
Statistica Sinica Preprint No: SS-2024-0170 
Title Network Assisted Approximate Factor Model Estimation 

Manuscript ID SS-2024-0170 
URL http://www.stat.sinica.edu.tw/statistica/ 
DOI 10.5705/ss.202024.0170 

Complete List of Authors Yuzhou Zhao,  
Xinyan Fan and 
Bo Zhang 

Corresponding Authors Xinyan Fan 
E-mails 1031820039@qq.com 



Statistica Sinica

Network Assisted Approximate Factor Model Estimation

Yuzhou Zhao, Xinyan Fan∗ and Bo Zhang

Center for Applied Statistics and School of Statistics, Renmin University of China

Abstract: The factor models are powerful tools for uncovering patterns of similar-

ity or co-movement among individuals, and they have been successfully applied

in the fields of finance and biology. However, the classical approximate factor

model encounters limitations when dealing with small sample sizes. To over-

come this challenge, we leverage auxiliary network information and propose a

novel joint quasi-maximum likelihood estimation, which can use the network in-

formation flexibly and allow network heterogeneity. The theoretical properties of

these estimators are rigorously established. We obtain a new convergence rate,

which is faster than the rate of classical maximum likelihood estimators when

the sample size is small. Numerous numerical studies have been conducted to

evaluate the performance of the proposed methods.
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1. Introduction

The factor models are powerful tools for uncovering patterns of similarity

or co-movement among individuals, which have been successfully applied in

financial engineering, economic analysis, and biological technology (Fama

and French, 1992; Chamberlain and Rothschild, 1983; Mayrink and Lucas,

2013). As one of the most commonly used factor models, the approximate

factor model is appealing as it allows the idiosyncratic errors to be cross-

sectionally correlated. There are two main strategies for the estimation of

factor models: Principal Component (PC) based estimation, and maximum

likelihood (ML) based estimation. PC-based method minimizes the sum of

squares of response prediction errors (Bai, 2003; Fan et al., 2013). ML-

based method maximizes a Gaussian-type log-likelihood function to obtain

the factor loadings (Bai and Li, 2012; Bai and Liao, 2016). Compared to

the PC-based method, the ML-based method is more efficient under cross-

sectional heteroskedasticity structures with unknown dependence structures

(Bai and Liao, 2016).

Despite the great success in theory, methodology, and applications,

there are still limitations in the estimation of factor models. One major

constraint is the necessity for a large sample size. Specifically, the estima-

tion of factor loadings is constrained to a rate no faster than Op(T
−1/2),
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where T represents the sample size (Bai and Li, 2016). To alleviate the

requirement for a large sample size, one popular approach is to incorporate

auxiliary information (such as explanatory variables, spatial information,

and network). For example, Fan et al. (2016) pointed out that the fac-

tor loadings are often highly correlated with explanatory variables, and

projected (smoothed) data matrix onto a given linear space spanned by ex-

planatory variables to estimate the factor loadings. For another example,

Huang and Yang (2010) assumed that the factor loadings corresponding to

the same cluster of explanatory variables are all the same.

In addition to explanatory variables, networks among individuals rep-

resent a distinct and crucial form of auxiliary information. Homophily

and heterophily are common phenomena in networks. Homophily refers

to greater similarity among connected individuals, while heterophily sug-

gests greater dissimilarity (McPherson et al., 2001; Xie et al., 2016). Both

phenomena highlight that networks provide additional information for de-

scribing the similarity between individuals. Consequently, properly incor-

porating network data can substantially improve the performance of factor

models. To illustrate the role of networks in factor models, we present

three examples. First, consider financial data. Factor models are powerful

tools for studying the co-movement of stock returns. Networks between
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stocks, such as co-holding relationships, also capture the co-movement of

stocks (Anton and Polk, 2014; Lin and Qiu, 2024), providing valuable aux-

iliary information to enhance the factor model. Second, consider biological

gene data. Gene networks, based on interactions or co-occurrence (Wong

et al., 2004; Yi et al., 2022), are essential for identifying similarities between

genes. Integrating these networks into the factor model allows for a more

effective derivation of low-dimensional representations. Lastly, consider en-

vironmental pollution data. Factor models can be employed to capture the

common variation of air pollutants across different regions. Networks con-

structed from spatial geographic locations or climate conditions can further

assist in analyzing the similarities in pollution levels across regions (Foun-

talis et al., 2014; Von Ferber et al., 2009). To incorporate network infor-

mation, Yu et al. (2020) excavated the prior network information through

the Laplacian penalty and Projection penalty. However, their models are

not trouble-free. For example, the Laplacian penalty neglects the degree

heterogeneity. Thus, such a model may be not suitable for degree hetero-

geneous networks. Meanwhile, the Laplacian and Projection penalties are

applied to the vector of factor loadings, disregarding variations in network

effects across different loadings. Accordingly, there is a need to develop a

new factor model with network association.
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In this paper, we propose a novel network assisted approximate factor

model (NAAF). Inspired by Fan et al. (2016) and Linton and Connor (2000),

we assume that the factor loadings are functions of some latent variables

but not the observable explanatory variables. The latent variables can be

the characteristics of individuals or some important but unobservable ex-

planatory variables. For simplicity, the functions between the latent vector

and the factor loadings are assumed to be linear. In addition to the impact

on the factor loadings, the latent variables are also assumed to determine

the network structure. Following Hoff et al. (2002); Krivitsky et al. (2009),

we model the network using a latent space model, and assign individuals

in the network latent “locations” that determine their connection pattern.

We assume that the latent “locations” of individuals are also linear func-

tions of the latent variables that determine the factor loadings. The spaces

spanned by the columns of the factor loading matrix and the individuals’

latent location matrix in the network are assumed to be the same. Under

this assumption, we incorporate the network information by jointly esti-

mating the factor loadings and the latent locations of individuals by the

penalized quasi-maximum likelihood estimator. Specifically, we pursue pa-

rameters that maximize the balanced quasi-maximum likelihood function

of the factor model and latent space model and make the covariance matrix
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of idiosyncratic errors sparsity via penalization.

The main contributions can be summarized as follows. First, we de-

velop a novel framework for jointly analyzing the factor model and network

information, which can be flexibly extended to other factor-based methods.

The proposed method enriches the factor models with the association of

auxiliary information. Second, we rigorously establish the statistical prop-

erties of estimators. The model’s identifiability has been demonstrated.

The explicit convergence rates of estimated factor loadings and the covari-

ance of response are studied. Under mild conditions, the factor loadings

convergence rate can be improved from Op(T
−1/2) to Op((T/ log(p))

−3/4).

The proof of theoretical properties faces great challenges, which stem from

the joint estimation of the factor loadings and “latent” locations, and the

complexity of the quasi-likelihood function. Third, an efficient alterna-

tive updating algorithm is developed to address the resultant optimization

task. At last, numerical experiments on both simulated and real examples

indicate that the proposed method is superior to the existing ML–based

methods and PC–based methods.

The paper is organized as follows. Section 2 introduces the NAAF,

proposes the penalized quasi-maximum likelihood function, and develops

an efficient algorithm to tackle the computational challenge. Section 3 es-
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tablishes the statistical properties of NAAF estimators. Simulation studies

and an empirical example are given in Sections 4 and 5, respectively. Sec-

tion 6 concludes the article with short discussions. All theoretical proofs

are relegated to the supplementary material.

2. Methodology

2.1 Model and Parameter Estimation

Let us consider p individuals for T periods. Denote Y = (Y1, . . . , YT ) =

(Yit)p×T ∈ Rp×T as the large panel data, where Yit is the response value of

i-th individual at time t, for i = 1, · · · , p and t = 1, . . . , T . The volatil-

ities of response variables are driven by a few latent common factors and

idiosyncratic errors,

Yt = µ0 +B0ft + et, for t = 1, . . . , T, (2.1)

where B0 = (b01, . . . , b0p)
⊤ ∈ Rp×r is the factor loadings matrix and b0i =

(b0i,1, . . . , b0i,r)
⊤ is the corresponding loading vector of individual i, ft =

(f1t, . . . , frt)
⊤ is the unobservable factor vector, r is the factor number and

assumed to be known in our model, µ0 ∈ Rp is the mean vector of Yt, and

et ∈ Rp is the idiosyncratic error vector with mean zero and covariance ma-

trix Σe0, which allowed being cross-sectional correlated. To make equation
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2.1 Model and Parameter Estimation

(2.1) identifiable, we assume that B⊤
0 Σ

−1
e0 B0 is diagonal, T−1

∑T
t=1 ftf

⊤
t = Ir

and T−1
∑T

t=1 ft = 0. Similar identifiable conditions can also be found in

(Bai and Liao, 2016).

Suppose a network is collected alongside. The network can be repre-

sented by an adjacency matrix A = (Aij)p×p ∈ {0, 1}p×p, where Aij = Aji =

1 if there exists an edge between two individuals (i, j), and Aij = Aji = 0

otherwise. We use the latent space model to analyze the network. We as-

sume that the (i, j)-th elements of adjacency matrix A are independently

generated as follows:

Pr(Aij = 1) = Pij and logit(Pij) = (α∗
i + α∗

j + β⊤
i Iq1,q2βj), (2.2)

for i, j = 1, . . . , p, where logit(x) = log{x/(1−x)} for any x ∈ R, βi ∈ Rr is

the latent vector corresponding the i-th individual’s latent location, Iq1,q2 =

diag(Iq1 ,−Iq2) with q1 + q2 = r, and α∗
i is the heterogeneity parameter of

ith individual, for i = 1, 2, . . . , p. Denote Γ = (β1, . . . , βp)
⊤. For ease

of presentation, we write A ∼ Ber(P ), where P = (Pij)p×p ∈ Rp×p. In

Equation (2.2), the function form of βi and βj is similar to the model of

Rubin-Delanchy et al. (2022), although they considered Pij rather than

logit(Pij). The connection probability of nodes i and j increases with the

similarity of the first q1 elements of βi and βj, and decreases with the

similarity of their last q2 elements. The model accounts for only homophily
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2.1 Model and Parameter Estimation

in the network when q2 = 0, and only heterophily when q1 = 0. Equation

(2.2) allows for the coexistence of both homophily and heterophily.

To establish the connection between the factor model and the network

model, we assume that characteristics of individuals can be represented by

a latent matrix Z ∈ Rp×r. That is, the i-th individual can be represented

by the i-th row of Z, Zi·. We further model the factor loading matrix

B0 = ZW1 and the individual location matrix Γ = ZW2, for some transition

matrices W1 and W2 with full rank. The linear function is used to represent

the relationship between B0 and Z and that Γ and Z for simplicity. This

assumption is reasonable to some extent. For example, let Yt be the activity

measure of all individuals at time t on social media, and A represent the

friendship network. The loading factors and latent locations in the network

are all dependent on the individuals’ hobbies and characteristics. Since W1

and W2 are invertible, there exists W , such that Γ = B0W . We denote

Ω0 = WIq1,q2W
⊤. Then Equation (2.2) can be rewritten as

logit(P ) = B0Ω0B
⊤
0 + α∗1⊤

p + 1pα
∗⊤, (2.3)

where logit(P ) = (logit(Pij))p×p, and α∗⊤ = (α∗
1, α

∗
2, . . . , α

∗
p)

⊤. Note that

Equation (2.3) is not identifiable. For example, let B̆ = B0 + 1pι
⊤, ᾰ =

α∗ − B0Ω0ι − (1/2)1pι
⊤Ω0ι for some constant vector ι ∈ Rp. Then, we

have B̆Ω0B̆
⊤ + ᾰ1⊤

p + 1pᾰ
⊤ = B0Ω0B

⊤
0 + α∗1⊤

p + 1pα
∗⊤. To make (2.3)
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2.1 Model and Parameter Estimation

identifiable, we revise (2.3) as

logit(P ) = JpB0Ω0B
⊤
0 Jp + α01

⊤
p + 1pα

⊤
0 ,

with Jp = Ip − 1p1
⊤
p /p, following Zhang et al. (2022). Further elaboration

on the identifiability can be found in Theorem 1 of Section 3.

Remark 1. In this paper, we assume Γ = B0W for some square matrix

W , which implies that the factor number and the dimension of the latent

vector are the same. In a more general model, the dimensionality of the

latent space and the number of factors may not be equal. Let r be the

dimension of ft and k the dimension of βi. Our model can accommodate

the case k < r. In that case, W is an r × k matrix, and Ω0 = WIq1,q2W
⊤

is singular. Our model can also be applied to the case where k > r with

a extension. Recall that the dimensions of Γ are p × k. One can assume

Γ = (B0W,Γ0)p×kΦπ, where Γ0 is p × (k − r) matirx, and Φπ is a column

permutation matrix. Here, Φπ is designed to ensure that the node connec-

tion probabilities increase when the first q1 latent variables are similar, while

the remaining q2 latent variables are dissimilar. The latent space model can

be reformulated as logit(P ) = JpB0Ω0B
⊤
0 Jp +Υ0Iq01,q02Υ

⊤
0 + α01

⊤
p + 1pα

⊤
0 ,

where Ω0 = WIqb1,qb2W
⊤, Υ0 = JpΓ0 is the the matrix of latent variables

that cannot be captured by the factor loading matrix B0, and qb1, qb2, q01, q02

are constants satisfying qb1 + q01 = q1, qb2 + q02 = q2.
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2.1 Model and Parameter Estimation

To estimate the factor loadings with the assistance of the network, we

consider the penalized negative quasi-log likelihood estimator,

(B̂, Σ̂e, Ω̂, α̂) = argminB,Ω,α,Σe≻0L(B,Σe,Ω, α),

L(B,Σe,Ω, α) = LY (B,Σe) + λT−1LA(B,Ω, α) + PT (Σe). (2.4)

In equation (2.4), LY (B,Σe) and LA(B,Ω, α) are proportional to the nega-

tive quasi-log likelihood functions corresponds to Y and A with parameters

B, Σe, Ω, and α, respectively, that is

LY (B,Σe) = log{det(BB⊤ + Σe)}+ tr{Sy(BB⊤ + Σe)
−1},

LA(B,Ω, α) = −
∑

1≤i<j≤p

[AijΘA,ij − log{1 + exp(ΘA,ij)}],

where Sy is the sample covariance matrix of Y , ΘA = JpBΩB⊤Jp + α1⊤
p +

1pα
⊤, λ is a tuning parameter, and PT (Σe) is a penalty function on Σe.

With B̂ and Σ̂e, we can estimate f̂t via generalized least squares.

The objective function (2.4) comprises three terms. With the first two

terms, we pursue the best fitting of the data matrix Y and the adjacency

matrix A. The tuning parameter λ balances the importance of LY (B,Σe)

and LA(B,Ω, α), which is data-dependent. When λ = 1, the LY (B,Σe) +

λT−1LA(B,Ω, α) is directly proportional to the joint negative log-likelihood

function of (Y,A). However, in practice, λ = 1 is not always the best

choice. Since the assumption that Γ = B0W is strong, a data-driven tuning
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2.2 Computing Algorithm

parameter enhances the model’s robustness when these assumptions are not

precisely met. In numerical studies, the selection of λ depends on various

factors, such as the scale of Ω0. When Ω0 is small, the network information is

limited. Taking the network into consideration may introduce extra errors

as well as information. Thus, in such cases, the choice, λ < 1, is better

than that λ = 1. The third term PT (Σe) encourages the sparsity of Σ̂e.

In this paper, we consider the lasso penalty (Tibshirani, 1996), such that

PT (Σe) = ρp,T
∑

i ̸=j |Σe,ij| with a tuning parameter ρp,T . The same penalty

has also been found in Bai and Liao (2016).

2.2 Computing Algorithm

We develop an efficient alternative updating algorithm based on the gra-

dient descent method. Let Π = (B,Ω, α). Let B(k−1),Σ
(k−1)
e ,Ω(k−1), α(k−1)

and Π(k−1) be the parameters obtained in the (k−1)-th iteration. The kth it-

eration consists of two steps. In first step, we update Σ(k)
e = argminΣe

L(Σe,Π
(k−1)),

which is optimized using the method proposed by (Bien and Tibshirani,

2011). Recall that Σ(k−1) = B(k−1)(B(k−1))⊤ + Σ
(k−1)
e . We substitute the

concave term log{det(Σ(k−1))} with the tangent plane tr{(Σ(k−1))−1(Σe −

Σ
(k−1)
e )} and then minimize tr{(Σ(k−1))−1(Σe−Σ

(k−1)
e )}+tr{Sy(B

(k−1)(B(k−1))⊤+

Σe)
−1}+PT (Σe). In the second step, we aim to optimize Π(k) = argminΠL(Σ

(k)
e ,Π).
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2.2 Computing Algorithm

We use the gradient descent method to update Π(k). Furthermore, we can

set Ω̂ to be a diagonal matrix, and remove the restriction B̂⊤Σ̂−1
e B̂ is di-

agonal in the iteration. Finally, we take B̂O as the estimator such that

O⊤B̂⊤Σ̂−1
e B̂O is a diagonal matrix. The algorithm details are provided in

Algorithm 1.

Algorithm 1 requires initial inputs of several hyperparameters. In se-

lecting the number of factors, we initially disregard network information.

The information criterion is used to determine r (Bai and Ng, 2002). Specif-

ically, r̂ = argmink log{(pT )−1 minB ||Y − BF̂k||2F}+ k(p+ T ) log{pT/(p+

T )}/(pT ), where F̂k is the PCA estimator of factors when the number of

factors is k. Step sizes (sB, sα, sΩ) and η are user-specified small constants.

In this paper, we set the s and η change as p and T vary. The initial values

of B(0), Σ(0)
e , α(0), and Ω(0) are obtained as follows. First, we analyze Y to

obtain B̃(0) and Σ
(0)
e by the POET method, which is a PC-based method to

estimate the approximate factor model proposed by Fan et al. (2013). Then,

we use the project gradient descent algorithm to obtain an approximate es-

timate Θ̃A and set Ω∗ = (B̃(0)⊤JpB̃
(0))−1B̃(0)⊤JpΘ̃AJpB̃

(0)(B̃(0)⊤JpB̃
(0))−1.

Finally, we find an orthogonal matrix U such that UΩ∗U⊤ is diagonal, and

set Ω(0) = UΩ∗U⊤ and B(0) = B̃(0)U⊤. Cross-validation is used to select

the tuning parameters λ and ρp,T , following Bai and Liao (2016). For more

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0170



2.2 Computing Algorithm

Algorithm 1
1: Input factor number r, step sizes s = (sB, sΩ, sα), small number η,

hyperparameter ρpT and λ.

2: Set k = 0. Initialize (B(0),Σ
(0)
e ,Ω(0),α(0)).

3: Update k = k + 1.

(a) Update Σe: Let Σ̂(k−1) = B(k−1)(B(k−1))⊤ + Σ
(k−1)
e , and

Φ = Σ(k−1)
e − η

{
(Σ̂(k−1))−1 − (Σ̂(k−1))−1Sy(Σ̂

(k−1))−1
}
.

Set Σ
(k)
e = (Σ

(k)
e,ij), where Σ

(k)
e,ij = S(Φij, ηρp,T )I(i ̸= j) + ΦijI(i = j),

S(a, ηρp,T ) = sign(a)(|a| − ηρp,T )
+, and x+ = max(x, 0) for any x ∈ R

is the positive part of x.

(b) Update Π:

(i) Initialize n = 0 and Π(k,0) = Π(k−1).

(ii) Update n = n+ 1. Let

B(k,n) = B(k,n−1) − sB
∂L

∂B
(B(k,n−1), Σ̂(k)

e ,Ω(k,n−1), α(k,n−1)),

α(k,n) = α(k,n−1) − sα
∂L

∂α
(B(k,n−1), Σ̂(k)

e ,Ω(k,n−1), α(k,n−1)),

Ω(k,n) = Ω(k,n−1) − sΩ
∂L

∂Ω
(B(k,n−1), Σ̂(k)

e ,Ω(k,n−1), α(k,n−1)).

(iii) Repeat (ii) until convergence. Set Π(k) = Π(k,n).

4: Repeat Step 3 until convergence.
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2.3 Benefits of Network

details, please refer to the Section S.8 in the supplementary materials. In

numerical studies, the algorithm is computationally affordable. For exam-

ple, when p = 200, T = 300, the ten times average computational time is

37.53 seconds using a laptop with Apple M1 Pro and 16 GB memory.

2.3 Benefits of Network

We note that if λ in equation (2.4) is set to 0, our method reduces to the

classical approximate factor model. The factor loadings estimated based

on the penalized likelihood function of Y , LY (B,Σe) + PT (Σe), will also

yield consistent estimates. However, the convergence rate of the factor

loadings is inherently limited to Op(T
−1/2). In this paper, we introduce

λT−1LA(B,Ω, α) to leverage the information from the network. Next, we

clarify the benefits of incorporating network information when T is small.

Define Γ̄ = JpΓ. Then, Γ̄Iq1,q2Γ̄
⊤ = JpB0Ω0B

⊤
0 Jp. Recall that Γ =

B0W . For simplicity, we assume that W is nonsingular in this subsection.

Then, we have B0 = (1p, Γ̄)W̄ for some matrix W̄ ∈ R(r+1)×r. Conse-

quently, if Γ̄ is known, the estimation of B0 is reduced to the estimation of

the coefficient matrix W̄ . The number of parameters requiring estimation

decreases significantly from O(p) to O(1). This reduction in the number

of parameters leads to faster convergence rates for the factor model. A
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2.3 Benefits of Network

similar result can be found in (Fan et al., 2016). In this paper, Γ̄ cannot be

observed directly. Fortunately, we can recover the basis vector accurately

using the network model. For example, when q2 = 0, the convergence rate

of the estimator of Γ̄ is Op(p
−1/2) (Zhang et al., 2020). By introducing the

loss function λT−1LA(B,Ω, α), when λ is large, the estimation of the basis

for the column space of B0 becomes more accurate in the case of small T

and large p, thereby improving the estimation of B0.

It is important to highlight that the method proposed in this paper dif-

fers notably from the following two-step approach. In the two-step method,

one can first estimate Γ̄ only using the network information, then esti-

mate B0 and Σe0 by optimizing LY (B,Σe) + PT (Σe) under the constraint

JpB = ̂̄ΓŴ , where Ŵ is a parameter matrix and ̂̄Γ is the estimator of Γ̄.

Compared to the two-step approach, our joint likelihood method is more

flexible due to the introduction of λ. The tuning parameter λ balances the

information derived from the network and that from the panel data. In the

small p and large T cases, our method allows for a smaller value of λT−1,

which facilitates greater utilization of the information contained in the panel

data, whereas when p is large and T is small, a larger value of λT−1 is pre-

ferred to incorporate the network information better. Additionally, our

method selects smaller values of λ when the network generation does not
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align with the hypothesis, resulting in more robust outcomes. Numerical

results also confirm that the proposed method achieves smaller estimation

errors than the two-step approach. For more details, refer to Section 4.

3. Theoretical Properties

For any matrix X = (xij) ∈ Rk1×k2 , denote σk(X), σmax(X), and σmin(X)

as the kth singular value, the largest singular value, and the smallest

singular value of X, respectively. Let ||X||F =
√
tr(X⊤X), ||X||2 =

σmax(X) and ||X||1 = maxj≤k2

∑
i |xij| be the Frobenius norm, spectral

norm, and maximum absolute column-sum norm, respectively. For given

estimator Σ̂ of some covariance matrix Σ, we use the norm ||Σ̂ − Σ||Σ =

p−1/2||Σ−1/2(Σ̂ − Σ)Σ−1/2||F to evaluate the accuracy of estimator follow-

ing Fan et al. (2013). Denote the true parameters as B0,Σe0,Ω0, α0, and

ΘA0. Recall that ΘA = ΘA(B,Ω, α) = JpBΩB⊤Jp + α1⊤
p + 1pα

⊤. The

true covariance matrix of Yt and its estimator are ΣY 0 = B0B
⊤
0 + Σe0 and

Σ̂Y = B̂B̂⊤ + Σ̂e, respectively. We denote F = (f1, . . . , fT ) ∈ Rr×T , and

E = (e1, . . . , eT ) ∈ Rp×T . Define JU , JL ⊆ {(i, j) : i ≤ p, j ≤ p} such that

JU ∩ JL = ∅ and JU ∪ JL = {(i, j) : i ≤ p, j ≤ p}. Let JL be the set of

the indices for small elements of Σe in absolute value, and JU contain the

indices for large elements. Denote Dp := #{(i, j) : (i, j) ∈ JU , i ̸= j} be
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the cardinal number of JU . For any N ∈ R+, denote F0
−∞ and F∞

N are

σ-algebras generated by {(ft, et),−∞ < t ≤ 0} and {(ft, et), N ≤ t < +∞}

respectively. Define φ(N) = supD∈F0
−∞,G∈F∞

N
|P (D)P (G) − P (DG)|, and

ρ(N) = supg1∈L2(F0
−∞),g2∈L2(F∞

N ) |corr(g1, g2)|, where L2(F0
−∞) is the set of all

F0
−∞ measurable functions with finite second order moments, and L2(F∞

N )

has a similar definition. To study the properties of NAAF, we introduce

the following seven technical assumptions.

Assumption 1. (1) Assume that {ft, et}s are strictly stationary. In addi-

tion, E(eit) = E(eitfjt) = 0 for all i ≤ p, j ≤ r and t ≤ T .

(2) There exist constants c, C, c1, C1, c2 > 0 such that c ≤ σmin(Σe0) ≤

σmax(Σe0) ≤ C, c1 ≤ σmin(p
−1B⊤

0 B0) ≤ σmax(p
−1B⊤

0 B0) ≤ C1, and

max{maxj≤p{||b0j||2}, ||Σe0||1, ||Σ−1
e0 ||1} ≤ c2, where b0j is the vector corre-

sponding to the j-th row of B0.

(3) There exist r1, r2 > 0 and a1, a2 > 0, such that for any s > 0,

i ≤ p and j ≤ r, Pr(|eit| > s) ≤ exp(−(s/a1)
r1) and Pr(|fjt| > s) ≤

exp(−(s/a2)
r2).

(4) There exist r3 > 0 and a3 > 0 satisfying: for all N ∈ Z+,φ(N) ≤

exp(−a3N
r3), and r−1

4 := 3r−1
1 + r−1

3 > 1, r−1
5 := 3r−1

2 + r−1
3 > 1.

Assumption 2. (1) The adjacency matrix, A, is independent of (et, ft)s.
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(2)There exist constants m,M, c3, Cv > 0 such that for all large p,

m ≤ σmin(p
−1B⊤

0 JpB0) ≤ σmax(p
−1B⊤

0 JpB0) ≤ M, and σr(Ω0) ≥ c3vp,

where v1+ε
p ≫ p−1/2 for some small positive ε. Further, we assume cv ≤

σ1(Ω) ≤ Cv.

(3)There exist M1 such that max
i≤p,j≤p

|ΘA0,ij| ≤ M1.

Assumption 3. Assume that

(1) (i, i) ∈ JU for all i ≤ p, and Dp ≪ min{p
√

T/ log(p), p2/ log(p), p2v
2(1+ε)
p },

(2) KT :=
∑

(i,j)∈JL |Σe,ij| = o(p).

Assumption 4. (1) Assume that p−1B⊤
0 Σ

−1
e0 B0 is diagonal, and there ex-

ists a positive definite matrix H1 with r distinct eigenvalues, such that

p−1B⊤
0 Σ

−1
e0 B0 → H1.

(1’) Assume that p−1B⊤
0 (Σ

∗
e)

−1B0 is diagonal, with (Σ∗
e)ij = Σe0,ij1{i=j}.

There exists a positive definite matrix H2 with r distinct eigenvalues, such

that and p−1B⊤
0 (Σ

∗
e)

−1B0 → H2.

Assumption 5. The tuning parameter ρp,T in the penalty function satisfies

√
log(p)/T + log(p)/p+ 1/(pv2(1+ε)

p ) ≪ ρp,T ≪ min{p/Dp,
√

p/Dp, p/KT}.

Assumption 6. (1) There exist positive constants a′3, r′3 such that ρ(N) ≤

exp(−a′3N
r′3).
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(2) Assume that (pT )−1
∑p

i=1

∑T
t=1

∑T
s=1 ftf

⊤
s cov(eit, eis) ≥ m1 almost

surely, for some constant m1.

Assumption 7. There exists a sufficiently large constant K, such that

(1) ||ft||2 ≤ K almost surely for t = 1, . . . , T , and {ft} independent of

{et};

(2) E (eitejs) = γij,ts, with (pT )−1
∑p

i=1

∑p
j=1

∑T
t=1

∑T
s=1 |γij,ts| ≤ K;

(3) E
[∥∥∥(pT )−1/2

∑p
i=1

∑T
t=1(Σe0,ii)

−1b0i {eitejt − E (eitejt)}
∥∥∥2

2

]
≤ K, for

j = 1, . . . , p; and

(4) E

[∥∥∥(pT )−1/2
∑p

i=1

∑T
t=1(Σe0,ii)

−2b0ib
⊤
0i (e

2
it − Σe0,ii)

∥∥∥2

F

]
≤ K.

Assumption 1 is a commonly used assumption in the approximate factor

model, which can be found in (Fan et al., 2013; Bai and Liao, 2016). As-

sumption 1 (1) states a stationary relationship and assumes non-correlation

between ft and et. Assumption 1 (2) assumes the eigenvalues of Σe0 and

p−1B⊤
0 B0 are bounded, which leads to r spiked eigenvalues of Sy. Assump-

tions 1 (3) and (4) allow us to apply the Bernstein-type inequality (Mer-

levède et al., 2011). Assumption 2 is an assumption about the network.

Similar assumptions can be found in Zhang et al. (2022, 2020). Assump-

tion 2 (1) is a common independent assumption. Assumptions 2 (2) and (3)

are introduced to show that the factor model and latent space model share

enough information as B⊤JpB and σr(Ω) are not allowed to be too small.
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Assumption 3 is the sparsity assumption of covariance matrix Σe0 which has

been used in Bai and Liao (2016). Assumption 4 is commonly used in the

latent space model that assumes the network is dense. Assumption 6 (1) is

the ρ-mixing condition (Bradley, 2005), which is similar to a strong mixing

condition that describes the dependence of two σ-algebra. Assumption 6

(2) aims to bound the variance of most T−1/2
∑T

t=1 ftejt for j = 1, 2, . . . , p

away from 0. Assumption 7 (1) gives the uniform bound of ft, and As-

sumptions 7 (2)-(4) are borrowed from Bai and Li (2016). Assumptions 6

and 7 are not necessary for building the convergence results of our method.

They are introduced to show that under special cases, the NAAF has a

faster convergence rate than ML. Under the above assumptions, we define

the parameter space,

Ξδ ={(B,Σe,Ω, α) : δ
−1
1 ≤ σr(p

−1B⊤B) ≤ σ1(p
−1B⊤B) ≤ δ1,

δ−1
2 ≤ σr(p

−1B⊤JpB) ≤ σ1(p
−1B⊤JpB) ≤ δ2, B

⊤Σ−1
e B is diagonal,

max
i,j

|ΘA,ij| ≤ δ3, and max{||Σe||1, ||Σ−1
e ||1, ||Σe||2, ||Σ−1

e ||2} ≤ δ4, σr(Ω) ≥ δ5vp},

and

ΞΣ,δ = {(B,Σe,Ω, α) : ||Σe||0 ≤ p+ C(δ)p2v−4
p },

for some large enough constants δ1, δ2, δ3, δ4 > 0, where C(δ) is a function

of δ with relatively small values, and vp is defined in Assumption 2.
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Theorem 1. There exists C(δ) > 0, such that for (B,Σe,Ω, α) and (B⋆,Σe⋆,Ω⋆, α⋆) ∈

Ξδ∩ΞΣ,δ satisfying BB⊤+Σe = B⋆B
⊤
⋆ +Σe⋆, and ΘA(B,Ω, α) = ΘA(B⋆,Ω⋆, α⋆),

there exists an orthogonal matrix O such that (B,Σe,Ω, α) = (B⋆O,Σe⋆, O
⊤Ω⋆O,α⋆).

According to Theorem 1, the models (2.2) and (2.3) can be identifiable

if Σe is sparse. Next, we consider the consistency of B̂ and Σ̂e, where

(B̂, Σ̂e, Ω̂, α̂) = argmin{(B,Σe,Ω,α)∈Ξδ∩ΞΣ,δ}L(B,Σe,Ω, α). We first derive a

general convergence result in Theorem 2.

Theorem 2. Suppose Assumptions 1–3, 4(1), and 5 hold. For λ < +∞,

and {log(p)}2/rm−1 ≪ T , we have p−1||Σ̂e−Σe0||2F = op(1), min
OO⊤=O⊤O=Ir

p−1||B̂O−

B0||2F = op(1), min
OO⊤=O⊤O=Ir

T−1||OF̂ − F ||2F = op(1), and (pT )−1||B̂F̂ −

B0F ||2F = op(1), where r−1
m = max{r−1

4 , r−1
5 }. In addition, if σr(Ω) = 0, the

above convergence result holds for λ ≪ dp,T := max{log(p)T/p,
√
log(p)T}.

Theorem 2 shows that NAAF estimators are convergent for any non-

random λ < +∞, when p goes to infinity not faster than exp(T ι) for some

ι, when the σr(Ω) ≫ vp. If σr(Ω) = 0 (as discussed in Remark I), choosing

an appropriate λ can also ensure the convergence of the estimates. The

convergence results are the same as that in Bai and Liao (2016) for the

classical approximate factor model. To obtain the convergence rate, we

provide Theorem 3.
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Theorem 3. Suppose Assumptions 1–3 hold. Assume that {log(p)}2/rm−1 ≪

T ≪ p4/5, max{KT , v
−1
p } = O(1), Dp ≍ p, λ ≫ dp,T ,and ρp,T = (log(p)/T )1/4.

Then we have

min
OO⊤=O⊤O=Ir

p−1||B̂O − B0||2F = Op((log(p)/T )
5/4),

and ||Σ̂Y − ΣY0 ||ΣY0
= Op(p

1/2(log(p)/T )5/4 + (log(p)/T )1/4).

According to Theorem 3, the convergence rate of p−1/2∥B̂O − B0∥F is

faster is faster than T−1/2 for log(p) ≪ T 1/5. The introduction of network

information improves the performance of the factor model in estimating

factor loadings. The assumptions on parameters such as DT , vp, ρT and

others in the theorem are made to clarify the convergence rates of the factor

loadings and the covariance matrix. For more general cases, please refer to

Theorem S.1 in Section S.1 of the supplementary materials

Theorem 4. Suppose Assumptions 1–3 hold and Σe0 is diagonal. Assume

that {log(p)}2/rm−1 ≪ T . For λ ≫ dp,T , and ρp,T = +∞, we have

min
OO⊤=O⊤O=Ir

p−1||B̂O−B0||2F = Op(log
2(p)/(pT ) + (log(p)/T )3/2 + p−1v−2

p ).

In Theorem 4, we consider the classical factor model in which Σe0 is

diagonal. To make the estimate of Σe0 is diagonal, we set ρp,T = +∞. Ac-

cording to Theorem 4, for {log(p)}max{3,2/rm−1} ≪ T ≪ pv2p, the NAAF has
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faster convergence rate for factor loadings than Op(T
−1/2). Furthermore,

when T ≪ min{pv2p, p2/ log p}, the convergence rate is Op((log(p)/T )
3/4).

Since {log(p)}max{3,2/rm−1} grows extremely slow, Theorem 4 indicates that,

in most small T and large p cases, taking the network into consideration

has better performance. Meanwhile, the convergence rate in Theorem 4 is

faster than that in Theorem 3 , which can be attributed to the non-diagonal

assumption of Σe0. At last, we show that the convergence rate of factor load-

ings from the ML-based method proposed by Bai and Liao (2016) is not

faster than Op(T
−1/2).

Proposition 1. Suppose Assumptions 1–3, 4(1’), 6 and 7 hold. Assume

that p ≫ T . There exist constants k1, k2 > 0 such that

lim inf
p,T→∞

Pr( min
OO⊤=O⊤O=Ir

p−1||B̂MLO − B0||2F ≥ T−1k1) ≥ k2,

where (B̂ML, Σ̂e,ML) = argmin(B,Σe)∈Ξδ
LY (B,Σe), with the constraint that

Σ̂e is diagonal.

Proposition 1 implies that under p ≫ T and some special conditions,

the lower bound of factor loadings’ ML estimator in Bai and Li (2016)

convergence rate is no less than Op(T
−1/2).
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4. Simulation Study

In this section, we assess the numerical performance of NAAF and com-

pare it against widely used ML-based and PC-based methods, including the

classical principal component analysis (PCA) method, the popular POET

method proposed by Fan et al. (2013), the penalized maximum likelihood

(PML) method proposed by Bai and Liao (2016), the network assisted

PCA based on the Laplace penalty (PC-L) proposed by Yu et al. (2020),

the penalized likelihood method based on the normalized Laplacian penalty

(ML-nL), and the two-step methods (TSM) mentioned in Subsection 2.3.

For more details on the comparison methods, please refer to Section S.9

in the supplementary materials. In Section 4.1, we will briefly introduce

the simulation settings. In Section 4.2, the simulation results of different

settings and different methods are presented.

4.1 Simulation Settings

We set the number of factors r = 4 and assume that r known. To generate

Yt and A, we first generate Σe0, B0,Ω0, ft and et. First, we follow Fan

et al. (2011) to generate Σe0. To generate B0, we first generate B̃0, such

that (B̃0)ij ∼ N(0, 1) independently for i = 1, . . . , p and j = 1, . . . , r. Let

Ω∗
0 = diag(6, 5,−5,−6). Then, we set B0 = B̃0V , where V is orthogonal
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4.1 Simulation Settings

matrix such that V ⊤B̃⊤
0 Σ

−1
e0 B̃0V is diagonal. We set Ω0 = V ⊤Ω∗

0V . The

factors, fts, are generated from the AR model: ft = 0.2ft−1 +
√
1− 0.04dt

where f0 = d0 and dt ∼ N(0, Ir) independently for t = 0, 1, 2, ..., T . Errors

et with mean 0 and covariance matrix Σe0 are independently drawn from

multivariate mixed Gaussian distribution. We generate Yt by Equation

(2.1), for t = 1, . . . , T . To generate A, we consider three examples.

Example I: We independently generate α0,i ∼ U(−6,−5) for i = 1, . . . , p

where U represents the uniform distribution. Then, we generate A by Equa-

tion (2.3). We aim to examine the performance of NAAF when T is rela-

tively small and moderate, respectively. For the case that T is small, we

set T ∈ {50, 100} and p ∈ {50, 100, 150}. For the case that T is moderate,

we set T ∈ {300, 500} and p ∈ {100, 150, 200}.

Example II: We consider the effect of the density of the network on the

performance of NAAF. We set α0,i ∼ U(0, 1) − c for i = 1, . . . , p and

c ∈ {6, 7, 8, 9}. As c increases, the network gets more sparse. The adjacency

matrix A is generated by Equation (2.3). In this example, we set T ∈

{300, 500} and p ∈ {100, 150}.

Example III: We examine the robustness of NAAF. We generate A in

violation of Equation (2.3). Consider three cases: Case (a): generate

B1 = B0 + 0.2v1 where v1,ij ∼ N(0, 1) with probability 0.3 and 0 with
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4.2 Simulation Results

probability 0.7. Then, we generate A as follows: A ∼ Ber(P ), logit(P ) =

JpB1Ω0B
⊤
1 Jp + α01

⊤
p + 1pα

⊤
0 . Case (b): generate B2 = B0 + 0.2v2 where

v2,ij ∼ N(0, 1). Then, let A ∼ Ber(P ) with logit(P ) = JpB2Ω0B
⊤
2 Jp +

α01
⊤
p + 1pα

⊤
0 . The entries of α0 are also drawn from U(−6,−5) inde-

pendently in Cases (a) and (b). Case (c): A ∼ Ber(P ), where Pij =

exp(−||b0i − b0j||2/2). Cases (a) and (b) are used to examine NAAF when

the assumption that B0Ω0B
⊤
0 = ΓIq1,q2Γ

⊤ does not hold, where Γ is denoted

below Equation (2.2). Case (c) is used to examine NAAF when the latent

space model is invalid. We set T ∈ {300, 500} and p = 100 in this example.

4.2 Simulation Results

In this subsection, we provide the simulation results. To assess the perfor-

mance of estimators, we consider the following four measures: (i)MEB =

min
OO⊤=O⊤O=Ir

p−1||B̂O − B0||2F ; (ii)MEΣY
= ||Σ̂Y − ΣY 0||ΣY 0

; (iii) MEΣe =

||Σ̂e − Σe0||Σe0 ; and (iv) MEF = min
OO⊤=O⊤O=Ir

T−1||F − OF̂ ||2F For each set-

ting, we conduct 100 realizations.

The results of Example I are provided in Tables 1 and 2. For MEB,

MEΣY
, MEΣe and MEF , the NAAF is competitive, especially when T is

small. The estimation accuracy can be improved by taking the network

information into consideration. The results of Example II are provided in
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Table 3. As the network becomes denser, the information provided by the

network gets more rich, and NAAF has better performance. The results of

Example III are reported in Table S.1 in the supplementary materials. As

shown in Table S.1, NAAF is robust. Even when Equation (2.3) is invalid,

taking network information into consideration still increases the accuracy

of the model in terms of MEB and MEΣY
.

5. Real Data Analysis

The study of co-movement in stock returns is crucial in finance. The factor

model is an effective tool for capturing this co-movement structure and

estimating the covariance matrix. We collect daily returns of the constituent

stocks of the CSI 300 Index from the RESSET database, spanning the

period from January 1, 2021, to April 30, 2023, including 563 trading days.

A limited set of stocks is selected for analysis to avoid a sparse network and

ensure computational efficiency. Stocks with incomplete data are excluded,

resulting in a final sample of 246 stocks for analysis. Two common strategies

are employed to construct networks between stocks. The first is based on

industry classification, where a pair of stocks is connected if they share

the same industry label (Yu et al., 2020). The second is based on fund

co-holding, where two stocks are connected if they are heavily held by the
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Table 1: Simulation results of Example I, with (p, T ) ∈ {100, 150, 200} ×

{300, 500}. Each cell shows the mean×10 (standard error ×10).
p T ME NAAF PML TSM PCA POET PC-L ML-nL

100 300 B 0.54(0.05) 0.82(0.07) 2.24(0.23) 0.85(0.07) 0.85(0.07) 0.82(0.07) 0.74(0.06)

ΣY 1.71(0.07) 2.04(0.08) 3.87(0.31) 5.80(0.08) 2.09(0.08) 5.80(0.08) 1.92(0.08)

Σe 0.94(0.06) 0.94(0.06) 1.14(0.12) 5.93(0.07) 1.06(0.09) 5.93(0.07) 0.94(0.06)

F 2.08(0.09) 2.09(0.09) 2.09(0.09) 2.37(0.10) 2.37(0.10) 2.37(0.10) 2.24(0.11)

500 B 0.38(0.03) 0.51(0.04) 2.23(0.23) 0.53(0.04) 0.53(0.04) 0.52(0.04) 0.45(0.04)

ΣY 1.40(0.05) 1.56(0.06) 3.83(0.30) 4.49(0.06) 1.63(0.06) 4.49(0.06) 1.49(0.05)

Σe 0.76(0.05) 0.76(0.05) 1.00(0.11) 4.78(0.05) 0.91(0.08) 4.78(0.05) 0.76(0.05)

F 2.07(0.07) 2.07(0.07) 2.08(0.08) 2.36(0.09) 2.36(0.09) 2.36(0.09) 2.17(0.08)

150 300 B 0.46(0.03) 0.77(0.04) 1.65(0.15) 0.79(0.04) 0.79(0.04) 0.78(0.04) 0.73(0.04)

ΣY 1.65(0.06) 2.06(0.05) 3.45(0.26) 7.09(0.07) 2.08(0.05) 7.08(0.07) 1.97(0.06)

Σe 0.91(0.05) 0.92(0.05) 1.02(0.11) 7.08(0.06) 0.96(0.05) 7.08(0.06) 0.92(0.05)

F 1.25(0.05) 1.25(0.05) 1.26(0.05) 1.46(0.06) 1.46(0.06) 1.46(0.06) 1.33(0.06)

500 B 0.32(0.02) 0.47(0.03) 1.64(0.15) 0.48(0.03) 0.48(0.03) 0.48(0.03) 0.44(0.03)

ΣY 1.33(0.04) 1.55(0.04) 3.41(0.26) 5.48(0.05) 1.58(0.05) 5.48(0.05) 1.51(0.04)

Σe 0.72(0.04) 0.73(0.04) 0.86(0.12) 5.60(0.05) 0.79(0.05) 5.60(0.05) 0.73(0.04)

F 1.24(0.05) 1.24(0.05) 1.24(0.05) 1.44(0.05) 1.44(0.05) 1.44(0.05) 1.27(0.05)

200 300 B 0.42(0.02) 0.78(0.04) 1.50(0.15) 0.79(0.04) 0.79(0.04) 0.78(0.04) 0.75(0.04)

ΣY 1.62(0.05) 2.12(0.05) 3.30(0.24) 8.18(0.07) 2.13(0.05) 8.17(0.07) 2.05(0.05)

Σe 0.94(0.05) 0.95(0.05) 1.01(0.07) 8.11(0.06) 0.96(0.05) 8.11(0.06) 0.95(0.05)

F 0.97(0.03) 0.98(0.03) 0.98(0.03) 1.10(0.04) 1.10(0.04) 1.10(0.04) 1.03(0.05)

500 B 0.27(0.02) 0.48(0.03) 1.50(0.15) 0.48(0.03) 0.48(0.03) 0.47(0.03) 0.45(0.02)

ΣY 1.28(0.03) 1.59(0.04) 3.25(0.24) 6.34(0.04) 1.60(0.04) 6.34(0.04) 1.55(0.04)

Σe 0.76(0.04) 0.76(0.04) 0.85(0.07) 6.37(0.04) 0.78(0.05) 6.37(0.04) 0.76(0.04)

F 0.97(0.04) 0.98(0.04) 0.98(0.04) 1.10(0.04) 1.10(0.04) 1.10(0.04) 1.00(0.04)
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Table 2: Simulation results of Example I, with (p, T ) ∈ {50, 100, 150} ×

{50, 100}. Each cell shows the mean×10 (standard error ×10).
p T ME NAAF PML TSM PCA POET PC-L ML-nL

50 50 B 2.43(0.32) 4.84(0.49) 3.48(0.38) 4.89(0.49) 4.89(0.49) 4.48(0.46) 4.34(0.43)

ΣY 3.82(0.27) 5.49(0.34) 4.44(0.34) 9.98(0.35) 5.50(0.32) 9.78(0.34) 4.15(0.28)

Σe 2.21(0.19) 2.32(0.18) 2.30(0.28) 9.33(0.31) 2.52(0.18) 9.30(0.32) 2.34(0.18)

F 3.60(0.41) 3.72(0.42) 3.65(0.40) 3.81(0.46) 3.81(0.46) 3.81(0.46) 6.47(0.76)

100 B 1.49(0.20) 2.51(0.26) 3.32(0.38) 2.52(0.27) 2.52(0.27) 2.36(0.26) 2.19(0.25)

ΣY 2.81(0.16) 3.63(0.20) 4.18(0.31) 7.11(0.20) 3.67(0.20) 7.04(0.19) 3.11(0.17)

Σe 1.61(0.13) 1.63(0.13) 1.79(0.18) 7.06(0.16) 1.90(0.15) 7.05(0.16) 1.65(0.13)

F 3.54(0.24) 3.62(0.24) 3.60(0.23) 3.76(0.24) 3.76(0.24) 3.76(0.24) 4.49(0.40)

100 50 B 1.99(0.17) 4.66(0.36) 2.39(0.22) 4.72(0.37) 4.72(0.37) 4.45(0.35) 4.25(0.33)

ΣY 3.87(0.18) 6.18(0.31) 4.34(0.23) 14.06(0.34) 6.19(0.31) 13.90(0.33) 4.73(0.26)

Σe 2.22(0.16) 2.31(0.16) 2.25(0.20) 13.19(0.32) 2.37(0.15) 13.17(0.32) 2.32(0.16)

F 2.07(0.26) 2.21(0.30) 2.17(0.28) 2.46(0.32) 2.46(0.32) 2.46(0.32) 4.29(0.64)

100 B 1.26(0.12) 2.37(0.18) 2.31(0.21) 2.39(0.18) 2.39(0.18) 2.27(0.17) 2.15(0.15)

ΣY 2.83(0.14) 3.89(0.18) 4.09(0.25) 10.02(0.18) 3.90(0.17) 9.96(0.18) 3.38(0.15)

Σe 1.58(0.12) 1.61(0.11) 1.70(0.15) 9.71(0.16) 1.69(0.11) 9.70(0.16) 1.61(0.11)

F 2.03(0.16) 2.10(0.17) 2.09(0.17) 2.36(0.18) 2.36(0.18) 2.36(0.18) 2.70(0.21)

150 50 B 1.68(0.13) 4.57(0.27) 1.69(0.16) 4.62(0.28) 4.62(0.28) 4.34(0.26) 4.20(0.25)

ΣY 3.75(0.15) 6.80(0.27) 3.95(0.24) 17.25(0.28) 6.82(0.27) 17.05(0.27) 5.03(0.22)

Σe 2.15(0.13) 2.26(0.12) 2.16(0.14) 16.25(0.27) 2.30(0.12) 16.23(0.27) 2.26(0.12)

F 1.22(0.12) 1.29(0.13) 1.27(0.13) 1.46(0.16) 1.46(0.16) 1.47(0.16) 3.46(0.37)

100 B 1.01(0.09) 2.30(0.15) 1.64(0.15) 2.32(0.15) 2.32(0.15) 2.23(0.15) 2.14(0.13)

ΣY 2.68(0.09) 4.10(0.15) 3.66(0.25) 12.23(0.17) 4.12(0.15) 12.18(0.17) 3.56(0.14)

Σe 1.53(0.09) 1.58(0.09) 1.60(0.12) 11.84(0.16) 1.61(0.09) 11.83(0.16) 1.58(0.09)

F 1.24(0.09) 1.27(0.09) 1.27(0.10) 1.46(0.11) 1.46(0.11) 1.46(0.11) 1.80(0.16)
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Table 3: Simulation results of Example II. Each cell shows the mean×10

(standard error ×10).
p = 100 p = 150

T c MEB MEΣY
MEΣe MEF MEB MEΣY

MEΣe MEF

300 PML 0.80(0.06) 2.03(0.07) 0.96(0.06) 2.08(0.08) 0.78(0.04) 2.06(0.06) 0.91(0.05) 1.25(0.05)

9 0.64(0.05) 1.85(0.06) 0.96(0.06) 2.07(0.08) 0.59(0.04) 1.82(0.05) 0.91(0.05) 1.25(0.05)

8 0.61(0.05) 1.81(0.06) 0.96(0.06) 2.07(0.09) 0.55(0.04) 1.76(0.06) 0.91(0.05) 1.25(0.05)

7 0.58(0.04) 1.78(0.06) 0.96(0.06) 2.07(0.08) 0.48(0.04) 1.67(0.06) 0.91(0.05) 1.25(0.05)

6 0.55(0.04) 1.74(0.06) 0.95(0.06) 2.07(0.08) 0.44(0.03) 1.61(0.05) 0.91(0.05) 1.24(0.05)

500 PML 0.50(0.04) 1.55(0.06) 0.76(0.05) 2.06(0.07) 0.47(0.03) 1.54(0.04) 0.72(0.04) 1.24(0.04)

9 0.43(0.04) 1.46(0.05) 0.76(0.05) 2.06(0.07) 0.37(0.02) 1.40(0.04) 0.72(0.04) 1.24(0.04)

8 0.41(0.04) 1.43(0.05) 0.76(0.05) 2.06(0.07) 0.36(0.02) 1.38(0.04) 0.72(0.04) 1.24(0.04)

7 0.39(0.03) 1.40(0.05) 0.76(0.05) 2.06(0.07) 0.32(0.02) 1.33(0.04) 0.72(0.04) 1.24(0.04)

6 0.36(0.03) 1.37(0.05) 0.76(0.05) 2.06(0.07) 0.30(0.02) 1.30(0.04) 0.72(0.04) 1.24(0.04)

same fund (Anton and Polk, 2014).

To provide an intuitive measure of similarity between the networks and

the factor loadings, we introduce the following metric R. Specifically, we

first estimate Γ̄ = JpΓ based solely on model (2.2) in the paper, denoted as

̂̄Γ. Using the principal component method, we obtain an initial estimate of

B0, denoted as B̂PCA. After decentralizing B̂PCA, we project it onto ̂̄Γ and

calculate the proportion of B̂PCA that is explained by ̂̄Γ. That is

R = ||P̂̄ΓJpB̂PCA||2F/||JpB̂PCA||2F ,

where P̂̄Γ = ̂̄Γ(̂̄Γ⊤̂̄Γ)−1̂̄Γ. A larger value of R indicates a higher explanatory
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power of the network for the factor loadings. The values of R are 0.30

for the fund-based network and 0.18 for the industry-based network. Both

networks capture information about the factor loadings, with the fund-

based network demonstrating superior performance.

We apply the NAAF to analyze the stock returns. We denote NAAF(fund)

for the fund-based network and NAAF(industry) for the industry-based

network. The number of factors is selected as r = 4 based on the based

on the information criteria proposed by Bai and Ng (2002). The methods

mentioned in the simulation, including POET, PML, and ML-nL (denoted

as ML-nL(fund) for the fund-based network and ML-nL(industry) for the

industry-based network) are used for comparison. Additionally, we con-

sider a regression-based method incorporating industry classification as a

covariate into the traditional factor model (denoted as “covar-based”). For

more details on the comparison methods, please refer to the Section S.9 in

the supplementary materials.

To evaluate the models’ performance, we first consider the prediction

error. Denote {ti}28i=1 as the first trade day of i-th month and t29 = 563+1.

Define Y,n1:n2 as the submatrix consisting of the columns from n1 to n2 of

the matrix Y . For i ∈ {1, ..., 25}, we analyze the submatrix Y,ti:(ti+3−1) using

the proposed methods and comparison methods. Denote the estimators of
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factor loading matrix as B̂i for i = 1, · · · , 25. Denote the prediction error as

(1/25)
∑25

i=1 ∥(Ip − B̂i(B̂
⊤
i B̂i)

−1B̂⊤
i )(Y,ti+3:(ti+4−1) − Ȳ,ti+3:(ti+4−1)1

⊤
ti+4−ti+3

)||F

for all methods except “covar-based”, where Ȳ,ti+3:(ti+4−1) is the row mean

of Y,ti+3:(ti+4−1). For the covar-based, the prediction error is defined as

(1/25)
∑25

i=1 ∥(Ip−B̂i(B̂
⊤
i B̂i)

−1B̂⊤
i ){Y,ti+3:(ti+4−1)−(Ȳ,ti+3:(ti+4−1)+Xcβ̂i)1

⊤
ti+4−ti+3

}||F ,

where Xc is the design matrix for the industry, and β̂i is the coefficient vec-

tor. The results of the prediction error is provided in Table 4. Methods

that incorporate networks perform better than those that do not. Meth-

ods that incorporate networks perform better than those that do not. The

NAAF(fund) outperforms the alternatives. The NAAF(fund) performs bet-

ter than NAAF(industry), because the fund-based network more effectively

captures the co-movement of stocks. We also conduct pairwise Wilcoxon

tests with the null hypothesis that NAAF(funds) does not have smaller pre-

diction errors than the compared methods. The resulting p-values are all

smaller than 10−3. These tests support the conclusion that NAAF(fund)

has smaller prediction errors. The introduction of appropriate networks can

enhance the performance of factor models.

Next, we construct portfolios based on the estimated covariance matrix

to evaluate the performance of the proposed models. Denote the estimated

covariance matrix of of Y,ti:(ti+3−1) as Σ̂Y,i. We adopt the minimum-variance
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portfolio, a widely recognized and established method in portfolio optimiza-

tion (Xue et al., 2012; Zou et al., 2017). Specifically, we solve the following

optimization problem to determine the portfolio weights:

ω̂i = argminω⊤1p=1,ω≥0 ω
⊤Σ̂Y,iω.

Then, we calculate the cumulative return of this portfolio within this month

and obtain a monthly return series. We calculate the three commonly used

measures of return series for different methods: (a) mean, which represents

the geometric average of the returns on investment portfolios. (b) SD, which

represents the standard deviation of returns on investment portfolios. (c)

Sharpe ratio, which measures the earnings under the same risk. The results

are provided in Table 4. The NAAF(fund) outperforms the alternatives in

terms of mean, SD, and Sharpe ratio. The assistance of an appropriate

network improves the effectiveness of portfolio construction.

Table 4: The real data results.
NAAF(fund) NAAF(industry) PML ML-nL(fund) ML-nL(industry) POET covar-based

prediction error 1.4244 1.4293 1.4294 1.4280 1.4268 1.4297 1.4422

mean(×103) 2.4563 1.7547 1.6192 1.8236 2.0053 1.4499 1.4686

SD(×102) 2.2458 2.3524 2.2796 2.2775 2.2658 2.4336 2.3129

Sharpe ratio 0.1201 0.0859 0.0820 0.0910 0.0994 0.0712 0.0745
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6. Conclusion

Accurately estimating the loadings and factors are crucial in factor models.

In this paper, we take the network information into account and propose

the NAAF model, which significantly mitigates the necessity of a large

sample size for consistent estimation. We propose a joint quasi-maximum

likelihood estimator of the factor loadings and the covariance matrix of

idiosyncratic errors. Under mild conditions, the NAAF yields a significant

improvement in the rates of convergence than the regular methods. An

efficient gradient descent algorithm is developed to optimize the objective

function. The asymptotic properties of estimators are established. Lots of

numerical studies demonstrate the practical use of NAAF.

To broaden the applications of NAAF, we identify avenues for future re-

search. The first is considering multiple networks between individuals. The

second is to study the theoretical properties and algorithm of the model ex-

tension when the dimension of latent space exceeds the number of factors.

Third, a nonparametric relationship between factor loadings and latent lo-

cations can be considered. Finally, the impact of combining factor and

network models on node community detection or link prediction can be ex-

plored. We believe that these efforts would further increase the applicability

of the NAAF model.
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Supplementary Material

The Supplementary Material consists of ten sections (S.1–S.10). Section

S.1 provides a more general form of Theorem 3. Section S.2 introduces

some useful notations and lemmas that are used to prove the theoretical

properties in Section 3. Sections S.3–S.7 present the proofs of Theorems

1, 2, S.1 and 3, 4, and Proposition 1, respectively. Section S.8 provides

additional algorithmic details. Section S.9 details the comparison methods.

Section S.10 presents additional simulation results.
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