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Abstract: In recent years, there has been growing interest among researchers in

modeling right-censored survival data with functional covariates. While existing

functional methods primarily focus on the Cox model, its proportional hazards

assumption can be challenging to verify and may be violated in practice. To ad-

dress this issue, we extend the ordinary differential equation (ODE) framework

for survival data to incorporate functional covariates and develop an inference

procedure for both scalar and functional parameters. Specifically, we establish

asymptotic normality and semiparametric efficiency for the scalar coefficient esti-

mators, enabling a valid inference procedure. Additionally, we derive an asymp-

totic simultaneous confidence band for the functional parameter. Simulations are

conducted to evaluate the finite sample performance of the proposed method.
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1. Introduction

Survival data analysis plays a crucial role in various fields, such as biomed-

ical science and reliability engineering, where it is used to investigate the

time until a specific event occurs, such as patient death in clinical appli-

cations or component failure in industrial settings. One major challenge

in analyzing survival data arises from censoring, which occurs when the

exact event times are not fully observed. Such censored time data are com-

monly encountered in longitudinal or periodic follow-up studies, such as

clinical trials. To address such challenge, various statistical methods have

been developed, including semiparametric models (Cox, 1972; Kalbfleisch

and Prentice, 2002; Zhong et al., 2022) and nonparametric models (Kaplan

and Meier, 1958; Aalen, 1978). Among these, the Cox proportional hazard

model (Cox, 1972) is the most widely used and popular approach in survival

analysis. For more details, we refer readers to monographs Cox and Oakes

(1984); Fleming and Harrington (1991).

Recently, Tang et al. (2022) introduces an ordinary differential equation

(ODE) notion for survival data which unifies many existing survival models,

where the cumulative function of event time T for some subject X, denoted
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as ΛX(t), satisfies the following ordinary differential equation
Λ′

X(t) = h0(t) exp
(
αT
0X

)
q0{ΛX(t)},

ΛX(0) = 0,

(1.1)

where Λ′
X(t) is the derivative of ΛX(t) with respect to argument t, α0 is

a d-dimensional parameter, h0(·), q0(·) are two unspecified positive func-

tions and X is a d-dimensional covariate vector. Adopting such an ODE

notion not only enables a fast and straightforward estimation and inference

procedure, but also provides clear interpretation, since model (1.1) directly

characterizes the evolution of hazard function over time.

In reality, covariates are not necessarily limited to scalar types. With

the rapid advancement of data collection and storage techniques, functional

data has achieved great attention among researchers in the field of survival

analysis in recent years. Take our real data application as an example, in

the Improving Care of Acute Lung Injury Patients study (Needham et al.,

2006), patient data is collected at different stages during a follow-up study,

beginning at baseline when patients enroll in the study. Data is then col-

lected daily while they remain in the Intensive Care Unit until hospital dis-

charge or death. In addition to baseline covariates such as age and gender,

researchers also record each patient’s overall organ failure status, measured

by the sequential organ failure assessment (SOFA) score, daily during their
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stay in the Intensive Care Unit. The SOFA score is a type of functional data

(Yao et al., 2005; Li and Hsing, 2010; Zhang and Wang, 2016; Wang et al.,

2016). According to previous research (Gellar et al., 2014), these organ

failure status measurements are believed to have an intrinsic impact on the

patients’ survival time. To accommodate such survival data with functional

covariates, the Cox model has first been extended by researchers such as

Chen et al. (2011) and Gellar et al. (2015). Kong et al. (2018) studied the

functional Cox regression model that incorporates functional principal com-

ponent analysis approach to extract functional features from surface data

and derived some asymptotic properties. Qu et al. (2016) further inves-

tigated the optimality property including semiparametric efficiency under

a reproducing kernel Hilbert space framework. Hao et al. (2021) derived

the joint asymptotic distribution of both finite-dimensional and infinite-

dimensional estimators for the functional Cox model and studied a partial

likelihood ratio test. The functional Cox model is also extended to accom-

modate various scenarios. Shi et al. (2022) adapted the functional Cox

model to interval censored data and Spreafico and Ieva (2021); Spreafico

et al. (2023) considered a similar model with multiple functional predic-

tors and recurrent events. Yang et al. (2021) studied a weighted functional

Cox model under a somewhat different settings. Jiang et al. (2020) studied
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the relationship between functional covariates and time-to-event outcome

through a quantile regression model. Other semiparametric models are also

extended to analyze functional survival data. Cui et al. (2021) proposed

the additive functional Cox model. Clearly, there is a growing interest in

incorporating functional data into survival analysis models.

However, a significant limitation of the aforementioned methods is their

heavy reliance on the proportional hazard assumption, which presumes that

covariates have a parallel effect on the conditional log hazard functions.

This assumption is often violated in real-world applications (Aalen and

Gjessing, 2001). Jiang et al. (2020) demonstrated that when the propor-

tional hazard assumption is violated, the functional Cox model can lead to

misinterpretation of results. To alleviate these limitations, one may con-

sider extending other semiparametric models such as the accelerated failure

time model (AFT) (Ritov, 1990; Wei, 1992; Kalbfleisch and Prentice, 2002),

the proportional odds model (Bennett, 1983; Murphy et al., 1997), or the

linear transformation model (Cheng et al., 1995; Chen et al., 2002; Zeng

and Lin, 2007a) to accommodate functional data. Among these, the AFT

model has gained popularity due to its straightforward interpretation and

improved stability in accounting for unobserved features. A key advantage

of AFT models is that they directly assume a regression relationship be-
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tween the transformed event time in relation to the covariates. However, it

is important to note that the AFT model may not accurately capture the

underlying distribution of survival times, posing a challenge for practition-

ers in selecting the most appropriate model for their specific applications.

Hence, in this paper, we aim to extend model (1.1) to accommodate

functional covariates and develop appropriate estimation and inference pro-

cedure. Specifically, we assume the conditional cumulative function with

a vector covariate X and a functional covariate Z(·), denoted as ΛX,Z(t),

satisfies the following ordinary differential equation
Λ′

X,Z(t) = h0(t) exp

{
αT
0X +

∫
K

β0(s)Z(s)ds

}
q0{ΛX,Z(t)},

ΛX,Z(0) = 0,

(1.2)

where β0(·) is an unknown coefficient function and K is a compact subset

of R. Obviously, model (1.2) degenerate to model (1.1) when β0 ≡ 0. It is

also worth noting that model (1.2) is general enough to cover many existing

functional model. For instance, if q(·) ≡ 1, the model (1.2) reduces to

functional Cox model (Qu et al., 2016; Kong et al., 2018; Hao et al., 2021).

If h(·) ≡ 1, the model (1.2) becomes a functional version of accelerated

failure time model. Additionally, the model (1.2) includes a functional

version of transformation model in Zeng and Lin (2007b), that is,

φ(T ) = −αT
0X −

∫
K

β0(s)Z(s)ds+ ε, (1.3)
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where φ(·) is a monotone function and ε is an unobserved random variable

independent of X and Z(·). The relationship between the model (1.2)

and (1.3) is given by
∫ t

0
h(u)du = exp {φ(t)},

∫ − ln t

0
1/q(u)du = G−1(t)

and G(t) is the survival function of exp(ε). It is worth-noting that the

entire trajectory of Z has an overall effect on the survival time T , which

is different from the transformation model with time-varying effect in Zeng

and Lin (2007b), where the hazard function at time t is only affected by

the current value of Z at time t.

Additionally, we propose a sieve maximum likelihood estimator that

operates within a spline-based sieve space and provide theoretical justifica-

tion for the large sample properties of our estimators. The main challenge

involved in deriving the estimators and establishing their asymptotic prop-

erties is the fact that the functional parameter poses theoretical challenges

due to the different convergence rates of the estimators for the scalar co-

efficient α0 and functional coefficient β0(·). The rate of convergence for

the functional parameter not only depends on the sample size, but also on

the choice of B-spline basis. Consequently, the method by Ding and Nan

(2011) and Tang et al. (2022) can not be applied for deriving the asymptotic

distribution of functional parameters. We further establish the asymptotic

distribution of the functional parameter and construct both pointwise confi-
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dence intervals and simultaneous confidence bands, which have not yet been

addressed by Tang et al. (2022). These contributions represent significant

advancements of this paper compared to their work.

Overcoming the aforementioned challenges, we proved the convergence

rate of both the finite-dimensional and infinite-dimensional parameters within

the framework of ordinary differential equations. This theoretical analy-

sis provides valuable insights into the performance of our estimators. We

also derive the information bound for the finite-dimensional parameter and

demonstrate that our proposed estimators asymptotically achieve this in-

formation bound and thus are semiparametric efficient. Furthermore, we

derive the asymptotic distribution for the infinite-dimensional parameter,

facilitating the construction of both pointwise and simultaneous confidence

bands.

The rest of the paper is organized as follows. In Section 2, we discuss

the model identifiability and introduce the estimation approach. Section

3 states the regularity conditions and develop the asymptotic properties,

including consistency and semiparametric efficiency, of the estimators. Sec-

tion 4 presents simulation results to evaluate finite sample properties of the

estimators. Section 5 illustrates an application of proposed method to a

sequential organ failure assessment data. In Section 6, we make some con-
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cluding remarks and discuss several topics for future research. Technical

proofs are relegated to the Supplementary material.

2. Methodology

2.1 Identifiability

We first address the issue of model identification. Note that the equation

(1.3) still holds if φ, ε are replaced by φ + c1 and ε + c1 for some con-

stant c1, or φ, α, β, ε are replaced by c2φ, c2α, c2β, c2ε for some constant c2.

Therefore, a location and scale normalization is essential for identifiability.

Follow the discussion on page 169 of Horowitz (1996), the model param-

eters are identifiable up to a location and scale normalization if X has at

least one continuously distributed component with a non-zero coefficient.

Correspondingly, we provide the sufficient conditions for identifiablity of

the model (1.2) as follows:

Proposition 1. Suppose there exists at least one covariate in X with a

nonzero α coefficient. If (q(·), α, β(·), h(·)) specify the same survival func-

tion of T as
(
q̃(·), α̃, β̃(·), h̃(·)

)
, then there exists constants c1 and c2 such

that α̃ = c1α, β̃ = c1β,
∫ t

0
h̃(s)ds = c2

{∫ t

0
h(s)ds

}c1
and

∫ t

0
q̃−1(s)ds =

c2

{∫ t

0
q−1(s)ds

}c1
.
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2.2 Estimation

Remark 1. If one of h(·) or q(·) is specified, then scalar parameter α and

functional parameter β(·) are identifiable. When h(·) and q(·) are both

unspecified, Proposition 1 shows that (α, β, log h(·), log q(·)) is identifiable

up to a location and scale normalization. Therefore, we can set log h(t∗) = c

for some fixed t∗ and c and set the first element of α to be 1 to guarantee the

identifiability of the model. To interpret the coefficient which is set to be

1, we need to confirm that the first variable has a significant impact on the

survival time T with prior or domain knowledge. The remaining coefficients

are then interpreted as the relative impact of their corresponding variables

on T , compared to the first variable.

2.2 Estimation

We set γ(t) = log{h(t)}, g(t) = log{q(t)} to overcome the nonnegative

constraint on h(·) and q(·). Without loss of generality, we suppose the

support of β(·) is K = [0, 1]. Then the model (1.2) becomes
Λ′

X,Z(t) = exp

[
αTX +

∫ 1

0

β(s)Z(s)ds+ γ(t) + g{ΛX,Z(t)}
]
,

ΛX,Z(0) = 0.

(2.1)

We consider right-censored data. Denote the event time as T and the

censoring time as C. Let Y = min{T,C} being the observed time and

∆ = I(T ≤ C) be the censoring indicator with ∆ = 1 if the survival
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2.2 Estimation

time is uncensored and ∆ = 0 otherwise. We denote covariate U =

(X,Z(s), s ∈ K). Suppose the observations Wi = (Yi,∆i, Ui), i = 1, . . . , n,

are independent and identically distributed copies of (Y,∆, U) from the

model (2.1). Throughout this paper, we assume that the survival time

T and censored time C are independent conditional on the covariates U .

Then the log-likelihood of the parameters θ = (α, β(·), γ(·), g(·)) based on

observations {Wi, i = 1, . . . , n} under model (2.1) is given by

ln(θ) =
1

n

n∑
i=1

{
∆i

[
αTXi +

∫ 1

0

β(s)Zi(s)ds+ γ(Yi) + g{ΛUi
(Yi, θ)}

]
−ΛUi

(Yi, θ)

}
, (2.2)

where ΛUi
(t, θ) denotes the solution of the ODE (2.1) parameterized by

θ = (α, β(·), γ(·), g(·)).

We estimate function β(·), γ(·), g(·) by using B-spline functions. Let

Π1
n = {t1, . . . , tKn,1} with 0 = t0 < t1 < . . . < tKn,1 = 1 be a sequence

of knot which partition [0, 1] into Kn,1 subintervals. Let Sn(p1,Π
1
n) with

p1 ≥ 1 denote the space of splines of order ⌈p1⌉ with knot sequence Π1
n,

where ⌈·⌉ represents the ceiling function. Similarly, let Π2
n and Π3

n be two

set of partition points of [0, τ ] and [0, µ] respectively, where τ and µ will be

specified in Section 3. Let Sn(p2,Π
2
n) and Sn(p3,Π

3
n) with p2 ≥ 1, p3 ≥ 1

denote the space of splines of order ⌈p2⌉, ⌈p3⌉ with knot sequence Π2 and
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2.2 Estimation

Π3 respectively. Let qn,i = Kn,i + ⌈pi⌉ + 1 for i = 1, 2, 3, then Corollary

4.10 of Schumaker (2007) shows that there exists three sets of B-spline basis

{Bβ
j , 1 ≤ j ≤ qn,1}, {Bγ

j , 1 ≤ j ≤ qn,2} and {Bg
j , 1 ≤ j ≤ qn,3} such that

for any β̂(s) ∈ Sn(p1,Π
1
n), γ̂ ∈ Sn(p2,Π

2
n) and ĝ ∈ Sn(p3,Π

3
n), we may

write β̂(t) =
∑qn,1

j=1 ajB
β
j (t), γ̂(t) =

∑qn,2

j=1 bjB
γ
j (t) and ĝ(t) =

∑qn,3

j=1 cjB
g
j (t).

We consider the following spaces as in Shen and Wong (1994): Fp1
n ={∑qn,1

j=1 ajB
β
j (t) :

∑qn,1

j=1 a
2
j ≤ ln

}
, Γp2

n =
{∑qn,2

j=1 bjB
γ
j (t) :

∑qn,2

j=1 b
2
j ≤ ln

}
and

Gp3
n =

{∑qn,3

j=1 cjB
g
j (t) :

∑qn,3

j=1 c
2
j ≤ ln

}
. where ln grows with n slowly enough,

and ln → ∞ as n→ ∞. Denote the sieve space by

Θn = B×Fp1
n ×Γp2

n ×Gp3
n = {θ = (α, β, γ, g) : α ∈ B, β ∈ Fp1

n , γ ∈ Γp2
n , g ∈ Gp3

n } ,

where B is a known compact set of Rd. Our estimator is obtained by max-

imizing the likelihood in the sieve space, that is, θ̂n =
(
α̂n, β̂n, γ̂n, ĝn

)
:=

argmaxθ∈Θn ln(θ), which is equivalent to find a (d + qn,1 + qn,2 + qn,3)-

dimensional vector θ = (α, a, b, c)T that maximizes the following log-likelihood

function

ln(θ) =
1

n

n∑
i=1

[
∆i

{
αTXi +

qn,1∑
j=1

aj

∫ 1

0

Bβ
j (s)Zi(s)ds+

qn,2∑
j=1

bjB
γ
j (t)

+

qn,3∑
j=1

cjB
g
j {ΛUi

(Yi, θ)}
}
− ΛUi

(Yi, θ)

]
, (2.3)

where ΛUi
(t, θ) is the solution of the following ODE equation with respect

to Λ(·)
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
Λ′(t) = exp

[
αTXi +

qn,1∑
j=1

aj

∫ 1

0

Bβ
j (s)Zi(s)ds+

qn,2∑
j=1

bjB
γ
j (t) +

qn,3∑
j=1

cjB
g
j {Λ(t)}

]
,

Λ(0) = 0.

(2.4)

It should be noted that the objective function (2.3) involves the so-

lution of a parameterized ordinary differential equation for which there is

no closed-form solution. This distinguishes it from most conventional op-

timization problems. We use a gradient-based optimization algorithm to

optimize (2.2), which is also adopted by Tang et al. (2022) for survival data

with scalar covariates. It’s worth mentioning that in our proposed esti-

mation method, the log-likelihood of each individual is solely determined

by its own observations. This allows for the simultaneous evaluation of

independent data points. Consequently, the proposed method is more com-

putationally efficient than the partial likelihood-based estimation method

because the partial likelihood of each individual involves computing the

at-risk set.

3. Theoretical Results

To ensure identifiability, we suppose the first coordinate of X is continuous

and constrain the first element of α be 1. We denote α = (1, α̃) and

X = (X1, X−1). For simplicity of notation, we replace α̃ by α and X−1 by
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X. To study the large-sample properties of the parameter estimators, we

require the following regularity conditions on the true parameters, covarites

and censoring mechanism. Let Fp([a, b]) be the class of functions f on [a, b]

with bounded derivatives f (j), j = 1, . . . , k and the k−th derivative satisfies

the m-Hölder continuity condition:

|f (k)(s)− f (k)(t)| ≤M |s− t|m, ∀s, t ∈ [a, b],

where M is a positive constant, k is a positive integer and m ∈ (0, 1] with

p = k +m. We also assume the following regularity conditions:

(A1) The event time T and censoring time C are conditionally independent

given U .

(A2) Study ends at time τ < ∞ and there exists a positive constant

δ0, such that P (Y > τ |U) ≥ δ0 almost surely with respect to the

probability measure FU , where FU represents the joint distribution of

U = (X,Z(·)).

(A3) (i) The covariate X takes values in a bounded subset X ⊆ Rd and

satisfies E(X) = 0 and E(XXT ) is nonsingular.

(ii) The functional covariate Z takes value in a compact subset Z ⊆

L2(K) space, the L2-norm of Z is bounded almost surely and satisfies

E{Z(s)} = 0 for all s ∈ K, where K is a compact subset of R.
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(A4) The true parameter α0 belongs to the interior of a compact set B ⊆ Rd.

(A5) The true functional parameter β0 belongs to Fp1 ([0, 1]) , where p1 ≥ 2.

The true functions γ0 and g0 belongs to Γp2 := {γ ∈ Fp2 ([0, τ ]) :

γ(t∗) = 0} and Gp3 := Fp3([0, µ]) with p2 ≥ 2, p3 ≥ 3, respectively.

(A6) (i) For Fp1
n , Let Π(0, 1) = {ti, i = 0, . . . , K1

n + 1} denote the corre-

sponding knot sequence satisfies max0≤i≤K1
n
|ti+1 − ti| = O(n−ν1) and

K1
n = O(nν1) for ν1 ∈ (0, 0.5).

(ii) For Γp2
n Let Π(0, τ) = {ti, i = 0, . . . , K2

n + 1} denote the corre-

sponding knot sequence satisfies max0≤i≤K2
n
|ti+1 − ti| = O(n−ν2) and

K2
n = O(nν2) for ν2 ∈ (0, 0.5).

(iii) For Gp3
n Let Π(0, µ) = {ti, i = 0, . . . , K3

n + 1} denote the corre-

sponding knot sequence satisfies max0≤i≤K3
n
|ti+1 − ti| = O(n−ν3) and

K1
n = O(nν3) for ν3 ∈ (0, 0.5).

(A7) Define L(t) =
∫ t

0
exp{γ0(s)}ds, V = αT

0X +
∫ 1

0
β0(s)Z(s)ds and R =

eVL(Y ). There exists a constant η1 ∈ (0, 1) independent of R and V ,

such that

Var

{
αTX +

∫ 1

0

β(s)Z(s)ds
∣∣∣R, V}

≥ η1E

[{
αTX +

∫ 1

0

β(s)Z(s)ds

}2 ∣∣∣R, V ]
(3.1)
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holds almost surely for any α ∈ B and β ∈ Fp1 .

(A8) Let ψ(t, x, z, α, β, γ, g) = αTX+
∫ 1

0
β(s)Z(s)ds+γ(t)+g{Λ(t, x, z, α, β, γ, g)}.

Denote the functional derivatives with respect to γ(·) and g(·) along

the direction v(·), w(·) at the true parameter by ψ′
0γ(t, u)[v] and

ψ′
0g(t, u)[w], respectively. Then there exists a constant η2 ∈ (0, 1)

such that

[
E
{
ψ′
0γ(Y, U)[v]ψ

′
0g(Y, U)[w]|∆ = 1

}]2
≤ η2E

{(
ψ′
0γ(Y, U)[v]

)2 |∆ = 1
}
E
{(
ψ′
0g(Y, U)[w]

)2 |∆ = 1
}
.

Condition (A1) is a common assumption when analyzing right-censored

data, which ensures the censoring mechanism does not bring extra informa-

tion. Condition (A2) means that the study is conducted in a time period

[0, τ ] and P (Y > τ |U) ≥ δ0 almost surely implies that there are some sub-

ject still alive at the end of the study, which implies Λ0(τ) ≤ − log δ0 =: µ .

Condition (A3) is the same as that in Qu et al. (2016), which requires the

boundedness of covariates. Condition (A4) and (A5) impose constraints on

the parameter spaces, where the latter requires smoothness of the functional

parameters in order to control the error rate of spline approximation. Sim-

ilar assumptions is often adopted in spline estimation, see Huang (1999);

Ding and Nan (2011); Tang et al. (2022). Condition (A7) is assumed to
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guarantee the identifiability of α0 and β0(·), similar assumptions is also

used by Wellner and Zhang (2007); Ding and Nan (2011). Condition (A8)

is essential for the identifiability of γ and g when they are both unspecified.

Denote the counting process martingale associated with the process{
I{R≤t}, t ≥ 0

}
with R defined in Assumption (A7), as M(t) = ∆I{(R ≤

t)}−
∫ t

0
I{R ≥ s}dΛ̃0(s), where Λ̃0(t) is the solution of Λ̃′

0(t) = exp
{
g0(Λ̃0)

}
with Λ̃0(0) = 0. We first derive the efficient score function and the infor-

mation bound for the estimation of α0.

Theorem 1. Under Conditions (A1)-(A5) and (A7), the efficient score

function l̇∗α0
for the estimation α0 is∫ {(

g′0{Λ̃0(t)} exp
{
g0(Λ̃0(t))

}
t+ 1

)(
X −

∫ 1

0

h∗
1(s)Z(s)ds

)
− g′0{Λ̃0(t)} exp

{
g0(Λ̃0(t))

}∫ t

0

h∗
2(L

−1(se−V ))ds+ h∗
2(L

−1(se−V ))

− g′0{Λ̃0(t)} exp
{
g0(Λ̃0(t))

}∫ Λ̃0(t)

0

exp{−g0(s)}h∗
3(s)ds+ h∗

3(Λ̃0(t))

}
dM(t),

where (h∗
1,h

∗
2,h

∗
3) is defined by

argmin
(h1,h2,h3)∈T

E

{
∆
∥∥∥ [g′0{Λ̃0(R)} exp

{
g0(Λ̃0(R))

}
R + 1

](
X −

∫ 1

0

h1(s)Z(s)ds

)
− g′0{Λ̃0(R)} exp

{
g0(Λ̃0(R))

}∫ R

0

h2(L
−1(se−V ))ds+ h2(L

−1(Re−V ))

− g′0{Λ̃0(R)} exp
{
g0(Λ̃0(R))

}∫ Λ̃0(R)

0

exp{−g0(s)}h3(s)ds+ h3(Λ̃0(R))
∥∥∥2
}

and the domain T will be defined in Supplementary materials. The infor-
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mation bound for α0 is

I(α0) = E
{
l∗⊗2
α0

}
, (3.2)

where x⊗2 = xxT for any vector x ∈ Rp.

Remark 2. It is challenging to obtain an explicit solution for the efficient

direction (h∗
1,h

∗
2,h

∗
3) due to the integrations; however, we can find their

solutions numerically. For example, when g0 ≡ 0, it reduces to a functional

Cox model, which is the most widely used model in practice, and in this

case, the direction is h∗
3 = 0. Then the direction h∗

1,h
∗
2 in Theorem 2

minimizes

E

{
∆

∥∥∥∥X −
∫

h1(s)Z(s)ds+ h2(Y )

∥∥∥∥2
}
,

which is equivalent to the directions given by Qu et al. (2016) in functional

Cox model whose explicit form of h∗
1,h

∗
2 are challenging to derive. However,

as suggested by Qu et al. (2016), their numerical solutions can be obtained

using the population version of the ACE algorithm. (Wang and Murphy,

2004)

Next, we give the convergence rate of the estimator. We measure the

accuracy of α̂n by the usual Euclidean norm and measure the accuracy of β̂n

by the weighted L2-norm ∥β̂n−β0∥C , where ∥β∥2C =
∫ ∫

β(s)C(s, t)β(t)dsdt,

C(s, t) = E {Z(s)Z(t)} . The accuracy of γ(·) is measured by the L2-norm

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0180



∥γ̂ − γ∥2 :=
[∫ τ

0
{γ(t)}2dt

]1/2
. Note that the parameters g and α, β, γ

are bundled together, which makes the information of separate parameters

difficult to derive. Therefore, for any given (α, β, γ), we investigate the

composite function g {Λ(·, ·, ·, α, β, γ, g)} directly as a function from R ×

X × L2([0, 1]). To be specific, define the collection of functions

Hp3 =
{
ζ(·, α, β, γ) : ζ(t, u, α, β, γ) = g {Λ(t, u, α, β, γ, g)} , t ∈ [0, τ ],

u ∈ X × L2([0, 1]), α ∈ Rd, β ∈ Fp1 , γ ∈ Γp2 , g ∈ Gp3
}

for any ζ(·, α, β, γ) ∈ Hp3 , define its norm as:

∥ζ(·, α, β, γ)∥2 =
[∫

X×L2([0,1])

∫ τ

0

|ζ(t, u, α, β, γ)|2dΛ0(t, u)dFU(u)

]1/2
.

Theorem 2 (Rate of convergence). Suppose conditions (A1)-(A8) hold and

the information bound I(α0) defined in Theorem 1 is nonsingular, then we

have

∥β̂ − β0∥C = Op(n
−c), ∥γ̂ − γ0∥2 = Op(n

−c),∥∥∥ζ̂(·, α̂, β̂, γ̂)− ζ0(·, α0, β0, γ0)
∥∥∥
2
= Op(n

−c), (3.3)

where c = min{p1ν1, p2ν2, p3ν3, 1−max{ν1,ν2,ν3}
2

}.

Theorem 2 gives the convergence rate of sieve MLE. When ν1 = ν2 =

ν3 = ν, p1 = p2 = p3 = p, the convergence rate becomes Op(n
−min{pν, 1−ν

2
}),

which is the same convergence rate as the case in (Ding and Nan, 2011)
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when there is no functional parameter. If we further assume ν = 1
2p+1

, then

the convergence rate becomes Op(n
− p

2p+1 ), which is the optimal convergence

rate in nonparametric regression (Stone, 1985).

The next theorem will show that the sieve MLE of the scalar parameter

remains asymptotically normal and reach n1/2 convergence rate despite the

slower convergence rate than O(n1/2) of the nonparametric part.

Theorem 3 (Semi-parametric efficiency). Suppose Conditions (A1)-(A8)

hold and the information bound I(α0) defined in Theorem 1 is nonsingular.

If ν1, ν2, ν3 satisfies 1
2(p1+2)

< ν1 <
1

2p1
, 1

2(p2+2)
< ν2 <

1
2p2

, 1
2(p3+1)

< ν3 <

1
2p3

, ν3 >
1

2(p3−1)
−2min{ν1,ν2}

p3−1
, ν3 >

1
2
−max{p1ν1, p2ν2} and max{ν1, ν2, ν3} <

2min{ν1, ν2, ν3}, then we have

√
n(α̂n − α0)

D→ N(0, I(α0)
−1), (3.4)

where
D→ denotes convergence in distribution.

Theorem 3 shows that α̂n achieves the information bound displayed in

Theorem 1. Therefore, it is asymptotically efficient among all the regular

estimators. The restrictions on ν and p is relatively mild and can be satisfied

when ν1, ν2 and ν3 are not far away from each other. For example, if ν1 =

ν2 = ν3 = ν, the restrictions hold when 1
2p+1

< ν < 1
2p
.

To derive the asymptotic simultaneous confidence band for the estimate
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of β0, we need the following additional regularity condition. For any s, t ∈

[0, 1], let K(s) = E{Z(s)|X}, s ∈ [0, 1] and

K(s, t) = E [{Z(s)−K(s)} {Z(t)−K(t)}] .

In what follows, we further assume

(A9) K(s, t) satisfies the Sack-Ylvisaker conditions with boundary condi-

tion K(·, 0) = 0.

The Sack-Ylvisaker conditions (Sacks and Ylvisaker, 1966) imposes

smoothness restrictions on the covariance kernel functions, which is a com-

mon assumption in the literature of functional linear regression (Yuan and

Cai, 2010; Ritter et al., 1995). Ritter et al. (1995) reveals that under Sack-

Ylvisaker conditons, the reproducing kernel Hilbert space induced by kernel

function K, denoted as H(K), only differs from Sobolev space W1
2 [0, 1] by

a finite dimensional space. This relationship between H(K) and W1
2 [0, 1] is

essential for our theoretical development. The rigorous definition of Sack-

Ylvisaker conditions are deferred to Appendix.

Theorem 4 (Asymptotic simultaneous confidence band). Assume the con-

ditions in Theorem 3 hold, we further assume 1
2p1+2

< ν1 < max{−1
2
+

2c − ν3,
1
6
}, the true function β0 vanishes at the boundary of [0, 1]. Then

there exists a Gaussian process {Gn(s), s ∈ (0, 1)} with E{Gn(s)} = 0,
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Var[Gn(s)] = 1 and E[Gn(s)Gn(t)] = Gn(s, t) such that

sup
s∈(0,1)

∣∣∣∣∣∣
√
n
{
β̂n(s)− β0(s)

}
√

{Bβ
n(s)}TJ−1

n Bβ
n(s)

−Gn(s)

∣∣∣∣∣∣ P→ 0,

where Bβ
n(s) =

(
Bβ

1 (s), . . . , B
β
qn,1

(s)
)T

is a B-spline basis for estimating β0

and Jn is a qn,1 × qn,1 matrix. The exact form of Gn(s, t) and Jn will be

given in Supplementary materials.

Theorem 4 enables us to construct both asymptotic simultaneous con-

fidence band and pointwise confidence intervals for β0. Let zα,n be the α-th

percentile of sups∈(0,1)Gn(s), then an asymptotic 100(1−α)% simultaneous

confidence band for β0 would be[
β̂n(s)−

1√
n
zα/2,n

√
{Bβ

n(s)}TJ−1
n Bβ

n(s),

β̂n(s) +
1√
n
zα/2,n

√
{Bβ

n(s)}TJ−1
n Bβ

n(s)

]

and the asymptotic 100(1-α)% pointwise confidence interval can be con-

structed as [
β̂n(s)−

1√
n
z′1−α/2,n

√
{Bβ

n(s)}TJ−1
n Bβ

n(s),

β̂n(s)−
1√
n
z′α/2,n

√
{Bβ

n(s)}TJ−1
n Bβ

n(s)

]
,

where z′α,n is the α-th percentile of standard normal distribution. It is easy

to know from the definition that zα,n > z′α,n. Therefore, the simultaneous
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confidence band is usually strictly larger wider than the confidence interval.

The implementary detail of constructing confidence interval and confidence

band are deferred to Supplementary materials.

Remark 3. In practice, one can use the empirical distribution of Gaussian

process with zero mean, unit variance and covariance function Gn(s, t) to

approximate the distribution of Gn(s). Subsequently, the α-th percentile

of sups∈(0,1)Gn(s) can be approximated by the empirical percentile of its

numerous realizations. It is important to note that Gn is only related to n

through the B-spline basis Bβ
n. This observation suggests that a different

sample size with the same B-spline basis may result in the same distribution

of Gn.

4. Simulation

In this section, we conduct simulations under different settings to evaluate

the finite sample performance of the proposed method. We also provide

numerical comparisons with the Functional Cox model (FCox) proposed by

Qu et al. (2016). The estimation procedure is implemented by Python with

some existing packages. Specifically, we construct the B-spline functions us-

ing the “Bspline” function of the “scipy.interpolate” package and solve or-

dinary differential equations using “solve ivp” function of “scipy.integrate”
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package.

For the functional covariates, we employ a design similar to that used

by Qu et al. (2016), where the functional covariates Z(·) is generated using

a set of cosine basis functions, that is, Z(s) =
∑50

k=1 ξkUkϕk(s), where Uk

are independently sampled from the uniform distribution on [−3, 3], ξk =

(−1)k+1k−1/2, ϕ1 = 1 and ϕk+1 =
√
2 cos(kπs) for k ≥ 1. The coefficient

function β0(s) is set as β0(s) =
∑50

i=1(−1)kk−3/2ϕk(s). The scalar covariates

X follows standard normal distribution truncated at ±2. The event time

T is generated based on model:

ΛX,Z(t) = h0(t) exp

{
αT
0X +

∫ 1

0

β0(s)Z(s)ds

}
q0 {ΛX,Z(t)} .

We consider the following settings for α0, h0(·) and q0(·):

Setting 1: α0 = 1, q0(t) = 1 and h0(t) = 1 + t3;

Setting 2: α0 = (1, 1), q0(t) = 1 and h0(t) = 1 + t3;

Setting 3: α0 = 1, h0(t) = 1 and q0(t) = exp {2/(1 + t)};

Setting 4: α0 = (1, 1), h0(t) = 1 and q0(t) = exp {2/(1 + t)};

Setting 5: α0 = (1, 1), h0(t) = 1+log(1+2t3) and q0(t) = 1+log(1+t).

In setting 1 the functional Cox model is specified, we set q(t) = 1 as

fixed and leave h(t) unspecified. In setting 3 the functional AFT model is
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specified, we set h(t) = 1 as fixed and leave q(t) unspecified. In setting 2,

4 and 5, we set α2 = 1 in order to make the model identifiable and leave

both h(t) and q(t) as unspecified. In each setting, the censoring time C

is generated from an independent uniform distribution U(0, c), where the

value of c is selected to achieve censoring rates ranging from approximately

15% to 30%. The sample size varies from 200, 400, 600 and 800. We estimate

β0 using a cubic B-spline with ⌈n1/5⌉ interior nodes that are equally spaced

at the interval [0, 1]. We fit log h(t) and log q(t) by cubic B-spline with

⌈n1/7⌉ interior nodes that are equally spaced at the interval [0, τ ] and [0, µ]

respectively, where µ is chosen large enough to cover the value of estimated

cumulative hazard at all observed event time.

The simulation results are based on 1000 replications. Table 1 and Table

2 compare the performance of the proposed estimators for the scalar and

functional parameter with MPLE-based estimators under setting 1 and 2.

BIAS is calculated as the difference between the mean of the estimates and

the true value. SE represents the standard error of parameter estimators,

SEE is the mean of standard error estimator obtained by inverting the

estimated information matrix. CP represents the corresponding coverage

proportion of the 95% confidence interval. The results shows that under

setting 1 and 2 (when the proportional harzard assumption is satisfied), the
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Table 1: Simulation results for scalar parameter α and comparison with

MPLE based method under setting 1 and 2.

Censoring rate ≈ 15% Censoring rate ≈ 30%

Setting n Method BIAS SE SEE CP BIAS SE SEE CP

1 200 FunODE 0.045 0.102 0.112 0.958 0.037 0.112 0.123 0.961

MPLE 0.010 0.100 0.100 0.942 0.024 0.114 0.103 0.925

400 FunODE 0.021 0.071 0.074 0.958 0.011 0.077 0.081 0.972

MPLE -0.005 0.066 0.069 0.957 0.004 0.080 0.076 0.943

600 FunODE 0.021 0.059 0.059 0.941 0.009 0.062 0.065 0.957

MPLE 0.001 0.062 0.056 0.933 0.001 0.063 0.066 0.952

800 FunODE 0.009 0.048 0.050 0.960 0.005 0.053 0.055 0.951

MPLE 0.000 0.051 0.048 0.936 0.000 0.055 0.058 0.938

2 200 FunODE 0.023 0.152 0.146 0.922 0.055 0.154 0.168 0.941

MPLE 0.004 0.100 0.099 0.951 0.019 0.113 0.103 0.920

400 FunODE 0.009 0.096 0.101 0.966 0.005 0.119 0.110 0.921

MPLE -0.010 0.074 0.069 0.941 -0.005 0.076 0.074 0.954

600 FunODE 0.012 0.066 0.073 0.960 -0.008 0.073 0.083 0.963

MPLE -0.007 0.063 0.056 0.935 -0.004 0.061 0.058 0.942

800 FunODE -0.004 0.058 0.063 0.957 -0.006 0.062 0.071 0.955

MPLE -0.002 0.053 0.048 0.940 -0.002 0.054 0.050 0.923
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Table 2: Simulation results for functional parameter β and comparison with

MPLE based method under setting 1 and 2.

Censoring rate ≈ 15% Censoring rate ≈ 30%

Setting n Method IMSE RIMSE IMSE RIMSE

1 200 FunODE 0.037 0.052 0.052 0.061

MPLE 0.027 0.039 0.030 0.042

400 FunODE 0.017 0.024 0.020 0.028

MPLE 0.018 0.025 0.019 0.027

600 FunODE 0.015 0.021 0.016 0.022

MPLE 0.013 0.019 0.015 0.021

800 FunODE 0.010 0.014 0.012 0.017

MPLE 0.011 0.015 0.013 0.018

2 200 FunODE 0.052 0.073 0.057 0.080

MPLE 0.028 0.040 0.031 0.043

400 FunODE 0.024 0.034 0.025 0.035

MPLE 0.027 0.038 0.023 0.032

600 FunODE 0.018 0.025 0.021 0.029

MPLE 0.021 0.030 0.018 0.026

800 FunODE 0.013 0.018 0.016 0.022

MPLE 0.012 0.017 0.017 0.024
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Table 3: Simulation results for scalar parameter α under setting 3-5.

Censoring rate ≈ 15% Censoring rate ≈ 30%

Setting n BIAS SE SEE CP BIAS SE SEE CP

3 200 0.023 0.129 0.127 0.898 0.012 0.134 0.144 0.926

400 0.018 0.090 0.086 0.951 -0.001 0.090 0.098 0.950

600 0.012 0.066 0.073 0.960 -0.008 0.073 0.083 0.963

800 -0.004 0.058 0.063 0.957 -0.006 0.062 0.071 0.955

4 200 0.023 0.152 0.146 0.922 0.055 0.154 0.168 0.941

400 0.009 0.096 0.101 0.966 0.005 0.119 0.110 0.921

600 0.008 0.077 0.082 0.963 0.009 0.086 0.083 0.939

800 0.002 0.067 0.067 0.943 <0.001 0.073 0.073 0.949

5 200 0.041 0.101 0.111 0.925 -0.009 0.105 0.126 0.942

400 0.031 0.068 0.074 0.941 0.030 0.071 0.084 0.954

600 0.028 0.053 0.059 0.946 0.023 0.057 0.066 0.960

800 0.018 0.045 0.052 0.944 0.009 0.051 0.057 0.947
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proposed estimators are strongly competitive with MPLE-based estimators.

Table 3 summarizes the performance of estimator for the scalar parameter

in general settings. As shown in Table 1 and 3, in all the five settings,

the mean of estimators is close to the true value and both the standard

error (SE) and the mean of standard error estimator (SEE) decreases as

the sample size n increases with censoring rate fixed, thereby confirming

the consistency of our proposed estimator. Furthermore, the SE exhibit

lower values at the 15% censoring rate compared to the values observed at

the 30% censoring rate. This observation aligns with the expected outcome,

as a lower censoring rate typically leads to more accurate estimates.

Besides, we calculated information matrix through inverting the em-

pirical Hessian matrix of log-likelihood (2.3) and then construct confidence

interval based on Theorem 3. When the sample size exceeds 400, the cor-

responding coverage probability closely aligns with the theoretical level of

95%, indicating that a normal approximation is suitable.

Table 2 shows the IMSE and relative integrated mean square error

(RIMSE) for the functional parameter estimator β̂(·), which are defined as

follows: IMSE(β̂) =
∫ 1

0
{β̂(s)−β0(s)}2ds and RIMSE(β̂) = IMSE(β̂)/∥β0∥22.

As shown in Table 2, the IMSE exhibits an obvious decreasing trend as the

sample size n increases in all five scenarios. The empirical coverage proba-
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Figure 1: Pointwise coverage probability with sample size n = 400, 600, 800.

The dashed red line represents the theoretical value of 0.95, while the dashed

green line represents the empirical coverage probability of the pointwise

confidence interval.

bilities of simultaneous confidence band for β are deferred to supplementary

materials.

Figure 1 displays the empirical pointwise coverage probability of the

pointwise confidence interval under setting 5 for sample size n = 400 and

800. The dash green line represents empirical coverage probability of point-

wise confidence interval for each point on [0, 1] and the dash red line repre-

sents the theoretical value 0.95. The results demonstrate that the empirical

coverage probability closely aligns with its theoretical value as sample size

increases.
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5. Real Data Example

This section presents an application of the proposed functional transfor-

mation model to the Sequential Organ Failure Assessment (SOFA) data

acquired from the Improving Care of Acute Lung Injury Patients (ICAP)

study (Needham et al., 2006; Gellar et al., 2014). The ICAP study aims to

investigate the long-term complications of patients who suffer from acute

lung injury/acute respiratory distress syndrome (ALI/ARDS). A total of

520 subjects were involved in the study, with 237 (46%) of them passing

away in the intensive care unit (ICU). Our analysis excludes 107 individuals

(31.0%) who died within the first five days in ICU. The number of days in

ICU till death are regarded as the event time.

During the ICAP study, patient data were collected upon admission

to the ICU and then daily throughout their hospitalization. One of the

measurements recorded daily was the Sequential Organ Failure Assessment

(SOFA) score, which provides an assessment of a patient’s overall organ

function status. The SOFA score includes six components: respiratory, car-

diovascular, coagulation, liver, renal, and neurological, with scores ranging

from 0 to 4. Higher scores indicate poorer organ function. The SOFA score

is calculated as the sum of these six component scores and ranges from 0

to 24.
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Table 4: Estimation results of regression coefficients for the SOFA data

analysis.

α̂ S.E. p-value

Age 0.204 0.065 <0.001

Gender(male=1) -0.023 0.100 0.822

To account for the evolution of each subject’s organ function, we con-

sider their history of SOFA scores during the first five days as a functional

covariate denoted as Z(s), where s represents the number of days since

admission to the ICU. The model also include age, gender and Charlson

co-morbidity index as three scalar covariates. Both scalar and functional

covariates are centralized in order to satisfy Condition (A3). We adopted

cubic spline functions with ⌈n1/5⌉ equally spaced interior nodes to estimate

the functional coefficient and with ⌈n1/7⌉ equally spaced interior nodes to

estimate the nuisance parameter γ and g. The estimated functional coeffi-

cient β̂(s) is shown in Figure 2. we can see that β̂(s) shows an increasing

trend and the 95% confidence band does not cover the horizontal line when

s ∈ [0.6, 1], suggesting that higher SOFA score in the fourth and fifth day

may lead to higher mortality rate.

The estimation of the regression coefficients of the scalar covariates is
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summarized in Table 4. Alongside the functional covariate, the analysis

reveals that patients’ age has a positive impact on the hazard, whereas

gender does not show a significant association with the hazard of death.

This agrees with the recent study by Gellar et al. (2015). Further discussions

about our real data example is deferred to supplementary materials.

Figure 2: The estimated functional coefficient β̂(·) and the pointwise 95%

confidence interval.

6. Concluding Remarks

In this paper, we have proposed a general class of survival model for ana-

lyzing right-censored survival data, which encompasses the functional Cox

model and functional accelerated failure time model as special cases. Within
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the ODE framework, we developed a sieve maximum likelihood estimator.

Our rigorous theoretical analysis has revealed the large sample properties

of the estimators, including their consistency and semiparametric efficiency.

Furthermore, we have derived an asymptotic simultaneous confidence band

for the functional parameter, ensuring the reliability of inferences.

Our proposed method can be readily extended to handle scenarios with

high dimensional scalar covariates. However, in high-dimensional settings,

interpretability becomes a major concern and the classical large sample

theories may lead to invalid inference, as the Fisher information matrix is

singular when the number of scalar parameters d > n. Therefore, detecting

and analyzing sparsity in survival models with functional covariate in high

dimensional settings would also be an intriguing avenue for future research.

7. Supplementary Materials

Supplementary materials contain implementation details of our estimators,

some additional simulation results and the auxiliary lemmas and technical

proofs for propositions and theorems of the paper.
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