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Abstract: Given a set of parameters, several non-isomorphic order-of-addition

orthogonal arrays can be generated to design an order-of-addition experiment.

Under resource constraints, selecting the best from these candidate designs for the

experiment can be practical to extract as much information as possible from the

observed data. Based on some theoretical results developed for two-level orthogo-

nal arrays, a series of numerical indices called centralized generalized wordlength

pattern is proposed in this paper to characterize and compare order-of-addition

orthogonal arrays. Specifically, the J-characteristics are first justified for pairwise

order matrices when the transitive property of pairwise order factors is taken into

account. The centralized generalized wordlength pattern is then defined based

on the sums of squared differences between the normalized J-characteristics of

the pairwise order matrices determined by the fractional and full designs. Es-

sentially, it can be viewed as a natural extension of the generalized wordlength

pattern used for two-level orthogonal arrays. Their functional relationship is

further simplified such that the computational cost can be reduced significantly.

Some optimal order-of-addition orthogonal arrays with economical run sizes are
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identified from existing catalogues for future work.

Key words and phrases: Hadamard matrix, Hamming distance, inversion; J-

characteristic, projection property.

1. Introduction

Order-of-addition experiments are often conducted to explore optimal addi-

tion orders of several components in some agricultural, chemical, industrial

and pharmaceutical studies. Some real-world order-of-addition problems

were introduced by Voelkel and Gallagher (2019) and Wang, Xu and Ding

(2020). Because every component is fixed at a constant level through-

out an experiment, the concept of factors used in conventional theory of

experimental designs cannot be applied directly when designing an order-

of-addition experiment. Therefore, efficient designs for such experiments

have received increasing attention from researchers and practitioners in re-

cent years. Van Nostrand (1995) first used a series of pseudo factors taking

values ±1 to denote whether or not a particular component is added be-

fore another component. Following this line of thought, Voelkel (2019)

proposed order-of-addition orthogonal arrays to design these kinds of ex-

periments, where the pseudo factors were formally called the pairwise order

factors. By definition, a pairwise order matrix of entries ±1 is called an
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order-of-addition orthogonal array of strength t if, for any t columns, the

frequencies of all ordered t-tuples are proportional to those of the pairwise

order matrix corresponding to the full design. Because the pairwise or-

der matrix determined by the full design is not column-orthogonal, that is,

its column vectors have some non-zero inner products, none of the order-

of-addition orthogonal arrays are column-orthogonal, with the result that

most conventional methods are not valid to characterize optimal designs for

order-of-addition experiments. Based on the theoretical results developed

by Peng, Mukerjee and Lin (2019), an order-of-addition design is ϕ-optimal

for estimating the overall mean and all main effects of the pairwise order

factors if the corresponding pairwise order matrix is an order-of-addition or-

thogonal array of strength two. Specifically, a ϕ-optimal design achieves the

theoretical maximum for every concave and signed permutation invariant

optimality criterion. Many alphabetic-optimality criteria with statistically

meaningful interpretations, such as the A-, D-, E- and MS-optimality crite-

ria, are included in this important class of optimality criteria. Schoen and

Mee (2023) further proved that this order-of-addition design is also D-,

G- and I-optimal for estimating the linear component-position model pro-

posed by Stokes and Xu (2022). Based on these optimality results, several

combinatorial and computational methods have been developed to gener-
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ate order-of-addition orthogonal arrays. Recent proposals include those by

Chen, Mukerjee and Lin (2020), Tsai (2022), Zhao, Dong and Zhao (2022)

and Zhao, Lin and Liu (2022).

In addition to active main effects of the pairwise order factors, as noted

in Voelkel and Gallagher (2019), Mee (2020) and Wang and Lin (2023)

active interaction effects may also play a vital role in addressing order-of-

addition problems. Under the sparsity-of-effects assumption, that is, only

few effects have a substantial impact on the responses, a two-stage analysis

strategy is frequently applied to explore both kinds of active effects. First,

significant main effects are screened out by fitting the main effects model

to the observed data. Next, the pairwise order matrix is projected onto

those significant pairwise order factors to get a tentative model for testing

whether or not their interaction effects are also significant. Based on all

identified active effects, a final model can then be built to determine an

optimal order. This simple strategy was used by Voelkel and Gallagher

(2019), Mee (2020) and Tsai (2023b) to analyze some real-world datasets.

Order-of-addition designs based on order-of-addition orthogonal arrays of

strength two have been known to be optimal for the first-stage analysis.

However, when designing an experiment, it is not known which subset of

pairwise order factors will be identified to study their interaction effects.
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Therefore, an order-of-addition orthogonal array would be preferable if it

is able to extract as much information as possible from the observed data

for the second-stage analysis. Because the full design contains the most

comprehensive information regarding the treatment-response relationship,

it can be used as a common reference. Specifically, when comparing two

fractional designs, one would be preferred over the other if it is more similar,

in some sense, to the full design. This simple concept will be formulated

more rigorously in the subsequent sections. Under the hierarchy-of-effects

assumption, that is, lower-order effects are more important than higher-

order effects and effects of the same order are equally important, several

selection criteria, such as the maximum generalized resolution by Deng

and Tang (1999), minimum G2-aberration by Tang and Deng (1999) and

minimum moment aberration by Xu (2003), have been proposed to evaluate

two-level orthogonal arrays. By definition, a design matrix of entries ±1 is

called a two-level orthogonal array of strength t if, for any t columns, the

frequencies of all ordered t-tuples are equal. Although the entries of order-

of-addition orthogonal arrays and two-level orthogonal arrays take values

±1, their combinatorial properties are quite different. A key difference is

that the design matrix of the full factorial design is not identical to the

pairwise order matrix of the full order-of-addition design, with the result
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that several existing results developed for two-level orthogonal arrays do not

seem to be well-justified for order-of-addition orthogonal arrays. Therefore,

a tailored series of numerical indices is required to identify an optimal order-

of-addition orthogonal array to design an experiment. This paper aims to

address this research question.

The remainder of this paper is organized as follows. Section 2 intro-

duces some fundamentals. A series of numerical indices called centralized

generalized wordlength pattern is proposed in Section 3. The relationship

between the centralized and non-centralized generalized wordlength pat-

terns is studied. In addition, some optimal order-of-addition orthogonal

arrays are identified from existing catalogues for future work. Concluding

remarks are given in the final section. All proofs are deferred to Appendix.

2. Notation and Definitions

Some key concepts and technical terminologies are introduced in this sec-

tion.

2.1 Inversions and Pairwise Order Factors

Given a positive integer m, let th denote a permutation of {1, 2, . . . ,m}

given by th = th,1th,2 · · · th,m. It can be used as a treatment to study m
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2.1 Inversions and Pairwise Order Factors

components in an order-of-addition experiment. To conduct the treatment

th, a researcher must add these m components sequentially according to

the order specified by th. The permutation in natural order is represented

by t1 = 12 · · ·m. Let T denote the set consisting of all m-element per-

mutations given by T = {th : h ∈ U}, where U = {1, 2, . . . , N} and

|T | = |U| = m! = N . Note that | · | is used to represent the cardinal-

ity of a set. From an experimental design perspective, T can be viewed as

the full design that contains the most comprehensive information regarding

the treatment-response relationship. Often, it is impractical to conduct all

N permutations in T when m > 5. Let D denote a subset of T given by

D = {th : h ∈ V}, where V ⊆ U and |D| = |V| = n ≤ N . To reduce

the cost, D can be used as a fractional design that has a more economical

run size. Naturally, D contains less information than T . Under resource

constraints, however, D would be considered cost-efficient if it contains the

same per-observation information as T for certain user-specified models.

An ordered pair (th,u, th,v), where th,u and th,v represent the uth and vth

elements of th, is called an inversion if u < v but th,u > th,v. The inversion

number of th, denoted by inv(th), is a non-negative integer ranging from 0

to q = m(m− 1)/2. It is a simple measure of sortedness that is often used

to develop sorting algorithms. Bóna (2022) provided a comprehensive in-
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2.1 Inversions and Pairwise Order Factors

troduction to inversions and related permutation statistics. Let zh,ij denote

the pairwise order factor given by

zh,ij =


+1 if (j, i) is not an inversion of th;

−1 if (j, i) is an inversion of th,

where i and j are positive integers and 1 ≤ i < j ≤ m. Given an m-element

permutation th, a q×1 pairwise order vector zh,Q can be obtained by collect-

ing all pairwise order factors indexed byQ = {ij : i and j are positive integers and 1 ≤

i < j ≤ m}, where |Q| = q. Because t1 has no inversion, one has z1,Q = 1q,

where 1q denotes the q × 1 vector of ones. Let ZU ,Q represent the N × q

pairwise order matrix corresponding to T . To be specific, ZU ,Q consists

of all pairwise order vectors z1,Q, z2,Q, . . . , zN,Q as row vectors. The n × q

pairwise order matrix ZV,Q determined by D can be obtained by deleting

the N − n pairwise order vectors indexed by U \ V from ZU ,Q. Formally, a

pairwise order matrix ZV,Q is called an order-of-addition orthogonal array

of strength t, denoted by OofA-OA(n,m, t), if, for any n × t submatrix of

ZV,Q, the frequencies of all ordered t-tuples are proportional to those of

the corresponding N × t submatrix of ZU ,Q. Note that order-of-addition

orthogonal arrays are defined based on pairwise order matrices instead of

design matrices. Obviously, ZU ,Q is an OofA-OA(N,m, q) and it is unique

up to isomorphism. Following Schoen and Mee (2023), two pairwise order
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2.1 Inversions and Pairwise Order Factors

matrices are said to be isomorphic if one can be obtained from the other by

interchanging row vectors and/or relabeling components. Note also that a

pairwise order matrix is isomorphic to its mirror image.

Given the pairwise order matrix ZU ,Q, its distance distribution is de-

noted by [B0(U), B1(U), . . . , Bq(U)], where

Bk(U) =
1

N
|{(zg,Q, zh,Q) : dH(zg,Q, zh,Q) = k and g, h ∈ U}|,

and dH(zg,Q, zh,Q) represents the Hamming distance between zg,Q and zh,Q,

that is, the number of pairwise order factors that differ. Specifically, the

Hamming distance between z1,Q and zh,Q is equal to the inversion number

inv(th). Note also that inv(th) is equal to the number of negative ones in

zh,Q. Let b(m, k) denote the number of all m-element permutations with k

inversions given by

b(m, k) = |{th : inv(th) = k and h ∈ U}|.

Given a positive integer m, the numbers [b(m, 0), b(m, 1), . . . , b(m, q)] can

be obtained using the following generating function:

Fm(x) =
m∏
i=1

i−1∑
j=0

xj

= (1 + x+ x2 + · · ·+ xm−1)Fm−1(x).

The generating function Fm(x) can be obtained by mathematical induc-

tion. A rigorous proof can be found in Theorem 2.3 of Bóna (2022). The
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2.2 J-characteristics

number b(m, k) is the coefficient of xk in Fm(x). Based on the recursive rela-

tion between Fm(x) and Fm−1(x), the numbers [b(m, 0), b(m, 1), . . . , b(m, q)]

can be generated systematically for various values of m. The integer se-

quence labeled A008302 on the Online Encyclopedia of Integer Sequences

(https://oeis.org) consists of these numbers for m up to 50.

Proposition 1. Given a positive integer m, one has Bk(U) = b(m, k) for

k = 0, 1 . . . , q.

Although the values ofBk(U) and b(m, k) are equal, their computational

costs are different. The complexities of computing [B0(U), B1(U), . . . , Bq(U)]

and [b(m, 0), b(m, 1), . . . , b(m, q)] are O(N2q2) and O(N). Proposition 1 of-

fers a computationally less expensive alternative to get the distance dis-

tribution of ZU ,Q. Given a pairwise order matrix ZV,Q, its distance distri-

bution [B0(V), B1(V), . . . , Bq(V)] can be defined by replacing U and N in

Bk(U) with V and n, respectively. The complexity of getting the distance

distribution of ZV,Q is O(n2q2).

2.2 J-characteristics

Let W represent the power set of Q. That is, all subsets of Q, denoted by

W1,W2, . . . ,W2q , are collected in W . In particular, let W1 = ∅, where ∅

represents the empty set. Following Tang (2001), the J-characteristic of
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2.2 J-characteristics

ZU ,Q corresponding to Wd is defined as

JWd
(U) =

∑
h∈U

∏
ij∈Wd

zh,ij.

Specifically, let JW1(U) = J∅(U) = N . The 2q × 1 vector consisting of all

J-characteristics of ZU ,Q is denoted by JU = E⊤
U ,W1N , where EU ,W is the

N × 2q matrix given by

EU ,W = [ eU ,1 eU ,2 · · · eU ,2q
].

The dth column vector of EU ,W has the form

eU ,d = ⊙ij∈Wd
zU ,ij,

where ⊙ represents the entry-wise product, and zU ,ij denotes the N × 1

vector consisting of all pairwise order factors of components i and j indexed

by U . Define eU ,1 = 1N , which corresponds to the overall mean. In addition,

eU ,d corresponds to a main effect when |Wd| = 1 and it corresponds to a

|Wd|-way interaction effect when |Wd| ≥ 2. Similarly, the J-characteristic

of ZV,Q corresponding to Wd is defined as

JWd
(V) =

∑
h∈V

∏
ij∈Wd

zh,ij.

The 2q × 1 vector consisting of all J-characteristics of ZV,Q is denoted by

JV = E⊤
V,W1n, where EV,W is the n × 2q matrix obtained by deleting the

row vectors indexed by U \ V from EU ,W .
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2.2 J-characteristics

Example 1. Suppose that three components are to be studied in an order-

of-addition experiment. All permutations of {1, 2, 3} are listed in Table

1.

Table 1: Pairwise order vectors of three-element permutations and their

entry-wise products.

h th zh,12 zh,13 zh,23 eh,1 eh,2 eh,3 eh,4 eh,5 eh,6 eh,7 eh,8

1 123 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

2 132 +1 +1 −1 +1 +1 +1 −1 +1 −1 −1 −1

3 213 −1 +1 +1 +1 −1 +1 +1 −1 −1 +1 −1

4 231 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1

5 312 +1 −1 −1 +1 +1 −1 −1 −1 −1 +1 +1

6 321 −1 −1 −1 +1 −1 −1 −1 +1 +1 +1 −1

JWd
(V) 4 0 2 2 2 −2 0 0

JWd
(U) 6 0 0 0 2 −2 2 0

The set T = {th : h ∈ U} consists of all three-element permutations,

where U = {1, 2, . . . , 6}. The pairwise order factors zh,12, zh,13 and zh,23 in

Table 1 indicate whether or not the three inversions (2, 1), (3, 1) and (3, 2)

appear in th, respectively. Their index set is given by Q = {12, 13, 23} and
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2.2 J-characteristics

the power set of Q is denoted by W = {W1,W2, . . . ,W8}, where W1 = ∅,

W2 = {12}, W3 = {13}, W4 = {23}, W5 = {12, 13}, W6 = {12, 23},

W7 = {13, 23} and W8 = {12, 13, 23}. Suppose that only four permutations

can be conducted due to resource constraints. The first four permutations in

Table 1 are chosen to generate a subset of T , denoted by D = {th : h ∈ V},

where V = {1, 2, 3, 4}. All J-characteristics of ZV,Q and ZU ,Q are also listed

in Table 1.

Because the column vectors of EU ,W are linearly dependent, some J-

characteristics in JU = E⊤
U ,W1N can be expressed as linear functions of the

others. These functions may look different when different basis vectors are

used to represent the remaining column vectors. Mee (2020) observed that

zh,ijzh,ik − zh,ijzh,jk + zh,ikzh,jk = 1 and zh,ij − zh,ik + zh,jk = zh,ijzh,ikzh,jk

for h ∈ U and {i, j, k} ⊆ {1, 2, . . . ,m}. Based on the two linear equations,

one has eh,5 − eh,6 + eh,7 = eh,1 and eh,2 − eh,3 + eh,4 = eh,8 for every treat-

ment in Table 1 such that the J-characteristics of ZU ,Q have the following

relationships:

JW5(U)− JW6(U) + JW7(U) = JW1(U), (2.1)

and

JW2(U)− JW3(U) + JW4(U) = JW8(U). (2.2)
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Obviously, the two linear equations in (2.1) and (2.2) still hold when U is

replaced with V . Mee (2020) also noted that the column vectors of EU ,W

can be classified into m − 1 groups, where the column vector eU ,1 = 1N

is excluded, and the number of independent column vectors in each group

corresponds to a rencontres number. The integer sequence labeled A008290

on the Online Encyclopedia of Integer Sequences (https://oeis.org) consists

of these rencontres numbers. However, when four or more components are

considered, it is not clear how to express a column vector of EU ,W as a linear

combination of the basis vectors. Therefore, there is currently no systematic

method to express the functional relationships of all J-characteristics for

m > 3.

3. Main Results

All theoretical and computational results are presented in this section.

3.1 Characterization

Tang (2001) used J-characteristics to characterize design matrices for two-

level factorial experiments. Not surprisingly, J-characteristics can also be

used to characterize pairwise order matrices for order-of-addition experi-

ments.
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3.1 Characterization

Corollary 1. A pairwise order matrix ZV,Q is uniquely determined by its

J-characteristics in JV .

Basically, Corollary 1 follows from Theorem 1 of Tang (2001). However,

when J-characteristics are used to characterize pairwise order matrices,

The formulation in Tang (2001) needs to be slightly modified to take the

transitive property of pairwise order factors into account. The following

example is given to illustrate how this can be done.

Example 2. As shown in Example 1, all pairwise order factors indexed by

Q can be used to convert an m-element permutation th to a (+1,−1)-vector

of length q, denoted by zh,Q. However, some (+1,−1)-vectors of length q

cannot be converted to m-element permutations. For example, when three-

element permutations are considered, there are two such invalid pairwise

order vectors given by

z7,Q = [ z7,12 z7,13 z7,23 ]⊤

= [ −1 +1 −1 ]⊤,

and

z8,Q = [ z8,12 z8,13 z8,23 ]⊤

= [ +1 −1 +1 ]⊤.
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3.1 Characterization

The two pairwise order factors z8,12 = +1 and z8,23 = +1 indicate that

component 1 needs to be added before component 2 and component 2 needs

to be added before component 3 such that component 1 must be added

before component 3 and the corresponding pairwise order factor must equal

+1. The (+1,−1)-vector z8,Q is invalid due to the fact that z8,13 = −1. By

similar arguments, z7,Q is also invalid. Although z7,Q and z8,Q violate the

transitive property of pairwise order factors, their entry-wise products can

still be calculated. All their entry-wise products are presented in Table 2,

where the index set of the two invalid pairwise order vectors z7,Q and z8,Q is

denoted by I = {7, 8}, and the power set W = {W1,W2, . . . ,W8} is given

in Example 1.

Table 2: Invalid pairwise order vectors of three-element permutations and

their entry-wise products.

h th zh,12 zh,13 zh,23 eh,1 eh,2 eh,3 eh,4 eh,5 eh,6 eh,7 eh,8

7 N.A. −1 +1 −1 +1 −1 +1 −1 −1 +1 −1 +1

8 N.A. +1 −1 +1 +1 +1 −1 +1 −1 +1 −1 −1

Let nh denote the number of observations of th. By Corollary 1, the

numbers of observations n1, n2, . . . , n8 and the J-characteristics JW1(V), JW2(V), . . . , JW8(V)
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have the following relationship:

n1

n2

n3

n4

n5

n6

n7

n8



=



n1

n2

n3

n4

n5

n6

0

0



=
1

8



+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 −1 +1 −1 −1 −1

+1 −1 +1 +1 −1 −1 +1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 −1 +1 +1 +1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 −1 +1 −1 +1 −1 −1





JW1(V)

JW2(V)

JW3(V)

JW4(V)

JW5(V)

JW6(V)

JW7(V)

JW8(V)



.(3.3)

The first six row vectors of the right-hand-side matrix in (3.3) are deter-

mined by the entry-wise products in Table 1 and the last two row vec-

tors are determined by the entry-wise products in Table 2. The right-

hand-side matrix in (3.3) is a Hadamard matrix of order eight and it is

invertible. Based on the matrix identity in (3.3), the numbers of ob-

servations n1, n2, . . . , n8 are uniquely determined by the J-characteristics

JW1(V), JW2(V), . . . , JW8(V). The transitive property of pairwise order fac-

tors imposes two sum-to-zero constraints on the J-characteristics in (3.3).

It is not difficult to see that the two sum-to-zero constraints are determined

by the two linear equations in (2.1) and (2.2). Therefore, n7 and n8 in (3.3)

must equal zero due to the fact that z7,Q and z8,Q are invalid pairwise order
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3.1 Characterization

vectors. More general arguments are detailed in Appendix.

Based on Corollary 1, pairwise order matrices determined by different

subsets of T have different J-characteristics. Although J-characteristics are

integer-valued indices ranging from −n to +n, their values are restricted to

certain integers when characterizing order-of-addition orthogonal arrays of

strength two.

Proposition 2. Given an OofA-OA(n,m, 2) for m ≥ 4, denoted by ZV,Q,

one has (a) the value of JWd
(V) must be a multiple of four and (b) the value

of JWd
(V) must be a multiple of eight if n is a multiple of 24.

By conclusion (b) of Proposition 2, the value of JWd
(U) must be a multi-

ple of eight because ZU ,Q is an OofA-OA(N,m, q) and N = m! is a multiple

of 24 for m ≥ 4. Often, J-characteristics are normalized when comparing

pairwise order matrices of different run sizes. A common reference for such

comparisons is ZU ,Q.

Theorem 1. A pairwise order matrix ZV,Q is an OofA-OA(n,m, t) if and

only if JWd
(V)/n = JWd

(U)/N for every Wd with |Wd| ≤ t.

For two arbitrary effects indexed by Wa and Wb, where |(Wa ∪ Wb) \

(Wa ∩Wb)| = |Wd| ≤ t, if ZV,Q is an OofA-OA(n,m, t), then, after run-size

adjustment, the extent of orthogonality when using ZV,Q would be identical

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0191



3.1 Characterization

to the extent of orthogonality when using ZU ,Q. Therefore, order-of-addition

designs based on order-of-addition orthogonal arrays provide the same per-

observation information as the full design for the two effects indexed by Wa

and Wb.

Example 3. Two 12-run order-of-addition designs for four components are

listed in Table 2 of Voelkel (2019). The pairwise order factors zh,12, zh,13,

zh,14, zh,23, zh,24 and zh,34 are used to convert the two order-of-addition

designs to two pairwise order matrices, denoted by ZV1,Q and ZV2,Q, where

the index set Q = {12, 13, 14, 23, 24, 34}. By comparing the normalized

J-characteristics of ZV1,Q and ZV2,Q with the normalized J-characteristics

of ZU ,Q, one has

1

12
JWd

(V1) =
1

12
JWd

(V2) =
1

24
JWd

(U) = 0 for every Wd has the form {ij},

and

1

12
JWd

(V1) =
1

12
JWd

(V2) =
1

24
JWd

(U) =


+1/3 for every Wd has the form {ij, il} or {ij, kj};

−1/3 for every Wd has the form {ij, jl};

0 for every Wd has the form {ij, kl},

where i, j, k, l ∈ {1, 2, 3, 4}. By Theorem 1, ZV1,Q and ZV2,Q are OofA-

OA(12, 4, 2)’s.

Given a permutation th = th,1th,2 · · · th,m, its reverse is denoted by

rev(th) = th,mth,m−1 · · · th,1. An order-of-addition design D is called a
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foldover design if its index set V can be partitioned into two mutually

exclusive subsets H and G of the same size such that, for every permuta-

tion th indexed by H, its reverse tg = rev(th) is indexed by G. Because

zg,Q = −zh,Q for every tg = rev(th), the pairwise order matrix of a foldover

design can be expressed as

ZV,Q =

 +1

−1

⊗ ZH,Q, (3.4)

where ⊗ represents the Kronecker product, and ZG,Q = −ZH,Q.

Theorem 2. A pairwise order matrix ZV,Q corresponds to a foldover design

D if and only if JWd
(V) = 0 for every Wd with odd |Wd|.

Based on Theorem 2, one has JWd
(U) = 0 for every Wd with odd |Wd|

due to the fact that T is a foldover design.

3.2 Comparison

Although pairwise order matrices are uniquely determined by their J-characteristics,

it is impractical to use all J-characteristics to compare pairwise order ma-

trices. Below, a series of summary statistics of J-characteristics is proposed

to simplify the comparison procedure.

Definition 1. Given a pairwise order matrix ZV,Q, the vector [C1(V), C2(V), . . . , Cq(V)]
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is called the centralized generalized wordlength pattern, where

Ca(V) =
∑

|Wd|=a

[
1

n
JWd

(V)− 1

N
JWd

(U)
]2

(3.5)

for a = 1, 2, . . . , q.

By Corollary 3 of Tang (2001), the projection properties of ZV,Q and

ZU ,Q onto t pairwise order factors are completely determined by JWd
(V)

and JWd
(U) with |Wd| ≤ t. It can also be seen from Definition 1 that small

values of the first t entries of the centralized generalized wordlength pat-

tern reflect the fact that the differences between the corresponding normal-

ized J-characteristics are also small. Therefore, the centralized generalized

wordlength pattern can be viewed as a series of similarity measures between

ZV,Q and ZU ,Q when projecting onto various numbers of pairwise order fac-

tors. Theorem 1 is now rephrased in terms of the centralized generalized

wordlength pattern.

Corollary 2. A pairwise order matrix ZV,Q is an OofA-OA(n,m, t) if and

only if Ca(V) = 0 for a ≤ t.

Suppose that two OofA-OA(n,m, t)’s, denoted by ZV1,Q and ZV2,Q, are

being evaluated. By Corollary 2, one has Ca(V1) = Ca(V2) = 0 for a ≤ t.

If Ct+1(V1) < Ct+1(V2), then ZV1,Q would be considered superior to ZV2,Q

because ZV1,Q is more similar to an OofA-OA(n,m, t+ 1) when projecting
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onto t+1 pairwise order factors. However, if Ct+1(V1) = Ct+1(V2), then the

one with a smaller value of Ct+2(Vi) would be preferable. Otherwise, the

comparison procedure continues until they can be distinguished by sequen-

tially comparing the values of Ct+3(Vi), Ct+4(Vi), . . . , Cq(Vi). By definition,

if ZV1,Q and ZV2,Q are isomorphic, there exists a matrix pair (R,C1) such

that

ZV1,Q = RZV2,QC1,

where R and C1 are signed permutation matrices. Because the column

vectors of EV1,W and EV2,W are obtained by entry-wise products of the

column vectors of ZV1,Q and ZV2,Q, one has

EV1,W = REV2,WC2,

where C2 is another signed permutation matrix. Note also that two column

vectors of EV2,W , denoted by eV2,a and eV2,b, is allowed by C2 to be switched

when |Wa| = |Wb|. Because the non-zero entries of R are all equal to +1

or all equal to −1 and R⊤1n = ±1n, one has

JV1 = E⊤
V1,W1n

= C⊤
2 E

⊤
V2,WR⊤1n

= ±C⊤
2 E

⊤
V2,W1n

= ±C⊤
2 JV2 .

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0191
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Therefore, JV1 can be obtained by sign-changing and/or interchanging the

entries of JV2 . Because such operations are also applied to the full design,

the centralized generalized wordlength patterns of ZV1,Q and ZV2,Q are iden-

tical. Given two non-isomorphic pairwise order matrices, their centralized

generalized wordlength patterns may sometimes be identical. A secondary

criterion, such as the average estimation efficiency over some plausible mod-

els, can be used to discriminate between two such pairwise order matrices.

Example 4. Based on Theorem 1, the two pairwise order matrices ZV1,Q

and ZV2,Q in Example 3 are found to be OofA-OA(12, 4, 2)’s. Their cen-

tralized generalized wordlength patterns are given in Table 3 for further

evaluation.

Table 3: Centralized generalized wordlength patterns of two non-isomorphic

OofA-OA(12, 4, 2)’s.

C1(Vi) C2(Vi) C3(Vi) C4(Vi) C5(Vi) C6(Vi)

ZV1,Q 0.000 0.000 1.333 0.000 1.333 0.000

ZV2,Q 0.000 0.000 2.222 0.000 0.444 0.000

By Corollary 2, because ZV1,Q and ZV2,Q are OofA-OA(12, 4, 2)’s, one

has C1(V1) = C1(V2) = 0 and C2(V1) = C2(V2) = 0 in Table 3. It can
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also be seen from Table 3 that C3(V1) < C3(V2). Based on the central-

ized generalized wordlength pattern, ZV1,Q is considered superior to ZV2,Q.

Based on different selection criteria, ZV1,Q was also recommended by other

researchers. By evaluating the χ2 measure proposed by Yamada and Lin

(1999) and the third power moment proposed by Xu (2003), ZV1,Q was

recommended by Voelkel (2019) because of its superior projection proper-

ties. In addition, Tsai (2023a) also noted that ZV1,Q is eligible to test all

pairwise order dispersion effects. Based on the comparison results, ZV1,Q is

recommended for real-world studies.

Example 5. Zhao, Dong and Zhao (2022) listed ten non-isomorphic OofA-

OA(48, 5, 3)’s in Table A2 of their paper. Their centralized generalized

wordlength patterns are given in Table 4 for further discrimination.

Based on Corollary 2, because ZV1,Q, ZV2,Q, . . . , ZV10,Q are OofA-OA(48, 5, 3)’s,

the first three entries of all centralized generalized wordlength patterns in

Table 4 are equal to zero. By further comparing C4(V1), C4(V2), . . . , C4(V10),

ZV9,Q is recommended for real-world studies. Most interestingly, it can

also be seen that C1(Vi) = C3(Vi) = C5(Vi) = C7(Vi) = C9(Vi) = 0 for

i = 1, 2, . . . , 10. By Theorem 2, the ten OofA-OA(48, 5, 3)’s in Table 4

correspond to ten foldover designs.

Corollary 3. The pairwise order matrix ZV,Q of a foldover design D in (3.4)
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Table 4: Centralized generalized wordlength patterns of ten non-isomorphic

OofA-OA(48, 5, 3)’s.

C1(Vi) C2(Vi) C3(Vi) C4(Vi) C5(Vi) C6(Vi) C7(Vi) C8(Vi) C9(Vi) C10(Vi)

ZV1,Q 0.000 0.000 0.000 3.244 0.000 6.400 0.000 3.156 0.000 0.000

ZV2,Q 0.000 0.000 0.000 3.244 0.000 6.844 0.000 2.711 0.000 0.000

ZV3,Q 0.000 0.000 0.000 3.689 0.000 6.844 0.000 2.267 0.000 0.000

ZV4,Q 0.000 0.000 0.000 3.689 0.000 6.844 0.000 2.267 0.000 0.000

ZV5,Q 0.000 0.000 0.000 3.911 0.000 6.844 0.000 2.044 0.000 0.000

ZV6,Q 0.000 0.000 0.000 3.467 0.000 7.289 0.000 2.044 0.000 0.000

ZV7,Q 0.000 0.000 0.000 3.467 0.000 7.289 0.000 2.044 0.000 0.000

ZV8,Q 0.000 0.000 0.000 3.467 0.000 6.844 0.000 2.489 0.000 0.000

ZV9,Q 0.000 0.000 0.000 3.022 0.000 7.733 0.000 2.044 0.000 0.000

ZV10,Q 0.000 0.000 0.000 3.689 0.000 7.289 0.000 1.822 0.000 0.000

is an OofA-OA(2n,m, t + 1) if its submatrix ZH,Q is an OofA-OA(n,m, t)

and t is even.

Based on Proposition 2.3 of Seiden and Zamach (1966), the foldover

technique has been commonly used to generate two-level orthogonal arrays

of strength three. By Corollary 3, it can also be applied to generate a
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new order-of-addition orthogonal array of strength three by folding over an

existing order-of-addition orthogonal array of strength two.

3.3 Connection

Given a pairwise order matrix ZV,Q, its generalized wordlength pattern is

given by [A1(V), A2(V), . . . , Aq(V)], where

Aa(V) =
∑

|Wd|=a

[
1

n
JWd

(V)
]2

(3.6)

for a = 1, 2, . . . , q. The minimum G2-aberration criterion proposed by

Tang and Deng (1999) is that it sequentially minimizes the entries of

[A1(V), A2(V), . . . , Aq(V)]. Given a two-level orthogonal array, its cen-

tralized generalized wordlength pattern in (3.5) is equal to its generalized

wordlength pattern in (3.6) because all J-characteristics of the two-level or-

thogonal array of full strength are equal to zero, except the one correspond-

ing to the empty set ∅. From this perspective, the centralized generalized

wordlength pattern can be viewed as a natural extension of the generalized

wordlength pattern because some J-characteristics of ZU ,Q are not equal to

zero. In particular, the generalized wordlength pattern of ZU ,Q is given by

[A1(U), A2(U), . . . , Aq(U)], where

Aa(U) =
∑

|Wd|=a

[
1

N
JWd

(U)
]2
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for a = 1, 2, . . . , q. Based on Theorem 2, because T is a foldover design,

one has JWd
(U) = 0 for every Wd with odd |Wd| such that Aa(U) = 0 for

every odd a.

Theorem 3. Given a pairwise order matrix ZV,Q, one has (a) Ca(V) =

Aa(V) for every odd a and Ca(V) = Aa(V) − Aa(U) for every even a, and

(b) the sum of the entries of [C1(V), C2(V), . . . , Cq(V)] is equal to

q∑
a=1

Ca(V) = 2q

(
1

n2

N∑
h=1

n2
h −

1

N

)
,

where nh denotes the number of observations of th.

By conclusion (a) of Theorem 3, the centralized generalized wordlength

pattern of ZV,Q is equal to the difference between the generalized wordlength

patterns of ZV,Q and ZU ,Q. Because Aa(U) is a fixed constant for every a,

ranking results according to the centralized generalized wordlength patterns

are consistent with those according to the generalized wordlength patterns.

Cheng, Deng and Tang (2002) noted that the generalized wordlength pat-

tern is a good surrogate of some model-dependent optimality criteria to

select highly efficient designs for estimating all main effects and some two-

factor interaction effects. Based on Theorem 3, their conclusion can also

be used to support the centralized generalized wordlength pattern, that

is, it tends to yield highly efficient designs for the second-stage analysis.
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Because Ca(V) is non-negative, one has Aa(V) ≥ 0 for every odd a and

Aa(V) ≥ Aa(U) for every even a. In other words, Aa(U) is a sharp lower

bound of Aa(V) for every a. Theorem 1 is now rephrased in terms of the

generalized wordlength pattern.

Corollary 4. A pairwise order matrix ZV,Q is an OofA-OA(n,m, t) if and

only if Aa(V) = 0 for every odd a ≤ t and Aa(V) = Aa(U) for every even

a ≤ t.

Example 6. The generalized wordlength patterns of the two OofA-OA(12, 4, 2)’s

in Example 3, denoted by ZV1,Q and ZV2,Q, are given in Table 5. In addition,

the generalized wordlength pattern of ZU ,Q is also provided as a reference.

Table 5: Generalized wordlength patterns of two non-isomorphic OofA-

OA(12, 4, 2)’s.

A1(Vi) A2(Vi) A3(Vi) A4(Vi) A5(Vi) A6(Vi)

ZV1,Q 0.000 1.333 1.333 0.333 1.333 0.000

ZV2,Q 0.000 1.333 2.222 0.333 0.444 0.000

A1(U) A2(U) A3(U) A4(U) A5(U) A6(U)

ZU ,Q 0.000 1.333 0.000 0.333 0.000 0.000

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0191



3.3 Connection

Because ZV1,Q and ZV2,Q are OofA-OA(12, 4, 2)’s, as shown in Table 5,

one has A1(V1) = A1(V2) = A1(U) and A2(V1) = A2(V2) = A2(U). Based

on the minimum G2-aberration criterion, ZV1,Q is also considered superior

to ZV2,Q due to the fact that A3(V1) < A3(V2). This ranking result is

consistent with the ranking result in Example 4. It can also be seen from

Tables 3 and 5 that Ca(V1) = Aa(V1) and Ca(V2) = Aa(V2) for a = 1, 3, 5

and Ca(V1) = Aa(V1)−Aa(U) and Ca(V2) = Aa(V2)−Aa(U) for a = 2, 4, 6.

Because the complexities of computing all J-characteristics in JV and

JU are O(n2q) and O(N2q), it is computationally expensive to get the cen-

tralized generalized wordlength pattern using Ca(V) in (3.5). Ma and Fang

(2001) and Xu and Wu (2001) showed that

Aa(V) =
1

n

q∑
k=0

Bk(V)Pa(k, q, 2),

where Pa(k, q, 2) =
∑a

j=1(−1)j
(
k
j

)(
q−k
a−j

)
denotes the ath Krawtchouk poly-

nomial. Based on this important result, the generalized wordlength pat-

tern [A1(V), A2(V), . . . , Aq(V)] can be computed more quickly because the

computational cost of the distance distribution [B0(V), B1(V), . . . , Bq(V)]

is lower. By Proposition 1, one has

Aa(U) =
1

N

q∑
k=0

Bk(U)Pa(k, q, 2)

=
1

N

q∑
k=0

b(m, k)Pa(k, q, 2).
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The numbers [b(m, 0), b(m, 1), . . . , b(m, q)] can be obtained systematically

using the generating function Fm(x) to speed up the computation of [A1(U), A2(U), . . . , Aq(U)].

Some values of Aa(U) for 4 ≤ m ≤ 15 are collected in the supplementary

materials. Based on Theorem 3, one has

Ca(V) =
q∑

k=0

[
1

n
Bk(V)

]
Pa(k, q, 2) (3.7)

for every odd a and

Ca(V) =
q∑

k=0

[
1

n
Bk(V)−

1

N
b(m, k)

]
Pa(k, q, 2) (3.8)

for every even a. The centralized generalized wordlength pattern can be

computed more quickly using (3.7) and (3.8) because the complexities of

computing [B0(V), B1(V), . . . , Bq(V)] and [b(m, 0), b(m, 1), . . . , b(m, q)] are

O(n2q2) and O(N).

Example 7. Following Wang and Mee (2022), an OofA-OA(48, 9, 2), de-

noted by ZV,Q, is generated by adding the pairwise order factors involving

the 9th component zh,19, zh,29, . . . , zh,89 to every row vector of the OofA-

OA(48, 8, 2) provided by Tsai (2022). Based on the D-optimality criterion,

a greedy local search procedure is implemented to determine the levels of

all additional pairwise order factors. Equivalently, this step can be done by

randomly inserting component 9 into every row vector of the design matrix

corresponding to the OofA-OA(48, 8, 2). Because 362, 880× 236 entry-wise
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products must be calculated to get all J-characteristics of ZU ,Q, it is time-

consuming to compute the centralized generalized wordlength pattern of

ZV,Q using (3.5). Therefore, it is computed using (3.7) and (3.8), where the

first six entries are listed in Table 6. In addition, the first six entries of the

generalized wordlength patterns of ZV,Q and ZU ,Q are also provided.

Table 6: Centralized and non-centralized generalized wordlength patterns

of an OofA-OA(48, 9, 2).

C1(V) C2(V) C3(V) C4(V) C5(V) C6(V)

0.000 0.000 127.778 962.133 7606.222 38555.509

A1(V) A2(V) A3(V) A4(V) A5(V) A6(V)

0.000 28.000 127.778 1290.667 7606.222 40686.222

A1(U) A2(U) A3(U) A4(U) A5(U) A6(U)

0.000 28.000 0.000 328.533 0.000 2130.713

Because ZV,Q is an OofA-OA(48, 9, 2), one has C1(V) = C2(V) = 0 .

It can also be seen from Table 6 that Ca(V) = Aa(V) for a = 1, 3, 5 and

Ca(V) = Aa(V) − Aa(U) for a = 2, 4, 6. As far as I know, this is the first

time in the literature that an OofA-OA(48, 9, 2) is obtained. Its design

matrix is given in the supplementary materials for future work.
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Actually, the centralized and non-centralized generalized wordlength

patterns can be used to characterize and compare general pairwise order

matrices, even when they are not order-of-addition orthogonal arrays. The

following example is given to illustrate how this can be done.

Example 8. Wang and Mee (2022) provided a 12-treatment bias-free

design for four components in Table A.2 of their paper. The correspond-

ing pairwise order matrix is denoted by ZV3,Q. Because the parameters of

ZV1,Q and ZV2,Q in Example 3 and ZV3,Q are identical, their centralized and

non-centralized generalized wordlength patterns are given in Table 7 for

comparison purposes.

By comparing the first two entries of the centralized and non-centralized

generalized wordlength patterns in Table 7, one has C2(V1) = C2(V2) =

0.000 < 0.333 = C2(V3) and A2(V1) = A2(V2) = 1.333 < 1.667 = A2(V3).

Based on Corollaries 2 and 4, ZV3,Q is not an OofA-OA(12, 4, 2). However,

because C1(V3) = A1(V3) = 0 and C3(V3) = A3(V3) = 0, one has JWd
(V3) =

0 for |Wd| = 1 or |Wd| = 3. Therefore, when the main effects model of the

pairwise order factors is used to fit the observed data, the corresponding

bias matrix, denoted by

(Z⊤
V3,QZV3,Q)

−1Z⊤
V3,QEV3,S2 ,

is a zero matrix, where EV3,S2 denotes the 12× 15 submatrix of EV3,W con-
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Table 7: Centralized and non-centralized generalized wordlength patterns

of ZV1,Q, ZV2,Q and ZV3,Q.

C1(Vi) C2(Vi) C3(Vi) C4(Vi) C5(Vi) C6(Vi)

ZV1,Q 0.000 0.000 1.333 0.000 1.333 0.000

ZV2,Q 0.000 0.000 2.222 0.000 0.444 0.000

ZV3,Q 0.000 0.333 0.000 1.333 0.000 1.000

A1(Vi) A2(Vi) A3(Vi) A4(Vi) A5(Vi) A6(Vi)

ZV1,Q 0.000 1.333 1.333 0.333 1.333 0.000

ZV2,Q 0.000 1.333 2.222 0.333 0.444 0.000

ZV3,Q 0.000 1.667 0.000 1.667 0.000 1.000

sisting of all column vectors indexed by S2 = {Wd : |Wd| = 2}. Although

ZV3,Q is less efficient in estimating the main effects of the pairwise order

factors, as noted in Wang and Mee (2022), it is robust to non-negligible

two-factor interaction effects.

Because the two numbers +1 and −1 occur equally often in every col-

umn vector of ZU ,Q, one has A1(U) = 0. Actually, the values of A2(U) and

Aq(U) also have closed-form expressions.
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Proposition 3. Given the pairwise order matrix ZU ,Q for m ≥ 3, one has

(a) A2(U) = m(m− 1)(m− 2)/18 and (b) Aq(U) = 0.

By Theorem 4 of Zhao, Lin and Liu (2022), an order-of-addition design

is D-optimal for estimating the main effects model of the pairwise order fac-

tors if and only if its pairwise order matrix is an order-of-addition orthogonal

array of strength two. Based on Corollary 2, Corollary 4 and Proposition

3, their conclusion can be rephrased as follows: an order-of-addition design

D = {th : h ∈ V} is D-optimal if and only if C1(V) = 0 and C2(V) = 0,

or equivalently, A1(V) = 0 and A2(V) = m(m − 1)(m − 2)/18. There-

fore, conclusion (a) of Proposition 3 can be used to get an order-of-addition

orthogonal array of strength two by searching for a pairwise order matrix

having A1(V) = 0 and A2(V) = m(m−1)(m−2)/18. This determinant-free

approach is computationally less expensive. By Corollary 4, Aq(U) is equal

to zero if q is odd. By conclusion (b) of Proposition 3, it is still equal to

zero if q is even.

3.4 Application

All non-isomorphic OofA-OA(12, 4, 2)’s and OofA-OA(12, 5, 2)’s were ob-

tained by Voelkel (2019) and Zhao, Lin and Liu (2022), respectively.

Schoen and Mee (2023) enumerated all non-isomorphic OofA-OA(24,m, 2)
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for 4 ≤ m ≤ 7. The centralized generalized wordlength pattern is used

to rank-order these candidate designs. The identity numbers of optimal

order-of-addition orthogonal arrays are listed in Table 8. Below, some in-

teresting observations from these ranking results are summarized. First,

the optimal OofA-OA(24, 4, 6) in Table 8 is actually ZU ,Q. Second, the cen-

tralized generalized wordlength patterns of the two non-isomorphic OofA-

OA(12, 5, 2) provided by Zhao, Lin and Liu (2022) are identical. Only

the first one is shown in Table 8. Third, because an OofA-OA(n,m, 3)

must be an OofA-OA(n,m, 2), the OofA-OA(24, 5, 3) in Table 8 is unique

up to isomorphism. Not surprisingly, it has the form in (3.4), that is, it

corresponds to a foldover design. Fourth, Schoen and Mee (2023) rec-

ommended 12 Pareto-optimal OofA-OA(24, 7, 2)’s. My proposal in Table

8 is different from theirs. Fifth, by Theorem 3, ranking results accord-

ing to the centralized generalized wordlength patterns are consistent with

those according to the generalized wordlength patterns. In other words,

all optimal order-of-addition orthogonal arrays in Table 8 have minimum

G2-aberration. Therefore, when these order-of-addition orthogonal arrays

are used to design order-of-addition experiments, the main effects can be

estimated with optimal efficiency in the first-stage analysis. Based on the

theoretical results developed by Cheng, Deng and Tang (2002), all main ef-
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fects and some two-factor interaction effects can also be estimated efficiently

in the second-stage analysis.

Table 8: Optimal order-of-addition orthogonal arrays.

m n t C1(V) C2(V) C3(V) C4(V) C5(V) C6(V) ID Source

4 12 2 0.000 0.000 1.333 0.000 1.333 0.000 1 Voelkel (2019)

4 24 6 0.000 0.000 0.000 0.000 0.000 0.000 10 Schoen and Mee (2023)

5 12 2 0.000 0.000 11.111 11.911 20.889 18.844 1 Zhao, Lin and Liu (2022)

5 24 3 0.000 0.000 0.000 11.911 0.000 18.844 8640 Schoen and Mee (2023)

6 24 2 0.000 0.000 11.556 44.578 124.889 191.067 14503 Schoen and Mee (2023)

7 24 2 0.000 0.000 47.444 190.133 881.889 2121.257 218 Schoen and Mee (2023)

4. Concluding Remarks

Some existing theoretical results developed for two-level orthogonal arrays

may not hold for order-of-addition orthogonal arrays due to the fact that

some J-characteristics of ZU ,Q are not equal to zero. Because the full de-

sign contains the most comprehensive information regarding the treatment-

response relationship, ZU ,Q can be used as a common reference when eval-

uating a fractional design or comparing two fractional designs. A series
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of numerical indices called centralized generalized wordlength pattern is

proposed in this paper to implement this simple idea. Specifically, it is

designed to quantify the similarity between ZV,Q and ZU ,Q when projecting

onto various numbers of pairwise order factors. Based on the centralized

generalized wordlength pattern, some new results are further developed to

characterize and compare order-of-addition orthogonal arrays. The func-

tional relationship between the centralized and non-centralized generalized

wordlength patterns is further simplified to reach the conclusion that they

yield consistent ranking results. The centralized generalized wordlength

pattern takes into account several combinatorial and statistical properties

that may help experimental data analysis. In the first-stage analysis, sup-

pose that the following main effects model of the pairwise order factors is

used to fit the observed data:

yn = γ01n + ZV,Qγ1 + ϵn,

where yn denotes the n× 1 response vector, γ0 represents the overall mean,

γ1 denotes the q × 1 vector of all main effects of the pairwise order factors,

and ϵn represents the n× 1 vector of error terms. All error terms in ϵn are

assumed to be uncorrelated random variables with zero mean and constant

variance. Let γ̂0 and γ̂1 denote the least squares estimators of γ0 and γ1.

The centralized generalized wordlength pattern summarizes the following
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properties.

(A) Balanced property: if C1(V) = 0, then γ̂0 and γ̂1 are uncorrelated

and they can also be inferred independently under the assumption of

normality.

(B) Optimality property: if C1(V) = C2(V) = 0, then γ̂0 and γ̂1 achieve

optimal estimation efficiency over all pairwise order matrices of the

same order.

(C) Robustness property: if C1(V) = C2(V) = C3(V) = 0, then γ̂1 is

still unbiased even when some two-factor interaction effects are not

negligible.

Actually, the three properties have also been verified by Voelkel (2019),

Peng, Mukerjee and Lin (2019) and Mee (2020), respectively. These prop-

erties help researchers to get more reliable results of experimental data

analysis. In particular, as shown in Example 8, the condition C2(V) = 0

is not really necessary for the robustness property in (C). It is deliberately

added to legitimatize the sequential minimization procedure for the central-

ized generalized wordlength pattern. Based on Theorem 3, the theoretical

results developed by Cheng, Deng and Tang (2002) can also be used to

support the centralized generalized wordlength pattern. Specifically, when
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comparing order-of-addition orthogonal arrays, it tends to yield highly effi-

cient designs for estimating all main effects and some two-factor interaction

effects in the second-stage analysis.

Although the centralized and non-centralized generalized wordlength

patterns appear similar, there are still some differences when comparing

pairwise order matrices. Suppose that an order-of-addition orthogonal array

of strength two ZV,Q is used to design an order-of-addition experiment. Let

EV,Sa denote the n× sa submatrix of EV,W consisting of all column vectors

indexed by Sa = {Wd : |Wd| = a}, where sa = |Sa| = q!/[a!(q − a)!].

Assume that the expectation of yn has the form

E(yn) = EV,S0γ0 + EV,S1γ1 + EV,S2γ2 + · · ·+ EV,Sqγq,

where γa denotes the sa × 1 vector of a-way interaction effects. Note that

EV,S0 = 1n and EV,S1 = ZV,Q. The expectation of the least squares estima-

tor of γ1 has the form

E(γ̂1) = γ1 +K2γ2 + · · ·+Kqγq,

where Ka = (Z⊤
V,QZV,Q)

−1Z⊤
V,QEV,Sa for a = 2, 3, . . . , q. Tang and Deng

(1999) showed that sequentially minimizing A3(V), A4(V), . . . , Aq(V) is

equivalent to sequentially minimizing ∥K2∥2, ∥K3∥2, . . . , ∥Kq−1∥2 when eval-

uating two-level orthogonal arrays of strength two. Note that ∥ · ∥2 denotes
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the squared L2-norm. This important result provides a statistical justifi-

cation for the minimum G2-aberration criterion. That is, it tends to se-

quentially minimize the contaminations of non-negligible interaction effects

on the estimation of main effects in the first-stage analysis. However, this

conclusion does not hold for order-of-addition orthogonal arrays of strength

two because they are not column-orthogonal.

The centralized generalized wordlength pattern is proposed in order to

describe the pairwise order matrix of an order-of-addition design more com-

prehensively. An immediate application is to further discriminate between

two candidate designs that perform equally well under a conventional crite-

rion. In addition to characterizing and comparing existing designs, some re-

sults of this paper can also be used to develop construction methods for gen-

erating new designs. There are at least two promising directions to pursue.

Firstly, Xu (2002) developed an algorithm by using the J-characteristics

to generate efficient factorial designs. Based on Corollary 1, it seems possi-

ble to modify his algorithm to generate efficient order-of-addition designs.

Secondly, based on Corollary 4 and Proposition 3, an order-of-addition or-

thogonal array of strength two can be obtained by searching for an index

set V from U such that A1(V) = 0 and A2(V) = m(m− 1)(m− 2)/18. On

the other hand, the centralized and non-centralized generalized wordlength
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patterns are legitimate numerical indices only for the main effects model of

the pairwise order factors. It is currently not clear whether or not the ob-

tained designs in Table 8 are still good designs under other statistical models

or optimality criteria. Developing a model-free criterion can be practical

to generate such robust order-of-addition designs. Recently, Huang and

Yang (2025) proposed a distance-based criterion to generate maximin dis-

tance order-of-addition designs. Interestingly, as shown in Section 3.3, the

centralized and non-centralized generalized wordlength patterns can also

be obtained using the distance distributions of ZV,Q and ZU ,Q. Based on

Proposition 1, it seems possible to develop a distance-based criterion to

compare ZV,Q and ZU ,Q such that more model-free order-of-addition de-

signs can be generated for future work. These interesting topics may be

worth pursuing in future research.

Supplementary Materials

Supplementary materials of this paper include the following sections.

(S1) Some values of Aa(U)

(S2) Code

(S3) Design matrix of an OofA-OA(48, 9, 2)
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Appendix: Proofs of Theorems

A.1 Proof of Proposition 1

Proof. Let Dk(g,U) denote the number of pairwise order vectors that have

k entries different from zg,Q given by

Dk(g,U) = |{zh,Q : dH(zg,Q, zh,Q) = k and h ∈ U}|.

Because dH(z1,Q, zh,Q) = dH(1q, zh,Q) = inv(th), one has

Dk(1,U) = |{zh,Q : dH(z1,Q, zh,Q) = k and h ∈ U}|

= |{zh,Q : dH(1q, zh,Q) = k and h ∈ U}|

= |{th : inv(th) = k and h ∈ U}|

= b(m, k)
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for k = 0, 1, . . . , q. Based on Lemma A1 of Peng, Mukerjee and Lin (2019),

for every g ∈ U , there exists a signed permutation matrix P such that

P⊤zg,Q = z1,Q

= 1q.

Because ZU ,Q is unique up to isomorphism, one has

Dk(g,U) = |{zh,Q : dH(zg,Q, zh,Q) = k and h ∈ U}|

= |{zh,Q : dH
(
P⊤zg,Q, P

⊤zh,Q
)
= k and h ∈ U}|

= |{zh,Q : dH(1q, zh,Q) = k and h ∈ U}|

= Dk(1,U)

for every g ∈ U . Therefore, one has

Bk(U) =
1

N
|{(zg,Q, zh,Q) : dH(zg,Q, zh,Q) = k and g, h ∈ U}|

=
1

N

N∑
g=1

Dk(g,U)

=
N

N
Dk(1,U)

= b(m, k)

for k = 0, 1, . . . , q. This completes the proof.
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A.2 Proof of Corollary 1

Proof. Given the pairwise order matrix ZU ,Q, let ZI,Q denote the (2q−N)×q

matrix consisting of all invalid pairwise order vectors as row vectors, where

I = {N + 1, N + 2, . . . , 2q} is the index set of all invalid pairwise order

vectors. The juxtaposition of ZU ,Q and ZI,Q given by ZU ,Q

ZI,Q


consists of 2q (+1,−1)-vectors of length q as row vectors. Let EI,W represent

the (2q −N)× 2q matrix given by

EI,W =

[
eI,1 eI,2 · · · eI,2q

]
.

The dth column vector of EI,W has the form eI,d = ⊙ij∈Wd
zI,ij, where

zI,ij denotes the (2q − N) × 1 vector consisting all pairwise order factors

of components i and j indexed by I. The juxtaposition of EU ,W and EI,W

given by

H =

 EU ,W

EI,W


is a Hadamard matrix of order 2q and it is isomorphic to that in (5) of Tang

(2001). Note that two Hadamard matrices are said to be isomorphic if one
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can be obtained from the other by interchanging row vectors, interchang-

ing column vectors, sign-switching a row vector or a column vector, or a

combination of these operations. Based on Theorem 1 of Tang (2001), one

has  nV

02q−N

 =
1

2q
HJV ,

where nV represents the N×1 vector consisting of n1, n2, . . . , nN , and 02q−N

denotes the (2q −N)× 1 zero vector. Note that nh denotes the number of

observations of th. Because H is invertible, nV is uniquely determined by

JV . This completes the proof.

A.3 Proof of Proposition 2

Basically, the proof of Proposition 2 is established by similar arguments to

those of Proposition 3 of Deng and Tang (1999) and Proposition 1 of Deng

and Tang (2002). Some minor changes are made to take the combinatorial

properties of order-of-addition orthogonal arrays into account.

Proof of conclusion (a). Let ZV,Q denote an OofA-OA(n,m, 2) for m ≥ 4.

Voelkel (2019) noted that n must be a multiple of 12, denoted by n = 12u,

where u is a positive integer. Based on Theorem 2 of Peng, Mukerjee and

Lin (2019), one has JWd
(V) = 0 for every Wd with |Wd| = 1 and JWd

(V) is
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equal to zero or ±n/3 = ±4u for every Wd with |Wd| = 2. Therefore, the

value of JWd
(V) is a multiple of four for every Wd with |Wd| ≤ 2. Suppose

that JWd
(V) is a multiple of four for an arbitrary Wd with |Wd| ≤ k, that

is, JWd
(V) = 4v, where v is an integer. Because n = 12u and JWd

(V) = 4v,

the two numbers +1 and −1 appear 6u + 2v times and 6u − 2v times in

eV,d, respectively, where eV,d = ⊙ij∈Wd
zV,ij. Let M represent the n × 2

matrix consisting of eV,d and zV,ij as column vectors, where ij ∈ Q \ Wd.

Because ZV,Q is an OofA-OA(n,m, 2), the two numbers +1 and −1 also

occur equally often in zV,ij. Let f denote the number of times that the

ordered pair (−1,−1) occurs in the row vectors of M . It is not difficult

to see that the numbers of times that the ordered pairs (−1,+1), (+1,−1)

and (+1,+1) occur in the row vectors of M are equal to 6u−2v−f , 6u−f

and 2v + f . The frequency distribution of (+1,−1)-vectors of length two

in M is summarized in Table A1, where eh,d and zh,ij are entries of eV,d and

zV,ij, respectively.

Based on Table A1, the J-characteristic of ZV,Q corresponding to Wc,

where Wc = Wd ∪ {ij} and |Wc| = k + 1, is given by

JWc(V) = e⊤V,dzV,ij

= f − (6u− 2v − f)− (6u− f) + (2v + f)

= 4(f − 3u+ v).
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Table A1: Frequency distribution of (+1,−1)-vectors of length two in M .

eh,d zh,ij Frequency

−1 −1 f

−1 +1 6u− 2v − f

+1 −1 6u− f

+1 +1 2v + f

Total 12u

Obviously, JWc(V) is a multiple of four for every Wc with |Wc| = k + 1.

The statement is proven by induction.

Proof of conclusion (b). Let ZV,Q denote an OofA-OA(n,m, 2), where n =

24u and u is a positive integer. Based on Theorem 2 of Peng, Mukerjee

and Lin (2019), one has JWd
(V) = 0 for every Wd with |Wd| = 1 and

JWd
(V) is either equal to zero or ±n/3 = ±8u for every Wd with |Wd| = 2.

Therefore, the value of JWd
(V) is a multiple of eight for every Wd with

|Wd| ≤ 2. Suppose that JWd
(V) is a multiple of eight for an arbitrary

Wd with |Wd| ≤ k, that is, JWd
(V) = 8v, where v is an integer. Let Wc

denote an arbitrary subset of Q with |Wc| = k + 1. In addition, let Wa

and Wb represent two subsets of Wc with |Wa| = |Wb| = 1. Define M
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as the n × 3 matrix consisting of eV,a = ⊙ij∈WazV,ij, eV,b = ⊙ij∈Wb
zV,ij

and eV,c = ⊙ij∈WczV,ij as column vectors. The frequency distribution of

(+1,−1)-vectors of length three in M is summarized in Table A2, where fi

and uj − fi are non-negative integers. Note also that u1 + u2 = n/2.

Table A2: Frequency distribution of (+1,−1)-vectors of length three in M .

eh,a eh,b eh,c Frequency

−1 −1 −1 f1

−1 −1 +1 u1 − f1

−1 +1 −1 f2

−1 +1 +1 u2 − f2

+1 −1 −1 f3

+1 −1 +1 u2 − f3

+1 +1 −1 f4

+1 +1 +1 u1 − f4

Total 2(u1 + u2)

Based on the frequency distribution in Table A2, the J-characteristics

of ZV,Q corresponding to Wc, Wc \ Wa, Wc \ Wb and Wc \ (Wa ∪Wb) are
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given by

JWc(V) = −2f1 − 2f2 − 2f3 − 2f4 + 2u1 + 2u2,

JWc\Wa(V) = 2f1 + 2f2 − 2f3 − 2f4,

JWc\Wb
(V) = 2f1 − 2f2 + 2f3 − 2f4,

JWc\(Wa∪Wb)(V) = −2f1 + 2f2 + 2f3 − 2f4 + 2u1 − 2u2,

respectively. Because

JWc(V) + JWc\Wa(V) + JWc\Wb
(V) + JWc\(Wa∪Wb)(V) = 4u1 − 8f4,

one has

JWc(V) = 4u1 − 8f4 − JWc\Wa(V)− JWc\Wb
(V)− JWc\(Wa∪Wb)(V).

Because ZV,Q is an OofA-OA(n,m, 2), Voelkel (2019) noted that the or-

dered pair (u1, u2) must have the following values:

(u1, u2) =


(n/3, n/6) if i = k,j ̸= l or i ̸= k, j = l;

(n/6, n/3) if i = l or j = k;

(n/4, n/4) otherwise.

Therefore, if n = 24u, then

JWc(V) =


32u− 8f4 − JWc\Wa(V)− JWc\Wb

(V)− JWc\(Wa∪Wb)(V) if u1 = n/3;

16u− 8f4 − JWc\Wa(V)− JWc\Wb
(V)− JWc\(Wa∪Wb)(V) if u1 = n/6;

24u− 8f4 − JWc\Wa(V)− JWc\Wb
(V)− JWc\(Wa∪Wb)(V) if u1 = n/4.
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Because |Wc \ Wa| = |Wc \ Wb| = k and |Wc \ (Wa ∪ Wb)| = k − 1, one

has JWc\Wa(V), JWc\Wb
(V) and JWc\(Wa∪Wb)(V) are all multiples of eight,

with the result that JWc(V) is also a multiple of eight for every Wc with

|Wc| = k + 1. The statement is proven by induction.

A.4 Proof of Theorem 1

Proof. Suppose that ZV,Q is an OofA-OA(n,m, t). It is straightforward to

see that JWd
(V)/n = JWd

(U)/N for every Wd with |Wd| ≤ t. Conversely,

suppose that JWd
(V)/n = JWd

(U)/N for every Wd with |Wd| = a ≤ t.

Given an arbitrary Wd with |Wd| = a ≤ t, the n × a submatrix of ZV,Q,

denoted by ZV,Wd
, can be obtained by deleting the pairwise order factors

indexed by Q \ Wd from ZV,Q. Similarly, the N × a submatrix of ZU ,Q,

denoted by ZU ,Wd
, can be obtained by deleting the pairwise order factors

indexed by Q \ Wd from ZU ,Q. Let J∗
V and J∗

U denote the 2a × 1 vectors

consisting of all J-characteristics of ZV,Wd
and ZU ,Wd

, respectively. In ad-

dition, let n∗
V and n∗

U represent R × 1 vectors consisting of the numbers of

times that the R valid pairwise order vectors of length a occur in ZV,Wd
and

ZU ,Wd
, respectively. Note that the number of valid pairwise order vectors

R is determined by Wd. By similar arguments of the proof of Corollary 1,
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one has  n∗
V

02a−R

 =
1

2a
H∗J∗

V ,

and  n∗
U

02a−R

 =
1

2a
H∗J∗

U ,

where H∗ is a Hadamard matrix of order 2a. Based on these facts, one has n∗
V

02a−R

 =
1

2a
H∗J∗

V

=
1

2a
H∗
( n

N
J∗
U

)
=

n

N

(
1

2a
H∗J∗

U

)

=
n

N

 n∗
U

02a−R

 .

By definition, ZV,Q is an OofA-OA(n,m, t). This completes the proof.

A.5 Proof of Theorem 2

Proof. Given a foldover design, it is straightforward to see that eG,d = −eH,d

for every Wd with odd |Wd|. The J-characteristic of ZV,Q corresponding to
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Wd is given by

JWd
(V) = e⊤V,d1n

= e⊤H,d1n/2 + e⊤G,d1n/2

= e⊤H,d1n/2 − e⊤H,d1n/2

= 0.

Based on Lemma A1 of Cheng, Mee and Yee (2008), the converse statement

is also true.

A.6 Proof of Corollary 3

Proof. Based on Theorem 2, if the submatrix ZH,Q in (3.4) is an OofA-

OA(n,m, t) and t is even, then JWd
(V) = JWd

(U) = 0 for every Wd with

|Wd| = t + 1 and t + 1 is odd such that Ct+1(V) = 0. By Corollary 2, the

corresponding pairwise order matrix ZV,Q in (3.4) is an OofA-OA(2n,m, t+

1).

A.7 Proof of Theorem 3

Proof of conclusion (a). Based on Theorem 2, because T is a foldover de-

sign, one has JWd
(U) = 0 for every Wd with odd |Wd| such that

Ca(V) = Aa(V)
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for every odd a. Let EU ,Sa denote the N × sa submatrix of EU ,W consisting

of all column vectors indexed by Sa = {Wd : |Wd| = a}, where sa = |Sa| =

q!/[a!(q − a)!]. By Corollary 1, because

JV = H⊤

 nV

02q−N


= E⊤

U ,WnV ,

one has

1

n

∑
|Wd|=a

JWd
(V)JWd

(U)− 1

N

∑
|Wd|=a

[JWd
(U)]2 =

1

n
n⊤
VEU ,SaE

⊤
U ,Sa

1N − 1

N
1⊤NEU ,SaE

⊤
U ,Sa

1N

=

(
1

n
n⊤
V − 1

N
1⊤N

)
EU ,SaE

⊤
U ,Sa

1N . (A1)

Let e⊤1,Sa
denote the first row vector of EU ,Sa . Because e1,Sa is determined

by t1, one has e
⊤
1,Sa

= 1⊤sa . The row sum of the first row vector of EU ,SaE
⊤
U ,Sa

is equal to

e⊤1,Sa
E⊤

U ,Sa
1N = 1⊤saE

⊤
U ,Sa

1N

=
∑

|Wd|=a

JWd
(U).

Actually, every row vector of EU ,SaE
⊤
U ,Sa

has row sum
∑

|Wd|=a JWd
(U) due

to the fact that every row vector of EU ,SaE
⊤
U ,Sa

consists of the same set of

entries as its first row vector. The right-hand-side term of (A1) can then
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be expressed as∑
|Wd|=a

JWd
(U)

(
1

n
n⊤
V − 1

N
1⊤N

)
1N =

∑
|Wd|=a

JWd
(U)

(
n

n
− N

N

)
= 0,

with the result that

1

n

∑
|Wd|=a

JWd
(V)JWd

(U) = 1

N

∑
|Wd|=a

[JWd
(U)]2 .

Therefore, for every even a, Ca(V) can be expressed as

Ca(V) =
∑

|Wd|=a

[
1

n
JWd

(V)− 1

N
JWd

(U)
]2

=
∑

|Wd|=a

[
1

n
JWd

(V)
]2

− 2

nN

∑
|Wd|=a

JWd
(V)JWd

(U) +
∑

|Wd|=a

[
1

N
JWd

(U)
]2

=
∑

|Wd|=a

[
1

n
JWd

(V)
]2

−
∑

|Wd|=a

[
1

N
JWd

(U)
]2

= Aa(V)− Aa(U).

This completes the proof.

Proof of conclusion (b). By Corollary 1, because

JV = H⊤

 nV

02q−N

 ,

where H⊤H = HH⊤ = 2qI2q , one has

q∑
a=1

Aa(V) =
1

n2
J⊤
V JV − 1

=
2q

n2

N∑
h=1

n2
h − 1.
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Similarly, one has
∑q

a=1Aa(U) = 2q/N − 1, where Aa(U) = 0 for odd a.

Because Ca(V) = Aa(V)− Aa(U), one has

q∑
a=1

Ca(V) =

q∑
a=1

Aa(V)−
q∑

a=1

Aa(U)

= 2q

(
1

n2

N∑
h=1

n2
h −

1

N

)
.

This completes the proof.

A.8 Proof of Proposition 3

Proof of conclusion (a). Based on Theorem 2 of Peng, Mukerjee and Lin

(2019), one has JWd
(U)/N = 0 or ±1/3 for every Wd with |Wd| = 2.

Because there are m(m−1)(m−2)/2 non-zero normalized J-characteristics,

one has A2(U) = m(m− 1)(m− 2)/18. This completes the proof.

Proof of conclusion (b). By Theorem 2, when q is odd, Aq(U) = 0. Because

k!/[j!(k − j)!] = 0 for every k < j and (q − k)!/[(q − j)!(j − k)!] = 0 for

every k > j, one has

(
k

j

)(
q − k

q − j

)
=


1 if j = k;

0 otherwise.
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The qth Krawtchouk polynomial has the following two values:

Pq(k, q, 2) =

q∑
j=0

(−1)j
(
k

j

)(
q − k

q − j

)

=


+1 if j = k is even;

−1 if j = k is odd.

Because Fm(−1) = 0, when q is even, one has

Aq(U) =
1

N

q∑
k=0

b(m, k)(−1)k

=
1

N
Fm(−1)

= 0.

This completes the proof.
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