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Abstract: This paper proposes efficient estimation methods for Value-at-Risk (VaR) in the framework

of location-scale time series models, including the semi-parametric and parametric composite quantile

regression (CQR). The semi-parametric CQR does not impose any distribution assumptions on the

innovations, while the parametric CQR assumes that the innovations follow some distributions with

explicit and parametric quantile functions. Compared with the quantile regression, the semi-parametric

CQR method improves estimation efficiency by combining data information at multiple quantile levels.

The parametric CQR takes advantage of model flexibility, and can further enhance efficiency in face

of data scarcity when estimating high conditional quantiles. We establish the asymptotic properties

of both CQR methods for location-scale time series models, and particularly for the ARMA-GARCH,

double autoregressive and NAR-GARCH type models. We also compare both CQR estimators in

estimation efficiency, and compare them with the Gaussian and exponential quasi-maximum likelihood

estimators. Finally, we examine the finite-sample performance of the proposed methods via simulation

studies, and analyze an empirical dataset to illustrate their usefulness in modeling and forecasting VaR

for financial assets.

Key words and phrases: ARMA-GARCH models; Composite quantile regression; Double autoregressive

models; Location-scale; Value-at-Risk.
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1 INTRODUCTION

1. Introduction

In risk management, value-at-risk (VaR) is a widely used indicator to measure market risk. It

quantifies the maximum potential loss of an asset or portfolio over a specified period at a given

confidence level. Various models have been proposed for VaR and they can be classified into

three groups: non-parametric, parametric and semi-parametric methods. Non-parametric

methods, such as historical simulation (HS) in Barone-Adessi et al. (1999) and the Boudoukh,

Richardson, and Whitelaw (BRW) method in Boudoukh et al. (1998), neither require the

assumption of return distribution nor parameterize conditional volatility. As a result, they

are easy to implement but may yield less accurate results when faced with highly fluctuating

data. On the other hand, parametric methods, including Risk Metrics in Morgan and Reuters

(1996), not only require the modeling and parameterization of conditional volatility but also

make distribution assumptions on the data or innovations. While these methods have good

interpretability, their predictive ability heavily relies on the accuracy of model assumptions.

On the spectrum of statistical approaches, semi-parametric methods fall in between non-

parametric and parametric methods, by assuming a specific parametric model but imposing

no distribution constraints on the data. Examples include filtered historical simulation (FHS)

in Kuester et al. (2006) and conditional auto-regressive VaR-method (CAViaR) in Engle and

Manganelli (2004). In a general sense, the FHS method models the overall data, while

CAViaR focuses directly on modeling the VaR at a specific quantile level.

Another notable semi-parametric method is quantile regression (QR) in Koenker (2005),

which fits the return series by parametric models and utilizes QR to estimate parameters at

a target quantile level. Thus QR not only captures global characteristics but also provides

local quantile estimations. In the literature, QR has been extensively studied in a range of
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volatility models, such as ARCH (Koenker and Zhao, 1996), GARCH (Xiao and Koenker,

2009; Lee and Noh, 2013; Zheng et al., 2018), asymmetric power GARCH (Wang et al.,

2022), and quantile GARCH (Zhu et al., 2023) models. Meanwhile, numerous studies have

investigated QR for location-scale time series models, including ARMA-asymmetric GARCH

models (Noh and Lee, 2016), linear models with GARCH-X errors (Zhu et al., 2021), linear

and quantile double autoregressive models (Zhu et al., 2018; Zhu and Li, 2022). Although

QR combines the advantages of the FHS and CAViaR methods, it may lack efficiency at a

specific quantile level. To address this issue, we consider the composite quantile regression

(CQR) (Zou and Yuan, 2008) in the framework of location-scale time series models. CQR

combines conditional quantile information at multiple quantile levels, consequently it can

improve estimation efficiency and maintain the advantages of QR. While CQR has been

explored for volatility models, such as GARCH (Wang et al., 2018), quantile GARCH (Zhu

et al., 2023) and double-threshold ARCH (Jiang et al., 2014) models, there is very limited

research on CQR for general location-scale time series models. To fill this research gap, this

paper investigates CQR for general location-scale time series models, and establishes the

corresponding global estimator with theoretical guarantee.

Location-scale time series models can capture the dependence between the current and

past observations using conditional mean and variance structures. The well-known location-

scale time series models include the classes of ARMA-GARCH, double autoregressive (DAR)

models and nonlinear AR models with ARCH or GARCH errors (NAR-GARCH). These

models flexibly describe the autocorrelation and volatility clustering simultaneously for time

series. ARMA-GARCH type models are more parsimonious than DAR type models when

fitting time series, while DAR type models usually possess larger parameter spaces and
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1 INTRODUCTION

more relaxed moment conditions when establishing asymptotic properties than the former.

NAR-GARCH models include the threshold AR-GARCH (Liu et al., 1997; Ling, 1999) and

smooth transition AR-GARCH (STAR-GARCH, Chan and McAleer (2002); Chan et al.

(2015)) models as special cases. In comparison with ARMA-GARCH and DAR type models,

the NAR-GARCH model is able to capture nonlinear conditional mean structures. While

there are a wide range of location-scale time series models, we focus specifically on ARMA-

GARCH, DAR and NAR-GARCH type models owing to their popularity. The literature

have studied many ARMA-GARCH type models, including ARMA-GARCH (Francq and

Zaköıan, 2004), ARMA-IGARCH (Zhu and Ling, 2011), ARMA-asymmetric GARCH (Noh

and Lee, 2016) models and so on. Recently, various DAR type models have been proposed

and paid growing attention, such as the DAR (Ling, 2007), threshold DAR (Li et al., 2015,

2016), mixture DAR (Li et al., 2017), linear DAR (Zhu et al., 2018), augmented DAR (Jiang

et al., 2020) and asymmetric linear DAR (Tan and Zhu, 2022) models. For NAR-GARCH

models, most research focuses on the probability properties (Cline and Pu, 2004; Cline, 2007)

and empirical applications, with little study related to the asymptotic theory for estimation.

The aforementioned literature have investigated the parameter estimation for these models,

mainly focusing on quasi-maximum likelihood estimation (QMLE) (Francq and Zaköıan,

2004; Ling, 2007; Zhu and Ling, 2011; Chan et al., 2015; Tan and Zhu, 2022) and QR method

(Wang and Zhao, 2016; Noh and Lee, 2016; Zhu et al., 2018; Zhu and Li, 2022). However,

as far as we know, few studies have considered the CQR estimation for location-scale time

series models, even less for ARMA-GARCH, DAR and NAR-GARCH type models. This

motivates us to study the CQR for these models as special cases of location-scale models.

In this paper, we investigate two CQR methods for location-scale time series models. We
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refer to the first approach as semi-parametric CQR, which considers a location-scale model

with no distribution assumptions imposed on the innovation for time series. Compared

with the QR using information at one quantile level, this method can improve estimation

efficiency by combining information from multiple quantile levels. It is well-known that con-

ditional quantiles at high levels are of particular interest in financial risk management. When

estimating and forecasting these high conditional quantiles, the semi-parametric CQR lacks

flexibility and can be less efficient in face of data scarcity. To address this drawback, we

propose the parametric CQR as the second method. In contrast with the first method, the

second approach fits time series using a location-scale model but assumes a parametric dis-

tribution with an explicit quantile function for the innovation. The fully parametric setting

makes this method flexible to do extrapolation for conditional quantiles at high levels. As a

result, the parametric CQR can further improve estimation efficiency in estimating high con-

ditional quantiles. There are several distributions in the literature that have explicit quantile

functions, such as the Lambda, generalized extreme value, generalized Pareto, and Burr XII

distributions (Gilchrist, 2000). For illustration, we choose the Tukey-lambda distribution

for the innovation as it can approximate many distributions, including Gaussian, Logistic,

Pareto-type, and extreme value distributions. Other distributions mentioned above can also

be used in conjunction with CQR in a similar manner.

Our paper has three main contributions. Firstly, we introduce semi-parametric and para-

metric CQRs for location-scale time series models, which enrich the estimation methods for

these models. Compared with the QR method, both CQRs can preserve its advantages in

capturing both global and local characteristics of time series, whereas improve its estimation

efficiency. Secondly, we establish the consistency and asymptotic normality for the afore-
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1 INTRODUCTION

mentioned CQR estimators. Note that the objective functions for both CQR estimators are

nondifferentiable and nonconvex. In order to prove the
√
n-convergence rate and asymptotic

normality of both estimators, we employ the bracketing method (Pollard, 1985) to address

the resulting challenges; see also Zhu and Ling (2011) and Zhu et al. (2023). We also com-

pare both CQR estimators in estimation efficiency, and compare them with the Gaussian and

exponential QMLEs. Owing to the popularity of ARMA-GARCH, DAR and NAR-GARCH

type models, we further investigate both CQRs for these models and derive the conditions to

ensure their asymptotic properties. Simulation studies indicate that the proposed methods

perform well especially for heavy-tailed data, not only for parameter estimation but also for

conditional quantile prediction at moderate and high quantile levels. Finally, the proposed

CQRs provide useful tools for VaR prediction of financial time series. Compared with the

FHS method (i.e. a semi-parametric method), the semi-parametric CQR can directly obtain

local quantile estimations of innovations. Meanwhile, the parametric CQR is more flexible

in comparison with the Risk Metrics method (i.e. a parametric method) which assumes the

IGARCH model with standard normal innovations for time series. The real application in

Section 4 demonstrates that the proposed CQRs outperform competitive methods in VaR

prediction at most of the moderate and high quantile levels. Therefore, the proposed CQRs

can provide more accurate VaR prediction in practice.

The remainder of this paper is organized as follows. Section 2 introduces the location-scale

time series models including some popular examples, and presents the semi-parametric and

parametric CQRs for these models with asymptotic properties established. Moreover, the

proposed CQR estimators are compared with the Gaussian and exponential QMLEs via the

asymptotic relative efficiency. In Section 3, we apply both CQRs to ARMA-GARCH, DAR
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and NAR-GARCH type models, and verify the conditions for their asymptotic properties.

Simulation experiments are conducted in Section 4 to assess the finite-sample performance

of the proposed CQRs, and compare them with the Gaussian and exponential QMLEs in

estimating and forecasting conditional quantiles. Section 5 illustrates the proposed methods

by analyzing the daily return of Microsoft Corp’s stock. Conclusion and discussion are given

in Section 6. All technical details are relegated to the Supplementary Material. Throughout

the paper, →p and →L denote the convergences in probability and distribution, respectively,

and op(1) denotes a sequence of random variables converging to zero in probability. We denote

by ∥ · ∥ the norm of a matrix or column vector, defined as ∥A∥ = [tr(AA′)]1/2 = (
∑

i,j a
2
ij)

1/2.

2. The methodology

In this section, we propose the semi-parametric and parametric CQR estimation methods

with theoretical guarantee for location-scale time series models.

Consider the location-scale time series model as follows

yt = µt(ϑ) + ηtht(ϑ), (2.1)

where t ∈ Z, ϑ is the parameter vector which belongs to the parameter space Θ, µt(ϑ) :=

µt(yt−1, yt−2, . . . ;ϑ) and ht(ϑ) := ht(yt−1, yt−2, . . . ;ϑ) > 0 are measurable functions for the

conditional location and scale, respectively, and {ηt} are the i.i.d innovations with zero mean.

Here µt(ϑ) and ht(ϑ) can be linear or nonlinear functions with respect to ϑ, thus model (2.1)

includes many time series models as special cases; see Examples 1-3 for details.

Example 1 (ARMA-GARCH type models). ARMA-GARCH type models include ARMA-

GARCH (Francq and Zaköıan, 2004), ARMA-IGARCH (Zhu and Ling, 2011) and ARMA-

asymmetric GARCH (Noh and Lee, 2016) models as special cases. For illustration, consider
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2 THE METHODOLOGY

the ARMA(p, q)-GARCH(P,Q) model defined as follows

yt =

p∑
i=1

αiyt−i +

q∑
j=1

βjϵt−j + ϵt, ϵt = ηtht, h
2
t = ω +

Q∑
i=1

γiϵ
2
t−i +

P∑
j=1

νjh
2
t−j, (2.2)

where αi, βj ∈ R for i = 1, . . . , p and j = 1, . . . , q, ω > 0, γi ≥ 0 for i = 1, . . . , Q, νj ≥ 0 for

j = 1, . . . , P , and {ηt} are i.i.d innovations with zero means. Model (2.2) can be rewritten

into model (2.1) with parameter ϑI = (α1, . . . , αp, β1, . . . , βq, ω, γ1, . . . , γQ, ν1, . . . , νP )
′, where

µt(ϑ
I) =

p∑
i=1

αiyt−i +

q∑
j=1

βjϵt−j and ht(ϑ
I) =

(
ω +

Q∑
i=1

γiϵ
2
t−i +

P∑
j=1

νjh
2
t−j

)1/2

.

Example 2 (DAR type models). The DAR model (Ling, 2007) has many extensions, such

as the linear DAR (Zhu et al., 2018), augmented DAR (Jiang et al., 2020), asymmetric linear

DAR (Tan and Zhu, 2022) and dual-asymmetric linear DAR (Tan and Zhu, 2023) models.

For illustration, consider the asymmetric linear DAR (ALDAR) model of order (p, q):

yt =

p∑
i=1

φiyt−i + ηt

{
ω +

q∑
j=1

(α+
j y

+
t−j − α−

j y
−
t−j)

}
, (2.3)

where φi ∈ R for 1 ≤ i ≤ p, ω > 0, α+
j , α

−
j ≥ 0 for 1 ≤ j ≤ q, y+t = max{0, yt} and

y−t = min{0, yt} are positive and negative parts of yt, respectively, and {ηt} are i.i.d inno-

vations with zero means. Corresponding to the location-scale model (2.1), denote µt(ϑ
II) =∑p

i=1 φiyt−i and ht(ϑ
II) = ω+

∑q
j=1(α

+
j y

+
t−j−α−

j y
−
t−j), where ϑ

II = (φ1, φ2, . . . , φp, ω, α
+
1 , α

+
2 ,

. . . , α+
q , α

−
1 , α

−
2 , . . . , α

−
q )

′ is the parameter vector of model (2.3).

Example 3 (NAR-GARCH type models). The general NAR-GARCH models include many

smooth transition AR processes with GARCH errors (STAR-GARCH) as special cases, such

as the multiple regime logistic or exponential STAR-GARCH model; see Section 2 in Chan

et al. (2015) for more details. For illustration, consider the 2-regime exponential STAR(p)-
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2.1 The semi-parametric CQR

GARCH(1, 1) (ESTAR-GARCH) model as follows:

yt = α00 + α10G(yt−d; γ, c) +

p∑
i=1

{α0i + α1iG(yt−d; γ, c)} yt−i + ϵt,

ϵt = ηtht, h
2
t = ω + aϵ2t−1 + bh2

t−1, (2.4)

where yt−d is the transition variable, d ∈ N is a delay parameter which usually takes d = 1

in practice, G(yt−d; γ, c) = 1− exp{−(yt−d − c)2/γ} is the smooth transition function with c

and γ > 0 being the location and scale parameters of model transition, ω > 0, a ≥ 0, b ≥ 0,

and {ηt} are i.i.d innovations with zero means; see also Tsay (2010). Denote by ϑIII =

(α00, α01, . . . , α0p, α10, α11, . . . , α1p, γ, c, ω, a, b)
′ the parameter vector, then model (2.4) can be

rewritten into model (2.1) with µt(ϑ
III) = α00+α10G(yt−d; γ, c)+

∑p
i=1 {α0i + α1iG(yt−d; γ, c)} yt−i

and ht(ϑ
III) = (ω + aϵ2t−1 + bh2

t−1)
1/2.

Let Ft be the σ-field generated by {ys, s ≤ t}. Note that µt(ϑ) and ht(ϑ) are Ft−1-

measurable. Then the τth conditional quantile of yt in (2.1) can be written as

Qτ (yt|Ft−1) = µt(ϑ) + bτht(ϑ), (2.5)

where bτ is the τth quantile of ηt for any τ ∈ (0, 1). To estimate the VaR at level τ and

time t, i.e. the negative Qτ (yt|Ft−1), below we introduce the semi-parametric and parametric

CQR estimation methods for model (2.1), respectively.

2.1 The semi-parametric CQR

We first consider the semi-parametric CQR for model (2.1), where no distribution assumption

is imposed on ηt such that bτ in (2.5) is treated as an unknown parameter.

To improve the estimation efficiency, we consider the CQR method to combine the infor-

mation at fixed multiple quantile levels 0 < τ1 < τ2 < . . . < τK < 1 with K being a predeter-
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2 THE METHODOLOGY

mined integer. Denote the conditional quantile function at τk as qt,τk(ϕ) = µt(ϑ) + bkht(ϑ),

where ϕ = (ϑ′, b1, b2, . . . , bK)
′. Note that µt(ϑ) and ht(ϑ) probably depend on the infor-

mation in the infinite past, and then initial values of Fs for s ≤ 0 are needed to obtain

a feasible conditional quantile function in practice. For example, µt(ϑ) and ht(ϑ) in the

ARMA-GARCH model (2.2) are defined recursively on yt−i’s, ϵt−j’s and ht−i’s such that in-

formation in the infinite past is involved, and thus initial values of ys, ϵs and hs for s ≤ 0,

are required; see Section 3.1 for details. Replacing Fs for s ≤ 0 in µt(ϑ) and ht(ϑ) with the

given initial values, we can obtain the feasible counterpart of qt,τk(ϕ), denoted as q̃t,τk(ϕ). As

a result, the semi-parametric CQR estimator is defined as follows:

ϕ̂n = (ϑ̂
′
n, b̂1, . . . , b̂K)

′ = argmin
ϕ∈Φ

K∑
k=1

n∑
t=1

ρτk {yt − q̃t,τk(ϕ)} , (2.6)

where ρτ (y) = y{τ − I (y < 0)} is the check function, Φ = Θ×RK represents the parameter

space of ϕ, and the selection of set {τk}Kk=1 is discussed in Section 3.2. We will prove that

the effect of initial values on the estimation is asymptotically negligible under some regular

conditions; see Assumption 6 for details. Based on the semi-parametric CQR estimator ϕ̂n,

then the τth conditional quantile of yt in (2.5) can be estimated by Q̂τ (yt|Ft−1) = q̃t,τ (ϕ̂n).

For the semi-parametric CQR, denote the true parameter vector by ϕ0 = (ϑ′
0, b10, . . . , bK0)

′,

where bk0 is the τkth quantile of ηt. Let q̇t,τ (ϕ) and q̈t,τ (ϕ) (or ˙̃qt,τ (ϕ) and
¨̃qt,τ (ϕ)) be the first

and second derivatives of qt,τ (ϕ) (or q̃t,τ (ϕ)) with respect to ϕ, respectively. Define f(·) and

F (·) as the density and distribution functions of ηt, respectively. To establish the asymptotic

properties of the semi-parametric CQR estimator ϕ̂n, we need the following assumptions.

Assumption 1 (Process). {yt : t = 1, 2, . . .} is strictly stationary and ergodic.

Assumption 2 (Parameter space). (i) The parameter space Φ is compact; (ii) the true

parameter ϕ0 is an interior point in Φ.
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2.1 The semi-parametric CQR

Assumption 3 (Innovation). With probability one, f(·) and its derivative function ḟ(·) are

uniformly bounded, and f(·) > 0 holds on the support {x : 0 ≤ F (x) ≤ 1}.

Assumption 4 (Identification). (i) qt,τ (ϕ) is continuous in ϕ ∈ Φ; (ii) if qt,τ (ϕ) = qt,τ (ϕ0),

then ϕ = ϕ0.

Assumption 5 (Moments). (i) E
{
supϕ∈Φ |qt,τ (ϕ)|

}
< ∞; (ii) E{h−1

t (ϑ0) supϕ∈Φ ∥q̇t,τ (ϕ)∥3} <

∞; (iii) E
{
h−1
t (ϑ0) supϕ∈Φ ∥q̈t,τ (ϕ)∥2

}
< ∞.

Assumption 6 (Initial values). (i)
∑∞

t=1 h
−1
t (ϑ0) supϕ∈Φ |qt,τ (ϕ)− q̃t,τ (ϕ)|2 < ∞;

(ii)
∑∞

t=1 h
−1
t (ϑ0) supϕ∈Φ ∥q̇t,τ (ϕ)− ˙̃qt,τ (ϕ)∥2 < ∞.

Assumption 1 is general and can be verified by checking the stationary region of parame-

ters for time series models. Assumption 2 imposes conditions on the parameter space, where

(i) is used for the consistency of the CQR estimator while (ii) is required for the asymptotic

normality; see also Francq and Zaköıan (2004), Noh and Lee (2016) and Zhu et al. (2018).

Assumption 3 provides conditions on the innovation, which is commonly used to prove the

asymptotic normality of quantile regression estimators; see Assumption (A2) in Lee and Noh

(2013). Assumption 4 guarantees the uniqueness of the true parameter and is necessary for

model identification. Assumption 5 gives moment conditions to derive the asymptotic prop-

erties. Specifically, Assumption 5 (i) is required for the consistency of the CQR estimator

whereas (ii) and (iii) are for the asymptotic normality. These moment conditions on q̇t,τ (ϕ)

and q̈t,τ (ϕ) exclude the threshold models with unknown discontinuous thresholds, and thus

our theory is inapplicable to these threshold models. Assumption 6 ensures that the initial

values have no influence on the asymptotic properties of the CQR estimator.

Denote Γkk′ = min(τk, τk′){1 − max(τk, τk′)}, and define the following matrices for the
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2 THE METHODOLOGY

semi-parametric CQR:

Ω =
K∑
k=1

K∑
k′=1

Γkk′E
{
q̇t,τk(ϕ0)q̇

′
t,τk′

(ϕ0)
}

and Σ =
K∑
k=1

f(bk0)E
{
h−1
t (ϑ0)q̇t,τk(ϕ0)q̇

′
t,τk

(ϕ0)
}
.

Theorem 1. For {yt} generated by model (2.1), if Assumptions 1-6 hold, then we have

ϕ̂n →p ϕ0 as n → ∞.

Theorem 2. Suppose Ξ = Σ−1ΩΣ−1 is positive definite. For {yt} generated by model (2.1),

if Assumptions 1-6 hold, then we have
√
n(ϕ̂n − ϕ0) →L N(0,Ξ) as n → ∞.

Theorems 1 and 2 establish the consistency and asymptotic normality of the semi-parametric

CQR estimator ϕ̂n. Note that the objective function in (2.6) is nondifferentiable and non-

convex. To prove the
√
n-convergence rate and asymptotic normality of ϕ̂n, we employ the

bracketing method (Pollard, 1985) to tackle the resulting challenges.

To estimate the asymptotic covariance of ϕ̂n, we first estimate f(bk0) in Σ using the

difference quotient method in Koenker (2005). Particularly, we employ the estimator f̂(bk0) =

2h/{Qτk+h(η̂t) − Qτk−h(η̂t)}, where η̂t = {yt − µt(ϑ̂n)}/ht(ϑ̂n) is the residual, Qτ (η̂t) is the

τth sample quantile of {η̂t}, and h is the bandwidth. As in Koenker and Xiao (2006), we

consider two commonly used bandwidths for h as follows:

hB = n−1/5

[
4.5ϕ4{QΦ(τk)}
{2Q2

Φ(τk) + 1}2

]1/5
and hHS = n−1/3z2/3α

[
1.5ϕ2{QΦ(τk)}
2Q2

Φ(τk) + 1

]1/3
, (2.7)

where ϕ(·) and QΦ(·) are the standard normal density and quantile functions, respectively,

and zα = QΦ(1 − α/2) with α = 0.05. Then we can approximate the matrices Σ and Ω

using sample averages with ϕ0 replaced by ϕ̂n and q̇t,τk(·) replaced by ˙̃qt,τk(·). Finally, we

can estimate Ξ by Ξ̂ = Σ̂−1Ω̂Σ̂−1 with

Ω̂ = n−1

n∑
t=1

K∑
k=1

K∑
k′=1

Γkk′
˙̃qt,τk(ϕ̂n)

˙̃q
′
t,τk′

(ϕ̂n) and Σ̂ = n−1

n∑
t=1

K∑
k=1

f̂(bk0)h̃
−1
t (ϑ̂n) ˙̃qt,τk(ϕ̂n)

˙̃q
′
t,τk

(ϕ̂n),

where h̃t(ϑ̂n) is the feasible version of ht(ϑ̂n) given initial values.
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2.2 The parametric CQR

2.2 The parametric CQR

In risk management, the focus is primarily on the tail risk of assets. Thus it is crucial to

efficiently estimate the tail quantiles of the time series. This subsection proposes a para-

metric CQR which can take advantage of model flexibility, and further enhance efficiency in

face of data scarcity when estimating high conditional quantiles. This method assumes an

appropriate parametric distribution for ηt with an explicit quantile function, such that bτ in

(2.5) depends on τ and some unknown parameters explicitly. This makes it convenient to

estimate high conditional quantiles by extrapolating the quantile structure to high levels.

There are various parameter distributions having quantile functions with explicit forms,

such as the lambda, generalized extreme value, generalized Pareto, and Burr XII distributions

(Gilchrist, 2000). Let λ be the parameter vector of quantile function for the innovation ηt,

and then the τth quantile of ηt can be denoted by Qτ (λ). Therefore, the τth conditional

quantile function for {yt} generated by model (2.1) has the form of

gt,τ (ψ) = µt(ϑ) +Qτ (λ)ht(ϑ), (2.8)

where ψ = (ϑ′,λ′)′. As for qt,τ (ϕ), gt,τ (ψ) may depend on unobservable information in the

infinite past, thus we use the feasible conditional quantile function g̃t,τ (ψ) given initial values

of Fs for s ≤ 0 to approximate gt,τ (ψ). Then the parametric CQR estimator is defined as

ψ̂n = (ϑ̃
′
n, λ̂

′
n)

′ = argmin
ψ∈Ψ

K∑
k=1

n∑
t=1

ρτk {yt − g̃t,τk(ψ)} , (2.9)

where Ψ = Θ × Λ is the parameter space of ψ with Λ being the parameter space of λ.

Based on the parametric CQR estimator ψ̂n, the τth conditional quantile of yt in (2.5) can

be estimated by Q̂τ (yt|Ft−1) = g̃t,τ (ψ̂n). Note that the target level τ is not necessarily in the

set of {τk}Kk=1, because the explicit function Qτ (λ) facilitates us to do extrapolation for any
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high level τ .

For the parametric CQR, denote its true parameter vector by ψ0 = (φ′
0,λ

′
0)

′. Let ġt,τ (ψ)

and g̈t,τ (ψ) (or ˙̃gt,τ (ψ) and
¨̃gt,τ (ψ)) be the first and second derivatives of gt,τ (ψ) (or g̃t,τ (ψ))

with respect to ψ, respectively. Define the matrices for the parametric CQR as follows:

M =
K∑
k=1

K∑
k′=1

Γkk′E
{
ġt,τk(ψ0)ġ

′
t,τk′

(ψ0)
}

and N =
K∑
k=1

f{Qτk(λ0)}E
{
h−1
t (ϑ0)ġt,τk(ψ0)ġ

′
t,τk

(ψ0)
}
.

To establish the asymptotic properties of the parametric CQR estimator ψ̂n, we still need

Assumptions 1-6, but with the notations ϕ,ϕ0,Φ, qt,τ (ϕ) and q̃t,τ (ϕ) in Assumptions 2 and

4-6 replaced by ψ,ψ0,Ψ, gt,τ (ψ) and g̃t,τ (ψ), respectively. In the following of this subsection,

Assumptions 2 and 4-6 represent the conditions with the above notations replaced.

Theorem 3. For {yt} generated by model (2.1), if Assumptions 1-6 hold, then we have

ψ̂n →p ψ0 as n → ∞.

Theorem 4. Suppose Π = N−1MN−1 is positive definite. For {yt} generated by model (2.1),

if Assumptions 1-6 hold, then we have
√
n(ψ̂n −ψ0) →L N(0,Π) as n → ∞.

Theorems 3 and 4 establish the consistency and asymptotic normality of the parametric

CQR estimator ψ̂n. Since the objective function in (2.9) is nondifferentiable and nonconvex,

we also employ the bracketing method (Pollard, 1985) to prove the
√
n-convergence rate

and asymptotic normality. To estimate the asymptotic covariance of ψ̂n, f{Qτk(λ0)} in the

matrix N is similarly estimated using the difference quotient method (Koenker, 2005), i.e.

f̂{Qτk(λ0)} = 2h/{Qτk+h(λ̂n) − Qτk−h(λ̂n)} with two bandwidths in (2.7). Then matrices

M and N can be approximated using sample averages with ψ0 replaced by ψ̂n and ġt,τk(·)

by ˙̃gt,τk(·). As a result, the asymptotic covariance Π can be estimated by Π̂ = N̂−1M̂N̂−1.

Note that Theorems 3-4 are established under the situation that the quantile function
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Qτ (λ) is correctly specified for the innovation ηt; see Assumption 4(ii). If Qτ (λ) is mis-

specified, then the conditional quantile function gt,τ (ψ) in (2.8) is a working model, and

the resulting parametric CQR estimator ψ̂n in (2.9) will be asymptotically biased. We also

establish the asymptotic properties for ψ̂n under mis-specification in Section S1 of the Sup-

plementary Material. Simulation results in Section 4 indicate that the parametric CQR

estimator ϑ̃n is insensitive to the mis-specification due to Qτ (λ), while the conditional quan-

tile estimation and forecasting can be slightly affected. As a result, in practice we can choose

a distribution such as the Tukey-lambda distribution for ηt, which not only has explicit

quantile function but also can approximate various distributions; see Section 3 for details.

Remark 1 (Asymptotic efficiency comparison). For general specifications of model (2.1), it

is difficult to determine which CQR estimator is asymptotically more efficient than the other

one; see Section S2 of the Supplementary Material for details. Alternatively, we study the

asymptotic relative efficiency (ARE) of ϑ̂n to ϑ̃n via simulation studies. Simulation results

in Section 4 indicate that the parametric CQR estimator ϑ̃n is asymptotically more efficient

than the semi-parametric CQR estimator ϑ̂n when the data is more heavy-tailed.

We also compare the semi-parametric CQR with Gaussian QMLE (GQMLE) and expo-

nential QMLE (EQMLE) in Section S2. Their AREs also depend on the distribution of ηt.

When ηt follows the standard normal (or Laplace) distribution, the GQMLE (or EQMLE) is

the most efficient. If ηt follows heavy-tailed distributions, the semi-parametric CQR tends to

be more efficient than GQMLE and EQMLE; see Section 4 for details.

Given the CQR estimators ϕ̂n and ψ̂n, the τth conditional quantile Qτ (yn+1|Fn) can be

predicted by q̃n+1,τ (ϕ̂n) and g̃n+1,τ (ψ̂n), respectively. The following corollary provides theo-

retical justification for one-step-ahead predictions of Qτ (yn+1|Fn) using the CQR estimators.
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Corollary 1 (VaR predictions). Under the conditions of Theorems 2 and 4, it holds that

q̃n+1,τ (ϕ̂n)−Qτ (yn+1|Fn) = q̇′n+1,τ (ϕ0)(ϕ̂n − ϕ0) + op(n
−1/2) and

g̃n+1,τ (ψ̂n)−Qτ (yn+1|Fn) = ġ′n+1,τ (ψ0)(ψ̂n −ψ0) + op(n
−1/2).

Corollary 1 is a direct result of the Taylor expansion and Theorems 2 and 4. It indicates

that the VaR prediction is determined by the representation of estimators, and thus efficiency

gain in estimation can lead to improvement of VaR predictions. Simulation studies in Section

4 provide evidence that the proposed CQRs outperform the Gaussian and exponential QMLEs

in one-step-ahead VaR predictions as the data gets more heavy-tailed and the target quantile

level τ becomes more extreme. This is expected since the proposed CQR estimators are more

efficient than the QMLEs in these situations. Moreover, simulation results also suggest the

advantage of parametric CQR for predicting high conditional quantiles for heavy-tailed data,

especially when the quantile function Qτ (λ) is correctly specified for the innovation ηt.

3. Illustrations for CQRs

This section illustrates the application of the proposed CQRs for model (2.1) in practice.

Since the ARMA-GARCH, DAR and NAR-GARCH type models in Examples 1-3 are very

popular and widely used location-scale time series models, we choose them for illustration.

For the parametric CQR in Section 2.2, we need to select a parametric distribution for

ηt. For illustration, we assume that ηt follows the Tukey-lambda distribution with the shape

parameter λ, and then the τth quantile of ηt can be expressed as follows:

Qτ (λ) = {τλ − (1− τ)λ}/λ. (3.1)

The Tukey-lambda distribution not only has an explicit quantile function, but also can ap-

proximate various distributions such as the Gaussian, Logistic and heavy-tailed distributions.

16

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0167



3.1 CQRs in ARMA-GARCH models

3.1 CQRs in ARMA-GARCH models

This subsection examines the proposed CQRs in the framework of ARMA-GARCH type

models. Here we focus on the ARMA-GARCH model in (2.2) for illustration, and the pro-

posed CQRs can be similarly applied to other ARMA-GARCH type models, and DAR and

NAR-GARCH type models in Examples 2-3; see Section S4 in the Supplementary Material.

For the ARMA(p, q)-GARCH(P,Q) model in (2.2), the location and scale functions µt(ϑ
I)

and ht(ϑ
I) are Ft−1-measurable, and they depend on observations in the infinite past. In

this paper we set ys = ϵs = 0 and hs = 1 for s ≤ 0 as initial values, and denote the

resulting conditional quantile functions as q̃It,τk(ϕ
I) and g̃It,τk(ψ

I) for the semi-parametric and

parametric CQRs, where ϕI = (ϑI′ , b1, . . . , bK)
′ and ψI = (ϑI′ , λ)′. We will prove that the

effect of initial values on the estimation is asymptotically negligible.

For model (2.2), the semi-parametric and parametric CQR estimators ϕ̂
I

n and ψ̂
I

n are

defined by (2.6) and (2.9), with q̃t,τk(ϕ) and g̃t,τk(ψ) replaced by q̃It,τk(ϕ
I) and g̃It,τk(ψ

I),

respectively. Denote their true parameter vectors by ϕI
0 = (ϑI′

0 , b10, . . . , bK0)
′ and ψI

0 =

(ϑI′

0 , λ0)
′, where ϑI

0 = (α10, . . . , αp0, β10, . . . , βq0, γ10, . . . , γQ0, ν10, . . . , νP0)
′. We can prove

that the asymptotic properties of ϕ̂
I

n and ψ̂
I

n in Theorems 1-4 still hold for ARMA-GARCH

models, with some assumptions having explicit forms. Specifically, a sufficient condition for

Assumption 1 is provided in Assumptions (A2) and (A8) of Francq and Zaköıan (2004) for

model (2.2). Moreover, the identification and moment conditions in Assumptions 4-5 hold if

Assumptions 4′-5′ below hold; see Section S6.1 of the Supplementary Material for detailed

proofs. In addition, if τk ∈ (0, 0.5) or (0.5, 1) for k = 1, 2, . . . , K are chosen for the parametric

CQR, then K ≥ 4 in Assumption 4(iv) can be replaced by K ≥ 3 for the identification. This

conclusion also holds for the DAR and NAR-GARCH type models.
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Assumption 4′ (Identification). (i) α(z) and β(z) have no common root and (αp0, βq0) ̸=

(0, 0); (ii) γ(z) and ν(z) have no common root and (γQ0, νP0) ̸= (0, 0); (iii) ω = 1 for

semi-parametric CQR; (iv) K ≥ 4 and λ < 1 for parametric CQR.

Assumption 5′ (Moments). (i) α ≤ αi ≤ α for 1 ≤ i ≤ p, β ≤ βi ≤ β for 1 ≤ i ≤ q,

0 < ω ≤ ω ≤ ω, 0 < γ ≤ γi ≤ γ for 1 ≤ i ≤ Q, 0 < ν ≤ νi ≤ ν for 1 ≤ i ≤ P , b ≤ bk ≤ b

for 1 ≤ k ≤ K and λ ≤ λ ≤ λ, where α, α, β, β, ω, ω, γ, γ, ν, ν, b, b, λ and λ are some

constants; (ii) E(y2t ) < ∞.

3.2 Implementation issues

This subsection discusses on the computational issues for the semi-parametric and parametric

CQR estimation methods for model (2.1) in practice.

First, we consider the selection of quantile levels {τk}Kk=1 in CQR estimations. In practice,

we typically use the equally spaced quantiles, i.e. τk = k/(K+1) for k = 1, 2, . . . , K. Simula-

tion study indicates that both CQR methods can perform well with a reasonably large value

of K ≥ 9; see also Zou and Yuan (2008). Following the suggestion from Zou and Yuan (2008),

in the simulation and empirical analysis we choose K = 19, i.e. 5%, 10%, . . . , 95% quantile

levels for τk’s. Note that the target level τ is not necessarily in the set of {τk}Kk=1, especially

when estimating conditional quantiles at high levels. This has no effect on the parametric

CQR because the explicit quantile function Qτ (λ) facilitates us to do extrapolation for any

high level τ . However, the τth conditional quantile Qτ (yt|Ft−1) in (2.5) cannot be estimated

using the semi-parametric CQR since the quantile bτ is unavailable in this situation. Instead

of increasing K to cover the target level τ for the semi-parametric CQR, we include τ into

the set of quantile levels to avoid high computational cost due to a very large value of K.
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Second, we discuss on the optimization issues. Note that the optimization in (2.6) and

(2.9) is nonlinear, and nonnegative constraints are required for the parameters in the condi-

tional scale function ht(·). To search for both CQR estimators in (2.6) and (2.9) within their

parameter spaces, we use the “nlopt” function in R to handle the nonlinear optimization and

impose the nonnegative constraints on the scale parameters. Moreover, the objective func-

tions in (2.6) and (2.9) are nondifferentiable and nonconvex, thus reasonable initial values

should be provided for the optimization. The initial values are chosen within the parameter

space and stationary region such that Assumption 1 holds. Simulation studies indicate that

both CQRs are insensitive to the selection of initial values. In simulation and empirical anal-

ysis, the Gaussian QMLEs of model (2.1) are chosen as the initial values for ϑ, monotone

increasing and equally spaced values within (−1, 1) for bk with k = 1, . . . , K, and 0.1 for λ.

Finally, we provide some practical suggestions for order selection of model (2.1) in the

CQR estimations. Consider the order selection of ARMA-GARCH, ALDAR and ESTAR-

GARCH models for illustration. For ARMA-GARCH models, the orders of the GARCH

part in model (2.2) can be set as (P,Q) = (1, 1), since empirical study indicates that the

GARCH(1, 1) model has satisfactory performance in modeling volatility (Hansen and Lunde,

2005). For the ARMA part in model (2.2), we can use the Bayesian information criterion

(BIC) to select the orders (p, q). Similarly, we can use the BIC to select the orders (p, q) for

the ALDAR model (2.3) and the order p for the ESTAR-GARCH model (2.4). Based on the

proposed CQRs, the BIC for order selection can be defined as BIC = 2(n−mmax) logLn(υ̂n)+

d log(n−mmax), where Ln(υ̂n) = (n−mmax)
−1
∑n

t=mmax+1

∑K
k=1 ρτk{yt−ζ̃t,τk(υ̂n)}, ζ̃t,τk(υ̂n) =

q̃t,τk(ϕ̂n) (or g̃t,τk(ψ̂n)) with υ̂n = ϕ̂n (or ψ̂n) being the semi-parametric (or parametric)

CQR estimator, d is the dimension of υ̂n, and mmax is a predetermined positive integer.
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Then (p̂n, q̂n) = argmin1≤p,q≤mmax BIC(p, q) are the selected orders for the ARMA-GARCH

or ALDAR model, and p̂n = argmin1≤p≤mmax BIC(p) is the selected order for the ESTAR-

GARCH model. In Section S7 of the Supplementary Material, we have established the

selection consistency of the above BIC under some regular conditions.

4. Simulation

This section conducts simulation experiments to examine the finite-sample performance of the

proposed CQR estimators for the ARMA-GARCH, ALDAR and ESTAR-GARCH models,

and compare their performance in estimating and forecasting conditional quantiles.

Consider the following data generating processes (DGPs):

DGP1 (ARMA(1,1)-GARCH(1,1)) : yt = 0.2yt−1 + 0.1ϵt−1 + ηt(1 + 0.1ϵ2t−1 + 0.8h2
t−1)

1/2,

DGP2 (ALDAR(1,1)) : yt = 0.2yt−1 + ηt
(
1 + 0.2y+t−1 − 0.3y−t−1

)
,

DGP3 (ALDAR(1,2)) : yt = 0.2yt−1 + ηt
(
1 + 0.3y+t−1 − 0.4y−t−1 + 0.3y+t−2 − 0.4y−t−2

)
,

DGP4 (ESTAR(1)-GARCH(1,1)) : yt = −0.3 + 0.4G(yt−1; 1, 0) + {−0.5 +G(yt−1; 1, 0)} yt−1

+ ηt(0.01 + 0.2ϵ2t−1 + 0.75h2
t−1)

1/2,

where {ηt} are i.i.d random variables following the standard normal, Student’s t5 or Tukey-

lambda distribution with the shape parameter λ = 0.1 in (3.1), denoted by FN , Ft5 and Fλ,

respectively. The sample size is set to n = 500 or 1000, with 1000 replications generated for

each sample setting.

The first experiment aims to examine the finite-sample performance of the semi-parametric

and parametric CQR estimators using DGP1 − DGP4. For both CQRs, the quantile levels

are set to τk = k/(1+K) for k = 1, . . . , K with K = 19. Tables 1-2 list the biases, empirical

standard deviations (ESDs), and asymptotic standard deviations (ASDs) of both CQRs for
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DGP1, and the results for DGP2−DGP4 are listed in Section S8 of the Supplementary Mate-

rial to save space. Here, the ASD for the ith element of the semi-parametric (or parametric)

CQR estimator is calculated as the average of the estimated standard deviations Ξ̂ii/
√
n (or

Π̂ii/
√
n) among 1000 replications, where Aii is the ith diagonal element of a square matrix

A. Our findings can be summarized as follows: (i) as the sample size increases, biases, ESDs,

and ASDs generally decrease, and ESDs approach ASDs; (ii) most of the ASDs and ESDs

increase as the distribution of ηt gets more heavy-tailed, indicating a lower estimation effi-

ciency for more heavy-tailed data; (iii) the ASDs of the semi-parametric CQR using hHS in

(2.7) are slightly smaller than those using hB, and closer to the corresponding ESDs. Thus

we utilize hHS in the empirical analysis; (iv) for the mis-specified situation of Qτ (λ) that

ηt follows FN or Ft5 but the Tukey-lambda distribution is employed for Qτ (λ), the biases

of the parametric CQR estimator are still small, and the ESDs/ASDs are close to those of

the semi-parametric CQR estimator. Therefore, the parametric CQR is insensitive to the

mis-specification due to Qτ (λ).

In the second experiment, we compare the performance of the semi-parametric and para-

metric CQRs, GQMLE and EQMLE in estimating and predicting conditional quantiles for

ARMA-GARCH, ALDAR and ESTAR-GARCH models using DGP1,DGP2 and DGP4.

To evaluate the performance of in-sample estimation and out-of-sample prediction of the

above estimation methods, we use the mean biases and root mean square errors (RMSEs):

Biasin = (mn)−1
m∑
i=1

n∑
t=1

{Q̂(i)
τ (yt|Ft−1) − Q

(i)
τ (yt|Ft−1)},Biasout = m−1

m∑
i=1

{Q̂(i)
τ (yn+1|Fn) −

Q
(i)
τ (yn+1|Fn)}, RMSEin = [(mn)−1

m∑
i=1

n∑
t=1

{Q̂(i)
τ (yt|Ft−1)−Q

(i)
τ (yt|Ft−1)}2]1/2 and RMSEout =

[m−1
m∑
i=1

{Q̂(i)
τ (yn+1|Fn)−Q

(i)
τ (yn+1|Fn)}2]1/2, where m = 1000 is the number of replications,

n = 1000 is the sample size, and Q
(i)
τ (yt|Ft−1) and Q̂

(i)
τ (yt|Ft−1) represent the τth conditional
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quantile and its estimate at time t in the ith replication, respectively. In order to compare

the performance of the four estimation methods at moderate and high quantile levels, we

consider two sets T1 = {0.05, 0.1, 0.9, 0.95} and T2 = {0.001, 0.005, 0.995, 0.999} for the tar-

get quantile level τ , respectively. For both CQRs, we choose {τk}Kk=1 with τk = k/(1 + K)

and K = 19. When estimating and predicting high conditional quantiles at τ ∈ T2, note that

the target level τ is not in the set of {τk}Kk=1. We additionally include τ into this set for the

semi-parametric CQR.

For illustration, Table 3 and Table S.1 in the Supplementary Material list the biases and

RMSEs of the in-sample estimation and out-of-sample prediction using the semi-parametric

and parametric CQRs, GQMLE and EQMLE for DGP1 at τ ∈ T1 and τ ∈ T2, respectively.

The results for DGP2 and DGP4 are listed in Section S8 of the Supplementary Material to

save space. We have the following findings for the ARMA-GARCH model in DGP1: (i) as the

distribution of ηt becomes more heavy-tailed or the target quantile level τ gets more extreme,

the biases and RMSEs of all the estimation methods generally increase, indicating that the

accuracy of estimation and prediction decreases; (ii) the RMSEs of both CQRs are smaller

than those of GQMLE and EQMLE for heavy-tailed ηt or extreme target quantile level τ .

This implies that the proposed CQRs are more efficient than the QMLEs in estimating and

predicting high conditional quantiles of heavy-tailed data; (iii) in terms of RMSEs, the para-

metric CQR outperforms the semi-parametric CQR for most situations, especially when ηt is

heavy-tailed or the target quantile level τ is extreme. This suggests the advantage of para-

metric CQR in estimating and predicting high conditional quantiles for heavy-tailed data;

(iv) for the mis-specified situations that ηt follows FN or Ft5 but Tukey-lambda distribution is

employed for Qτ (λ), the parametric CQR is slightly worse than those of the semi-parametric
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CQR in biases and RMSEs. This implies that the conditional quantile estimation and pre-

diction using parametric CQR is not sensitive to this mis-specification. For the ALDAR

and ESTAR-GARCH models, it can be found that the semi-parametric CQR and EQMLE

perform similarly and they have better performance than the GQMLE, while the parametric

CQR outperforms the semi-parametric CQR when the quantile function Qτ (λ) is correctly

specified for the innovation ηt.

In the third experiment, we aim to compare the semi-parametric CQR with the parametric

CQR, GQMLE and EQMLE using ARE in Section S2 of the Supplementary Material. To

calculate the ARE, we generate a sequence of sample size n = 10000 from the model in DGP1,

DGP2 or DGP4, and two scenarios are considered for ηt: (a) ηt follows the Tukey-lambda

distribution with the shape parameter λ = 0.1 + 0.02k for k = 0, 1, . . . , 20; (b) ηt follows the

mixture distribution with the probability density function (pdf) f(x) = (1− δ)ϕ(x)+ δm(x),

where δ = k/20 with k = 0, 1, . . . , 20, ϕ(x) is the pdf of N(0, 1), and m(x) is the pdf of

N(0, 6), standard Laplace or t5 distribution. Note that the Tukey-lambda distribution in

scenario (a) covers the distributions with light and heavy tails, and the smaller value of

λ implies more heavy-tailed distribution. To study the ARE of two CQR estimators, i.e.

ARE(ϑ̂n, ϑ̃n), we focus on the case that the quantile function Qτ (λ) is correctly specified

by parametric CQR, and thus we consider scenario (a). Meanwhile, for AREs of the semi-

parametric CQR to GQMLE and EQMLE, i.e. ARE(ϑ̂n, ϑ̌n) and ARE(ϑ̂n, ϑ̆n), we consider

scenario (b).

Figure 1 plots ARE(ϑ̂n, ϑ̃n), ARE(ϑ̂n, ϑ̌n) and ARE(ϑ̂n, ϑ̆n) for the ARMA-GARCH

model; see Section S3 in the Supplementary Material for calculation details. It can be seen

that the ARE can be either larger or smaller than one, which indicates that no estimator can
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dominate the others for general situations. Specifically, we have the following findings: (i) as

ηt becomes more heavy-tailed, ARE(ϑ̂n, ϑ̃n) gets smaller than one, and thus the parametric

CQR tends to be more efficient than the semi-parametric CQR; (ii) the semi-parametric

CQR is less efficient than GQMLE (or EQMLE) when ηt approximately follows the normal

(or Laplace) distribution, but it tends to be more efficient than GQMLE and EQMLE when ηt

becomes more heavy-tailed; (iii) when δ = 0 such that ηt ∼ N(0, 1), then ARE(ϑ̂n, ϑ̌n) < 1

and the GQMLE is the most efficient. This is because the GQMLE reduces to the MLE

when ηt ∼ N(0, 1) and its asymptotic covariance attains the Cramér-Rao lower bound; (iv)

when δ = 1 and m(x) is the pdf of a standard Laplace distribution such that ηt follows a

standard Laplace distribution, then ARE(ϑ̂n, ϑ̆n) < 1 and the EQMLE is the most efficient.

In this situation the EQMLE reduces to the MLE with its asymptotic covariance attains

the Cramér-Rao lower bound. In addtion, the results for the ALDAR and ESTAR-GARCH

models are relegated to Section S8 of the Supplementary Material to save space, and the

simulation findings are unchanged.

5. Empirical analysis

This section analyzes the daily closing prices of Microsoft Corp’s stock (MSFT), denoted as

pt, from January 2, 2018 to December 29, 2023. The dataset is downloaded from the website

of CRSP via WRDS (https://wrds-www.wharton.upenn.edu/pages/get-data/center-researc

h-security-prices-crsp/), with a total of 1509 observations. Let rt = 100(ln pt − ln pt−1) be

the log return in percentage, and denote the centered series by {yt}. Figure 2 illustrates

volatility clustering of {yt}, and the sample skewness of −0.23 and kurtosis of 9.82 indicate

that {yt} is skewed and heavy-tailed; see Table 4 for summary statistics. The ACF and
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PACF plots of {yt} in Figure S.3 of the Supplementary Material imply that {yt} is serial

correlated. Therefore, location-scale time series models are suitable for {yt} to capture the

serial correlation and volatility clustering.

We choose the ARMA-GARCH, ALDAR and ESTAR-GARCH models in Examples 1-3 to

fit {yt}, and estimate these models by the proposed semi-parametric and parametric CQRs.

To obtain the CQR estimators in (2.6) and (2.9), we set τk = k/(K+1) for k = 1, . . . , K with

K = 19. We use the BIC in Section 3.2 to select the orders of ARMA-GARCH, ALDAR and

ESTAR-GARCH models. Given mmax = 5, we select (p, q) = (1, 1) for the ARMA-GARCH

model while (p, q) = (1, 2) for the ALDAR model and p = 1 for the ESTAR-GARCH model

using both CQRs. The estimation results of these models are summarized in Table 5.

Value-at-Risk (VaR) is a widely used risk measure for financial assets, and it is equivalent

to the negative conditional quantile of the return series {yt}. In order to assess the forecasting

performance of the fitted models, one-step-ahead predictions of VaR are conducted using a

rolling forecasting procedure with a fixed moving window. Specifically, we employ both CQRs

in Section 2 to fit the ARMA(1, 1)-GARCH(1, 1), ALDAR(1, 2) and ESTAR(1)-GARCH(1, 1)

models for each moving window of size 1000. Subsequently, we calculate the one-step-ahead

forecast for the τth conditional quantile of {yt}. To assess the forecasting performance of

both CQRs, we consider two VaR backtests and the empirical coverage rate (ECR). The

ECR represents the proportion of observations that fall below the corresponding conditional

quantile forecasts. The VaR backtests are the likelihood ratio test for correct conditional

coverage (CC) in Christoffersen (1998) and the dynamic quantile test (DQ) in Engle and

Manganelli (2004). Denote the hit by Ht = I{yt < Qτ (yt|Ft−1)}. The null hypothesis of

CC test assumes that {Ht} given Ft−1 are i.i.d. Bernoulli random variables with a success
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5 EMPIRICAL ANALYSIS

probability of τ . The DQ test conducts the regression of Ht on a constant, four lagged hits

Ht−i(i = 1, 2, 3, 4) and the contemporaneous VaR forecast. Its null hypothesis is that the

intercept is equal to τ and other regression coefficients are zero. If both backtests cannot reject

the null hypotheses and the ECR is close to τ , then the forecasting method is satisfactory.

Additionally, we employ the model confidence set (MCS) procedure in Hansen et al. (2011)

to compare the fitted models. If the MCS p-value of the fitted model is larger than a given

significance level, then this model can be added into the set of superior models.

We first calculate the one-step-ahead VaR forecasts at the moderate quantile levels, i.e.

τ = 5%, 10%, 90% and 95%. Given the semi-parametric CQR estimators ϑ̂n and b̂τ , the τth

conditional quantile forecast of {yt} is calculated as Q̂τ (yn+1| Fn) = µn+1(ϑ̂n) + b̂τhn+1(ϑ̂n).

Given the parametric CQR estimators ϑ̃n and λ̂n, the τth conditional quantile forecast of {yt}

is calculated by Q̃τ (yn+1|Fn) = µn+1(ϑ̃n) +Qτ (λ̂n)hn+1(ϑ̃n). Using the above procedure, we

obtain 508 one-step-ahead VaR forecasts fitted by the ARMA-GARCH, ALDAR and ESTAR-

GARCH models using both CQRs for each τ . We compare the forecasting performance of

both CQRs with other VaR estimation methods including FHS, CAViaR, and Risk Metrics.

Specifically, the FHS is based on the ARMA-GARCH model fitted by GQMLE (Francq and

Zaköıan, 2004) and EQMLE (Zhu and Ling, 2011), the ALDAR model fitted by GQMLE

(Tan and Zhu, 2022) and EQMLE (Tan and Zhu, 2023), and the ESTAR-GARCH model

fitted by GQMLE (Chan and McAleer, 2002) and EQMLE, respectively. Moreover, the

CAViaR employs an indirect GARCH(1, 1) specification (Engle and Manganelli, 2004). Table

6 summarizes all the methods for comparison.

Table 7 reports the ECRs and p-values of VaR backtests and MCS for one-step-ahead

forecasts. When the series {yt} is fitted by the ARMA-GARCH model, the semi-parametric
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CQR method outperforms the other four estimation methods at τ = 90% and 95%. This is

evident since its ECRs are close to the nominal quantile levels, and the p-values of the two

backtests are greater than or equal to 0.15. While the FHS methods excels solely at τ = 10%.

When fitting {yt} by ALDAR model, both CQRs demonstrate good performance at τ = 90%

and 95% in terms of ECRs and backtests. However, the FHS method fitted by GQMLE

performs acceptably only at τ = 5%, while the FHS method fitted by EQMLE fails in the

backtests at all levels. When fitting {yt} by ESTAR-GARCH model, the semi-parametric

CQR method outperforms the other estimation methods at τ = 5%, 90% and 95%, while

the FHS methods perform the best only at τ = 10%. Meanwhile, Risk Metrics and CAViaR

methods perform better than CQRs at τ = 10%. Overall, the ARMA-GARCH and ESTAR-

GARCH models fitted by semi-parametric CQR outperform the others in terms of backtests

at three quantile levels, and the ECRs of the former are close to nominal quantile levels at all

quantile levels. And among all the fitted models, only the ALDAR model fitted by GQMLE

does not belong to the set of superior models, as its MCS p-values are smaller than 0.1 at

all quantile levels. Consequently, the ARMA-GARCH model fitted by semi-parametric CQR

dominates the others in predicting VaRs of {yt} at moderate quantile levels.

Furthermore, to demonstrate the forecasting performance of both CQRs at high quantile

levels, we calculate the one-step-ahead VaR forecasts at τ = 0.1%, 0.5%, 99.5% and 99.9%.

To ensure accurate evaluation, we expand the dataset and use the daily closing prices from

January 2, 2002 to December 29, 2023, including 5537 observations. The data is transformed

into centered series of log returns in percentage denoted by {yt}. A moving window with

size 1000 is utilized to generate a total of 4536 one-step-ahead predictions through a rolling

forecasting procedure. The forecasting procedure for the parametric CQR at high quantile
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6 CONCLUSION AND DISCUSSION

levels remains consistent with that at moderate levels. While we additionally include τ into

the set {τk}Kk=1 with K = 19 for the semi-parametric CQR at high quantile levels. As for

moderate quantile levels, we compare the performance of both CQRs with FHS, CAViaR,

and Risk Metrics methods at high quantile levels.

Table 8 shows the ECRs and p-values of VaR backtests and MCS for one-step-ahead

forecasts at high levels. When fitting {yt} by the ARMA-GARCH model, the proposed

CQRs have superior performance than FHS at τ = 0.1%, 0.5% and 99.5% in terms of ECRs

and backtests. When fitting {yt} by the ALDAR model, the proposed CQRs outperform

the other methods at all quantile levels, because its ECRs are closest to the corresponding

quantile levels and the p-values of two backtests are no less than 0.15. When fitting {yt} by

the ESTAR-GARCH model, the proposed CQRs have superior performance at τ = 0.5% and

99.5%, while the FHS performs better at τ = 0.1% and 99.9%. Notably, both Risk Metrics

and CAViaR exhibit poor performance at high quantile levels. Among all the considered

methods, the ALDAR model estimated by parametric CQR exhibits the closest ECRs to

nominal quantile levels for τ = 0.1%, 99.5% and 99.9%, with the p-values of two backtests

no less than 0.15. Moreover, only the ALDAR model fitted by GQMLE, Risk Metrics and

CAViaR do not belong to the set of superior models, since their MCS p-values are less than

0.1 at all quantile levels. In conclusion, for predicting VaRs at high quantile levels, the

ALDAR model estimated using parametric CQR is more suitable than the other methods.

6. Conclusion and discussion

This paper explores efficient estimation of VaR in the framework of location-scale time series

models using CQR. We propose the semi-parametric and parametric CQRs for estimation
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and establish their asymptotic properties. We also compare their estimation efficiency with

that of the Gaussian and exponential QMLEs. Moreover, we apply both CQRs to ARMA-

GARCH, DAR and NAR-GARCH type models, and establish their asymptotic properties

under regular conditions. By simulation studies and empirical analysis on Microsoft Corp’s

stock return, we demonstrate that both CQRs can provide robust model estimation and

accurate VaR forecasts at moderate and high quantile levels especially for heavy-tailed data.

Our research can be extended in several directions. Firstly, self-weights can be intro-

duced into both CQRs to reduce the moment requirement in our framework. In this study,

E(|yt|s) < ∞ for s ≥ 3 is required to establish asymptotic normality of CQR estimators for

ARMA-GARCH, ALDAR and ESTAR-GARCH models. This moment requirement is strin-

gent for financial time series with heavy tails, whereas our methods combining self-weights

can handle more heavy-tailed time series. Secondly, statistical tools such as the goodness-of-

fit test can be proposed with theoretical guarantee for model diagnosis. Thirdly, the proposed

framework can be extended to estimate the risk measures VaR and expected shortfall jointly,

using the fact that expected shortfall is jointly elicitable with VaR (Fissler and Ziegel, 2016).

Lastly, our methods can also be utilized to construct prediction intervals. It would be in-

triguing to compare the validity and efficiency of our approaches with other methods, such

as the conformal prediction for time series (Stankeviciute et al., 2021; Barber et al., 2023).

Supplementary Material

The online Supplementary Material includes all technical details for Sections 2–3, together

with additional results for simulation studies and empirical analysis in Sections 4–5.
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Table 1: Biases, ASDs, and ESDs of the semi-parametric CQR estimator for DGP1, where

the innovations follow the standard normal, Student’s t5 or Tukey-lambda distribution with

the shape parameter λ = 0.1, denoted by FN , Ft5 or Fλ, respectively. ASD1 and ASD2

correspond to the bandwidths hB and hHS, respectively.

n Bias ASD1 ASD2 ESD Bias ASD1 ASD2 ESD Bias ASD1 ASD2 ESD

F = FN F = Ft5 F = Fλ

α1 500 -0.027 0.172 0.167 0.171 -0.015 0.187 0.179 0.178 -0.010 0.212 0.205 0.207

1000 -0.010 0.125 0.124 0.116 -0.015 0.132 0.127 0.128 -0.008 0.132 0.128 0.128

β1 500 0.025 0.176 0.171 0.172 0.013 0.191 0.182 0.182 0.000 0.220 0.213 0.213

1000 0.008 0.122 0.120 0.117 0.010 0.133 0.128 0.131 0.005 0.134 0.129 0.130

γ1 500 -0.001 0.063 0.061 0.061 -0.004 0.061 0.057 0.048 0.026 0.123 0.128 0.137

1000 -0.002 0.041 0.040 0.042 -0.011 0.040 0.039 0.037 -0.025 0.075 0.072 0.072

ν1 500 -0.021 0.122 0.118 0.132 -0.005 0.058 0.055 0.066 0.017 0.053 0.052 0.052

1000 -0.017 0.089 0.087 0.095 -0.004 0.064 0.062 0.058 0.014 0.040 0.038 0.035
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Figure 1: The ARE(ϑ̂n, ϑ̃n) (left), ARE(ϑ̂n, ϑ̌n) (middle) and ARE(ϑ̂n, ϑ̆n) (right) for

ARMA-GARCH models, where λ = 0.1 + 0.02k and δ = k/20 with k = 0, 1, . . . , 20, for

Tukey-lambda (△), N(0, 6) (□), t5 (+) or standard Laplace (◦) distribution.
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Table 2: Biases, ASDs, and ESDs of the parametric CQR estimator for DGP1, where the

innovations follow the standard normal, Student’s t5 or Tukey-lambda distribution with the

shape parameter λ = 0.1, denoted by FN , Ft5 or Fλ, respectively.

n Bias ASD ESD Bias ASD ESD Bias ASD ESD

F = FN F = Ft5 F = Fλ

α1 500 -0.018 0.166 0.170 -0.005 0.179 0.180 0.000 0.202 0.193

1000 -0.006 0.122 0.117 -0.011 0.131 0.123 -0.002 0.123 0.129

β1 500 0.018 0.175 0.171 0.005 0.180 0.184 -0.006 0.196 0.197

1000 0.005 0.119 0.118 0.008 0.134 0.123 0.000 0.125 0.131

γ1 500 -0.049 0.030 0.028 -0.060 0.021 0.016 -0.023 0.042 0.029

1000 -0.051 0.017 0.019 -0.061 0.012 0.012 -0.024 0.020 0.020

ν1 500 -0.049 0.135 0.162 -0.007 0.065 0.070 0.009 0.066 0.056

1000 -0.020 0.071 0.099 -0.003 0.046 0.049 0.010 0.037 0.033
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Figure 2: Time plot for daily log returns in percentage of Microsoft Corp’s stock (MSFT)

from January 2, 2018 to December 29, 2023.
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Table 3: Biases and RMSEs for estimating and predicting conditional quantiles at τ =

5%, 10%, 90% and 95% for DGP1, where the innovations follow the standard normal, Stu-

dent’s t5 or Tukey-lambda distribution with the shape parameter λ = 0.1, denoted by FN ,

Ft5 or Fλ, respectively. M1, M2, M3 and M4 represent the semi-parametric CQR, parametric

CQR, GQMLE and EQMLE, respectively.

FN Ft5 Fλ

Bias RMSE Bias RMSE Bias RMSE

τ F in out in out in out in out in out in out

5% M1 0.011 0.036 0.342 0.341 0.064 0.057 0.830 0.897 1.586 2.215 2.574 3.254

M2 0.019 0.043 0.303 0.302 0.111 0.105 0.710 0.760 1.803 2.550 2.715 3.549

M3 0.015 0.016 0.156 0.154 -0.128 0.023 3.735 4.035 2.231 4.694 10.250 13.859

M4 0.057 0.008 0.490 0.176 0.495 0.098 4.419 5.011 2.691 4.981 11.251 15.656

10% M1 0.005 0.026 0.292 0.295 0.026 0.031 0.631 0.661 1.186 1.679 2.014 2.544

M2 0.006 0.026 0.250 0.246 0.037 0.038 0.538 0.572 1.334 1.904 2.068 2.718

M3 0.014 0.014 0.126 0.126 0.248 0.382 3.240 3.574 2.544 4.608 8.805 11.975

M4 0.049 0.009 0.382 0.144 0.734 0.519 3.845 4.271 3.026 5.069 9.697 13.723

90% M1 -0.012 -0.019 0.284 0.291 -0.071 -0.034 0.616 0.642 -1.509 -2.024 2.280 2.858

M2 -0.005 -0.010 0.251 0.258 -0.037 -0.003 0.539 0.583 -1.332 -1.873 2.067 2.674

M3 -0.009 -0.013 0.126 0.122 -0.283 -0.477 3.306 3.760 -2.649 -4.695 8.946 12.343

M4 -0.044 -0.012 0.382 0.141 -0.757 -0.578 3.892 4.364 -3.144 -5.157 9.823 13.485

95% M1 -0.019 -0.029 0.338 0.346 -0.127 -0.078 0.813 0.888 -2.062 -2.762 2.978 3.783

M2 -0.018 -0.027 0.304 0.314 -0.112 -0.070 0.711 0.767 -1.802 -2.519 2.714 3.516

M3 -0.011 -0.016 0.156 0.153 0.097 -0.117 3.794 4.297 -2.353 -4.775 10.405 14.289

M4 -0.052 -0.011 0.495 0.176 -0.526 -0.165 4.499 5.111 -2.803 -5.088 11.389 15.642
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Table 4: Summary statistics for {yt}.

Mean Median Std.Dev. Skewness Kurtosis Min Max

0.00 0.03 1.9 -0.23 9.82 -16.04 13.2

Table 5: The fitted coefficients (coef) with standard errors (s.e.) of the ARMA(1, 1)-

GARCH(1, 1) (upper), ALDAR(1, 2) (middle) and ESTAR(1)-GARCH(1, 1) (lower) models,

where M1 and M2 represent the semi-parametric and parametric CQR methods, respectively.

α1 β1 ω γ1 ν1

M1 coef 0.416 -0.531 0.116 0.834

s.e. 0.180 0.166 0.107 0.066

M2 coef 0.406 -0.520 0.034 0.042 0.828

s.e. 0.180 0.167 0.012 0.010 0.031

ϕ1 ω α+
1 α+

2 α−
1 α−

2

M1 coef -0.076 0.091 0.125 0.265 0.256

s.e. 0.030 0.045 0.051 0.059 0.061

M2 coef -0.077 0.578 0.053 0.081 0.155 0.145

coef 0.029 0.047 0.024 0.027 0.030 0.030

α00 α01 α10 α11 γ c ω a b

M1 coef -0.124 -0.175 0.145 0.034 1.025 0.068 0.406 0.986

s.e. 0.159 0.177 0.240 0.027 1.960 0.976 0.194 0.001

M2 coef 0.045 0.018 -0.081 -0.812 0.007 0.085 0.029 0.042 0.839

s.e. 0.044 1.272 0.434 0.852 0.012 0.707 0.011 0.010 0.028
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Table 6: The methods for comparison.

Abbreviation Method description

M1a ARMA-GARCH model fitted by semi-parametric CQR

M1b ARMA-GARCH model fitted by parametric CQR

M1c FHS with ARMA-GARCH model fitted by GQMLE

M1d FHS with ARMA-GARCH model fitted by EQMLE

M2a ALDAR model fitted by semi-parametric CQR

M2b ALDAR model fitted by parametric CQR

M2c FHS with ALDAR model fitted by GQMLE

M2d FHS with ALDAR model fitted by EQMLE

M3a ESTAR-GARCH model fitted by semi-parametric CQR

M3b ESTAR-GARCH model fitted by parametric CQR

M3c FHS with ESTAR-GARCH model fitted by GQMLE

M3d FHS with ESTAR-GARCH model fitted by EQMLE

M4 Risk Metrics

M5 CAViaR with the specification of indirect GARCH(1, 1)
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Table 7: Empirical coverage rate (%) and p-values of two VaR backtests and MCS at the

5%, 10%, 90% and 95% quantile levels, where methods M1a-M5 are summarized in Table 6.

The ECRs closest to the nominal level for each model are marked in bold.

τ = 5% τ = 10% τ = 90% τ = 95%

ECR CC DQ MCS ECR CC DQ MCS ECR CC DQ MCS ECR CC DQ MCS

M1a 5.12 0.94 0.18 0.53 11.81 0.41 0.01 0.51 90.54 0.70 0.65 1.00 95.08 0.97 0.99 1.00

M1b 5.91 0.53 0.09 0.80 12.60 0.15 0.01 0.71 91.14 0.59 0.62 1.00 96.06 0.51 0.95 0.94

M1c 5.31 0.85 0.94 1.00 11.40 0.20 0.30 0.71 88.76 0.57 0.67 1.00 94.09 0.65 0.46 1.00

M1d 4.72 0.95 0.78 1.00 11.60 0.17 0.29 1.00 89.37 0.76 0.29 0.99 94.09 0.53 0.82 1.00

M2a 5.91 0.10 0.05 0.75 12.40 0.21 0.03 0.22 88.19 0.38 0.55 0.75 94.29 0.65 0.70 1.00

M2b 6.69 0.02 0.01 0.75 13.19 0.07 0.00 0.26 89.17 0.55 0.27 1.00 95.67 0.29 0.65 1.00

M2c 4.53 0.30 0.44 0.01 12.83 0.10 0.02 0.04 86.22 0.01 0.00 0.00 92.91 0.01 0.01 0.01

M2d 6.30 0.30 0.00 0.45 13.58 0.03 0.00 0.34 89.76 0.20 0.00 0.92 95.67 0.29 0.00 0.85

M3a 4.89 0.95 0.22 0.15 12.02 0.75 0.02 0.92 90.54 0.70 0.75 0.46 95.20 0.79 0.94 1.00

M3b 6.50 0.22 0.01 0.43 12.60 0.17 0.02 0.21 91.73 0.29 0.42 0.61 95.87 0.11 0.30 0.17

M3c 5.12 0.94 0.24 0.78 11.02 0.64 0.17 0.71 91.14 0.59 0.54 0.80 95.28 0.71 0.81 1.00

M3d 4.72 0.95 0.50 0.78 11.42 0.56 0.06 0.71 90.65 0.96 0.12 0.83 93.70 0.43 0.54 0.63

M4 5.51 0.77 0.35 1.00 9.84 0.26 0.81 1.00 92.13 0.19 0.56 0.99 95.87 0.65 0.95 0.89

M5 4.53 0.30 0.40 0.19 11.02 0.44 0.08 0.33 91.34 0.32 0.39 1.00 95.08 0.97 0.92 1.00
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Table 8: Empirical coverage rate (%) and p-values of two VaR backtests and MCS at the

0.1%, 0.5%, 99.5% and 99.9% quantile levels, where methods M1a-M5 are summarized in

Table 6. The ECRs closest to the nominal level for each model are marked in bold.

τ = 0.1% τ = 0.5% τ = 99.5% τ = 99.9%

ECR CC DQ MCS ECR CC DQ MCS ECR CC DQ MCS ECR CC DQ MCS

M1a 0.11 0.97 0.83 1.00 0.77 0.03 0.01 1.00 99.40 0.58 0.24 0.87 99.74 0.01 0.00 1.00

M1b 0.18 0.34 0.73 1.00 0.53 0.85 0.98 1.00 99.34 0.28 0.31 1.00 99.78 0.08 0.14 0.87

M1c 0.13 0.80 0.97 1.00 0.75 0.07 0.00 0.42 99.27 0.10 0.08 0.80 99.80 0.18 0.14 0.98

M1d 0.15 0.56 0.44 1.00 0.71 0.14 0.00 0.26 99.29 0.14 0.17 0.98 99.80 0.18 0.11 0.24

M2a 0.15 0.56 0.68 1.00 0.49 0.89 1.00 0.13 99.40 0.58 0.57 0.40 99.78 0.08 0.21 0.98

M2b 0.13 0.80 0.77 0.71 0.73 0.10 0.17 0.68 99.45 0.78 0.53 0.72 99.80 0.18 0.45 0.72

M2c 0.22 0.08 0.01 0.00 0.49 0.89 0.09 0.01 99.40 0.00 0.00 0.01 99.76 0.04 0.00 0.00

M2d 0.20 0.18 0.09 0.92 0.84 0.01 0.00 0.09 99.29 0.14 0.03 0.63 99.71 0.01 0.00 0.78

M3a 0.29 0.00 0.00 0.57 0.66 0.15 0.00 0.65 99.45 0.78 0.32 1.00 99.76 0.04 0.02 1.00

M3b 0.20 0.18 0.50 1.00 0.62 0.47 0.54 1.00 99.36 0.37 0.43 1.00 99.78 0.08 0.00 0.70

M3c 0.13 0.80 0.79 1.00 0.73 0.10 0.38 0.83 99.25 0.07 0.13 0.58 99.78 0.18 0.38 0.97

M3d 0.13 0.80 0.92 1.00 0.64 0.08 0.50 1.00 99.45 0.59 0.78 1.00 99.76 0.04 0.04 1.00

M4 0.71 0.00 0.00 0.06 1.28 0.00 0.00 0.09 98.70 0.00 0.00 0.03 99.32 0.00 0.00 0.00

M5 1.79 0.00 0.00 0.00 1.15 0.00 0.00 0.00 99.16 0.01 0.00 0.05 99.23 0.00 0.00 0.00
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