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Abstract: The factor models are powerful tools for uncovering patterns of similar-
ity or co-movement among individuals, and they have been successfully applied
in the fields of finance and biology. However, the classical approximate factor
model encounters limitations when dealing with small sample sizes. To over-
come this challenge, we leverage auxiliary network information and propose a
novel joint quasi-maximum likelihood estimation, which can use the network in-
formation flexibly and allow network heterogeneity. The theoretical properties of
these estimators are rigorously established. We obtain a new convergence rate,
which is faster than the rate of classical maximum likelihood estimators when
the sample size is small. Numerous numerical studies have been conducted to

evaluate the performance of the proposed methods.
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1. Introduction

The factor models are powerful tools for uncovering patterns of similarity
or co-movement among individuals, which have been successfully applied in
financial engineering, economic analysis, and biological technology (Fama
and French, 1992; Chamberlain and Rothschild, 1983; Mayrink and Lucas,
2013). As one of the most commonly used factor models, the approximate
factor model is appealing as it allows the idiosyncratic errors to be cross-
sectionally correlated. There are two main strategies for the estimation of
factor models: Principal Component (PC) based estimation, and maximum
likelihood (ML) based estimation. PC-based method minimizes the sum of
squares of response prediction errors (Bai, 2003; Fan et al), 2013). ML-
based method maximizes a Gaussian-type log-likelihood function to obtain
the factor loadings (Bai and Li, 2012; Bai and Liao, 2016). Compared to
the PC-based method, the ML-based method is more efficient under cross-
sectional heteroskedasticity structures with unknown dependence structures
(Bai and Liao, 2016).

Despite the great success in theory, methodology, and applications,
there are still limitations in the estimation of factor models. One major
constraint is the necessity for a large sample size. Specifically, the estima-

tion of factor loadings is constrained to a rate no faster than O,(T~1/?),



where T' represents the sample size (Bai and Li, 2016). To alleviate the
requirement for a large sample size, one popular approach is to incorporate
auxiliary information (such as explanatory variables, spatial information,
and network). For example, Fan et al, (2016) pointed out that the fac-
tor loadings are often highly correlated with explanatory variables, and
projected (smoothed) data matrix onto a given linear space spanned by ex-
planatory variables to estimate the factor loadings. For another example,
Huang and Yang (2010) assumed that the factor loadings corresponding to
the same cluster of explanatory variables are all the same.

In addition to explanatory variables, networks among individuals rep-
resent a distinct and crucial form of auxiliary information. Homophily
and heterophily are common phenomena in networks. Homophily refers
to greater similarity among connected individuals, while heterophily sug-
gests greater dissimilarity (McPherson et al), 2001; Xie et al|, 2016). Both
phenomena highlight that networks provide additional information for de-
scribing the similarity between individuals. Consequently, properly incor-
porating network data can substantially improve the performance of factor
models. To illustrate the role of networks in factor models, we present
three examples. First, consider financial data. Factor models are powerful

tools for studying the co-movement of stock returns. Networks between



stocks, such as co-holding relationships, also capture the co-movement of
stocks (Anton and Polk, 2014; Lin and Qiu, 2024), providing valuable aux-
iliary information to enhance the factor model. Second, consider biological
gene data. Gene networks, based on interactions or co-occurrence (Wong
et al), 2004; [Yi et al), 2022), are essential for identifying similarities between
genes. Integrating these networks into the factor model allows for a more
effective derivation of low-dimensional representations. Lastly, consider en-
vironmental pollution data. Factor models can be employed to capture the
common variation of air pollutants across different regions. Networks con-
structed from spatial geographic locations or climate conditions can further
assist in analyzing the similarities in pollution levels across regions (Foun-
talis et alj, 2014; Von Ferber et al), 2009). To incorporate network infor-
mation, Yu et all (2020) excavated the prior network information through
the Laplacian penalty and Projection penalty. However, their models are
not trouble-free. For example, the Laplacian penalty neglects the degree
heterogeneity. Thus, such a model may be not suitable for degree hetero-
geneous networks. Meanwhile, the Laplacian and Projection penalties are
applied to the vector of factor loadings, disregarding variations in network
effects across different loadings. Accordingly, there is a need to develop a

new factor model with network association.



In this paper, we propose a novel network assisted approximate factor
model (NAAF). Inspired by Fan et al, (2016) and Linton and Connor (2000),
we assume that the factor loadings are functions of some latent variables
but not the observable explanatory variables. The latent variables can be
the characteristics of individuals or some important but unobservable ex-
planatory variables. For simplicity, the functions between the latent vector
and the factor loadings are assumed to be linear. In addition to the impact
on the factor loadings, the latent variables are also assumed to determine
the network structure. Following Hoff et al) (2002); Krivitsky et al) (2009),
we model the network using a latent space model, and assign individuals
in the network latent “locations” that determine their connection pattern.
We assume that the latent “locations” of individuals are also linear func-
tions of the latent variables that determine the factor loadings. The spaces
spanned by the columns of the factor loading matrix and the individuals’
latent location matrix in the network are assumed to be the same. Under
this assumption, we incorporate the network information by jointly esti-
mating the factor loadings and the latent locations of individuals by the
penalized quasi-maximum likelihood estimator. Specifically, we pursue pa-
rameters that maximize the balanced quasi-maximum likelihood function

of the factor model and latent space model and make the covariance matrix



of idiosyncratic errors sparsity via penalization.

The main contributions can be summarized as follows. First, we de-
velop a novel framework for jointly analyzing the factor model and network
information, which can be flexibly extended to other factor-based methods.
The proposed method enriches the factor models with the association of
auxiliary information. Second, we rigorously establish the statistical prop-
erties of estimators. The model’s identifiability has been demonstrated.
The explicit convergence rates of estimated factor loadings and the covari-
ance of response are studied. Under mild conditions, the factor loadings
convergence rate can be improved from O,(T~Y2) to O,((T/log(p))~%/4).
The proof of theoretical properties faces great challenges, which stem from
the joint estimation of the factor loadings and “latent” locations, and the
complexity of the quasi-likelihood function. Third, an efficient alterna-
tive updating algorithm is developed to address the resultant optimization
task. At last, numerical experiments on both simulated and real examples
indicate that the proposed method is superior to the existing ML-based
methods and PC—based methods.

The paper is organized as follows. Section 2 introduces the NAAF,
proposes the penalized quasi-maximum likelihood function, and develops

an efficient algorithm to tackle the computational challenge. Section 3 es-



tablishes the statistical properties of NAAF estimators. Simulation studies
and an empirical example are given in Sections 4 and 5, respectively. Sec-
tion 6 concludes the article with short discussions. All theoretical proofs

are relegated to the supplementary material.

2. Methodology

2.1 Model and Parameter Estimation

Let us consider p individuals for T' periods. Denote Y = (Y3,...,Yy) =
(Yit)pxr € RP*T as the large panel data, where Yj; is the response value of
i-th individual at time ¢, for ¢ = 1,--- ;)pand t = 1,...,T. The volatil-
ities of response variables are driven by a few latent common factors and

idiosyncratic errors,

Y, = o+ Bofs + e, fort=1,...,T, (2.1)
where By = (boy, - - -, bop)T € RP*" is the factor loadings matrix and by; =
(boi s - - - ,bOM)T is the corresponding loading vector of individual ¢, f; =
(fiey- -, f,,t)T is the unobservable factor vector, r is the factor number and

assumed to be known in our model, py € R? is the mean vector of Y;, and
e; € RP is the idiosyncratic error vector with mean zero and covariance ma-

trix Y.9, which allowed being cross-sectional correlated. To make equation
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(@) identifiable, we assume that BJ ¥ By is diagonal, T} Zthl fif =1,
and 77! Zthl f+ = 0. Similar identifiable conditions can also be found in
(Bai and Liag, 2016).

Suppose a network is collected alongside. The network can be repre-
sented by an adjacency matrix A = (Aij)pxp € {0, 1177, where A;; = Aj; =
1 if there exists an edge between two individuals (7, j), and A;; = A;; =0
otherwise. We use the latent space model to analyze the network. We as-
sume that the (7, j)-th elements of adjacency matrix A are independently

generated as follows:
Pr(A;; = 1) = P and logit(P;) = (af + o + 8, Iy, 0,55), (2.2)

fori,j =1,...,p, where logit(z) = log{x/(1—2)} for any z € R, 5; € R" is
the latent vector corresponding the i-th individual’s latent location, I, 4, =
diag(l,,, —1,,) with ¢1 + g2 = 7, and «f is the heterogeneity parameter of
ith individual, for ¢ = 1,2,...,p. Denote I' = (f,...,8,)". For ease
of presentation, we write A ~ Ber(P), where P = (P;),x, € RP*P. In
Equation (@), the function form of 8; and 3; is similar to the model of
Rubin-Delanchy et al) (2022), although they considered P;; rather than
logit(P;;). The connection probability of nodes i and j increases with the
similarity of the first ¢; elements of 3; and 3;, and decreases with the

similarity of their last ¢, elements. The model accounts for only homophily
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in the network when ¢o = 0, and only heterophily when ¢; = 0. Equation
(@) allows for the coexistence of both homophily and heterophily.

To establish the connection between the factor model and the network
model, we assume that characteristics of individuals can be represented by
a latent matrix Z € RP*". That is, the i-th individual can be represented
by the ¢-th row of Z, Z;,. We further model the factor loading matrix
By = ZW; and the individual location matrix I' = ZW5, for some transition
matrices Wi and Wy with full rank. The linear function is used to represent
the relationship between By and Z and that I' and Z for simplicity. This
assumption is reasonable to some extent. For example, let Y; be the activity
measure of all individuals at time ¢ on social media, and A represent the
friendship network. The loading factors and latent locations in the network
are all dependent on the individuals’ hobbies and characteristics. Since W,
and Wy are invertible, there exists W, such that I' = ByW. We denote

Qo =WI, ,»,W'. Then Equation (@) can be rewritten as
logit(P) = BoQ0By +a*l) + 10", (2.3)

where logit(P) = (logit(P;;))pxp, and o*T = (of,03,...,a;) . Note that
Equation () is not identifiable. For example, let B = By + 17, a =

o* — BoQot — (1/2)1,." Qo for some constant vector « € RP. Then, we

have BQyBT + 1] + 1,&" = ByQyB] + a*1] + 1,a*7. To make (@)
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identifiable, we revise (@) as
logit(P) = J,BoQ0 By J, + a0l + 1,0y,

with J, = I, — 1,1, /p, following Zhang et al| (2022). Further elaboration

on the identifiability can be found in Theorem m of Section 3.

Remark 1. In this paper, we assume I' = ByW for some square matrix
W, which implies that the factor number and the dimension of the latent
vector are the same. In a more general model, the dimensionality of the
latent space and the number of factors may not be equal. Let r be the
dimension of f; and k the dimension of §;. Our model can accommodate
the case k < r. In that case, W is an r x k matrix, and Qy = W1, , W'
is singular. Our model can also be applied to the case where k > r with
a extension. Recall that the dimensions of I' are p x k. One can assume
I' = (BoW,I'0)px®r, where I'g is p x (k — r) matirx, and ®, is a column
permutation matrix. Here, ®, is designed to ensure that the node connec-
tion probabilities increase when the first ¢; latent variables are similar, while
the remaining ¢ latent variables are dissimilar. The latent space model can
be reformulated as logit(P) = J,BoQ0Bg Jp + Tolgy .q0.To + o1, + 1,04,

where Qg = W1,

db1,9b2

W't Y, = Jpl'y is the the matrix of latent variables
that cannot be captured by the factor loading matrix By, and g1, @s2, o1, Qo2

are constants satisfying ¢, + qo1 = q1, Qp2 + qo2 = ¢o-



2.1 Model and Parameter Estimation

To estimate the factor loadings with the assistance of the network, we

consider the penalized negative quasi-log likelihood estimator,

(é, ie, (AZ, Q) = argming q 5« o L(B, Xe, 2, ),

L(B,%e,Q,0) = Ly(B,%,) + \T'LA(B,Q,a) + Pr(Z,). (2.4)

In equation (@), Ly(B,3.) and L(B,, «) are proportional to the nega-
tive quasi-log likelihood functions corresponds to Y and A with parameters

B, 3., Q, and «, respectively, that is
Ly(B,%,) = log{det(BB" + ¥.)} + tr{S,(BB" + %.)"'},

La(B,Q,a) =— Z [Aij@A,ij — log{1 + eXp(@A,ij)}]a

1<i<j<p

where S, is the sample covariance matrix of Y, ©4 = J,BQBTJ, + a1, +
1,a", X is a tuning parameter, and Pp(X.) is a penalty function on %..
With B and ie, we can estimate ﬁ via generalized least squares.

The objective function (@) comprises three terms. With the first two
terms, we pursue the best fitting of the data matrix Y and the adjacency
matrix A. The tuning parameter A balances the importance of Ly (B, ¥.)
and L4 (B, €, «), which is data-dependent. When A = 1, the Ly (B, %,.) +
AT 1L A(B,Q, ) is directly proportional to the joint negative log-likelihood
function of (Y, A). However, in practice, A = 1 is not always the best

choice. Since the assumption that I' = ByW is strong, a data-driven tuning
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parameter enhances the model’s robustness when these assumptions are not
precisely met. In numerical studies, the selection of A depends on various
factors, such as the scale of 2g. When €2 is small, the network information is
limited. Taking the network into consideration may introduce extra errors
as well as information. Thus, in such cases, the choice, A < 1, is better
than that A = 1. The third term Pr(X.) encourages the sparsity of B
In this paper, we consider the lasso penalty ([Tibshirani, 1996), such that
Pr(X.) = ppr Zi# |Xe;| with a tuning parameter p, 7. The same penalty

has also been found in Bai and Liag (2016).

2.2 Computing Algorithm

We develop an efficient alternative updating algorithm based on the gra-

dient descent method. Let IT = (B,Q,a). Let B¢~ nkD Q=1 o k-1

and I1*~V be the parameters obtained in the (k—1)-th iteration. The kth it-
eration consists of two steps. In first step, we update 25}“) = argminy, L(X,, I1k=1)),
which is optimized using the method proposed by (Bien and Tibshirani,
2011). Recall that S¢+-1 = Bk-D(BE-DYT L 530"V We substitute the
concave term log{det(X*~1)} with the tangent plane tr{(S*-D)~1(%, —

2% Y and then minimize tr{ (S¢=1) 1S, —SF D) bptr{ S, (BE-D(BE-D)T 4

) 1} +Pr(X.). In the second step, we aim to optimize II*) = argminnL(ng), I).



2.2 Computing Algorithm

We use the gradient descent method to update II®). Furthermore, we can
set Q to be a diagonal matrix, and remove the restriction §T§g1§ is di-
agonal in the iteration. Finally, we take BO as the estimator such that
OTETie_lB\O is a diagonal matrix. The algorithm details are provided in
Algorithm 1.

Algorithm 1 requires initial inputs of several hyperparameters. In se-
lecting the number of factors, we initially disregard network information.
The information criterion is used to determine r (Bai and Ng, 2002). Specif-
ically, 7 = argmin, log{(pT) " ming ||Y — BFy|[%} + k(p + T) log{pT/(p +
T)}/(pT), where F}, is the PCA estimator of factors when the number of
factors is k. Step sizes (sp, Sa, Sq) and 1 are user-specified small constants.
In this paper, we set the s and 1 change as p and 7" vary. The initial values
of BO v 4©® and QO are obtained as follows. First, we analyze Y to
obtain B©® and £ by the POET method, which is a PC-based method to
estimate the approximate factor model proposed by Fan et al| (2013). Then,
we use the project gradient descent algorithm to obtain an approximate es-
timate © 4 and set Q* = (BOT.J,BO)-1BOT 1.6 ,J,BO(BOT J,BO)-1,
Finally, we find an orthogonal matrix U such that UQ*U T is diagonal, and
set QO = UQ*UT and B® = BOUT. Cross-validation is used to select

the tuning parameters A and p, 7, following Bai and Liag (2016). For more
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Algorithm 1
1: Input factor number r, step sizes s = (sg, sq, Sa), small number 7,

hyperparameter p,r and A.
2: Set k = 0. Initialize (B, nl ),Q(O),a(o)).
3: Update k =k + 1.

(a) Update % Let S0 = BE=D(BE=D)T 4 5D and
d = ng—l) - {(i(k—l))—l (E (k— 1)) S ( (k— 1)) }

Set B = (2), where B, = (@5, np,7)1(i # j) + Byli = j),
S(a,nppr) = sign(a)(la| —nppr)™, and T = max(z,0) for any = € R
is the positive part of z.
(b) Update II:

(i) Initialize n = 0 and I*® = T1*=1),

(ii) Update n =n + 1. Let

oL
B(k,n) _ B(k,n—l)
)

(B(kn 1) E Q(kn 1) (kﬂ’b—l))7
B

albn) — o (kn=1) _ Saa_L(B(k,n—1)7 i(ik)7 Q(k,n—l)ja(k,n—l)%
Oa
oL S
Q(k,n) _ Q(k,nfl) et B (k,n—1) E (k) Q(k,nfl) (k,n—1) )
8 aQ( ? a )

(iii) Repeat (ii) until convergence. Set II*) = T1*:m).

4: Repeat Step 3 until convergence.
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details, please refer to the Section S.8 in the supplementary materials. In
numerical studies, the algorithm is computationally affordable. For exam-
ple, when p = 200,7T = 300, the ten times average computational time is

37.53 seconds using a laptop with Apple M1 Pro and 16 GB memory.

2.3 Benefits of Network

We note that if A in equation (@) is set to 0, our method reduces to the
classical approximate factor model. The factor loadings estimated based
on the penalized likelihood function of Y, Ly (B,%.) + Pr(3.), will also
yield consistent estimates. However, the convergence rate of the factor
loadings is inherently limited to Op(Tfl/ 2). In this paper, we introduce
AT 'LA(B,Q, ) to leverage the information from the network. Next, we
clarify the benefits of incorporating network information when 7" is small.

Define ' = J,I'. Then, T'1,, ,,['" = J,ByQB, J,. Recall that I' =
BoW . For simplicity, we assume that W is nonsingular in this subsection.
Then, we have By = (1,,[)W for some matrix W € RC+Y*" Conse-
quently, if T' is known, the estimation of By is reduced to the estimation of
the coefficient matrix W. The number of parameters requiring estimation
decreases significantly from O(p) to O(1). This reduction in the number

of parameters leads to faster convergence rates for the factor model. A
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similar result can be found in (Fan et al), 2016). In this paper, I' cannot be
observed directly. Fortunately, we can recover the basis vector accurately
using the network model. For example, when ¢» = 0, the convergence rate
of the estimator of I' is O,(p~'/2) (Zhang et al|, 2020). By introducing the
loss function N\T7'L (B, Q, a), when )\ is large, the estimation of the basis
for the column space of By becomes more accurate in the case of small T’
and large p, thereby improving the estimation of By.

It is important to highlight that the method proposed in this paper dif-
fers notably from the following two-step approach. In the two-step method,
one can first estimate I' only using the network information, then esti-
mate By and ¥, by optimizing Ly (B, X.) + Pr(X3.) under the constraint
JpB = f/W, where T is a parameter matrix and f is the estimator of I
Compared to the two-step approach, our joint likelihood method is more
flexible due to the introduction of A\. The tuning parameter A balances the
information derived from the network and that from the panel data. In the
small p and large T cases, our method allows for a smaller value of AT,
which facilitates greater utilization of the information contained in the panel
data, whereas when p is large and T is small, a larger value of N\T! is pre-
ferred to incorporate the network information better. Additionally, our

method selects smaller values of A when the network generation does not



align with the hypothesis, resulting in more robust outcomes. Numerical
results also confirm that the proposed method achieves smaller estimation

errors than the two-step approach. For more details, refer to Section 4.

3. Theoretical Properties

For any matrix X = (z;;) € R¥***2 denote 0y(X), Omax(X), and oy (X)
as the kth singular value, the largest singular value, and the smallest
singular value of X, respectively. Let ||X|[r = /tr(XTX), || X2 =
Omax(X) and || X||; = max;<g, >, |z;;| be the Frobenius norm, spectral
norm, and maximum absolute column-sum norm, respectively. For given
estimator 3 of some covariance matrix 3, we use the norm ||§] —Ylls =
p 2SS — £)512||p to evaluate the accuracy of estimator follow-
ing Fan et al) (2013). Denote the true parameters as By, >0, {20, ap, and
©40. Recall that ©4 = ©4(B,Q,a) = J,BAB"J, + al) + 1,a". The
true covariance matrix of Y; and its estimator are Xyo = BOBOT + Yo and
Sy = BBT + 5, respectively. We denote F = (fy,..., fr) € R™T and
E = (eq,...,er) € RP*T. Define Jy, J;, C {(i,5) : i < p,j < p} such that
JundJp =@ and Jy U Jp = {(i,5) : i < p,j < p}. Let J be the set of
the indices for small elements of X, in absolute value, and Jy contain the

indices for large elements. Denote D, := #{(,j) : (i,j) € Ju,i # j} be



the cardinal number of J;. For any N € R*, denote F°__ and F3 are
o-algebras generated by {(fi,e;), —oo <t < 0} and {(f;,e:), N <t < +oo}
respectively. Define ¢(N) = suppero_ gers |[P(D)P(G) — P(DG)|, and
P(N) = Supy, cr2(r0 3 goer2(ree) |COTT (g1, g2)|, where L2(FO_ ) is the set of all
F°_ measurable functions with finite second order moments, and £2(F5¥)
has a similar definition. To study the properties of NAAF, we introduce

the following seven technical assumptions.

Assumption 1. (1) Assume that {f;, e;}s are strictly stationary. In addi-
tion, E(ei) = Eeifjr) =0foralli <p,j<randt<T.

(2) There exist constants ¢, C, ¢y, Cy, ca > 0 such that ¢ < oyin(Xep) <
Omax(Ze0) < C, €1 < Oumin(p™' By Bo) < Tmax(p™' By Bo) < €y, and
max{max;<,{||bo;||2}, || Zeol|1, [|[Zeg |1} < ca, where by, is the vector corre-
sponding to the j-th row of Bj.

(3) There exist r;,ro > 0 and a;,as > 0, such that for any s > 0,
i < pandj < Pr(lex > s) < exp(—(s/a1)™) and Pr(|f;:] > s) <
exp(—(s/as)™).

(4) There exist 73 > 0 and az > 0 satisfying: for all N € ZT o(N) <

exp(—agN™), and ;' == 3r; + 3t > Lrst =3 4yt > 1

Assumption 2. (1) The adjacency matrix, A, is independent of (e, f;)s.



(2)There exist constants m, M, c3, C, > 0 such that for all large p,
m S O-min<p_1B(—)r<]pB0) S O-max(p_lB(—)erBO) S M7 and UT(QO) Z C3Up7

where v, > p~1/2 for some small positive e. Further, we assume ¢, <
0'1(9) S Cv~

(3)There exist M; such that max [© 49, < M;.

i<p,j<p
Assumption 3. Assume that
(1) (i,4) € Jy foralli < p, and D, < min{p+/T/ log(p),p?*/ log(p), p*va 9},

(2) Kt := X e, [Beisl = o(p).

Assumption 4. (1) Assume that p~'B] ¥ By is diagonal, and there ex-
ists a positive definite matrix H; with r distinct eigenvalues, such that
p By Y4 By — Hi.

(17) Assume that p~' By (X7) ' By is diagonal, with (X3);; = Zeoi1imj}-
There exists a positive definite matrix Hy with r distinct eigenvalues, such

that and p_lB(—]r(E:)_lBQ — Ho.
Assumption 5. The tuning parameter p, r in the penalty function satisfies

V1og(p)/T +log(p)/p + 1/ (pvp"*) < ppr < min{p/ Dy, \/p/ Dy, p/Kr}.

Assumption 6. (1) There exist positive constants a}, r5 such that p(N) <

exp(—ajN™s).



(2) Assume that (pT)~' 20, 27 ST fufTcov(er, eis) > my almost

surely, for some constant m;.

Assumption 7. There exists a sufficiently large constant K, such that
(1) | f¢]]2 < K almost surely for t = 1,...,T, and {f;} independent of
{e:};
(2) E (enejs) = Yijes, with (pT) 7130 370 ST S sl < K
(3) E {H(PT)_W e 1 (Seoi) hos {ewe — E (eitejt)}Hz] < K, for

J=1,...,p;and

2
4) E {H(PT)_W D (Ze0ii) "2boibg; (€2 — Teoii) F} <K.

Assumption m is a commonly used assumption in the approximate factor
model, which can be found in (Fan et al,, 2013; Bai and Liag, 2016). As-
sumption m (1) states a stationary relationship and assumes non-correlation
between f; and e;. Assumption EI (2) assumes the eigenvalues of ¥,y and
p~'BJ By are bounded, which leads to r spiked eigenvalues of S,. Assump-
tions m (3) and (4) allow us to apply the Bernstein-type inequality (Mer-
levede et alf, 2011). Assumption B is an assumption about the network.
Similar assumptions can be found in Zhang et al| (2022, 2020). Assump-
tion E (1) is a common independent assumption. Assumptions E (2) and (3)
are introduced to show that the factor model and latent space model share

enough information as B'J,B and 0,(Q2) are not allowed to be too small.



Assumption B is the sparsity assumption of covariance matrix ¥.q which has
been used in Bai and Liag (2016). Assumption @ is commonly used in the
latent space model that assumes the network is dense. Assumption B (1) is
the p-mixing condition (Bradley, 2005), which is similar to a strong mixing
condition that describes the dependence of two o-algebra. Assumption B
(2) aims to bound the variance of most 7~'/2 Zthl freje for j=1,2,....p
away from 0. Assumption H (1) gives the uniform bound of f;, and As-
sumptions H (2)-(4) are borrowed from Bai and 1i (2016). Assumptions B
and H are not necessary for building the convergence results of our method.
They are introduced to show that under special cases, the NAAF has a
faster convergence rate than ML. Under the above assumptions, we define

the parameter space,
Z5 ={(B,X,Q,0) : 67" < o.(p7'B'B) < o1(p”'B'B) < 4y,

6 <o.(p'BTJ,B) < a1(p'B"J,B) <y, B'Y !B is diagonal,

max [©.45] < dg, and max{]|Ze[ls, (1571 Zellz, [15 2} < d40,(2) = dsup},
and

Zxs = {(B. 20, 2.0) ¢ [[Sello < p+ C@pPu, "),

for some large enough constants 01, ds, 03,04 > 0, where C'(0) is a function

of ¢ with relatively small values, and v, is defined in Assumption E



Theorem 1. There exists C(0) > 0, such that for (B, 3., Q, ) and (By, ey, Oy, ) €
ZsNEx s satisfying BBT+Y, = B,B] 4+, and © 4(B,Q, ) = © 4(B,, U, o),

there exists an orthogonal matriz O such that (B, Y., Q, a) = (B,O, X..,07Q,0, o).

According to Theorem m, the models (@) and (@) can be identifiable
if 3, is sparse. Next, we consider the consistency of B and ie, where
(E, ie,ﬁ,a) = argminy gy, 0a)ez;nzy 1 LB Xe, 2, ). We first derive a

general convergence result in Theorem B

Theorem 2. Suppose Assumptions @B, (1), and B hold. For A\ < 400,
d {1 2/rm—1 < T} h -1 ie_ze 2 1 , i -1 B\O—
and {log(p)} we have p |[Ee=Sallt = 0p(1),  min  p7|

Bullk = o)1), min  TOF — Flft = o), and (57)"||BF -
BoF||% = 0,(1), where r,} = max{r; ', rs'}. In addition, if 0,(Q) =0, the

above convergence result holds for A\ < d,r := max{log(p)T/p, \/log(p)T}.

Theorem E shows that NAAF estimators are convergent for any non-
random A < +o00, when p goes to infinity not faster than exp(7"*) for some
t, when the 0,.(Q2) > v,. If 6,(2) = 0 (as discussed in Remark I), choosing
an appropriate A can also ensure the convergence of the estimates. The
convergence results are the same as that in Bai and Liag (2016) for the
classical approximate factor model. To obtain the convergence rate, we

provide Theorem B



Theorem 3. Suppose Assumptions H«B hold. Assume that {log(p)}?/™ ! <«
< p4/5; maX{KTa Ugl} = 0(1); Dp =P A> dp7T;and Pp,T = (lOg(p)/T)1/4

Then we have

i -1BO — 2 _ 5/4
omin 7 IBO = Bullk = Oy(loglp)/ ),

and ||Sy = Ty lsy, = Op(p'*(log(p)/T)** + (log(p)/T)'*).

According to Theorem E, the convergence rate of p~/ 2HJ§O — Byl|F is
faster is faster than 7-/2 for log(p) < T"/°. The introduction of network
information improves the performance of the factor model in estimating
factor loadings. The assumptions on parameters such as Dr, v,, pr and
others in the theorem are made to clarify the convergence rates of the factor
loadings and the covariance matrix. For more general cases, please refer to

Theorem S.1 in Section S.1 of the supplementary materials

Theorem 4. Suppose Assumptions H@ hold and Y.y is diagonal. Assume

that {log(p)}*/™ ' < T. For A > d,r, and p,r = +o0, we have

omin Y [BO — Bollk = Oy(log*(p)/(6T) + (og(p) /1) + p™'5;).

In Theorem H, we consider the classical factor model in which ¥ is
diagonal. To make the estimate of X is diagonal, we set p, r = +00. Ac-

cording to Theorem @, for {log(p)ym>x{3:2/m =1} « T < pvZ, the NAAF has



faster convergence rate for factor loadings than O,(T~1/2). Furthermore,
when T < min{pvZ, p?/log p}, the convergence rate is O,((log(p)/T)%*).
Since {log(p)}™*x{32/rm=1} grows extremely slow, Theorem @ indicates that,
in most small 7" and large p cases, taking the network into consideration
has better performance. Meanwhile, the convergence rate in Theorem @ is
faster than that in Theorem B , which can be attributed to the non-diagonal
assumption of ¥.y. At last, we show that the convergence rate of factor load-
ings from the ML-based method proposed by Bai and Liao (2016) is not

faster than O, (T~1/2).

Proposition 1. Suppose Assumptions B@, (1 '), H and B hold. Assume

that p > T. There exist constants kq, ko > 0 such that

- : -1 D . 2 5 -1 >
l;gl_l&fPr(OoTinOlQO:bp ||BrrO — Bollz > T ky) > ko,

where (EML,EJB,ML) = argmin g s, ez, Ly (B, X.), with the constraint that

ie is diagonal.

Proposition ﬁ] implies that under p > T and some special conditions,
the lower bound of factor loadings’” ML estimator in Bai and Li (2016)

convergence rate is no less than O,(T~1/2).



4. Simulation Study

In this section, we assess the numerical performance of NAAF and com-
pare it against widely used ML-based and PC-based methods, including the
classical principal component analysis (PCA) method, the popular POET
method proposed by Fan et al| (2013), the penalized maximum likelihood
(PML) method proposed by Bai and Liag (2016), the network assisted
PCA based on the Laplace penalty (PC-L) proposed by Yu et al. (2020),
the penalized likelihood method based on the normalized Laplacian penalty
(ML-nL), and the two-step methods (TSM) mentioned in Subsection 2.3.
For more details on the comparison methods, please refer to Section S.9
in the supplementary materials. In Section 4.1, we will briefly introduce
the simulation settings. In Section 4.2, the simulation results of different

settings and different methods are presented.

4.1 Simulation Settings

We set the number of factors r = 4 and assume that r known. To generate
Y; and A, we first generate X9, By, 2, f; and e;. First, we follow [Fan
et al] (2011) to generate Y.9. To generate By, we first generate BO, such
that (BO)ij ~ N(0,1) independently for i = 1,...,pand j = 1,...,r. Let

Q; = diag(6,5, —5, —6). Then, we set By = ByV, where V is orthogonal



4.1 Simulation Settings

matrix such that VT BJ S} BV is diagonal. We set Qo = V' QiV. The
factors, f;s, are generated from the AR model: f; = 0.2f,_; + /1 — 0.04d,
where fo = dy and d; ~ N (0, I,.) independently for t = 0,1,2,...,T. Errors
e; with mean 0 and covariance matrix Y.y are independently drawn from
multivariate mixed Gaussian distribution. We generate Y; by Equation
(Ell), fort=1,...,T. To generate A, we consider three examples.
Example I: We independently generate ag; ~ U(—6,—5) for i =1,...,p
where U represents the uniform distribution. Then, we generate A by Equa-
tion (@) We aim to examine the performance of NAAF when 7" is rela-
tively small and moderate, respectively. For the case that T is small, we
set T' € {50,100} and p € {50,100, 150}. For the case that T  is moderate,
we set T € {300,500} and p € {100, 150, 200}.

Example II: We consider the effect of the density of the network on the
performance of NAAF. We set ag; ~ U(0,1) —c for i = 1,...,p and
c€16,7,8,9}. As cincreases, the network gets more sparse. The adjacency
matrix A is generated by Equation (@) In this example, we set T €
{300,500} and p € {100, 150}.

Example ITII: We examine the robustness of NAAF. We generate A in
violation of Equation (@) Consider three cases: Case (a): generate

By = By + 0.2vy where vy,;; ~ N(0,1) with probability 0.3 and 0 with



4.2 Simulation Results

probability 0.7. Then, we generate A as follows: A ~ Ber(P),logit(P) =
J,B1Q B J, + ozolz;r + 1,09 . Case (b): generate By = By + 0.2vy where
vaii ~ N(0,1). Then, let A ~ Ber(P) with logit(P) = J,ByQyB; J, +
apl) 4+ 1,0 . The entries of ag are also drawn from U(—6,—5) inde-

pendently in Cases (a) and (b). Case (c): A ~ Ber(P), where P,

i
exp(—||bo; — bo;]|?/2). Cases (a) and (b) are used to examine NAAF when
the assumption that ByQyB, = I'l,, ,I'" does not hold, where I' is denoted
below Equation () Case (c) is used to examine NAAF when the latent

space model is invalid. We set T" € {300,500} and p = 100 in this example.

4.2 Simulation Results

In this subsection, we provide the simulation results. To assess the perfor-
mance of estimators, we consider the following four measures: (i)MEg =

. 111D Q. (s - S . 2T o
o p B~ Blft; MEs, = Sy — Syl () MEs, =

I — Seollso; and (iv) MEp =  min  T||F — OF|| For cach set-
00T=0TO=I,

ting, we conduct 100 realizations.

The results of Example I are provided in Tables 1 and 2. For MEp,
MEy, , MEy, and MEp, the NAAF is competitive, especially when 7' is
small. The estimation accuracy can be improved by taking the network

information into consideration. The results of Example II are provided in



Table 3. As the network becomes denser, the information provided by the
network gets more rich, and NAAF has better performance. The results of
Example III are reported in Table S.1 in the supplementary materials. As
shown in Table S.1, NAAF is robust. Even when Equation (@) is invalid,
taking network information into consideration still increases the accuracy

of the model in terms of MEp and MEy,, .

5. Real Data Analysis

The study of co-movement in stock returns is crucial in finance. The factor
model is an effective tool for capturing this co-movement structure and
estimating the covariance matrix. We collect daily returns of the constituent
stocks of the CSI 300 Index from the RESSET database, spanning the
period from January 1, 2021, to April 30, 2023, including 563 trading days.
A limited set of stocks is selected for analysis to avoid a sparse network and
ensure computational efficiency. Stocks with incomplete data are excluded,
resulting in a final sample of 246 stocks for analysis. Two common strategies
are employed to construct networks between stocks. The first is based on
industry classification, where a pair of stocks is connected if they share
the same industry label (Yu et al), 2020). The second is based on fund

co-holding, where two stocks are connected if they are heavily held by the



Table 1: Simulation results of Example I, with (p,T) € {100, 150,200} x

{300, 500}. Each cell shows the meanx10 (standard error x10).

D T ME NAAF PML TSM PCA POET PC-L ML-nL

100 300 B 0.54(0.05) 0.82(0.07) 2.24(0.23) 0.85(0.07) 0.85(0.07) 0.82(0.07) 0.74(0.06)
Sy 1.71(0.07) 2.04(0.08) 3.87(0.31) 5.80(0.08) 2.09(0.08) 5.80(0.08) 1.92(0.08)

S 0.94(0.06) 0.94(0.06) 1.14(0.12) 5.93(0.07) 1.06(0.09) 5.93(0.07) 0.94(0.06)

F o 2.08(0.09) 2.09(0.09) 2.09(0.09) 2.37(0.10) 2.37(0.10) 2.37(0.10) 2.24(0.11)

500 B 0.38(0.03) 0.51(0.04) 2.23(0.23) 0.53(0.04) 0.53(0.04) 0.52(0.04) 0.45(0.04)

Sy 1.40(0.05) 1.56(0.06) 3.83(0.30) 4.49(0.06) 1.63(0.06) 4.49(0.06) 1.49(0.05)

S 0.76(0.05) 0.76(0.05) 1.00(0.11) 4.78(0.05) 0.91(0.08) 4.78(0.05) 0.76(0.05)

F 2.07(0.07) 2.07(0.07) 2.08(0.08) 2.36(0.09) 2.36(0.09) 2.36(0.09) 2.17(0.08)

150 300 B 0.46(0.03) 0.77(0.04) 1.65(0.15) 0.79(0.04) 0.79(0.04) 0.78(0.04) 0.73(0.04)
Sy 1.65(0.06) 2.06(0.05) 3.45(0.26) 7.09(0.07) 2.08(0.05) 7.08(0.07) 1.97(0.06)

S, 0.91(0.05) 0.92(0.05) 1.02(0.11) 7.08(0.06) 0.96(0.05) 7.08(0.06) 0.92(0.05)

F 1.25(0.05) 1.25(0.05) 1.26(0.05) 1.46(0.06) 1.46(0.06) 1.46(0.06) 1.33(0.06)

500 B 0.32(0.02) 0.47(0.03) 1.64(0.15) 0.48(0.03) 0.48(0.03) 0.48(0.03) 0.44(0.03)

Sy 1.33(0.04) 1.55(0.04) 3.41(0.26) 5.48(0.05) 1.58(0.05) 5.48(0.05) 1.51(0.04)

S, 0.72(0.04) 0.73(0.04) 0.86(0.12) 5.60(0.05) 0.79(0.05) 5.60(0.05) 0.73(0.04)

F 1.24(0.05) 1.24(0.05) 1.24(0.05) 1.44(0.05) 1.44(0.05) 1.44(0.05) 1.27(0.05)

200 300 B 0.42(0.02) 0.78(0.04) 1.50(0.15) 0.79(0.04) 0.79(0.04) 0.78(0.04) 0.75(0.04)
Sy 1.62(0.05) 2.12(0.05) 3.30(0.24) 8.18(0.07) 2.13(0.05) 8.17(0.07) 2.05(0.05)

S 0.94(0.05) 0.95(0.05) 1.01(0.07) 8.11(0.06) 0.96(0.05) 8.11(0.06) 0.95(0.05)

F 0.97(0.03) 0.98(0.03) 0.98(0.03) 1.10(0.04) 1.10(0.04) 1.10(0.04) 1.03(0.05)

500 B 0.27(0.02) 0.48(0.03) 1.50(0.15) 0.48(0.03) 0.48(0.03) 0.47(0.03) 0.45(0.02)

Sy 1.28(0.03) 1.59(0.04) 3.25(0.24) 6.34(0.04) 1.60(0.04) 6.34(0.04) 1.55(0.04)

S, 0.76(0.04) 0.76(0.04) 0.85(0.07) 6.37(0.04) 0.78(0.05) 6.37(0.04) 0.76(0.04)

F0.97(0.04) 0.98(0.04) 0.98(0.04) 1.10(0.04) 1.10(0.04) 1.10(0.04) 1.00(0.04)




Table 2: Simulation results of Example I, with (p,T) € {50,100,150} x

{50,100}. Each cell shows the meanx10 (standard error x10).

P T ME NAAF PML TSM PCA POET PC-L ML-nL

50 50 B 2.43(0.32) 4.84(0.49) 3.48(0.38) 4.89(0.49) 4.89(0.49) 4.48(0.46) 4.34(0.43)
Sy 3.82(0.27) 5.49(0.34) 4.44(0.34) 9.98(0.35) 5.50(0.32) 9.78(0.34) 4.15(0.28)

S, 221(0.19) 2.32(0.18) 2.30(0.28) 9.33(0.31) 2.52(0.18) 9.30(0.32)  2.34(0.18)

F 3.60(0.41) 3.72(0.42) 3.65(0.40) 3.81(0.46) 3.81(0.46) 3.81(0.46) 6.47(0.76)

100 B 1.49(0.20) 2.51(0.26) 3.32(0.38) 2.52(0.27) 2.52(0.27) 2.36(0.26) 2.19(0.25)
Yy 281(0.16) 3.63(0.20) 4.18(0.31) 7.11(0.20) 3.67(0.20) 7.04(0.19) 3.11(0.17)

Y, 1.61(0.13) 1.63(0.13) 1.79(0.18) 7.06(0.16) 1.90(0.15) 7.05(0.16) 1.65(0.13)

F 3.54(0.24) 3.62(0.24) 3.60(0.23) 3.76(0.24) 3.76(0.24) 3.76(0.24)  4.49(0.40)

100 50 B 1.99(0.17) 4.66(0.36) 2.39(0.22) 4.72(0.37) 4.72(0.37) 4.45(0.35) 4.25(0.33)
Yy 3.87(0.18) 6.18(0.31) 4.34(0.23) 14.06(0.34) 6.19(0.31) 13.90(0.33) 4.73(0.26)

¥, 2.22(0.16) 2.31(0.16) 2.25(0.20) 13.19(0.32) 2.37(0.15) 13.17(0.32) 2.32(0.16)

F 207(0.26) 2.21(0.30) 2.17(0.28) 2.46(0.32) 2.46(0.32) 2.46(0.32) 4.29(0.64)

100 B 1.26(0.12) 2.37(0.18) 2.31(0.21) 2.39(0.18) 2.39(0.18) 2.27(0.17)  2.15(0.15)
Sy 2.83(0.14) 3.89(0.18) 4.09(0.25) 10.02(0.18) 3.90(0.17) 9.96(0.18)  3.38(0.15)

¥, 1.58(0.12) 1.61(0.11) 1.70(0.15) 9.71(0.16) 1.69(0.11) 9.70(0.16) 1.61(0.11)

F 203(0.16) 2.10(0.17) 2.09(0.17) 2.36(0.18) 2.36(0.18) 2.36(0.18) 2.70(0.21)

150 50 B 1.68(0.13) 4.57(0.27) 1.69(0.16) 4.62(0.28) 4.62(0.28) 4.34(0.26) 4.20(0.25)
Sy 3.75(0.15) 6.80(0.27) 3.95(0.24) 17.25(0.28) 6.82(0.27) 17.05(0.27) 5.03(0.22)

Y. 2.15(0.13) 2.26(0.12) 2.16(0.14) 16.25(0.27) 2.30(0.12) 16.23(0.27) 2.26(0.12)

F o 1.22(0.12) 1.29(0.13) 1.27(0.13) 1.46(0.16) 1.46(0.16) 1.47(0.16) 3.46(0.37)

100 B 1.01(0.09) 2.30(0.15) 1.64(0.15) 2.32(0.15) 2.32(0.15) 2.23(0.15) 2.14(0.13)
Sy 2.68(0.09) 4.10(0.15) 3.66(0.25) 12.23(0.17) 4.12(0.15) 12.18(0.17) 3.56(0.14)

S, 1.53(0.09) 1.58(0.09) 1.60(0.12) 11.84(0.16) 1.61(0.09) 11.83(0.16) 1.58(0.09)

F 1.24(0.09) 1.27(0.09) 1.27(0.10) 1.46(0.11) 1.46(0.11) 1.46(0.11) 1.80(0.16)




Table 3: Simulation results of Example II. Each cell shows the meanx10

(standard error x10).

p =100 p =150

T c I\IEB M EZy M Ez;E I\IEF I\IEB l\"IEEY I\’IEEF I\IEF

300 PML 0.80(0.06) 2.03(0.07) 0.96(0.06) 2.08(0.08)  0.78(0.04) 2.06(0.06) 0.91(0.05) 1.25(0.05)
9 0.64(0.05) 1.85(0.06) 0.96(0.06) 2.07(0.08)  0.59(0.04) 1.82(0.05) 0.91(0.05) 1.25(0.05)
8 0.61(0.05) 1.81(0.06) 0.96(0.06) 2.07(0.09)  0.55(0.04) 1.76(0.06) 0.91(0.05) 1.25(0.05)
7 0.58(0.04) 1.78(0.06) 0.96(0.06) 2.07(0.08)  0.48(0.04) 1.67(0.06) 0.91(0.05) 1.25(0.05)
6 0.55(0.04) 1.74(0.06) 0.95(0.06) 2.07(0.08)  0.44(0.03) 1.61(0.05) 0.91(0.05) 1.24(0.05)
500 PML 0.50(0.04) 1.55(0.06) 0.76(0.05) 2.06(0.07)  0.47(0.03) 1.54(0.04) 0.72(0.04) 1.24(0.04)
9 0.43(0.04) 1.46(0.05) 0.76(0.05) 2.06(0.07)  0.37(0.02) 1.40(0.04) 0.72(0.04) 1.24(0.04)
8 0.41(0.04) 1.43(0.05) 0.76(0.05) 2.06(0.07)  0.36(0.02) 1.38(0.04) 0.72(0.04) 1.24(0.04)
7 0.39(0.03) 1.40(0.05) 0.76(0.05) 2.06(0.07)  0.32(0.02) 1.33(0.04) 0.72(0.04) 1.24(0.04)

6 0.36(0.03) 1.37(0.05) 0.76(0.05) 2.06(0.07)  0.30(0.02) 1.30(0.04) 0.72(0.04) 1.24(0.04)

same fund (Anton and Polk, 2014).

To provide an intuitive measure of similarity between the networks and
the factor loadings, we introduce the following metric R. Specifically, we
first estimate I' = J,I" based solely on model (@) in the paper, denoted as
P Using the principal component method, we obtain an initial estimate of
By, denoted as B pca- After decentralizing B pca, wWe project it onto f and

calculate the proportion of B pca that is explained by I'. That is
R = [|P=J,Brcallt/ |1 JpBroallF,

~ AT~ =
where Pz = ['(I [)7'T. A larger value of R indicates a higher explanatory



power of the network for the factor loadings. The values of R are 0.30
for the fund-based network and 0.18 for the industry-based network. Both
networks capture information about the factor loadings, with the fund-
based network demonstrating superior performance.

We apply the NAAF to analyze the stock returns. We denote NAAF (fund)
for the fund-based network and NAAF (industry) for the industry-based
network. The number of factors is selected as r = 4 based on the based
on the information criteria proposed by Bai and Ng (2002). The methods
mentioned in the simulation, including POET, PML, and ML-nL. (denoted
as ML-nL(fund) for the fund-based network and ML-nL(industry) for the
industry-based network) are used for comparison. Additionally, we con-
sider a regression-based method incorporating industry classification as a
covariate into the traditional factor model (denoted as “covar-based”). For
more details on the comparison methods, please refer to the Section S.9 in
the supplementary materials.

To evaluate the models’ performance, we first consider the prediction
error. Denote {t;}?8, as the first trade day of i-th month and ty9 = 563 + 1.
Define Y, .,, as the submatrix consisting of the columns from n; to ny of
the matrix Y. For¢ € {1,...,25}, we analyze the submatrix Y.

113—1) Using

the proposed methods and comparison methods. Denote the estimators of



factor loading matrix as EZ fort=1,---,25. Denote the prediction error as
25 B/ BTH\-1P Y
(1/25) Zi:l ||(Ip - B%(BzTBl) 1B’LT)(Y»ti+35(ti+4*1) - Kti+35(ti+4*1)1;|;+4—ti+3)||F

for all methods except “covar-based”, where f{t ) is the row mean

i+3:(tita—1
of Y .:(tia—1)- For the covar-based, the prediction error is defined as
(1/25) S22, 101, =Bi( BT B) ™ BIO{Yaiysittisa 0= Viosittors 0 +XeBLL il
where X, is the design matrix for the industry, and B\l is the coefficient vec-
tor. The results of the prediction error is provided in Table 4. Methods
that incorporate networks perform better than those that do not. Meth-
ods that incorporate networks perform better than those that do not. The
NAAF (fund) outperforms the alternatives. The NAAF(fund) performs bet-
ter than NAAF (industry), because the fund-based network more effectively
captures the co-movement of stocks. We also conduct pairwise Wilcoxon
tests with the null hypothesis that NAAF (funds) does not have smaller pre-
diction errors than the compared methods. The resulting p-values are all
smaller than 1072, These tests support the conclusion that NAAF(fund)
has smaller prediction errors. The introduction of appropriate networks can
enhance the performance of factor models.

Next, we construct portfolios based on the estimated covariance matrix
to evaluate the performance of the proposed models. Denote the estimated

covariance matrix of of Y, ., ,—1) as Xy,;. We adopt the minimum-variance



portfolio, a widely recognized and established method in portfolio optimiza-
tion (Xue et al}, 2012; Zou et al., 2017). Specifically, we solve the following

optimization problem to determine the portfolio weights:
W; = argmingry _q o wTiyﬂ-w.

Then, we calculate the cumulative return of this portfolio within this month
and obtain a monthly return series. We calculate the three commonly used
measures of return series for different methods: (a) mean, which represents
the geometric average of the returns on investment portfolios. (b) SD, which
represents the standard deviation of returns on investment portfolios. (c)
Sharpe ratio, which measures the earnings under the same risk. The results
are provided in Table 4. The NAAF(fund) outperforms the alternatives in
terms of mean, SD, and Sharpe ratio. The assistance of an appropriate

network improves the effectiveness of portfolio construction.

Table 4: The real data results.

NAAF(fund) NAAF(industry) PML ML-nL(fund) ML-nL(industry) POET covar-based

prediction error 1.4244 1.4293 1.4294 1.4280 1.4268 1.4297 1.4422
mean(x 10%) 2.4563 1.7547 1.6192 1.8236 2.0053 1.4499 1.4686
SD(x10?) 2.2458 2.3524 2.2796 2.2775 2.2658 2.4336 2.3129

Sharpe ratio 0.1201 0.0859 0.0820 0.0910 0.0994 0.0712 0.0745




6. Conclusion

Accurately estimating the loadings and factors are crucial in factor models.
In this paper, we take the network information into account and propose
the NAAF model, which significantly mitigates the necessity of a large
sample size for consistent estimation. We propose a joint quasi-maximum
likelihood estimator of the factor loadings and the covariance matrix of
idiosyncratic errors. Under mild conditions, the NAAF yields a significant
improvement in the rates of convergence than the regular methods. An
efficient gradient descent algorithm is developed to optimize the objective
function. The asymptotic properties of estimators are established. Lots of
numerical studies demonstrate the practical use of NAAF.

To broaden the applications of NAAF, we identify avenues for future re-
search. The first is considering multiple networks between individuals. The
second is to study the theoretical properties and algorithm of the model ex-
tension when the dimension of latent space exceeds the number of factors.
Third, a nonparametric relationship between factor loadings and latent lo-
cations can be considered. Finally, the impact of combining factor and
network models on node community detection or link prediction can be ex-
plored. We believe that these efforts would further increase the applicability

of the NAAF model.
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Supplementary Material

The Supplementary Material consists of ten sections (S.1-S.10). Section
S.1 provides a more general form of Theorem 3. Section S.2 introduces
some useful notations and lemmas that are used to prove the theoretical
properties in Section 3. Sections S.3-S.7 present the proofs of Theorems
1, 2, S.1 and 3, 4, and Proposition 1, respectively. Section S.8 provides
additional algorithmic details. Section S.9 details the comparison methods.

Section S.10 presents additional simulation results.
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