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Abstract: In recent years, there has been growing interest among researchers in
modeling right-censored survival data with functional covariates. While existing
functional methods primarily focus on the Cox model, its proportional hazards
assumption can be challenging to verify and may be violated in practice. To ad-
dress this issue, we extend the ordinary differential equation (ODE) framework
for survival data to incorporate functional covariates and develop an inference
procedure for both scalar and functional parameters. Specifically, we establish
asymptotic normality and semiparametric efficiency for the scalar coefficient esti-
mators, enabling a valid inference procedure. Additionally, we derive an asymp-
totic simultaneous confidence band for the functional parameter. Simulations are

conducted to evaluate the finite sample performance of the proposed method.
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1. Introduction

Survival data analysis plays a crucial role in various fields, such as biomed-
ical science and reliability engineering, where it is used to investigate the
time until a specific event occurs, such as patient death in clinical appli-
cations or component failure in industrial settings. One major challenge
in analyzing survival data arises from censoring, which occurs when the
exact event times are not fully observed. Such censored time data are com-
monly encountered in longitudinal or periodic follow-up studies, such as
clinical trials. To address such challenge, various statistical methods have
been developed, including semiparametric models (Coxl, 1972; Kalbfleisch
and Prentice, |2002; |Zhong et al., [2022) and nonparametric models (Kaplan
and Meier, [1958; |Aalen), [1978). Among these, the Cox proportional hazard
model (Cox}, 1972)) is the most widely used and popular approach in survival
analysis. For more details, we refer readers to monographs Cox and Oakes
(1984); |[Fleming and Harrington| (1991).

Recently, [Tang et al.| (2022) introduces an ordinary differential equation
(ODE) notion for survival data which unifies many existing survival models,

where the cumulative function of event time 7" for some subject X, denoted



as Ax(t), satisfies the following ordinary differential equation

Ny (t) = ho(t) exp (ag X) qo{Ax (1)},
(1.1)

where A’y (t) is the derivative of Ax(t) with respect to argument ¢, ay is
a d-dimensional parameter, ho(:), qo(-) are two unspecified positive func-
tions and X is a d-dimensional covariate vector. Adopting such an ODE
notion not only enables a fast and straightforward estimation and inference
procedure, but also provides clear interpretation, since model directly
characterizes the evolution of hazard function over time.

In reality, covariates are not necessarily limited to scalar types. With
the rapid advancement of data collection and storage techniques, functional
data has achieved great attention among researchers in the field of survival
analysis in recent years. Take our real data application as an example, in
the Improving Care of Acute Lung Injury Patients study (Needham et al.|
2006)), patient data is collected at different stages during a follow-up study,
beginning at baseline when patients enroll in the study. Data is then col-
lected daily while they remain in the Intensive Care Unit until hospital dis-
charge or death. In addition to baseline covariates such as age and gender,
researchers also record each patient’s overall organ failure status, measured

by the sequential organ failure assessment (SOFA) score, daily during their



stay in the Intensive Care Unit. The SOFA score is a type of functional data

(Yao et al 2005; |Li and Hsing, 2010; Zhang and Wang, 2016; Wang et al.|

2016)). According to previous research (Gellar et al., 2014), these organ

failure status measurements are believed to have an intrinsic impact on the
patients’ survival time. To accommodate such survival data with functional

covariates, the Cox model has first been extended by researchers such as

(Chen et al. (2011) and Gellar et al.| (2015]). Kong et al. (2018) studied the

functional Cox regression model that incorporates functional principal com-

ponent analysis approach to extract functional features from surface data

and derived some asymptotic properties. |Qu et al. (2016) further inves-

tigated the optimality property including semiparametric efficiency under

a reproducing kernel Hilbert space framework. Hao et al.| (2021]) derived

the joint asymptotic distribution of both finite-dimensional and infinite-
dimensional estimators for the functional Cox model and studied a partial

likelihood ratio test. The functional Cox model is also extended to accom-

modate various scenarios. Shi et al| (2022) adapted the functional Cox

model to interval censored data and |Spreafico and leval (2021)); [Spreafico

(2023) considered a similar model with multiple functional predic-

tors and recurrent events. [Yang et al|(2021) studied a weighted functional

Cox model under a somewhat different settings. Jiang et al.| (2020)) studied




the relationship between functional covariates and time-to-event outcome
through a quantile regression model. Other semiparametric models are also
extended to analyze functional survival data. |Cui et al.| (2021) proposed
the additive functional Cox model. Clearly, there is a growing interest in
incorporating functional data into survival analysis models.

However, a significant limitation of the aforementioned methods is their
heavy reliance on the proportional hazard assumption, which presumes that
covariates have a parallel effect on the conditional log hazard functions.
This assumption is often violated in real-world applications (Aalen and
Gjessing, [2001). |Jiang et al. (2020) demonstrated that when the propor-
tional hazard assumption is violated, the functional Cox model can lead to
misinterpretation of results. To alleviate these limitations, one may con-
sider extending other semiparametric models such as the accelerated failure
time model (AFT) (Ritov}, 1990; Wei, 1992; Kalbfleisch and Prentice, 2002)),
the proportional odds model (Bennett, 1983; Murphy et al., [1997)), or the
linear transformation model (Cheng et al., [1995; (Chen et al., 2002; Zeng
and Lin) 2007a) to accommodate functional data. Among these, the AFT
model has gained popularity due to its straightforward interpretation and
improved stability in accounting for unobserved features. A key advantage

of AFT models is that they directly assume a regression relationship be-



tween the transformed event time in relation to the covariates. However, it
is important to note that the AFT model may not accurately capture the
underlying distribution of survival times, posing a challenge for practition-
ers in selecting the most appropriate model for their specific applications.

Hence, in this paper, we aim to extend model to accommodate
functional covariates and develop appropriate estimation and inference pro-
cedure. Specifically, we assume the conditional cumulative function with
a vector covariate X and a functional covariate Z(-), denoted as Ax z(%),

satisfies the following ordinary differential equation

Al){,z(t) = ho(t) exp {aOTX +/ ﬁo(s)Z(s)ds} qo{Axz(t)}, »
K 1.2

Ax z(0) =0,

where (y(+) is an unknown coefficient function and K is a compact subset
of R. Obviously, model degenerate to model when [y = 0. It is
also worth noting that model is general enough to cover many existing
functional model. For instance, if ¢(-) = 1, the model reduces to
functional Cox model (Qu et al.; 2016; Kong et al.; 2018; Hao et al., 2021).
If h(-) = 1, the model becomes a functional version of accelerated
failure time model. Additionally, the model includes a functional

version of transformation model in Zeng and Lin (2007b), that is,

o(T) = —al X — /Kﬁo(s)Z(s)ds + e, (1.3)



where ¢(+) is a monotone function and ¢ is an unobserved random variable
independent of X and Z(:). The relationship between the model
and is given by [)h(u)du = exp {p(t)}, fo_lntl/q(u)du = G(1)
and G(t) is the survival function of exp(e). It is worth-noting that the
entire trajectory of Z has an overall effect on the survival time 7', which
is different from the transformation model with time-varying effect in [Zeng
and Lin (2007b)), where the hazard function at time ¢ is only affected by
the current value of Z at time t¢.

Additionally, we propose a sieve maximum likelihood estimator that
operates within a spline-based sieve space and provide theoretical justifica-
tion for the large sample properties of our estimators. The main challenge
involved in deriving the estimators and establishing their asymptotic prop-
erties is the fact that the functional parameter poses theoretical challenges
due to the different convergence rates of the estimators for the scalar co-
efficient oy and functional coefficient y(-). The rate of convergence for
the functional parameter not only depends on the sample size, but also on
the choice of B-spline basis. Consequently, the method by Ding and Nan
(2011) and [Tang et al.| (2022)) can not be applied for deriving the asymptotic
distribution of functional parameters. We further establish the asymptotic

distribution of the functional parameter and construct both pointwise confi-



dence intervals and simultaneous confidence bands, which have not yet been
addressed by Tang et al.| (2022). These contributions represent significant
advancements of this paper compared to their work.

Overcoming the aforementioned challenges, we proved the convergence
rate of both the finite-dimensional and infinite-dimensional parameters within
the framework of ordinary differential equations. This theoretical analy-
sis provides valuable insights into the performance of our estimators. We
also derive the information bound for the finite-dimensional parameter and
demonstrate that our proposed estimators asymptotically achieve this in-
formation bound and thus are semiparametric efficient. Furthermore, we
derive the asymptotic distribution for the infinite-dimensional parameter,
facilitating the construction of both pointwise and simultaneous confidence
bands.

The rest of the paper is organized as follows. In Section 2, we discuss
the model identifiability and introduce the estimation approach. Section
3 states the regularity conditions and develop the asymptotic properties,
including consistency and semiparametric efficiency, of the estimators. Sec-
tion 4 presents simulation results to evaluate finite sample properties of the
estimators. Section 5 illustrates an application of proposed method to a

sequential organ failure assessment data. In Section 6, we make some con-



cluding remarks and discuss several topics for future research. Technical

proofs are relegated to the Supplementary material.

2. Methodology

2.1 Identifiability

We first address the issue of model identification. Note that the equation
still holds if ¢, ¢ are replaced by ¢ + ¢; and € 4 ¢; for some con-
stant ¢y, or @, a, B, € are replaced by cop, coav, co3, coe for some constant cs.
Therefore, a location and scale normalization is essential for identifiability.
Follow the discussion on page 169 of Horowitz| (1996), the model param-
eters are identifiable up to a location and scale normalization if X has at
least one continuously distributed component with a non-zero coefficient.

Correspondingly, we provide the sufficient conditions for identifiablity of

the model (1.2)) as follows:

Proposition 1. Suppose there exists at least one covariate in X with a
nonzero a coefficient. If (q(-),c, B(+), h(-)) specify the same survival func-
tion of T as (cj(-),d,ﬁ(-),ﬁ(-)), then there exists constants ¢y and ¢y such
that & = cia,f = clﬁ,fot h(s)ds = ¢, {fot h(s)ds}c1 and fot G Y(s)ds =

o {fg qil(s)ds}q.



2.2 Estimation

Remark 1. If one of h(:) or ¢(-) is specified, then scalar parameter « and
functional parameter [((-) are identifiable. When h(:) and ¢(-) are both
unspecified, Proposition ]| shows that (a, 3,log h(-),log q(-)) is identifiable
up to a location and scale normalization. Therefore, we can set log h(t*) = ¢
for some fixed t* and ¢ and set the first element of a to be 1 to guarantee the
identifiability of the model. To interpret the coefficient which is set to be
1, we need to confirm that the first variable has a significant impact on the
survival time T with prior or domain knowledge. The remaining coefficients
are then interpreted as the relative impact of their corresponding variables

on T', compared to the first variable.

2.2 Estimation

We set v(t) = log{h(t)}, g(t) = log{q(t)} to overcome the nonnegative
constraint on h(-) and ¢(-). Without loss of generality, we suppose the

support of () is K = [0, 1]. Then the model (1.2)) becomes

Ny (1) = exp [aTX+ | 562385 +9(0) + 9{ax20}] -
0 2.1

AX7z(O) - O
We consider right-censored data. Denote the event time as T and the
censoring time as C. Let Y = min{T,C} being the observed time and

A = I(T < C) be the censoring indicator with A = 1 if the survival



2.2 Estimation

time is uncensored and A = 0 otherwise. We denote covariate U =
(X, Z(s),s € K). Suppose the observations W; = (Y;, A, U;),i = 1,...,n,
are independent and identically distributed copies of (Y, A,U) from the
model . Throughout this paper, we assume that the survival time
T and censored time C are independent conditional on the covariates U.
Then the log-likelihood of the parameters 0 = (o, 5(+), (), g(:)) based on

observations {W;,i = .,n} under model (2.1)) is given by

n

L(0) = 12{ [TX+//3 (3)ds +4(¥5) + g, (¥ 0))
A (¥} (22)

where Ay, (t,0) denotes the solution of the ODE parameterized by
0 = (o, 5(-),7(-),9()).

We estimate function 5(-),7(:),g(-) by using B-spline functions. Let
I, = {ti,...,tx,,} with 0 = ¢y < t; < ... < tg,, = 1 be a sequence
of knot which partition [0,1] into K, ; subintervals. Let S,(p;,I1}) with
p1 > 1 denote the space of splines of order [p;] with knot sequence IT},
where [-] represents the ceiling function. Similarly, let TI2 and II3 be two
set of partition points of [0, 7] and [0, u| respectively, where 7 and p will be
specified in Section 3. Let S, (po,I12) and S,,(p3, IT3) with py > 1,p3 > 1

denote the space of splines of order [ps]|, [ps] with knot sequence I, and



2.2 Estimation

I15 respectively. Let ¢,;, = K,; + [p;] + 1 for ¢ = 1,2,3, then Corollary
4.10 of |[Schumaker| (2007 shows that there exists three sets of B-spline basis
{B],1<j < gui}, {B].1<j < gu2} and {BY,1 < j < gu3} such that
for any (s) € S,(p1,11L), ¥ € Su(p2,112) and § € S,(ps, II3), we may
write B(t) = Y101 a; B) (1), 4(t) = Y53 b;B] (1) and g(t) = So5m% ¢; BI().

We consider the following spaces as in [Shen and Wong (1994): FF' =

n

{ ina]Bﬁ() Z(Jlni ]2<l } I“pz — {Z%Qb B’Y ) Egnibj2<ln} and
Grs = {Zq"3c]Bg t): Z;’"i §<l } where [,, grows with n slowly enough,

and [, — 0o as n — 00. Denote the sieve space by

O, = BXFPxIP2xGrs = {0 = (o, B,7,9) € B,f € FP*, vy € P2 g € GP*} |

n

where B is a known compact set of R%. Our estimator is obtained by max-
imizing the likelihood in the sieve space, that is, 0, = (dn, anyn, f]n> =
arg maxgpeo, l»(6), which is equivalent to find a (d + gn1 + ¢u2 + Gn3)-

dimensional vector 6 = (c, a, b, ¢)” that maximizes the following log-likelihood

function
1 qn,1 dn,2
L@ = = AL o’ X, B! (s)Zi(s)d b;B) (t
(0) - ; { + Z a; / s+ Z
dn,3

+chB§{AU¢<Yi,e>}} A (V).

J=1

(2.3)

where Ay, (t,0) is the solution of the following ODE equation with respect

to A(+)



dn,1

1 qn,2 dn,3
N(t) = exp [aTXZ- +> a / Bl (s)Zi(s)ds+ Y _b;BJ(t)+ > ¢;BI{A(1)}
j=1 0 j=1 j=1

A(0) = 0.

It should be noted that the objective function involves the so-
lution of a parameterized ordinary differential equation for which there is
no closed-form solution. This distinguishes it from most conventional op-
timization problems. We use a gradient-based optimization algorithm to
optimize , which is also adopted by [Tang et al.| (2022)) for survival data
with scalar covariates. It’s worth mentioning that in our proposed esti-
mation method, the log-likelihood of each individual is solely determined
by its own observations. This allows for the simultaneous evaluation of
independent data points. Consequently, the proposed method is more com-
putationally efficient than the partial likelihood-based estimation method
because the partial likelihood of each individual involves computing the

at-risk set.

3. Theoretical Results

To ensure identifiability, we suppose the first coordinate of X is continuous
and constrain the first element of o be 1. We denote @ = (1,&) and

X = (X1, X_1). For simplicity of notation, we replace @ by a and X_; by

Y

(2.4)



X. To study the large-sample properties of the parameter estimators, we
require the following regularity conditions on the true parameters, covarites
and censoring mechanism. Let F,([a, b]) be the class of functions f on [a, b]
with bounded derivatives fU), j = 1,..., k and the k—th derivative satisfies

the m-Holder continuity condition:
[fO(s) = fR O < M|s —t|™, Vst € [a,b],

where M is a positive constant, k is a positive integer and m € (0, 1] with

p =k +m. We also assume the following regularity conditions:

(A1) The event time 7" and censoring time C' are conditionally independent

given U.

(A2) Study ends at time 7 < oo and there exists a positive constant
do, such that P(Y > 7|U) > &y almost surely with respect to the
probability measure Fy;, where Fy; represents the joint distribution of

U= (X,Z()).

(A3) (i) The covariate X takes values in a bounded subset X C R¢ and
satisfies F(X) =0 and E(XXT) is nonsingular.
(il) The functional covariate Z takes value in a compact subset Z C

Ly(K) space, the Lo-norm of Z is bounded almost surely and satisfies

E{Z(s)} =0 for all s € K, where K is a compact subset of R.



(A4)

(A5)

(A6)

(A7)

The true parameter o belongs to the interior of a compact set B C R¢.

The true functional parameter f, belongs to F7* ([0, 1]) , where p; > 2.
The true functions vy and gg belongs to I'?2 := {~ € FP2([0,7]) :

y(t*) = 0} and GP* := FP3([0, pu]) with ps > 2, ps > 3, respectively.

(i) For FP', Let I1(0,1) = {t;,s = 0,..., K} + 1} denote the corre-
sponding knot sequence satisfies maxo<;<x1 [tiy1 — t;| = O(n™1) and
K! = O(n") for v, € (0,0.5).

(ii) For T?2 Let 11(0,7) = {t;;i = 0,..., K2 + 1} denote the corre-
sponding knot sequence satisfies maxo<;<g2 |tiy1 — ;| = O(n™?) and
K? = O(n*?) for vy € (0,0.5).

(iii) For &3 Let T1(0,u) = {t;;i = 0,..., K2 4+ 1} denote the corre-
sponding knot sequence satisfies maxg<;<xs |tis1 — t;| = O(n™) and

K} = O(n") for v3 € (0,0.5).

Define L(t) = [) exp{yo(s)}ds,V = ol X + [, fo(s)Z(s)ds and R =
eV L(Y'). There exists a constant 7; € (0,1) independent of R and V/,

such that

Var {aTX + /01 B(S)Z(s)ds‘R, v}

> mE {aTX+/OIB(s)Z(3)ds}2 ‘R,V (3.1)




holds almost surely for any o € B and g € FP*.

(A8) Let ¥(t,z, 2,0, 8,7,9) = aTX+f01 B(8)Z(s)ds+y(t)+g{A(t,z,z,, B,7,9)}
Denote the functional derivatives with respect to v(-) and g(-) along
the direction v(-), w(-) at the true parameter by g, (¢, u)[v] and
Yoy (t, u)[w], respectively. Then there exists a constant 7, € (0,1)

such that

(B {t, (Y, U)ol (Y, D) [w]|A = 1}]°

< mE{ (6, (L D))" 1A = 1} B{ (46,(v.0)u])* 1A = 1}

Condition (A1) is a common assumption when analyzing right-censored
data, which ensures the censoring mechanism does not bring extra informa-
tion. Condition (A2) means that the study is conducted in a time period
[0,7] and P(Y > 7|U) > dg almost surely implies that there are some sub-
ject still alive at the end of the study, which implies Ag(7) < —logdp =: .
Condition (A3) is the same as that in |Qu et al. (2016)), which requires the
boundedness of covariates. Condition (A4) and (A5) impose constraints on
the parameter spaces, where the latter requires smoothness of the functional
parameters in order to control the error rate of spline approximation. Sim-
ilar assumptions is often adopted in spline estimation, see [Huang (1999));

Ding and Nan (2011); Tang et al,| (2022). Condition (A7) is assumed to



guarantee the identifiability of oy and Fy(+), similar assumptions is also
used by [Wellner and Zhang| (2007); Ding and Nan (2011). Condition (A8)
is essential for the identifiability of v and g when they are both unspecified.

Denote the counting process martingale associated with the process
{I{r<sy,t > 0} with R defined in Assumption (A7), as M(t) = AI{(R <
t)}—fot I{R > s}dAy(s), where Ay(t) is the solution of A}j(t) = exp {go(]\o)}
with Ag(0) = 0. We first derive the efficient score function and the infor-

mation bound for the estimation of «p.

Theorem 1. Under Conditions (A1)-(A5) and (A7), the efficient score

Junction I, for the estimation ayg s

/{ (gé{f\o(t)}exp {go(f\o(t))} t+ 1) (X - /01 h;(s)z(s)ds)

— gy {Aol0)} exp {o(Ao(®) / BS(L (s ))ds + By (L (se))

— b Ao(®)} exp { g0 (Ro() } / exp{—go(s >}h;<s>ds+h;(Aoa))}dM(t),

where (hy, b, hy) is defined by
argmin, B{al| [ Aol exo {go<Ao<R>>} re) (x= [ oz

~ g {Bo(R)} exp {an( Aol R / ho(L~Y(se™V))ds + hy(L ™ (Re™))

B N Ao(R) N
— b Ro(R)} exp { go(Ao(R)) } / exp{~go(s) s(s)ds + hs(Ro(R)

)

and the domain T will be defined in Supplementary materials. The infor-



mation bound for ag is

I(ag) = E {152 (3.2)

[e7s) Y
where 292 = xx” for any vector v € RP.

Remark 2. It is challenging to obtain an explicit solution for the efficient
direction (hj, h} h}) due to the integrations; however, we can find their
solutions numerically. For example, when gy = 0, it reduces to a functional
Cox model, which is the most widely used model in practice, and in this

case, the direction is h; = 0. Then the direction hj,h3 in Theorem 2

)

which is equivalent to the directions given by Qu et al. (2016) in functional

minimizes

E {A HX _ /hl(s)Z(s)ds +hy(Y)

Cox model whose explicit form of hi, hj are challenging to derive. However,
as suggested by Qu et al.| (2016), their numerical solutions can be obtained
using the population version of the ACE algorithm. (Wang and Murphy),

2004)

Next, we give the convergence rate of the estimator. We measure the
accuracy of &, by the usual Euclidean norm and measure the accuracy of Bn
by the weighted Ly-norm || 5, —follc, where |82 = [ [ B(s)C(s, t)3(t)dsdt,

C(s,t) = E{Z(s)Z(t)}. The accuracy of (-) is measured by the Ly-norm



15 = All2 == [y {v(t)}2dt] 2 Note that the parameters g and «, 3,7
are bundled together, which makes the information of separate parameters
difficult to derive. Therefore, for any given («,f3,7), we investigate the
composite function g {A(-,-,-, a, ,7,9)} directly as a function from R x

X x Ly([0,1]). To be specific, define the collection of functions

HP? = {g(-,a,ﬁ,y):((t,u,oz,ﬁ,’y)Ig{/\(t,u;%ﬁa%g)}ate [0, 7],

we X x Ly([0,1]),a eRLA € FP y e T g e gm}

for any ((-, a, B,7) € HP3, define its norm as:

- 1/2
Hdw%ﬁszZLAlwmm%:K@mwhﬁvﬁwM@UMEAW] |

Theorem 2 (Rate of convergence). Suppose conditions (A1)-(A8) hold and
the information bound I(ap) defined in Theorem []] is nonsingular, then we

have

18 = Bolle: = Op(n™), 15 = ll2 = Oy(n ™)
[é6.a.8.9) = 6ot 0. B0,20)|, = 0o, (33)

. 1—max{v1,v2,v3}
where ¢ = min{pyvy, pova, pavs, TR
Theorem [2f gives the convergence rate of sieve MLE. When vy = 15 =

*min{pv,lg”})j

vs =V, p1 = Py = p3 = p, the convergence rate becomes O,(n

which is the same convergence rate as the case in (Ding and Nan| 2011)



when there is no functional parameter. If we further assume v = 5= +1’ then
the convergence rate becomes Op(nfﬁ), which is the optimal convergence
rate in nonparametric regression (Stone, |1985)).

The next theorem will show that the sieve MLE of the scalar parameter

remains asymptotically normal and reach n'/? convergence rate despite the

slower convergence rate than O(n'/?) of the nonparametric part.

Theorem 3 (Semi-parametric efficiency). Suppose Conditions (A1)-(A8)

hold and the information bound I(cy) defined in Theorem[]] is nonsingular.

If vy, v9, 13 satisfies 5 +2) <1 < 2p1, m <1 < 2p2, 2(p3+1) <1y <
1 1 2min{y,ve} 1
5557 V3 > 30571 T V3> 5 max{piv1, pate} and max{vy, v, 3} <

2min{vy, vy, 13}, then we have
V(6w — ag) 2 N(0, I(ag) ™), (3.4)
where 3 denotes convergence in distribution.

Theorem |3 shows that &,, achieves the information bound displayed in
Theorem (1} Therefore, it is asymptotically efficient among all the regular
estimators. The restrictions on v and p is relatively mild and can be satisfied
when 1, 5 and v3 are not far away from each other. For example, if 1y =
vy = v3 = v, the restrictions hold when 2—+1 <v< g

To derive the asymptotic simultaneous confidence band for the estimate



of By, we need the following additional regularity condition. For any s,t €

0,1], let K(s) = E{Z(s)|X},s € [0,1] and
K(s,t) = E[{Z(s) — K(s)} {Z(t) — K(t)}].
In what follows, we further assume

(A9) K(s,t) satisfies the Sack-Ylvisaker conditions with boundary condi-

tion K(-,0) = 0.

The Sack-Ylvisaker conditions (Sacks and Ylvisaker, (1966 imposes
smoothness restrictions on the covariance kernel functions, which is a com-
mon assumption in the literature of functional linear regression (Yuan and
Cai, [2010; Ritter et al. [1995). |Ritter et al. (1995) reveals that under Sack-
Ylvisaker conditons, the reproducing kernel Hilbert space induced by kernel
function K, denoted as H(K), only differs from Sobolev space W3[0, 1] by
a finite dimensional space. This relationship between H(K) and W10, 1] is
essential for our theoretical development. The rigorous definition of Sack-

Ylvisaker conditions are deferred to Appendix.

Theorem 4 (Asymptotic simultaneous confidence band). Assume the con-

ditions in Theorem@ hold, we further assume <1y < max{—% +

_1
2p1+2
2c — vs, %}, the true function Py vanishes at the boundary of [0,1]. Then

there ezists a Gaussian process {Gn(s),s € (0,1)} with E{G,(s)} = 0,



VarlGpn(s)] = 1 and E[G,(s)G,(t)] = G, (s,t) such that

Vit { Buls) = Bols) } ,

sup — Gn(s)| — 0,
SO0 |\ (B Bs)

T
where BP(s) = <Blﬂ(s), . ,Bfm(s)) is a B-spline basis for estimating By

and Jy, is @ gna1 X qn1 matriz. The exact form of Gy(s,t) and J, will be

gwen in Supplementary materials.

Theorem {4f enables us to construct both asymptotic simultaneous con-
fidence band and pointwise confidence intervals for 8y. Let z,, be the a-th
percentile of sup,¢ (g 1) Gn(s), then an asymptotic 100(1 —«)% simultaneous

confidence band for 3y would be

A 1
Buls) = —ojany/ (R T B(s)
Buls) + %zamm (B (s)}7J 1B (s)

and the asymptotic 100(1-a)% pointwise confidence interval can be con-

structed as

5 1

Bas) ﬁza_amM{Bﬁ(s)}wﬂ1B£<s>,

4 L, T 7-1
Buls) —ﬁza/Q,M{Bﬁ(s)} JUBE(s)|.

where z, ,, is the a-th percentile of standard normal distribution. It is easy

to know from the definition that z,, > 2, ,. Therefore, the simultaneous



confidence band is usually strictly larger wider than the confidence interval.
The implementary detail of constructing confidence interval and confidence

band are deferred to Supplementary materials.

Remark 3. In practice, one can use the empirical distribution of Gaussian
process with zero mean, unit variance and covariance function G,(s,t) to
approximate the distribution of G, (s). Subsequently, the a-th percentile
of sup,e (o) G,(s) can be approximated by the empirical percentile of its
numerous realizations. It is important to note that G,, is only related to n
through the B-spline basis B?. This observation suggests that a different
sample size with the same B-spline basis may result in the same distribution

of G,,.

4. Simulation

In this section, we conduct simulations under different settings to evaluate
the finite sample performance of the proposed method. We also provide
numerical comparisons with the Functional Cox model (FCox) proposed by
Qu et al.| (2016). The estimation procedure is implemented by Python with
some existing packages. Specifically, we construct the B-spline functions us-
ing the “Bspline” function of the “scipy.interpolate” package and solve or-

dinary differential equations using “solve_ivp” function of “scipy.integrate”



package.

For the functional covariates, we employ a design similar to that used
by (Qu et al.| (2016]), where the functional covariates Z(-) is generated using
a set of cosine basis functions, that is, Z(s) = S0, &Uror(s), where Uy
are independently sampled from the uniform distribution on [—3,3], & =
(=112 ¢, = 1 and ¢y = V2cos(kms) for k > 1. The coefficient
function By(s) is set as Bo(s) = Y200, (—1)Fk=3/2¢;(s). The scalar covariates
X follows standard normal distribution truncated at +2. The event time

T is generated based on model:
1
Ax z(t) = ho(t) exp {aOTX +/0 BO(S)Z(S)ds} g {Axz(t)}.

We consider the following settings for ag, ho(+) and go(+):

Setting 1: g = 1,qo(t) = 1 and hy(t) = 1 + ¢3;

Setting 2: ap = (1,1),q0(t) = 1 and ho(t) = 1+ t3;

Setting 3: ag = 1,ho(t) = 1 and ¢o(t) = exp{2/(1 +1)};

Setting 4: ag = (1,1),ho(t) = 1 and qo(t) = exp{2/(1 + 1) };

Setting 5: ag = (1,1), ho(t) = 1+log(1+2¢3) and qo(t) = 1+log(1+t).

In setting 1 the functional Cox model is specified, we set ¢(t) = 1 as

fixed and leave h(t) unspecified. In setting 3 the functional AFT model is



specified, we set h(t) = 1 as fixed and leave ¢(t) unspecified. In setting 2,
4 and 5, we set aps = 1 in order to make the model identifiable and leave
both h(t) and ¢(t) as unspecified. In each setting, the censoring time C'
is generated from an independent uniform distribution U(0, ¢), where the
value of c is selected to achieve censoring rates ranging from approximately
15% to 30%. The sample size varies from 200, 400, 600 and 800. We estimate
Bp using a cubic B-spline with (nl/ °] interior nodes that are equally spaced
at the interval [0,1]. We fit log h(t) and log ¢(t) by cubic B-spline with
[n!/T] interior nodes that are equally spaced at the interval [0, 7] and [0, 1]
respectively, where p is chosen large enough to cover the value of estimated
cumulative hazard at all observed event time.

The simulation results are based on 1000 replications. Table[ljand Table
compare the performance of the proposed estimators for the scalar and
functional parameter with MPLE-based estimators under setting 1 and 2.
BIAS is calculated as the difference between the mean of the estimates and
the true value. SE represents the standard error of parameter estimators,
SEE is the mean of standard error estimator obtained by inverting the
estimated information matrix. CP represents the corresponding coverage
proportion of the 95% confidence interval. The results shows that under

setting 1 and 2 (when the proportional harzard assumption is satisfied), the



Table 1: Simulation results for scalar parameter o and comparison with

MPLE based method under setting 1 and 2.

Censoring rate ~ 15% Censoring rate ~ 30%
Setting n  Method BIAS SE SEE CP BIAS SE SEE CP
1 200 FunODE 0.045 0.102 0.112 0.958 0.037 0.112 0.123 0.961

MPLE 0.010 0.100 0.100 0.942 0.024 0.114 0.103 0.925

400 FunODE 0.021 0.071 0.074 0.958 0.011 0.077 0.081 0.972

MPLE -0.005 0.066 0.069 0.957 0.004 0.080 0.076 0.943

600 FunODE 0.021 0.059 0.059 0.941 0.009 0.062 0.065 0.957

MPLE 0.001 0.062 0.056 0.933 0.001 0.063 0.066 0.952

800 FunODE 0.009 0.048 0.050 0.960 0.005 0.053 0.055 0.951

MPLE 0.000 0.051 0.048 0.936 0.000 0.055 0.058 0.938

2 200 FunODE 0.023 0.152 0.146 0.922 0.055 0.154 0.168 0.941

MPLE 0.004 0.100 0.099 0.951 0.019 0.113 0.103 0.920

400 FunODE 0.009 0.096 0.101 0.966 0.005 0.119 0.110 0.921

MPLE -0.010 0.074 0.069 0.941 -0.005 0.076 0.074 0.954

600 FunODE 0.012 0.066 0.073 0.960 -0.008 0.073 0.083 0.963

MPLE -0.007 0.063 0.056 0.935 -0.004 0.061 0.0568 0.942

800 FunODE -0.004 0.058 0.063 0.957 -0.006 0.062 0.071 0.955

MPLE -0.002 0.053 0.048 0.940 -0.002 0.054 0.050 0.923




Table 2: Simulation results for functional parameter 5 and comparison with

MPLE based method under setting 1 and 2.

Censoring rate = 15% Censoring rate =~ 30%

Setting n  Method IMSE RIMSE IMSE RIMSE
1 200 FunODE 0.037 0.052 0.052 0.061
MPLE 0.027 0.039 0.030 0.042

400 FunODE 0.017 0.024 0.020 0.028

MPLE 0.018 0.025 0.019 0.027

600 FunODE 0.015 0.021 0.016 0.022

MPLE 0.013 0.019 0.015 0.021

800 FunODE 0.010 0.014 0.012 0.017

MPLE 0.011 0.015 0.013 0.018

2 200 FunODE 0.052 0.073 0.057 0.080
MPLE 0.028 0.040 0.031 0.043

400 FunODE 0.024 0.034 0.025 0.035

MPLE 0.027 0.038 0.023 0.032

600 FunODE 0.018 0.025 0.021 0.029

MPLE 0.021 0.030 0.018 0.026

800 FunODE 0.013 0.018 0.016 0.022

MPLE 0.012 0.017 0.017 0.024




Table 3: Simulation results for scalar parameter o under setting 3-5.

Censoring rate ~ 15%

Censoring rate ~ 30%

Setting n BIAS SE SEE CP BIAS SE SEE CP
3 200 0.023 0.129 0.127 0.898 0.012  0.134 0.144 0.926
400 0.018 0.090 0.086 0.951 -0.001  0.090 0.098 0.950

600 0.012 0.066 0.073 0.960 -0.008  0.073 0.083 0.963

800 -0.004 0.058 0.063 0.957 -0.006 0.062 0.071 0.955

4 200 0.023 0.152 0.146 0.922 0.055  0.154 0.168 0.941
400 0.009 0.096 0.101 0.966 0.005  0.119 0.110 0.921

600 0.008 0.077 0.082 0.963 0.009  0.086 0.083 0.939

800 0.002 0.067 0.067 0.943 <0.001 0.073 0.073 0.949

5 200 0.041 0.101 0.111 0.925 -0.009  0.105 0.126 0.942
400 0.031 0.068 0.074 0.941 0.030  0.071 0.084 0.954

600 0.028 0.053 0.059 0.946 0.023  0.057 0.066 0.960

800 0.018 0.045 0.052 0.944 0.009  0.051 0.057 0.947




proposed estimators are strongly competitive with MPLE-based estimators.
Table [3] summarizes the performance of estimator for the scalar parameter
in general settings. As shown in Table [1] and [3] in all the five settings,
the mean of estimators is close to the true value and both the standard
error (SE) and the mean of standard error estimator (SEE) decreases as
the sample size n increases with censoring rate fixed, thereby confirming
the consistency of our proposed estimator. Furthermore, the SE exhibit
lower values at the 15% censoring rate compared to the values observed at
the 30% censoring rate. This observation aligns with the expected outcome,
as a lower censoring rate typically leads to more accurate estimates.

Besides, we calculated information matrix through inverting the em-
pirical Hessian matrix of log-likelihood and then construct confidence
interval based on Theorem |3l When the sample size exceeds 400, the cor-
responding coverage probability closely aligns with the theoretical level of
95%, indicating that a normal approximation is suitable.

Table [2| shows the IMSE and relative integrated mean square error
(RIMSE) for the functional parameter estimator B (+), which are defined as
follows: IMSE(3) = [ {3(s) — Bo(s)}2ds and RIMSE(3) = IMSE(8)/||0l13.
As shown in Table [2] the IMSE exhibits an obvious decreasing trend as the

sample size n increases in all five scenarios. The empirical coverage proba-
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Figure 1: Pointwise coverage probability with sample size n = 400, 600, 800.
The dashed red line represents the theoretical value of 0.95, while the dashed
green line represents the empirical coverage probability of the pointwise

confidence interval.

bilities of simultaneous confidence band for 3 are deferred to supplementary
materials.

Figure (1] displays the empirical pointwise coverage probability of the
pointwise confidence interval under setting 5 for sample size n = 400 and
800. The dash green line represents empirical coverage probability of point-
wise confidence interval for each point on [0, 1] and the dash red line repre-
sents the theoretical value 0.95. The results demonstrate that the empirical
coverage probability closely aligns with its theoretical value as sample size

mcreases.



5. Real Data Example

This section presents an application of the proposed functional transfor-
mation model to the Sequential Organ Failure Assessment (SOFA) data
acquired from the Improving Care of Acute Lung Injury Patients (ICAP)
study (Needham et al., 2006; |Gellar et al., 2014)). The ICAP study aims to
investigate the long-term complications of patients who suffer from acute
lung injury/acute respiratory distress syndrome (ALI/ARDS). A total of
520 subjects were involved in the study, with 237 (46%) of them passing
away in the intensive care unit (ICU). Our analysis excludes 107 individuals
(31.0%) who died within the first five days in ICU. The number of days in
ICU till death are regarded as the event time.

During the ICAP study, patient data were collected upon admission
to the ICU and then daily throughout their hospitalization. One of the
measurements recorded daily was the Sequential Organ Failure Assessment
(SOFA) score, which provides an assessment of a patient’s overall organ
function status. The SOFA score includes six components: respiratory, car-
diovascular, coagulation, liver, renal, and neurological, with scores ranging
from O to 4. Higher scores indicate poorer organ function. The SOFA score
is calculated as the sum of these six component scores and ranges from 0

to 24.



Table 4: Estimation results of regression coefficients for the SOFA data

analysis.

a S.E.  p-value

Age 0.204 0.065 <0.001

Gender(male=1) -0.023 0.100 0.822

To account for the evolution of each subject’s organ function, we con-
sider their history of SOFA scores during the first five days as a functional
covariate denoted as Z(s), where s represents the number of days since
admission to the ICU. The model also include age, gender and Charlson
co-morbidity index as three scalar covariates. Both scalar and functional
covariates are centralized in order to satisfy Condition (A3). We adopted
cubic spline functions with [n'/°] equally spaced interior nodes to estimate
the functional coefficient and with [n'/7] equally spaced interior nodes to
estimate the nuisance parameter v and g. The estimated functional coeffi-
cient 3(s) is shown in Figure 2 we can see that 5(s) shows an increasing
trend and the 95% confidence band does not cover the horizontal line when
s € [0.6, 1], suggesting that higher SOFA score in the fourth and fifth day
may lead to higher mortality rate.

The estimation of the regression coefficients of the scalar covariates is



summarized in Table [ Alongside the functional covariate, the analysis
reveals that patients’ age has a positive impact on the hazard, whereas
gender does not show a significant association with the hazard of death.
This agrees with the recent study by Gellar et al.| (2015)). Further discussions

about our real data example is deferred to supplementary materials.

95% confidence band

——
p—
=Ll

00 02 04 06 08 10

Figure 2: The estimated functional coefficient 3 (-) and the pointwise 95%

confidence interval.

6. Concluding Remarks

In this paper, we have proposed a general class of survival model for ana-
lyzing right-censored survival data, which encompasses the functional Cox

model and functional accelerated failure time model as special cases. Within



the ODE framework, we developed a sieve maximum likelihood estimator.
Our rigorous theoretical analysis has revealed the large sample properties
of the estimators, including their consistency and semiparametric efficiency.
Furthermore, we have derived an asymptotic simultaneous confidence band
for the functional parameter, ensuring the reliability of inferences.

Our proposed method can be readily extended to handle scenarios with
high dimensional scalar covariates. However, in high-dimensional settings,
interpretability becomes a major concern and the classical large sample
theories may lead to invalid inference, as the Fisher information matrix is
singular when the number of scalar parameters d > n. Therefore, detecting
and analyzing sparsity in survival models with functional covariate in high

dimensional settings would also be an intriguing avenue for future research.

7. Supplementary Materials

Supplementary materials contain implementation details of our estimators,
some additional simulation results and the auxiliary lemmas and technical

proofs for propositions and theorems of the paper.
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