

larger σ, the smoothed objective function may have fewer local optima. As

σ value is gradually reduced, the estimator might more likely approach the

global optimizer.
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2.2 Sandwich-type Variance Estimation

Our kernel function as given in (2.4) facilitates the proposed computa-

tion in several ways. First, its representation as the difference of two simple

convex functions lends itself for the implementation of the CCCP algorithm.

Second, the kernel is differentiable so that efficient gradient-based optimiza-

tion algorithms can be applied to the convexified objective function. Third,

the kernel function has a finite support which can be exploited to reduce the

computational burden of calculating the convexified objective function and

its gradient. Because many pairs of biomarker combinations may not con-

tribute to the change in the convexified objective function, a considerable

number of unnecessary comparisons between combinations can be avoided

by sorting the biomarker combinations of all subjects.

2.2 Sandwich-type Variance Estimation

Variance estimation for β̂ is challenging. First, even A(b) has a singular

Hessian because of its scale invariance to b. Standard M-estimation theory

thus cannot be applied directly to the maximizer of Â(b). Our incorporation

of the penalty function in problem (2.2) offers a solution to this problem,

since the limit of the objective function now has a Hessian of full rank.

Another challenge with variance estimation stems from the nonsmooth-

ness of Â(b). As such,H0 cannot be estimated through direct differentiation

13

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0195



2.2 Sandwich-type Variance Estimation

Algorithm 1 Pseudo code for problem (2.2)

Given an initial combination coefficient b0, initial value for σ, and shrink-
age factor α.
Set k ← 0.
repeat

repeat ▷ Concave-convex procedure with fixed σ
1. Convexify.
Form

G∗
σ(b; bk) = Gσ(bk) +∇Gσ(bk)

T (b− bk).

2. Solve. Set bk+1 to the solution of

min
b

Fσ(b)−G∗
σ(b; bk).

3. Update inner loop. k ← k + 1.
until Sufficiently small decrease in objective function (2.4) with cur-

rent σ
▷ End of inner loop

Shrink σ by the factor α.
until Sufficiently small decrease in objective function (2.2)
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2.2 Sandwich-type Variance Estimation

of Â(b). To address that, we adapt the self-induced smoothing approach

of Zhang et al. (2018), which incorporates data-induced smoothing at the

right level to allow sandwich-type variance estimation. Nevertheless, our

adaptation has two distinctive features. As our formulation of the problem

is more general, our variance matrix of β̂ is nearly singular, which needs to

be accommodated. On the other hand, unlike Zhang et al. (2018), the point

estimate β̂ is fixed in our procedure to have computational advantages.

Given a positive definite matrix Σ, denote σij =
√
XT

ijΣXij, where

Xij = Xi −Xj. Let Φ be the standard normal distribution function. The

objective function with self-induced smoothing can be written as:

L(β̂,Σ) =
1

N1N0

N1∑
i=1

N0∑
j=1

Φ

(√
nXT

ijβ̂

σij

)
− w(∥β̂∥2 − 1)2.

Then Σ0 can be estimated by the sandwich-type variance estimation:

Σ̂ = Ĥ−1
P (β̂,Σ)× V̂(β̂,Σ)× Ĥ−1

P (β̂,Σ), (2.5)
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2.2 Sandwich-type Variance Estimation

where

ĤP (β̂,Σ) = ∇2L(β̂,Σ),

V̂(β̂,Σ) =
n

N2
1N

2
0

n∑
i=1

[
n∑

j=1

{
sgn(Yi − Yj)× ϕ

(√
nXT

ijβ̂

σij

)√
nXij

σij

}]⊗2

.

Theorem 2. Let β̂ be the maximizer of empirical AUC, and Σ̂ as defined

in Equation (2.5). Suppose Assumptions 1 to 3 in the Appendix hold. Then,

for any fixed positive definite matrix Σ, Σ̂ converges in probability to Σ0,

the limiting variance-covariance matrix of
√
n(β̂ − β0).

Because of the norm constraint, Σ0 is of rank d − 1 and its column

vectors do not span β0. Thus, Σ̂ is nearly singular since it is consistent for

Σ0. Therefore, we consider to use Σ̂ + β̂⊗2 as Σ above for the purpose of

smoothing. By adding β̂⊗2, Σ has full rank. With this choice, we develop an

iterative procedure illustrated in Algorithm 2. The estimation procedure

begins with a working covariance matrix, such as the estimated variance

matrix of the estimated coefficients from logistic regression, and iteratively

updates the variance estimate using (2.5).
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Algorithm 2 Sandwich-type Algorithm for Variance Estimation

Given a coefficient estimate β̂, an initial covariance matrix Σ̂(0); set k ←
0.
repeat

1. Compute ĤP (β̂, Σ̂
(k) + β̂⊗2) and V̂(β̂, Σ̂(k) + β̂⊗2).

2. Update Σ̂(k) using Equation (2.5).
3. Update iteration. k ← k + 1.

until Σ̂(k+1) and Σ̂(k) are sufficiently close to each other.

3. Numerical Studies

We implemented Algorithm 1 by adopting the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) quasi-Newton method for convex optimization (Broyden,

1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) from R optim function.

The maximum likelihood estimator from logistic regression is used as the

initial coefficient, the weight w is set to 2, and the shrinking factor α is set

to 0.8. The code for the proposed estimator is available as an R package on

the first author’s website https://github.com/yuxuanchn/maxAUC.

Six biomarker combination estimation methods were included in the nu-

merical studies for comparison of point estimation. Logistic regression (LR)

is a standard and widely adopted method. We also considered four repre-

sentative empirical AUC maximization methods: the Gaussian-smoothed

AUC (GAUC), implemented with bandwidth choices suggested by Vexler

et al. (2006) and R code from their subsequent work (Chen et al., 2015); the
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3.1 Simulation

sigmoid-smoothed AUC (SAUC), with bandwidth choice proposed by Ma

and Huang (2007); the ramp AUC (RAUC) (Fong et al., 2016) as imple-

mented in R package aucm; and the smoothed maximum rank correlation

estimator (SMRCE) proposed by Zhang et al. (2018). We did not have

access to the original code for Ma and Huang (2007) and SMRCE and

wrote the code using the BFGS quasi-Newton method from R optim func-

tion. As these methods require the designation of an anchor, we selected

the biomarker with the largest absolute coefficient from logistic regression.

Additionally, we included empirical AUC maximization using simulated an-

nealing (SANN) as implemented in the R function optim (Bélisle, 1992).

For variance estimation, we compared our proposal with two existing

methods. One is SMRCE (Zhang et al., 2018), which simultaneously pro-

duces the variance and point estimation. The other is the weighted boot-

strap method adopted by Ma and Huang (2007) for their SAUC estimator,

where the random weights were generated from Beta(0.125, 1.125).

3.1 Simulation

In the simulation studies, the disease status marginally followed a Bernoulli

distribution with a prevalence of 30% and three biomarkers were considered

for combination. Given the disease status, biomarkers followed a conditional
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3.1 Simulation

distribution that was considered in the simulation studies of Huang and

Sanda (2022), as motivated from cancer studies. For healthy individuals,

the biomarkers were independent and identically distributed, following a

standard normal distribution. On the other hand, two distributions of the

biomarkers of diseased individuals were considered:

Scenario I. The biomarkers of diseased individuals were independent

and normally distributed with mean 0.9 and variance 1.

Scenario II. The biomarkers of diseased individuals were independent

and normally distributed, following a mixture of independent normal

distributions. With probability 2/3, the means are (1.7, 1,7, 0) and

variances (0.5, 2, 1); with probability 1/3, the means are (0, 0, 1.7)

with variances of 1.

In Scenario I, all three biomarkers of diseased individuals tend to be larger

than those of healthy individuals. Scenario II mimics two disease subtypes

where the elevation of the first two biomarkers is associated with one sub-

type, and that of the third biomarker is associated with the other. The

logistic regression model holds under Scenario I, but not under Scenario II.

Sample sizes of 100, 200, 500, 2000 were considered. For each set-up, results

for 1000 random samples were obtained. The simulations were conducted
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3.1 Simulation

Table 1: Simulation study results: Computational performance of coeffi-
cient estimation

n 100 200 500 2000

Method A T A T A T A T

Scenario I
PROP 87.64 0.07 87.07 0.12 86.73 0.42 86.52 4.95
SAUC 87.47 0.92 87.02 1.83 86.72 2.75 86.52 10.83
GAUC 87.56 0.42 87.01 0.74 86.71 2.03 86.52 12.10
RAUC 87.35 0.28 86.95 3.04 - - - -
SMRCE 87.34 0.03 86.94 0.11 86.70 0.63 86.52 9.41
SANN 87.33 0.09 86.86 0.17 86.61 0.73 86.48 8.14

Scenario II
PROP 87.77 0.07 86.75 0.12 86.40 0.41 86.22 5.14
SAUC 87.59 0.88 86.69 1.57 86.38 4.20 86.22 10.89
GAUC 87.68 0.64 86.69 1.10 86.37 2.49 86.22 21.07
RAUC 87.48 0.32 86.62 3.49 - - - -
SMRCE 87.43 0.03 86.58 0.12 86.35 0.64 86.22 9.55
SANN 87.08 0.08 86.62 0.17 86.29 0.71 86.11 9.80

A: Optimized empirical AUC (×100); T: computation time (seconds).
PROP: proposed method; SAUC: Sigmoid-smoothed AUC; GAUC: Gaussian-
smoothed AUC; RAUC: ramp AUC; SMRCE: smoothed maximum rank cor-
relation estimator; SANN: simulated annealing. RAUC was not performed for
larger sample sizes due to lengthy running time.

on a 2023 Mac mini with an M2 chip and 16 GB memory.

We start with computational performance, with the resulting maximal

empirical AUC and computation time shown in Table 1. As all methods

intend to maximize the empirical AUC, one achieving a larger maximal

empirical AUC is regarded better. In all settings, our algorithm attained

the largest empirical AUC on average. Meanwhile, our method generally

had shorter computation time. The advantage became more substantial as

the number of biomarkers and sample size increased.
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3.1 Simulation

Next, we consider the statistical performance of coefficient estimation.

Table 2 shows the bias and standard deviation of the estimated coefficients.

Under Scenario I, the logistic regression model holds and the associated

coefficient estimate is asymptotically efficient. In this case, our proposed

coefficient estimate had slightly inflated standard deviation, but was com-

parable to other AUC maximization methods. In Scenario II, the bias of all

methods except logistic regression decreased and approached 0 as the sam-

ple size increased. This is not surprising since the logistic regression model

no longer holds. The simulations also suggested that the logistic regression

coefficients do not converge to the optimal combination coefficients. Across

all set-ups, simulated annealing had larger bias and standard deviation,

which may not be surprising as it is a general-purpose algorithm.

Finally, we compare our proposed variance estimation procedure with

the weighted bootstrap in Ma and Huang (2007) and SMRCE. As both com-

paring methods designate an anchor biomarker, their variance estimations

are transformed by the delta method for comparison with the proposed

method. Table 3 shows the standard error and coverage probability of 95%

confidence interval for each coefficient, along with the computation time.

As expected, the standard error reduced and the coverage rate approached

the nominal level with the increase of sample size. The standard error and
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3.1 Simulation

Table 2: Simulation study results on coefficient estimation

Scenario I Scenario II

β1 β2 β3 β1 β2 β3

Method B SD B SD B SD B SD B SD B SD

n=100
PROP -25 150 -25 159 -11 147 -39 154 11 149 -19 137
LR -21 142 -25 151 -8 135 -37 144 42 140 -43 139
SAUC -25 151 -29 160 -7 145 -38 155 18 147 -24 134
GAUC -26 155 -25 159 -12 147 -40 155 11 151 -19 137
RAUC -26 153 -20 155 -14 145 -23 148 1 150 -32 145
SMRCE -11 136 -26 142 -12 128 -35 142 15 127 -18 135
SANN -42 204 -37 202 -32 204 -49 207 24 187 -64 191

n=200
PROP -10 105 -10 107 -10 110 -7 112 -12 121 -16 100
LR -5 102 -10 101 -12 103 -10 108 37 109 -50 104
SAUC -9 106 -10 107 -11 111 -7 112 -8 120 -18 102
GAUC -9 107 -10 110 -12 112 -6 114 -14 121 -15 101
RAUC -9 106 -11 112 -12 110 -11 112 0 114 -18 100
SMRCE -5 96 -6 95 -13 101 -5 101 -4 107 -18 99
SANN -20 136 -18 137 -10 134 -28 159 36 144 -57 149

n=500
PROP -4 75 -5 70 -4 67 -13 70 5 69 -0 64
LR -4 69 -5 63 -2 64 -16 63 53 62 -34 66
SAUC -4 74 -5 70 -4 66 -12 70 5 69 -0 62
GAUC -4 74 -5 69 -4 66 -12 69 4 69 -0 62
SMRCE -4 68 -4 62 -3 61 -12 60 7 60 -1 61
SANN -10 98 -8 98 -7 94 -24 138 39 107 -42 118

n=2000
PROP 0 34 -1 35 -2 35 -1 33 0 36 -1 31
LR 2 31 -1 33 -3 33 -7 30 49 33 -34 32
SAUC 1 33 -1 35 -2 35 -1 33 0 35 -1 31
GAUC 1 34 -1 34 -2 35 -1 33 0 35 -1 31
SMRCE 1 31 -1 32 -3 33 -1 31 0 33 -1 30
SANN -2 48 -4 49 -1 50 -15 112 41 79 -39 91

B: bias (×1000); SD: standard deviation (×1000).
PROP: proposed method; LR: logistic regression; SAUC: Sigmoid-smoothed
AUC; GAUC: Gaussian-smoothed AUC; RAUC: ramp AUC; SMRCE:
smoothed maximum rank correlation estimator; SANN: simulated annealing.
RAUC was not performed for larger sample sizes due to lengthy running time.
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3.2 Real Data

coverage probability were comparable across all three methods. However,

our proposed method took much shorter computation time, and this com-

putational advantage became more prominent as the sample size increased.

These reported simulations are only part of the studies that we per-

formed. Additional simulation results featuring more biomarkers are in-

cluded in the Supplementary Material. The computational and statistical

performance of our proposed method relative to the existing ones remains

similar.

3.2 Real Data

We applied the proposed method to the Pima Indians Diabetes Study, which

examined the diagnosis of diabetes using eight variables in Pima indians

aged 21 years and older (Smith et al., 1988). The same dataset was ana-

lyzed by Ma and Huang (2007). The data consisted of 268 diabetic patients

and 500 nondiabetic individuals. These variables under consideration are

easily measurable and thus can be used in emergency situations and pa-

tient self-care. We first compared the estimated optimal empirical AUC of

each method. Our proposed method achieved the maximal empirical AUC

(0.8410). The other empirical AUC maximization methods attained simi-

lar empirical AUC (GAUC: 0.8405; SAUC: 0.8405; SMRCE: 08397), all of
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3.2 Real Data

Table 3: Simulation study result on variance estimation

Scenario I Scenario II

β1 β2 β3 β1 β2 β3

Method E C E C E C T E C E C E C T

n=100
PROP 150 89.6 150 89.6 150 90.8 0.01 152 86.4 148 92.0 134 89.2 0.01
SMRCE 133 88.8 129 88.0 132 91.6 0.03 124 83.2 115 88.8 133 92.4 0.03
WB 148 91.6 150 89.8 150 91.8 2304 141 90.0 148 91.0 139 90.6 2750

n=200
PROP 103 92.4 103 91.2 104 92.4 0.02 103 88.8 105 87.6 98 90.0 0.02
SMRCE 95 93.6 97 92.8 96 93.6 0.11 92 90.4 88 87.6 98 92.4 0.12
WB 108 91.8 108 92.6 108 91.8 5825 106 91.2 111 92.2 98 94.0 7443

n=500
PROP 66 91.2 66 92.8 66 92.0 0.09 66 91.6 67 94.0 60 89.6 0.09
SMRCE 64 94.4 64 95.2 63 95.2 0.63 63 94.8 60 92.4 62 93.2 0.64

n=2000
PROP 33 95.2 33 93.6 33 93.2 1.37 33 95.2 34 94.8 30 92.8 1.42
SMRCE 33 96.8 33 96.0 33 94.8 9.41 33 95.2 32 94.4 32 96.0 9.55

E: Standard error (×1000); C: coverage rate (%); T: average computation time
(seconds).
PROP: proposed sandwich-type variance estimation method; SMRCE:
smoothed maximum rank correlation estimation method; WB: Weighted Boot-
strap method. Weighted Bootstrap method was not performed for larger sample
sizes due to lengthy running time.
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3.2 Real Data

which were slightly higher than the empirical AUC from LR (0.8394). The

RAUC, however, did not converge and attained a smaller estimate (0.7340).

The simulated annealing achieved the same empricial AUC as LR (0.8394).

The slight improvement with our proposal might be due to the relatively

large sample size, which is consistent with our simulation results.

The coefficient estimation and inference results were summarized in Ta-

ble 4. The proposed method identified five variables as significant, where

Diabetes pedigree function has the smallest p-value. For comparison, the

logistic regression model and MH yield similar coefficient estimation. How-

ever, the inference results were different. For example, Diabetes pedigree

function has the smallest p-value in both weighted bootstrap and the pro-

posed method, but Glucose concentration has the smallest p-value in the

logistic model. This difference in estimation results from the difference in

their model assumptions. The proposed method has smaller standard error

compared to WB, which is consistent with the simulation results. Never-

theless, this difference is not as prominent compared to their difference from

the logistic regression.
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Table 4: Estimation results in the Pima Indians diabetes data
LR SAUC/WB PROP

Variable Est SE z-score Est SE z-score Est SE z-score

Age 16 10 1.593 16 13 1.256 14 11 1.250
BP -14 5 -2.540 -10 6 -1.718 -11 5 -2.331
BMI 94 16 5.945 72 26 2.808 65 14 4.670
DPF 986 312 3.160 992 7 137.1 992 4 248.5
Glucose 37 4 9.481 32 11 2.858 33 5 6.420
Insulin -1 1 -1.322 -1 1 -0.807 -1 1 -1.192
PG 129 33 3.840 92 41 2.258 102 38 2.711
ST 1 7 0.090 -3 7 -0.375 0 6 0.018

BP: Blood pressure; BMI: Body mass index; DPF: Diabetes pedigree function;
PG: Pregnancies; ST: Skin Thickness.
Est: estimated coefficient (×1000); SE: Standard error (×1000).
LR: logistic regression; SAUC/WB: Sigmoid-smoothed AUC used for coefficient
estimation with weighted bootstrap used for variance estimation; PROP: por-
posed method.

4. Discussion

In this article, we have proposed a new empirical AUC optimization method

for biomarker combinations. Our proposal has a number of distinctive and

desirable features. First, we tackle the general biomarker combination prob-

lem without designating an anchor biomarker, as required by many existing

methods. Second, we reformulate the norm-constrained empirical AUC as

an unconstrained optimization problem, which facilitates both computation

and statistical inference. Third, our estimator is defined in terms of a se-

quence of smoothed empirical AUC functions approaching the unsmoothed

one, eliminating the need to specify a kernel bandwidth for smoothing —
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a necessity in many current approaches. Finally, our inference procedure

is sample-based and computationally efficient. The proposed optimization

algorithm is shown to have competitive computational and statistical per-

formance.

While we have focused on the standard empirical AUC maximization,

our proposed methods immediately extend to several other problems. One

such problem is the empirical maximization of center-adjusted AUC con-

sidered by Meisner et al. (2019), to address multicenter biomarker studies.

Another problem of interest is the empirical maximization of the partial

rank correlation estimate (Khan and Tamer, 2007) for censored survival

outcomes. Though the type of outcome is different, the objective function

is similar and would be amenable to our techniques.

Nevertheless, several issues warrant further investigation. One is the

performance estimation of the resulting combination. It is well known

that the maximized empirical AUC tends to be overly optimistic for pre-

diction performance. Cross-validation is a standard approach to address

the overoptimism, but can be computationally demanding (Huang et al.,

2011). Our proposed computational techniques would be useful in this

regard. Another issue is biomarker selection for combination. As high-

dimensional biomarkers like genetic and microbiome data become more ac-
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cessible, selecting relevant biomarkers becomes increasingly important. Lin

et al. (2011) considered penalized empirical AUC maximization for simulta-

neous biomarker selection and combination estimation. Similar procedures

may be developed to incorporate and adapt our optimization techniques

developed herein. However, the statistical properties of these approaches

require further examination.

Supplementary Material

The online Supplementary Material contains additional simulation results.
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Appendix

A. Technical Proof

Regularity conditions adapted from Sherman (1993) are imposed.
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Assumption 1. The maximizer β0 of A(b) over B = {b : ∥b∥2 = 1, b ∈

Rd} is unique.

Assumption 2. The biomarkers satisfy:

1. The support of X is not contained in any linear subspace of Rd.

2. There exists one component Xt in X, t ∈ {1, ..., d} with its corre-

sponding coefficient in β0 being non-zero, such that conditional on

the other d − 1 components, Xt has a everywhere positive density

function with respect to the Lebesgue measure.

Assumption 3. Let N denote a neighborhood of β0, and ∥ · ∥ denote the

matrix norm ∥(aij)∥ = (
∑

i,j a
2
ij)

1/2. For each pair (y,x) of possible values

of (Y,X),

1. the second derivative of τ(y,x;β) with respect to β exist in N ;

2. there is an integrable function M(y,x) such that for all β in N ,

∥∇2τ(y,x;β)−∇2τ(y,x;β0)∥2 ≤M(y,x)∥β − β0∥2;

3. E (∥∇1τ(Y,X;β0)∥2)2 <∞;

4. E (∥∇2τ(Y,X;β0)∥2) <∞;
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A.1 Proof of Proposition 1

5. The matrix Hp is strictly negative definite.

Assumption 1 and 2 are used to establish consistency (Han, 1987).

Assumption 3 is a set of general conditions used to establish asymptotic

normality of the estimator, similar to the assumptions in Sherman (1993).

A.1 Proof of Proposition 1

Proof. Similar to expansion (7) of Sherman (1993), we can show that

Â(b)− Â(β0) = n−1/2(b− β0)
TWn +

1

2
(b− β0)

TH0(b− β0)

+ op(∥b− β0∥22) + op(n
−1), (A.1)

whereWn = {(N1N0)
−1(n−1)n}n−1/2

∑
i∇τ0(Y,X;β0). BecauseN1/n

p−→ ρ,

(N1N0)
−1(n− 1)n

p−→{ρ(1− ρ)}−1. On the other hand,

n−1/2

n∑
i=1

∇τ0(Y,X;β0)
d−→N(0,E {∇τ0(Y,X;β0)}⊗2).

Thus, by Slutsky’s theorem, Wn
d−→N(0,V0).
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A.2 Proof of Theorem 1

Write P (b) = w(∥b∥2 − 1)2, it follows that

{Â(b)− P (b)} − {Â(β0)− P (β0)} = n−1/2(b− β0)
TWn

+
1

2
(b− β0)

T (H0 − 2wβ⊗2
0 )(b− β0) + op(∥b− β0∥22 + n−1).(A.2)

Note that the rank of H0 is d− 1, and β0 is not in the span of the column

space of H0 due to the norm constraint. Therefore, the Hessian matrix

HP for the new objective function is invertible. Following Theorem 2 in

Sherman (1993), we have

√
n(β̂ − β0) = H−1

P Wn + op(1)
d−→N(0,Σ0), (A.3)

where Σ0 = H−1
P V0H

−1
P .

A.2 Proof of Theorem 1

Proof. First, we show that β̃σ is strongly consistent. By definition, Â(b) is

bounded by 1 for any b ∈ B. Han (1987) showed that

lim
n

sup
b∈B
|Â(b)− A(b)| = 0, a.s. (A.4)
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A.2 Proof of Theorem 1

Following a similar argument, we can show that such uniform convergence

holds for Ãs−1σ(b) with σ = o(n−1/2):

lim
n

sup
b∈B
|Ãs−1σ(b)− A(b)| = 0, a.s. (A.5)

With Assumption 1, by uniform convergence over B, we further have β̃σ →

β0 almost surely as n→∞.

Next, we establish the asymptotic normality of β̃σ. We first introduce

an expansion for a U -statistic defined as:

U(b, δ) =
1

n(n− 1)

∑
i̸=j

I(Yi > Yj)I(b
TXi − bTXj > δ), (A.6)

where δ ∈ R. The kernel of U(b, δ) is:

τ(y,x; b, δ) = E
[
I(y > Y )I{(x−X)Tb > δ}+ I(y < Y )I{(x−X)Tb < δ}

]
.

Following the arguments in Sherman (1993), we can show that, uniformly
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A.2 Proof of Theorem 1

over any op(1) neighbourhood of (β0, 0),

U(b, δ)− U(β0, 0) = n−1/2{(bT , δ)− (βT
0 , 0)}W(e)

n

+
1

2
{(bT , δ)− (βT

0 , 0)}H{(bT , δ)− (βT
0 , 0)}T

+op{∥(bT , δ)− (βT
0 , 0)∥22}+ op(n

−1), (A.7)

where W
(e)
n = n−1/2

∑
i∇1τ(Yi,Xi;β0, 0), and 2H = E {∇2τ(Y,X;β0, 0)}.

Let Γ̃n(b) = E Z{U(b, Z) − U(β0, 0)}, where Z is an independent ran-

dom variable with c.d.f and E Z is taking expectation with respect to Z.

(gσ − fσ)(·). Notice that Z = op(n
−1/2) since σ is o(n

−1/2) and the sup-

port of Z is [−σ, σ]. Thus, by expansion (A.7), uniformly over any op(1)

neighbourhood of β0, we have

Γ̃n(b) = n−1/2{bT ,E (Z)}W(e)
n + E {(bT , Z)H(bT , Z)T}/2

+op(∥b∥22) + op(n
−1)

= n−1/2bTWn + bTH0b/2 + bpE (Z2)/2

+op(∥b∥22) + op(n
−1), (A.8)

where 2H0 = E {∂2τ(Y,X;β0, 0)/∂b
2}, 2bp = E {∂2τ(Y,X;β0, 0)/∂b∂δ},

and Wn is the first d − 1 elements of W
(e)
n . The second equality follows
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A.3 Proof of Theorem 2

from the symmetric distribution of Z. Replacing b with β0 in Equation

(A.8) and subtracting it from Γ̃n(b), we have

Γ̃n(b)− Γ̃n(β0) = n−1/2(b− β0)
TWn +

1

2
(b− β0)

TH0(b− β0)

+op(∥b− β0∥22) + op(n
−1). (A.9)

Notice that expansion (A.9) is very similar to expansion (A.1). Following

similar arguments in the proof of Proposition 1, we have
√
n(β̃σ − β̂) =

op(1).

A.3 Proof of Theorem 2

Proof. To establish consistency for the covariance matrix, we only need to

show

ĤP (β̂,Σ)
p−→H0 + 2wβ⊗2

0 (A.10)

and

V̂(β̂,Σ)
p−→V0 (A.11)

for any positive definite matrix Σ. Without loss of generality, let Σ = I.

Denote

Q(β̂) =
1

N1N0

N1∑
i=1

N0∑
j=1

Φ

(√
nXT

ijβ̂

σij

)
.
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It also has the integral representation

∫
Q(β̂ + z/

√
n)(2π)−d/2 exp

(
−∥z∥22/2

)
dz. (A.12)

Therefore, the same arguments to establish consistency in the proof for

Theorem 2 in Zhang et al. (2018), combined with Expansion (A.1) applies

to show

∇2Q(β̂)
p−→H0 (A.13)

and (A.11). In addition,

∇2P (β̂) = 2w

(
β̂⊗2

∥β̂∥32
+
∥β̂∥2 − 1

∥β̂∥2
I

)
. (A.14)

Because β̂
p−→β0, by continuous mapping theorem, we have ∇2P (β̂)

p−→

2wβ⊗2
0 . Combining (A.14) with (A.13), we have (A.10).
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