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Abstract: Causal mediation analysis aims to investigate the underlying mechanism

of how an exposure exerts its effects on the outcome mediated by intermediate vari-

ables. However, existing methods for causal mediation analysis in the context of

survival models are primarily focused on estimating average causal effects and are

difficult to apply to precision medicine. Recently, machine learning has emerged

as a promising tool for precisely estimating individualized causal effects without

assuming specific model forms. This study proposes a novel method, conditional

generative adversarial network (CGAN)-based individualized causal mediation anal-

ysis with survival outcomes (CGAN-ICMA-SO), to infer individualized causal effects

with survival outcomes based on the CGAN framework. We show that the estimated

distribution of the proposed inferential conditional generator converges to the true

conditional distribution under mild conditions. Our numerical experiments indicate

that CGAN-ICMA-SO surpasses five other state-of-the-art methods. Applying the

proposed method to an Alzheimer’s disease (AD) Neuroimaging Initiative dataset

reveals the individualized direct and indirect effects of the APOE-ε4 allele on time

to AD onset.

Key words and phrases: Causal mediation analysis; CGAN; Individualized causal
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effects; Loss function; Time-to-event outcome.

1. Introduction

Mediation analysis is widely used in biomedical research (Sun et al., 2021),

epidemiology (VanderWeele and Vansteelandt, 2014), and social-psychological

studies to examine how exposure influences outcomes. Exposure affects out-

comes both directly and indirectly through mediators, allowing the total effect

to be decomposed into direct and indirect effects. Using the counterfactual

framework (Imai et al., 2010; Rubin, 2005), this approach, known as causal

mediation analysis, is the focus of this paper.

The literature has devoted significant attention to identifying causal ef-

fects on survival outcomes. In the context of survival analysis, many existing

mediation analyses often rely on linear parametric models, such as linear re-

gression models or linear structural equation models (LSEM) with additive

hazards (AH), proportional hazards (PH), or accelerated failure time (AFT)

models (VanderWeele, 2011). These methods decompose the average treat-

ment effect into natural direct and indirect effects at the population level.

However, these approaches often assume homogeneity across individuals and

focus only on average causal mediation effects. In biomedical studies, it is

often observed that patients with different characteristics can have varying
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disease progressions, even when subjected to the same treatment. The lack

of homogeneity in treatment effects has garnered significant attention, mainly

when dealing with survival outcomes. Consequently, there has been a sig-

nificant increase in methods developed to estimate individualized treatment

effects (ITE) or conditional average treatment effects (CATE) for survival

outcomes. Parametric models like Cox proportional hazards (CoxPH) (Cox,

1972) and the AFT model (Wei, 1992) are commonly used but rely on the

unrealistic assumption of correct model specification, limiting their flexibility

with high-dimensional data or complex interactions. To address these limi-

tations, machine learning methods, including tree-based and neural network

approaches, have emerged. Nonparametric methods like Random Survival

Forest (RSF) (Ishwaran et al., 2008) and Bayesian Additive Regression Trees

(BART) (Chipman et al., 2010) have been extended for causal survival anal-

ysis. RSF has been applied in causal survival forests with weighted boot-

strap inference (Cui et al., 2023; Shen et al., 2018), while BART has been

adapted to consider survival outcomes in models like Surv-BART (Spara-

pani et al., 2016) and AFT-BART (Henderson et al., 2020). Additionally,

SurvITE (Curth et al., 2021), a deep learning approach, was introduced to

characterize diverse treatment effects on survival probabilities. When the total

effect of exposure on a survival outcome is heterogeneous, understanding how

this heterogeneity arises across causal pathways is crucial. This helps reveal

the underlying mechanisms through which heterogeneity in treatment effects
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emerges, thereby offering deeper insights into complex biomedical dynamics.

Detecting potential heterogeneity in mediation effects has long been a fo-

cal point in psychology, known as moderated mediation analysis (Hayes, 2015;

Preacher et al., 2007). Existing methods for estimating the conditional aver-

age causal effects or individualized causal effects (ICEs) are primarily tailored

for continuous outcomes. For instance, Park and Kaplan (2015) integrated

Bayesian inferential approaches with G-computation for mediation analysis

in group randomized designs. Qin and Hong (2017) introduced a weighting

technique to identify and estimate site-specific mediation effects. Later on,

Dyachenko and Allenby (2018) proposed a Bayesian mixture model that com-

bines likelihood functions based on two distinct outcome models. Xue et al.

(2022) introduced a novel mediation penalty for high-dimensional data. Qin

and Wang (2024) further defined causal conditional effects with moderated

mediation effects across subgroups. While these methods have proven bene-

ficial in various scenarios, they exhibit limitations. Approaches like Park and

Kaplan (2015) and Xue et al. (2022), heavily lean on the LSEM framework,

which may not capture complex real-world systems. Qin and Hong (2017)

primarily focused on estimating the population average and between-site vari-

ance of causal effects, neglecting subpopulation-specific effects. Qin and Wang

(2024) emphasized the importance of accurately specifying parametric media-

tor and outcome models. Dyachenko and Allenby (2018) introduced a method
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that necessitates a predetermined number of subgroups. It is also crucial to

note that the above methods have primarily focused on continuous outcomes,

highlighting the urgent need for tailored approaches to heterogeneous media-

tion analysis with time-to-event outcomes. Developing advanced methods to

address this gap is essential.

Machine learning has recently garnered significant interest for capturing

complex nonlinear relationships without relying on predefined model forms.

Some methods (Bica et al., 2020; Chen et al., 2019; Chu et al., 2020; Ge et al.,

2020; Yoon et al., 2018) have focused on estimating ITE with continuous out-

comes, while others (Chapfuwa et al., 2021; Curth et al., 2021) have addressed

ITE with survival outcomes. Additionally, certain methodologies (Huan et al.,

2024; Xu et al., 2022) have targeted the estimation of ICEs with continuous

outcomes. While these methods effectively estimate ITE and ICEs, to our

knowledge, there is a gap in addressing ICEs with survival outcomes. No-

tably, deep learning has shown promise in survival analysis, such as Chapfuwa

et al. (2018)’s adversarial learning for nonparametric time-to-event analysis,

though it does not focus on causal inference. Among these methods, Yoon

et al. (2018) introduced a Conditional Generative Adversarial Nets (CGAN)-

based method called GANITE for inferring ITE. This approach comprises two

blocks: a counterfactual imputation block and an ITE block, each containing

a generator and a discriminator. Furthermore, there are extensions of GAN-
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ITE (Bica et al., 2020; Ge et al., 2020) that introduce techniques to evaluate

ITE of different treatment types using GANs and Huan et al. (2024) that

extend GANITE to assess ICEs with continuous outcomes. However, none

simultaneously address ICEs and survival outcomes. Estimating ICEs, as in

Equation (2.4), requires a sampling-based technique to draw samples from

the estimated probability distribution of the potential mediator and assess

potential outcomes. Leveraging GANs’ ability to capture complex nonlinear

relationships and sample from probability distributions, we aim to propose

a novel method, CGAN-based individualized causal mediation analysis with

survival outcome (CGAN-ICMA-SO), to bridge this gap.

The CGAN-ICMA-SO model estimates ICE and explores individualized

causal mechanisms for survival outcomes. This method is structured with two

key layers: the mediator layer and the outcome layer. Each layer is further

divided into two subblocks: the counterfactual block and the inferential block.

These subblocks incorporate a generator and a discriminator, enabling precise

estimation of causal effects at the individual level. Furthermore, we establish

distribution matching estimation and prove the convergence of CGAN-ICMA-

SO, ensuring that the estimated distribution from our inferential generator

converges to the true conditional distribution under mild conditions. Our

proposed method addresses the limitations by capturing complex nonlinear

relationships without relying on parametric structures like LSEM, ensuring
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accurate modeling of real-world systems. It is versatile, requiring no assump-

tions about heterogeneity sources or predefined subgroups, making it widely

applicable. Additionally, the distribution matching estimation and conver-

gence theory of CGAN-ICMA-SO provide a strong theoretical foundation,

ensuring accurate conditional distribution modeling and reliable sampling.

These guarantees enhance the method’s reliability and validity, supporting its

application and further development.

This research was motivated by the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) dataset. The apolipoprotein E-ε4 (APOE-ε4) allele is strongly

associated with ventricle expansion, a known contributor to AD development.

Our research interest is investigating the causal mechanism linking APOE-ε4

to time-to-AD onset and how this mechanism varies across observable char-

acteristics like age and gender. Traditional methods estimate average causal

effects and fail to handle situations where causal effects differ across subgroups

defined by observable characteristics, as noted in previous mediation studies

(Sun et al., 2021; Zhou and Song, 2021). To address this, we propose CGAN-

ICMA-SO, which allows for personalized estimates of ICEs. Our findings

reveal that APOE-ε4 accelerates AD onset both directly and indirectly by

enlarging the ventricle, with the mediated pathway having a greater impact.

Additionally, our method identifies how causal effects vary across character-

istics such as age, gender, education, and ethnicity. For instance, we observe
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that APOE-ε4’s impact on AD onset increases initially and then stabilizes as

education level rises, as discussed further in Section 7.

The organization of this paper is as follows. Section 2 presents prob-

lem formulation and briefly reviews ICEs with survival outcomes. Section

3 presents the proposed CGAN-ICMA-SO. Section 4 establishes the conver-

gence of CGAN-ICMA-SO, and its implementation is provided in Section 5.

Section 6 compares the proposed method with several other approaches by

simulation studies. Section 7 applies our method to the ADNI dataset, and

Section 8 concludes. The theoretical proofs, other technical details, and parts

of numerical results are relegated to the Supplementary Material.

2. Problem Formulation

2.1 Preliminary

Suppose we have a random vector X = (X1, ..., Xdx) ∈ X ⊂ Rdx representing

pre-treatment covariates, a binary exposure or treatment indicator T ∈ T :=

{0, 1}, and another random variable, namely, the mediator M ∈ M ⊂ R.

Additionally, we have two random variables: Y ∈ Y ⊂ R representing the

event time and C ∈ C ⊂ R denoting the noninformative censoring time.

Assume that (X, T,M, Y, C) ∼ PX,T,M,Y,C with marginal distributions

such as (X, T,M, Y ) ∼ PX,T,M,Y , (X, T,M) ∼ PX,T,M , (X, T ) ∼ PX,T and

so forth. Furthermore, we have individual distribution functions for each

variable, such as X ∼ PX, T ∼ PT , M ∼ PM , Y ∼ PY , C ∼ PC , etc. We

denote the conditional distribution of Y given (X, T,M) as PY |X,T,M , and
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2.1 Preliminary

similar notations are used for other conditional distributions. Let pX,T,M,Y be

the density function of the distribution PX,T,M,Y , and similar notations are

used for other distributions.

Let M(t) be a potential mediating variable that represents the value of

the mediator if the treatment variable is equals to t ∈ T and let Y (t,m)

be the potential event time if one receives treatment t ∈ T and mediator

m ∈M. The factual mediator, the factual event time, and the observed time

are denoted by M = M(T ), Y = Y (T,M(T )), and Ỹ = min{Y (T,M(T )), C},

respectively, where T is the factual treatment. In addition, we make the

consistency assumption throughout: for any individual X = x, the potential

mediator M(t) is equal to the observed mediator M = M(T ) if the individual

X = x happened to receive treatment level T = t; and so do the potential

event time. Denote M(x, t) := M(t)|X = x and Y (x, t,m) := Y (t,m)|X = x.

To emphasize the individualized effects, denote Mt(x) := M(x, t) for t ∈ T ,

Yt(x,m) := Y (x, t,m), and Yt′t(x) := Y (x, t′,Mt(x)), for t, t′ ∈ T . For any

given X = x, we aim to obtain the distribution of Mt(x), then the value of

E[Yt′t(x)] for t, t′ ∈ T , and finally, the ICEs defined in Section 2.3. Denote

the failure indicator by δ(x, t,m) = I
(
Y (x, t,m) ≤ C

)
. Let Z, Ẑ, Z̃ and Z

be random vectors independent of X, T , M , Y and each other, with a known

distribution PZ, PẐ, PZ̃ and PZ, respectively. For example, we can take PZ as

the standard multivariate normal distribution N(0, Idz) for a given dz ≥ 1.
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2.2 General Assumptions

2.2 General Assumptions

We now introduce several standard assumptions (Imai et al., 2010; Marti-

nussen et al., 2011; Imbens and Rubin, 2015) to identify causal effects.

Assumption 1. [The stable unit treatment value assumption (SUTVA)] a.

The units in the study are stable and do not change their behavior based

on the treatment assignment of other units. b. There is a well-defined and

consistent treatment value for each unit.

Assumption 2. [Overlap] P (T = t|X = x) > 0 and P (M(t) = m|T = t,X =

x) > 0 for all (t,m,x) ∈ T ×M×X .

Assumption 3. [Unconfoundedness] Y (t′,m) |= M(t)|T = t,X = x,

{Y (t′,m),M(t)} |= T |X = x, for all (t, t′,m,x) ∈ T × T ×M×X .

Assumption 4. [Noninformative Censoring] C |= Y |X = x, T = t,M = m,

for all x ∈ X , t, ∈ {0, 1} and m ∈M.

These assumptions are explained in Supplementary Material S1.

2.3 Problems

For dataset Sn := {X = xi, T = ti,M = mi, Ỹ = ỹi, δ = δi}ni=1, we assume

that the censoring rate is αr, where 0 ≤ αr < 1, and split Sn into two sub-

datasets based on the censoring indicator. Let S
(1)
n1 := {X = xi, T = ti,M =

mi, Y = yi, δ = δi = 1}n1
i=1 ⊂ X × {0, 1} ×M× Y × {1} be the sub-dataset

containing the observed event times (δ = 1) and S
(2)
n2 := {X = xi, T = ti,M =

mi, C = ci, δ = δi = 0}ni=n1+1 ⊂ X × {0, 1} ×M×C × {0} be the sub-dataset
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2.3 Problems

containing the censored observations (δ = 0), where n = n1+n2 and n2 = αrn

with αr ∈ [0, 1). We aim to approximate the expectation of event times for

a given covariate X = x with different treatments, that is, x 7→ E[Yt′t(x)],

for t′, t ∈ {0, 1}, i.e., E[Y (x, 0,M0(x))], E[Y (x, 0,M1(x))], E[Y (x, 1,M0(x))],

and E[Y (x, 1,M1(x))]. Then, ICEs can be approximated by comparing the

expected event times under different treatment and mediator combinations.

Now, we introduce ICEs (Huang and Yang, 2017; Imai et al., 2010; Royston

and Parmar, 2011). First, we define the individualized natural indirect effect

(NIE) and natural direct effect (NDE) of treatment as

NIE = ξ(t; x) = E[Y (x, t,M1(x))]− E[Y (x, t,M0(x))], (2.1)

NDE = ζ(t; x) = E[Y (x, 1,Mt(x))]− E[Y (x, 0,Mt(x))], (2.2)

for t ∈ {0, 1} and x ∈ X . Given the notations introduced in Section 2.1,

the expectations in (2.1) and (2.2) are conditional expectations given x, e.g.,

E[Y (x, t,M1(x))] = E[Y (t,M(1))|X = x]. Then, the individualized total

effect (TE) of treatment can be decomposed as

τ(x) = E[Y (x, 1,M1(x))]− E[Y (x, 0,M0(x))] =
1

2

1∑
t=0

{ξ(t;x) + ζ(t;x)}, (2.3)

for x ∈ X . In ADNI data analysis in Section 7, the individualized NDE or NIE

denotes the effect of carrying APOE-ε4 alleles on the time to AD onset without

through or through ventricle expansion, respectively. The individualized TE

represents the total effect of carrying APOE-ε4 alleles on AD onset.
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2.3 Problems

To demonstrate the identifiability of ICEs, we examine the identification

of the relevant potential outcome as follows. By Assumption (III), we have

E[Y (x, t′,Mt(x))] = E[Y (t′,M(t))|X = x] =

∫
E[Y |T = t′,M = m,X = x]dPM(t)|X=x(m).

(2.4)

Thus, ICEs can be identified through the expected potential outcomes as

long as the distribution of the potential mediator, PM(x,t), can be estimated

from the observed data. Detailed derivation of Equation (2.4) is provided

in Supplementary Material S11. Next, we present the problem formulation.

Problem in M Layer: Find a deterministic function, called inference func-

tion for mediator M , IM : (ẑ,x) ∈ Rdz×X 7→ IM(ẑ,x) = (I
(0)
M (ẑ,x), I

(1)
M (ẑ,x))

∈M×M, such that

IM(Ẑ,x) ∼ PM |X=x,T=0 ⊗ PM |X=x,T=1, x ∈ X , (2.5)

which means that I
(0)
M (Ẑ,x) ∼ PM |X=x,T=0 and I

(1)
M (Ẑ,x) ∼ PM |X=x,T=1.

Thus, for x ∈ X , to sample from PM |X=x,T=0 and PM |X=x,T=1, we can first

sample a ẑ ∼ PẐ and then calculate IM(ẑ,x). The resulting value I
(0)
M (ẑ,x)

is a sample from PM |X=x,T=0, and I
(1)
M (ẑ,x) is a sample from PM |X=x,T=1.

Problem in Y Layer: Find a deterministic function, called inference func-

tion for the event time Y , IY : (z,x,m) ∈ Rdz × X ×M 7→ IY(z,x,m) =

(I
(0)
Y (z,x,m), I

(1)
Y (z,x,m)) ∈ Y × Y , such that

IY(Z,x,m) ∼ PY |X=x,T=0,M=m ⊗ PY |X=x,T=1,M=m, x ∈ X , m ∈M. (2.6)

Once the above problems are resolved, we calculate E[Yt′t(x)] as follows:
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E[Yt′t(x)] = EẐ∼P
Ẑ
,Z∼PZ

[I
(t′)
Y (Z,x, I

(t)
M (Ẑ,x))]

for all x ∈ X . Subsequently, we can utilize these estimates to obtain ICEs

with survival time. We can use Monte Carlo approximations to empirically

evaluate the integral (2.4). Specifically, we sample n̂ samples from Ẑ ∼ PẐ

and n samples from Z ∼ PZ, denoted as ẑ1, ẑ2, . . . , ẑn̂ and z1, z2, . . . , zn. Then,

NIE and NDE in (2.1) and (2.2) can be estimated by

ξ(t;x) ≈ 1

n× n̂

 n∑
j=1

n̂∑
i=1

I
(t)
Y (zj ,x, I

(1)
M (ẑi,x))−

n∑
j=1

n̂∑
i=1

I
(t)
Y (zj ,x, I

(0)
M (ẑi,x))

 , (2.7)

ζ(t;x) ≈ 1

n× n̂

 n∑
j=1

n̂∑
i=1

I
(1)
Y (zj ,x, I

(t)
M (ẑi,x))−

n∑
j=1

n̂∑
i=1

I
(0)
Y (zj ,x, I

(t)
M (ẑi,x))

 , (2.8)

and TE in (2.3) can be estimated by

τ(x) ≈ 1

n× n̂

 n∑
j=1

n̂∑
i=1

I
(1)
Y (zj ,x, I

(1)
M (ẑi,x))−

n∑
j=1

n̂∑
i=1

I
(0)
Y (zj ,x, I

(0)
M (ẑi,x))

 . (2.9)

3. Method

We propose a new architecture of CGAN-ICMA-SO, depicted in Figure 1,

to address the mediation process, censoring time, and identification of the

relevant potential outcome. This architecture consists of a mediator layer

and an outcome layer. Each layer consists of two subblocks: a counterfactual

block and an inferential block. The inferential generators in the mediator

and outcome layers are designed to generate samples that match the target

distributions specified in Equations (2.5) and (2.6), respectively.

To streamline the presentation, we present the detailed technical descrip-

tion of the mediator layer in the Supplementary Material because it shares a
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Figure 1: Architecture of CGAN-ICMA-SO: (m(0),m(1)) is sampled from ĜM after ĜM

has been fully trained and (y(0), y(1)) is sampled from ĜY after ĜY has been fully trained.

Gθ
M, DφM, Gζ

Y, DξY, DωIM , and DλIY are only operating during training, whereas IψM and

IϕY operate both during training and at run-time. θ,φ, ζ, ξ,ω,λ,ψ, and ϕ represent the

trainable parameters in the FNN network. The generic notations G and D represent the

generator and discriminator in CGAN, respectively.
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3.1 Outcome Layer

structural analogy with the outcome layer but operates under a simpler set-

ting. Specifically, the mediator layer adapts the outcome layer’s framework

through corresponding notational adjustments: replacing the pair (X,M)

with only X as input and substituting the survival outcome Y with the

fully observed mediator M . This eliminates the need to handle censoring

mechanisms within the mediator layer, thereby simplifying both the design

of loss function and theoretical analysis. Moreover, this prioritization allows

us to focus on the methodological novelty of handling survival outcomes in

the outcome layer, which introduces additional complexities such as censor-

ing adjustments. Interested readers may refer to Supplementary Material

S2.1 for the details of the mediator layer. In the mediator layer, we utilize

the feedforward neural network (FNN) for estimation, deriving the estimated

conditional generators and discriminators in the counterfactual and inferential

blocks: ĜM, D̂M, ÎM, and D̂IM .

3.1 Outcome Layer

Counterfactual Block: it consists of a generator and a discriminator. The

generator in the counterfactual outcome block, denoted as GY : Rdz × X ×

{0, 1}×M×Y 7→ Y×Y , takes the covariates x (where X = x), binary treat-

ment variable t (where T = t), factual mediator m (where M = m), factual

outcome y (where Y = y), and some noise Z̃ as inputs. It generates the com-

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0188



3.1 Outcome Layer

plete outcome vector GY(Z̃,x, t,m, y) =
(
G

(0)
Y (Z̃,x, t,m, y), G

(1)
Y (Z̃,x, t,m, y)

)
.

We can represent the random variable induced by GY as GY(Z̃,X, T,M, Y ) =(
G

(0)
Y (Z̃,X, T,M, Y ), G

(1)
Y (Z̃,X, T,M, Y )

)
. The discriminator takes x,m, (1 −

t)y+tG
(0)
Y (Z̃,x, t,m, y), and ty+(1−t)G(1)

Y (Z̃,x, t,m, y) as inputs. It outputs a

scalar representing the probability that the last input ty+(1−t)G(1)
Y (Z̃,x, t,m, y)

corresponds to the factual outcome rather than the counterfactual outcome.

This setup allows us to generate the complete outcome vector by incorporating

the covariates, treatment, factual mediator, factual outcome and noise into

the generator and then leveraging the discriminator to distinguish between

the factual and counterfactual outcomes. The loss function associated with

this setup is:

LY(GY, DY) := E(X,T,M,Y )∼PX,T,M,Y
E
Z̃∼P

Z̃

{
T logDY

(
X,M, (1− T )Y + TG

(0)
Y (Z̃,X, T,M, Y ), TY + (1− T )G(1)

Y (Z̃,X, T,M, Y )
)

+(1− T ) log[1−DY

(
X,M, (1− T )Y + TG

(0)
Y (Z̃,X, T,M, Y ), TY + (1− T )G(1)

Y (Z̃,X, T,M, Y )
)
]
}
.

At the population level, the target conditional generator G∗Y and discriminator

D∗Y are defined as (G∗Y, D
∗
Y) := argminGY

argmaxDY
LY(GY, DY), and denote

G∗Y = (G
∗,(0)
Y , G

∗,(1)
Y ).

Empirical Loss Function of Counterfactual Block: for the dataset

Sn = {X = xi, T = ti,M = mi, Ỹ = ỹi, δ = δi}ni=1 = S
(1)
n1 ∪ S

(2)
n2 and {Z̃ =

z̃i}ni=1 independently generated from PZ̃, where S
(1)
n1 = {X = xi, T = ti,M =

mi, Ỹ = yi, δ = δi = 1}n1
i=1 and S

(2)
n2 = {X = xi, T = ti,M = mi, Ỹ = ci, δ =
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3.1 Outcome Layer

δi = 0}ni=n1+1, we define the sample set SYn := {X = xi, T = ti,M = mi, Ỹ =

ỹi, δ = δi, Z̃ = z̃i}ni=1 and use it to train ĜY in the counterfactual block. We

consider the following empirical version of LY(GY, DY):

L̃Y(GY, DY) =
1

n1

n1∑
i=1

{
ti logDY

(
xi,mi, (1− ti)yi + tiG

(0)
Y (z̃i,xi, ti,mi, yi), tiyi + (1− ti)G

(1)
Y (z̃i,xi, ti,mi, yi)

)
+ (1− ti) log

[
1−DY

(
xi,mi, (1− ti)yi + tiG

(0)
Y (z̃i,xi, ti,mi, yi), tiyi + (1− ti)G

(1)
Y (z̃i,xi, ti,mi, yi)

)]}
.

We introduce the supervised loss (Chapfuwa et al., 2018) to ensureG
(t)
Y (z̃,x, t,m, y) =

y when δ = 1 andG
(t)
Y (z̃,x, t,m, c) ≥ c when δ = 0: L̃4(GY) = 1

n1

∑n1

i=1

∣∣∣∣G(ti)
Y (z̃i,xi, ti,mi, yi)−

yi

∣∣∣∣2 + 1
n2

∑n
i=n1+1

{
max{0, ci − G(ti)

Y (z̃i,xi, ti,mi, ci)}
}2

. Define an empirical objec-

tive function for a supervised parameter α4 ≥ 0:

L̂Y(GY, DY) := L̃Y(GY, DY) + α4L̃4(GY). (3.1)

We use FNN to estimate GY, denoted as ĜY, based on the empirical objective

function (3.1). See details in Supplementary Material S2.5.

Inferential Block: After training the counterfactual outcome block, we

obtain the vector
(
(1− t)y + tG

(0)
Y (Z̃,x, t,m, y), ty + (1− t)G(1)

Y (Z̃,x, t,m, y)
)
. Next,

we pass this vector, along with the given covariates x (where X = x) and

factual mediator m (where M = m), into the inferential outcome block to ob-

tain the outcome vector, denoted as IY(Z,x,m) =
(
I
(0)
Y (Z,x,m), I

(1)
Y (Z,x,m)

)
, the

generator IY : Rdz ×X ×M 7→ Y ×Y takes the covariates x (where X = x),

factual mediators m (where M = m), and some noise Z as inputs, with-

out relying on factual outcome and treatment. The output is IY(Z,x,m),

and we can represent the random variable induced by IY as IY(Z,X,M) =(
I
(0)
Y (Z,X,M), I

(1)
Y (Z,X,M)

)
. The discriminator takes either

(
x,m, (1−t)y+tG(0)

Y (Z̃,
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3.1 Outcome Layer

x, t,m, y), ty+(1−t)G(1)
Y (Z̃,x, t,m, y)

)
or
(
x,m, IY(Z,x,m)

)
as inputs. By employing

this architecture, we can generate the complete outcome vector by integrat-

ing the covariates, factual mediator, and noise into the generator. The dis-

criminator helps distinguish between the counterfactual and inferred complete

outcome vectors. We utilize the classical CGAN loss, denoted by

LIY(IY, DIY ) := Eq̃∼PQ̃
[logDIY (q̃)] + E(x,m)∼PX,M

Ez∼PZ
log
[
1−DIY

(
x,m, I

(0)
Y (z,x,m), I

(1)
Y (z,x,m)

)]
,

where PQ̃ is the joint distribution of
(
X,M,G

∗,(0)
Y (Z̃,X, T = 1,M, Y1(X,M)), Y1(X,M)

)
.

Define (I∗Y, D
∗
IY

) := argminIY
argmaxDIY

LIY(IY, DIY), where LIY(IY) :=

supDIY
LIY(IY, DIY), and denote I∗Y = (I

∗,(0)
Y , I

∗,(1)
Y ).

By the Lemmas on distribution matching shown in Supplementary Mate-

rial S2.2, we can conclude that I
∗,(0)
Y (Z,X,M) ∼ Y0(X,M) ∼ PY |X,T=0,M and

I
∗,(1)
Y (Z,X,M) ∼ Y1(X,M) ∼ PY |X,T=1,M .

Empirical Loss Function of Inferential Block: given the sample

set SYn and {Z = zi}ni=1 independently generated from PZ, we use ĜY ob-

tained above to define another sample set SIYn := {(xi, ti,mi, y
(0)
i , y

(1)
i , zi)}n1

i=1∪

{xi, ti,mi, ci, zi}ni=n1+1, where (y
(0)
i , y

(1)
i ) = ti(Ĝ

(0)
Y (z̃i,xi, T = 1,mi, yi), yi) +

(1 − ti)(yi, Ĝ(1)
Y (z̃i,xi, T = 0,mi, yi)), to train the estimated conditional gen-

erator ÎY. Consider the following empirical version of LIY(IY, DIY):

L̃IY(IY, DIY ; ĜY) =
1

n1

n1∑
i=1

{
logDIY

(
xi,mi, y

(0)
i , y

(1)
i

)
+ log

[
1−DIY

(
xi,mi, I

(0)
Y (zi,xi,mi), I

(1)
Y (zi,xi,mi)

)]}
.

To optimal the performance with respect to Ex∼PX

{∣∣∣E[Y1(x,m)−Y0(x,m)
]
−

E
[
I
(1)
Y (Z,x,m) − I

(0)
Y (Z,x,m)

]∣∣∣2}, we additionally introduce a supervised loss:
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L̃5(IY; ĜY) = 1
n1

∑n1

i=1

∣∣∣∣(y(0)i −y
(1)
i

)
−
(
I
(0)
Y (zi,xi,mi)−I(1)Y (zi,xi,mi)

)∣∣∣∣2. Furthermore,

we introduce another supervised loss (Chapfuwa et al., 2018) to ensure that

I
(t)
Y (z,x,m) = y when δ = 1 and I

(t)
Y (z,x,m) ≥ c when δ = 0: L̃6(IY) =

1
n1

∑n1

i=1

∣∣∣I(ti)Y (zi,xi,mi)−yi
∣∣∣2+ 1

n2

∑n
i=n1+1

{
max{0, ci−I(ti)Y (zi,xi,mi)}

}2

. Define the

following empirical objective function, for a supervised parameter α5, α6 ≥ 0,

L̂IY(IY, DIY ; ĜY) :=L̃IY(IY, DIY ; ĜY) + α5L̃5(IY; ĜY) + α6L̃6(IY). (3.2)

We also use FNN to estimate IY, denoted as ÎY, based on (3.2). See details

in Supplementary Material S2.6.

4. Convergence of CGAN-ICMA-SO

This section proves that the distribution of (X, Î
(1)
M (Ẑ,X)) (and respectively,

(X, Î
(0)
M (Ẑ,X))) converges in the total variation norm to the distribution of

(X,M1(X)) (and respectively, (X,M0(X))) as sample size n goes to infinity

within the mediator layer. Furthermore, we show that the distribution of

(X,M, Î
(1)
Y (Z,X,M)) (and respectively, (X,M, Î

(0)
Y (Z,X,M))) converges in

the same norm as the previous layer to the distribution of (X,M, Y1(X,M))

(and respectively, (X,M, Y0(X,M))) as sample size n goes to infinity within

the outcome layer. The regularity conditions and the proofs of theoretical

results are given in Supplementary Material S3 and S4, respectively.

Theorem 1. Under the assumptions (A.1)–(A.4) and (B.1)–(B.4), then, in

mediator layer,
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ESM
n ∪{ẑi}ni=1

‖pX,M1(X) − pX,Î(1)M (Ẑ,X)
‖L1 → 0, as n→∞, (4.1)

ESM
n ∪{ẑi}ni=1

‖pX,M0(X) − pX,Î(0)M (Ẑ,X)
‖L1 → 0, as n→∞, (4.2)

where the sample set SMn := {X = xi, T = ti,M = mi,Z = zi}ni=1.

Theorem 2. Under the assumptions (C.1)–(C.4) and (D.1)–(D.4), then, in

outcome layer

ESY
n ∪{zi}ni=1

‖pX,M,Y1(X,M) − pX,M,Î
(1)
Y (Z,X,M)

‖L1 → 0, as n1 →∞, (4.3)

ESY
n ∪{zi}ni=1

‖pX,M,Y0(X,M) − pX,M,Î
(0)
Y (Z,X,M)

‖L1 → 0, as n1 →∞. (4.4)

5. Implementation of CGAN-ICMA-SO

We implement CGAN-ICMA-SO using the ReLU as the activation function

for training the generators and discriminators. For a detailed description of

the training process, please refer to Supplementary Materials S5.

Once the trained model is obtained, we can use the generators ÎM and ÎY

to estimate ξ(t; xe), ζ(t; xe), and τ(xe) based on (2.7), (2.8), and (2.9) given

the covariates xe with X = xe. Specifically, we sample {ẑ1, ẑ2, . . . , ẑn̂} from

Ẑ ∼ PẐ and {z1, z2, . . . , zn} samples from Z ∼ PZ, we first feed xe and {ẑi}n̂i=1

into the inferential mediator generator (̂IM) to predict {ÎM(ẑi,xe)}n̂i=1 ={(
Î
(0)
M (ẑi,xe), Î

(1)
M (ẑi,xe)

)}n̂
i=1

, Next, we use the different component of {ÎM(ẑi,

xe)}n̂i=1 with xe and noise {zi}ni=1 as the inputs and feed it into the inferen-

tial outcome block (̂IY) to generate outcome samples ÎY(zj,xe, Î
(t)
M (ẑi,xe)) =(

Î
(0)
Y (zj,xe, Î

(t)
M (ẑi,xe)), Î

(1)
Y (zj,xe, Î

(t)
M (ẑi,xe))

)
for t ∈ {0, 1}, i ∈ {1, . . . , n̂},
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and j ∈ {1, . . . , n}. As a result, using these outcome samples, we can obtain

the estimation of ξ(t; xe), ζ(t; xe), and τ(xe) based on (2.7), (2.8), and (2.9).

6. Simulation study

This section presents simulation studies to evaluate the empirical performance

of the proposed method in estimating ICEs with survival time and compare

our procedure to five other approaches: linear regression combined with AFT

interaction model (LR+AFT), LR combined with two AFT interaction model

(LR+2AFT), interaction linear regression combined with another interaction

AFT model (ILR+IAFT), random forest combined with random survival for-

est (RF+RSF), and Bayesian additive regression trees (BART) model. See

details in Supplementary Material S6. To evaluate the performance, we utilize

three metrics:
√
ε̂PEHETE

,
√
ε̂PEHENDE

, and
√
ε̂PEHENIE

. See details in Supple-

mentary Material S7. A small value of performance metrics means an accurate

estimate. Table S1 in Supplementary Material S8 summarizes the hyperpa-

rameters in the network for this simulation. The model setting is as follows:

M(x, t) = 0.2 + 2|x2|+ 0.5x25 + 0.1x6 + t(x3 + 0.5x4x6)
3 + ε1,

Y (x, t,mt(x)) = 0.1 + 0.2 exp (x10) + 2|x5|+ t(x8 + x9)
2 + 0.5m2

t (x) + ε2,

Ỹ (x, t,mt(x)) = min(Y (x, t,mt(x)), C), δ = I{Y (x, t,mt(x)) < C},

where M(x, t) is a mediator; Y (x, t,mt(x)) is an event time; C is a censoring

time following U(0, a), U(0, a) is the uniform distribution on [0, a], a is set to
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yield the censoring rate (CR) of approximately 30% or 50%; Ỹ (x, t,mt(x)) is

the observed time, δ is the indicator variable; ε1 and ε2 are independent error

terms following N(0, 0.25); x = (x1, . . . , x10) is a 10-dimensional covariate

vector with x3 ∼ U(−1, 1), x4 ∼ B(0.4), and xj ∼ N(1.25, 0.4) for the rest,

B(0.4) is the Bernoulli distribution with a success probability of 0.4; the

distribution of treatment t is P (t = 1) ≈ 0.5.

To save space, we provide the details of the simulation implementation and

results in Supplementary Material S9. The results indicate that our method

consistently outperforms the other five methods with the smallest values for

the averaged
√
ε̂PEHETE

,
√
ε̂PEHENDE

, and
√
ε̂PEHENIE

.

7. Application: ADNI dataset

This section applies the proposed method to the ADNI dataset to further

confirm its utility reflected by the simulation studies in estimating ICEs with

survival outcomes. The five other methods are also applied to this dataset for

comparison. The ADNI-1 recruited approximately 800 subjects between 55

and 80 and had some extensions afterward. Detailed information about ADNI

can be found in the official website: http://adni.loni.usc.edu/. Biomarkers

collected in the ADNI study include the number of APOE-ε4 alleles, ventricle

volume, visit date, and several pre-treatment variables, such as age, gen-

der, education level, ethnicity, race, and marital status. We exclude missing
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data and focus on 718 patients from the ADNI-1 dataset with mild cogni-

tive impairment (MCI) to explore the underlying causal mechanism of the

neurodegenerative progression to dementia and possible heterogeneity.

Previous studies have shown that APOE-ε4 alleles are strongly associated

with ventricle expansion, further affecting AD development (Roussotte et al.,

2014; Sun et al., 2021; Thompson et al., 2004). Thus, the individualized causal

mediation analysis for the survival outcome is implemented as follows. The

treatment (T ) is defined as the presence of APOE-ε4 alleles (1 = presence).

The difference in the proportion of ventricle volume in the whole brain between

the 12th month and the baseline is defined as the observed mediator (M),

which is standardized before analysis. The observed time (Ỹ = min(Y,C)) is

the duration from the baseline to the date of the first diagnosis of AD or the

date of the last visit, whichever came first, with a CR of 56.7%. Age (x1),

gender (x2, 1 = male), education level (x3), ethnicity (x4, 1 = Hispanic or

Latino), race (x5, 1 = white), and marital status (x6, 1 = has been married)

are included as the baseline covariates.

The original dataset S of 718 samples is randomly split into ten mutually

exclusive folds S1, . . . , S10 of approximately equal size: 72 samples in each of

the first nine folds and 70 in the last. At each round k ∈ {1, . . . , 10}, we

train our model on S\Sk with 10,000 iterations and the same set of network
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hyperparameters as in the simulation. The trained model is then used to

predict the remaining samples in the testing set Sk. For robustness, we repeat

the analysis 100 times and report the average values of the predicted values.

Thus, we can make predictions for the whole dataset after ten rounds.
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Figure 2: The left panel displays predicted probability density functions of

mediators E[M(xei, 0)] and E[M(xei, 1)]. The right panel illustrates the esti-

mated values of E[M(xei, 1)]− E[M(xei, 0)] across patient indices.
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Figure 3: The predicted probability density functions of several

E[Y (xei, t
′,Mt(xei))], where t, t′ = 0, 1.

Using the notations defined in Supplementary Material S7, we first predict

E[M(xei, t)] and E[Y (xei, t
′,Mt(xei))] for each t, t′ ∈ {0, 1}, we denote the pre-

dicted conditional samples as {Î(t)M (ẑeh,xei), h = 1, . . . , n̂e} and {Î(t
′)

Y (zej,xei,
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7.1 Estimated values of E[M(xei, 1)]− E[M(xei, 0)]

Î
(t)
M (ẑeh,xei)), h = 1, . . . , n̂e j = 1, . . . , ne} for each t, t′ ∈ {0, 1}. Here,

we take n̂e = ne = 100. Then, the predicted values are Ê[M(xei, t)] =

1
n̂e

(∑n̂e

h=1 Î
(t)
M (ẑeh,xei)

)
and Ê[Y (xei, t

′,Mt(xei))] = 1
ne×n̂e

(∑ne

j=1

∑n̂e

h=1 Î
(t′)
Y (zej,

xei, Î
(t)
M (ẑeh,xei))

)
, for i = 1, 2, · · · , 718.

Figure 2 (left panel) and Figure 3 depict the predicted probability density

functions for the predicted values. Based on the prediction result, we can make

further discussion below.

7.1 Estimated values of E[M(xei, 1)]− E[M(xei, 0)]

Given the above predicted values of E[M(xei, t)], we can first estimate E[M(xei, 1)]

−E[M(xei, 0)], which represents the individualized effect of the presence of

APOE-ε4 alleles on the ventricle volume change. Figure 2 (right panel) shows

the predicted results for patients. The predicted density curve of E[M(xei, 1)]

is to the right of the predicted density curve of E[M(xei, 0)], and all the

predicted values of E[M(xei, 1)] − E[M(xei, 0)] are positive, suggesting that

the presence of APOE-ε4 alleles leads to an expanded proportion of ventricle

volume in the whole brain after 12 months. This finding is in accordance

with existing medical discoveries (Roussotte et al., 2014) that the presence of

APOE-ε4 alleles is strongly associated with ventricle expansion.
Predictions yielded 718 samples of E[M(xei, 0)], E[M(xei, 1)], and E[Y (xei, t

′,Mt(xei))]

for t, t′ = 0, 1, followed by the utilization of the scipy.stats.gaussian kde function from the

SciPy library in Python to obtain predicted probability density functions.
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7.2 Individualized causal effects (ICEs)

7.2 Individualized causal effects (ICEs)

Given the above predicted values of E[Y (xei, t
′,Mt(xei))], we estimate three

kinds of ICEs, with survival outcome for each of the 718 patients as follows:

ξ̂(1;xei) =
1

ne × n̂e

 ne∑
j=1

n̂e∑
h=1

Î
(1)
Y

(
zej ,xei, Î

(1)
M (ẑeh,xei)

)
−

ne∑
j=1

n̂e∑
h=1

Î
(1)
Y

(
zej ,xei, Î

(0)
M (ẑeh,xei)

) ,

ζ̂(0;xei) =
1

ne × n̂e

 ne∑
j=1

n̂e∑
h=1

Î
(1)
Y

(
zej ,xei, Î

(0)
M (ẑeh,xei)

)
−

ne∑
j=1

n̂e∑
h=1

Î
(0)
Y

(
zej ,xei, Î

(0)
M (ẑeh,xei)

) ,

τ̂(xei) =
1

ne × n̂e

 ne∑
j=1

n̂e∑
h=1

Î
(1)
Y

(
zej ,xei, Î

(1)
M (ẑeh,xei)

)
−

ne∑
j=1

n̂e∑
h=1

Î
(0)
Y

(
zej ,xei, Î

(0)
M (ẑeh,xei)

) ,

where i = 1, . . . , 718. The alternative decomposition with ξ(0; xei) and ζ(1; xei)

can also be used with similar procedures.
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Figure 4: Estimated values of three ICEs in terms of patient index.

Figure 4 presents the estimation results. We can draw two conclusions.

First, all values in each subfigure are negative, suggesting that the presence of

APOE-ε4 alleles tends to shorten the time to AD onset not only directly

but also indirectly by expanding the ventricle. This finding is consistent

with the evidence in the literature (Roussotte et al., 2014; Thompson et al.,

2004) and is confirmed by Figure 3, where the predicted density curve of

E[Y (xei, 1,M1(xei))] is to the left of E[Y (xei, 0,M0(xei))], E[Y (xei, 1,M0(xei))]

is to the left of E[Y (xei, 0,M0(xei))], and E[Y (xei, 1,M1(xei))] is to the left of
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7.3 Group average causal effects (GACEs) for subgroups

E[Y (xei, 1,M0(xei))]. Second, the magnitudes of individual NDE (ζ(1; xei))

are overall smaller than those of individual NIE (ξ(0; xei)), revealing that the

presence of APOE-ε4 alleles contributes to AD onset through the mediated

mechanism more significantly than through the direct path.

We also use the five other methods to estimate E[M(xei, 1)]−E[M(xei, 0)]

and the three ICEs defined above. See details in Supplementary Material S10.

7.3 Group average causal effects (GACEs) for subgroups

This section considers covariate-specific groups to examine the relationship

between causal effects and these covariates. We define GACEs as coarser

than ICEs for x1, x2, · · · , x6 as follows. Abrevaya et al. (2015) introduced

conditional average treatment effects (CATEs), and Knaus (2022) and Knaus

et al. (2021) further distinguished two cases of CATEs: group average treat-

ment effects and individualized average treatment effects. We now generalize

their ideas to define and estimate three kinds of GACEs for c = 1, 2, · · · , 6:

ξc,g(1;x) = E[Y (x, 1,M1(x))− Y (x, 1,M0(x))|xc = g],

ζc,g(0;x) = E[Y (x, 1,M0(x))− Y (x, 0,M0(x))|xc = g],

τc,g(x) = E[Y (x, 1,M1(x))− Y (x, 0,M0(x))|xc = g].

Among the six covariates (x1, x2, · · · , x6), x1 and x3 are continuous, while the

rest are discrete. We follow Knaus (2022) to begin by estimating the above

GACEs along discrete variables, such as gender (x2), ethnicity (x4), race (x5),

and marital status (x6), using the ordinary least squares (OLS) regression.

Table 1 presents the results of coefficients and their standard errors. Panel
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A shows the results of an OLS regression with a male dummy as a covariate,

τ(xei), ζ(0; xei), and ξ(1; xei) = β0 + β1malei + errori, where β0 represents

the GACE value for the female group, and β1 indicates how much the GACE

differs for the male group. Panel B replaces the male dummy in the regres-

sion with a Hispanic or Latino dummy, and similarly for Panel C and D.

As shown in Table 1, all coefficients are significant for Panel A, indicating

gender difference; the GACEs of males are less than those of females. For

example, the group average TE (τ2,g(x)) of males is −8.805 (−7.688− 1.117),

revealing that the APOE-ε4–AD association is weaker among females. In

contrast, the coefficient for the group average TE (τ4,g(x)) is insignificant for

Panel B, implying no notable heterogeneity in GACEs across ethnicity. Panel

C shows some racial differences. First, the coefficient of the group average

TE (τ5,g(x)) and the group average NIE (ξ5,g(1; x)) are significant, suggesting

that the effect heterogeneity related to race is manifested mainly by the in-

direct mechanism. Second, the magnitudes of GACEs in the white group are

greater than those of the non-white group, revealing that the APOE-ε4 –AD

association is stronger among the white group, aligning with existing medical

findings (Tang et al., 1998). Finally, Panel D shows that the effect hetero-

geneity related to marital status manifested mainly by the direct mechanism,

with a stronger APOE-ε4–AD association among married individuals.
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7.4 Nonparametric GACEs for continuous covariates

Table 1: Coefficients and standard errors (in parentheses) of GACEs
Panel τc,g(x) ζc,g(0; x) ξc,g(1; x)

A Constant −7.688** (0.096) −2.672** (0.062) −5.016** (0.053)

Male −1.117** (0.121) −0.924** (0.077) −0.192** (0.067)

B Constant −8.326** (0.063) −3.157** (0.039) −5.169** (0.031)

Hispanic or Latino −0.215 (0.543) −1.832** (0.413) 1.613** (0.246)

C Constant −7.649** (0.263) −3.057** (0.195) −4.593**(0.135)

White −0.726** (0.271) −0.158 (0.199) −0.568** (0.139)

D Constant −7.279** (0.119) −2.372** (0.081) −4.908** (0.066)

Married −1.352** (0.137) −1.071** (0.091) −0.281 (0.075)

Note: * and ** correspond to p < 0.05 and p < 0.01, respectively.

7.4 Nonparametric GACEs for continuous covariates

For the two continuous covariates, age (x1) and education level (x3), we use

kernel regression (Knaus, 2022) based on the R-package np (Hayfield and

Racine, 2008) to estimate GACEs. Figures 5 and 6 present the results.

Figure 5 shows that all three kinds of GACEs are associated with age,

and they all slightly increase with age, revealing that the incidence of AD

caused by APOE-ε4 alleles decreases with age. This result partly agrees with

the existing medical finding (Blacker et al., 1997) that the risk conferred by

APOE-ε4 was most marked in the 61 to 65 age group when the sample was

stratified on family mean age at onset. However, as shown in Figure 6, all

three kinds of GACEs are associated with education level, and they decrease

at first and then remain unchanged with the education level. These results
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reveal that the impact of APOE-ε4 alleles on the incidence of AD increases

initially, then remains unchanged with the education level.
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Figure 5: Effect heterogeneity for age. “Group average TE” means estimate

of τ1,g(x) and so on. Dotted lines indicate estimates of the average causal

effects and grey areas show the 95%-confidence intervals.
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Figure 6: Effect heterogeneity regarding education level, where “Group aver-

age TE” means estimate of τ3,g(x) and so on. Dotted lines indicate estimates

of the average causal effects and grey areas show 95%-confidence intervals.

We also model GACEs using the multivariate OLS regression with six

covariates and obtain the average causal effects based on ICEs. Detailed

results are presented in Supplementary Material S10.

8. Discussion

This study introduces CGAN-ICMA-SO, an innovative approach for estimat-

ing ICEs and exploring individualized causal mechanisms with survival out-

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0188



comes. Our model is built on the foundation of the CGAN framework and

our theoretical backing for CGAN-ICMA-SO is robust, as we underline the

convergence of the estimated distribution from our inferential conditional gen-

erator to the true conditional distribution. This convergence is assured under

certain mild conditions. Through simulation studies, we demonstrate that

CGAN-ICMA-SO outperforms five other cutting-edge methods, as measured

by the proposed metrics. We further employ CGAN-ICMA-SO to estimate

the ICEs of APOE-ε4 alleles on the time to AD and further investigate the

variation of these causal effects in relation to observable characteristics.

Several areas warrant future exploration. From a theoretical standpoint,

it would be beneficial to derive the convergence rate of the sampling distribu-

tion, thereby fortifying our results. Moreover, future research could produc-

tively extend our approach to accommodate more varied types of treatments,

such as categorical and continuous treatments. Finally, adapting our method

to accommodate multiple-mediator scenarios could significantly broaden its

applicability to complex causal mediation analysis.

While our study highlights the strengths and potential of CGAN-ICMA-

SO, it is essential to address its limitations. First, the complexity of the model

can make its interpretability challenging. Understanding its inner workings

could be non-trivial tasks. Second, training the model is computationally de-
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manding, and scaling it to larger datasets or more complex scenarios requires

significant resources. Finally, sensitivity analysis is crucial for assessing the

robustness of causal conclusions when the unconfoundedness assumption may

be violated. While methods like the E-value (VanderWeele and Ding, 2017)

quantify the minimum confounder strength required to explain an observed

treatment-outcome association, they cannot handle treatment-induced con-

founding in mediation analysis. Our study lacks such sensitivity analysis for

individualized mediation methods. Established strategies tailored for para-

metric mediation models focusing on average mediation causal effects encom-

pass several key approaches. This involves examining sensitivity parameters

such as the error correlation between the mediator and outcome models and

the proportion of unexplained variance in the outcome explained by intro-

ducing treatment-mediator interaction terms (Imai and Yamamoto, 2013).

Another strategy models the joint distribution of potential mediators and

outcomes, along with expected value of potential outcomes, using a Gaussian

copula model (Albert and Wang, 2015). Additionally, a method involves in-

corporating a latent binary variable U , which denotes the presence or absence

of an unmeasured confounder, into the exposure-mediator, exposure-outcome,

and mediator-outcome relationships simultaneously. It then compares the es-

timated causal effects with those derived by disregarding the existence of
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U under varying prior beliefs on the U -related coefficients (Zhou and Song,

2021). While recent methods have targeted ITE or CATE, Jesson et al. (2021)

presents a new parametric interval estimator for high-dimensional datasets.

This estimator can determine a range of possible CATE values when pro-

vided with a predefined bound for hidden confounding. Jin et al. (2023)

proposes a model-free framework of ITE, building upon ideas from conformal

inference. Their approach calculates a Γ-value, representing the minimum

strength of confounding necessary to invalidate the evidence for ITE. Oprescu

et al. (2023) introduces the B-Learner, a meta-learner capable of efficiently

establishing sharp bounds on the CATE function within specified constraints

on hidden confounding. Yin et al. (2024) proposes a marginal sensitivity

model and adapts conformal inference principles to estimate an ITE interval

at a given confounding strength. These methodologies predominantly address

ITE or CATE scenarios. Expanding these approaches to our individualized

mediation analysis method presents a promising direction for future research,

necessitating further exploration and in-depth investigation.

Supplementary Material

The online supplementary material contains the theoretical proofs, other tech-

nical details, and parts of numerical results.
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