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Abstract: In extreme regression problems, a primary objective is to infer ex-

treme values of the response given a set of predictors. The high dimensionality

and heavy-tailedness of the predictors limit the applicability of classical tools for

inferring conditional extremes. In this paper, we focus on the central extreme

subspace (CES), whose existence and uniqueness are guaranteed under fairly mild

conditions. By projecting the data onto the CES, the dimension of the predictors

is reduced while all the information for inferring conditional extremes is retained,

which effectively addresses the high dimensionality issue. We propose the novel

COPES method to estimate the CES by utilizing contour projection. Notably,

COPES is robust against heavy-tailed predictors. The theoretical justification

for the consistency of COPES is established. Overall, our proposal not only ex-

tends the toolkit for extreme regression but also broadens the scope of dimension

reduction techniques. The effectiveness of our proposal is demonstrated through

extensive simulation studies and an application to Chinese stock market data.

Keywords and phrases: conditional extremes, sufficient dimension reduction, el-

liptically contoured distribution, heavy-tailedness.
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1. Introduction

In regression problems, predicting the response becomes particularly chal-

lenging when the dimension of predictors gets large. This issue is more

pronounced when we focus on the tail behaviour of the response, such as

extreme quantile (Chernozhukov 2005), extreme expectile (Girard et al.

2021) and extreme probability (Hall & Weissman 1997), which is referred

to as extreme regression. The primary reason for this challenge is that when

we study the tail of a distribution, the effective sample size is only a small

fraction of the total sample size. Therefore, even moderate-dimensional

predictors can easily deteriorate the state-of-the-art methods. To mitigate

the impact of high dimensionality in extreme regression, some progress has

been made in reducing the dimension of the predictors (e.g., Aghbalou et al.

2024, Gardes 2018, Bousebata et al. 2023). Most existing methods for di-

mension reduction in extreme regression are grounded in the concept of

sufficient dimension reduction (SDR; Li 1991, Cook 1998), which seeks a

low-dimensional subspace that retains all the relevant information about

the conditional distribution of the response given the predictors.

However, in extreme regressions, none of the existing dimension reduc-

tion methods offer theoretical guarantees when the predictors have heavy

tails. In an extensive scope of areas, heavy-tailedness has been one of
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the most common characteristics of the collected data. For instance, fi-

nancial asset returns are widely recognized as heavy-tailed (Zhao et al.

2018), and the distribution of advertiser values in online advertising exhibits

heavy-tailed characteristics (Arnosti et al. 2016). Moreover, investigating

the heavy-tailedness is a key problem in extreme value statistics (Resnick

2007). Researchers have identified the adverse impact of heavy-tailedness on

numerous state-of-the-art methods, prompting the development of robust

techniques that enhance the statistical inference accuracy. These works

include linear regression (Loh 2017, Fan et al. 2021), generalized linear

regression (Zhu & Zhou 2021), and classification (Hall et al. 2009). This

motivates our investigation on the dimension reduction techniques designed

specifically for extreme regressions with the presence of heavy-tailed pre-

dictors.

In this paper, we introduce the COPES method, short for COntour

Projected Estimation for Central Extreme Subspace. We first define the

extreme dimension reduction (EDR) subspace and the central extreme sub-

space (CES). By projecting the predictors onto an EDR subspace, we retain

all the information for the conditional extremes of the response given the

predictors. The CES is the minimal EDR subspace, defined as the inter-

section of all EDR subspaces, and it exists under fairly mild conditions.
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A careful examination of the distinctions between the EDR subspace and

dimension reduction subspaces in related works is also conducted. Subse-

quently, under the elliptically-contoured distribution assumption for predic-

tors, we project the predictors onto an elliptical contour, and we establish

three working subspaces for the response and projected predictors. These

working subspaces are shown to be associated with the CES under certain

method-specific assumptions. We proceed to estimate the CES through

estimating the working subspaces from samples.

Our contributions are multi-fold. First, our method demonstrates ro-

bustness to heavy-tailed predictors and expands the applicability of dimen-

sion reduction in extreme regression. Second, we develop both first-order

and second-order methods for estimating the CES, offering a comprehen-

sive methodology for dimension reduction in extreme regression. Our nu-

merical studies underscore the complementary effects of these methods.

Third, recognizing that the contour-projected predictors deviate from the

constant variance condition typically assumed in SDR, the direct adapta-

tion of second-order SDR methods to extreme regression is inapplicable.

Thus, we carefully design two second-order methods, which strategically

circumvent the constant variance condition by leveraging the properties of

the elliptically-contoured distribution.
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Our work is closely related to Aghbalou et al. (2024), which introduced

the concept of the extreme SDR space. However, it is not well understood

whether the minimal extreme SDR space is unique, which brings ambigui-

ties in parameter estimation. In contrast, the existence and uniqueness of

our newly defined minimal EDR subspace, i.e., the CES, are ensured, pro-

vides us with a uniquely defined target parameter. Moreover, the proposal

in Aghbalou et al. (2024) is vulnerable to certain classes of predictors, par-

ticularly those from heavy-tailed distributions. In comparison, our COPES

enjoys favorable properties, even in the presence of heavy-tailed predictors.

The numerical findings also demonstrate that our proposal exhibits superior

performance over the proposal in Aghbalou et al. (2024) when the predictors

have heavy tails. Another related work is Gardes (2018), which introduced

the notion of the tail dimension reduction subspace. This subspace subtly

differs from the extreme SDR space in Aghbalou et al. (2024); see Aghbalou

et al. (2024) for discussions on such distinctions. Although Gardes (2018)

established the uniqueness of the minimal tail dimension reduction subspace

under a certain condition, this condition is stronger than ours. Additionally,

while Gardes (2018) offered an estimation of the tail dimension reduction

subspace, the theoretical justification of the consistency of the estimator

is not provided. Hence, the performance of their proposal under heavy-
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tailed predictors remains unclear. Another line of related works assumes

semi-parametric models, including the single- or multiple-index model. For

instance, Xu et al. (2022) studied the estimation of conditional extreme

quantiles under the tail single-index model. Meanwhile, Bousebata et al.

(2023) proposed the partial least-square approach for dimension reduction

in conditional extremes under single- and multiple-index models.

The rest of the paper is organized as follows. After the review of some

background knowledge in Section 2, we study the properties of EDR sub-

space and CES in Section 3. In Section 4, we detail three specific COPES

methods. The estimations and asymptotic theories for three COPES meth-

ods are studied in Section 5. In Section 6, we evaluate the finite sample

performance of the COPES methods through synthetic data. In Section 7,

we demonstrate the effectiveness and efficiency of the COPES methods

through a Chinese stock market example. All technical proofs are gathered

in the Supplementary Material.

2. Background

2.1 Notations

For vector u = (u1, . . . , up)
⊤ ∈ Rp, let ∥u∥ = (

∑p
j=1 u

2
j)

1/2 denote the Eu-

clidean norm. For a matrix A ∈ Rp×q, we interchangeably use span(A)

and SA to denote the subspace spanned by the columns of A. Let σi(A)
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2.2 Sufficient dimension reduction

denote the i-th largest singular value of A, for i = 1, . . . ,min{p, q} and

σ(A) = {σ1(A), . . . , σmin{p,q}(A)}. Define the Frobenius norm as ∥A∥F =

{
∑min{p,q}

i=1 σ2
i (A)}1/2 and the spectral norm as ∥A∥ = σ1(A). Let SVDd(A) ∈

Rp×d denote the matrix composed of left singular vectors of A correspond-

ing to its largest d singular values. For a subspace S ⊆ Rp spanned by some

matrix A ∈ Rp×q, i.e., S = span(A), let PS ≡ PA = A(A⊤A)−1A⊤ denote

the projection onto the subspace S. Moreover, let QS ≡ QA = I − PA.

For a positive definite matrix Σ ∈ Rp×p, define PA(Σ) = A(A⊤ΣA)−1A⊤Σ

and QA(Σ) = I−PA(Σ).

2.2 Sufficient dimension reduction

Our proposal is intricately related to the sufficient dimension reduction (SDR;

Li 1991, Cook 1998). For a response variable Y ∈ R and predictors X ∈ Rp,

SDR seeks a lower-dimensional subspace S ⊆ Rp such that

Y | X ∼ Y | PSX, (2.1)

where ”∼” denotes ”the same distribution as” and PS denotes the projec-

tion matrix onto the subspace S. The subspace satisfying (2.1) is referred

to as the SDR subspace, and the intersection of all SDR subspaces, if it-

self is an SDR subspace, is known as the central subspace, denoted by

SY |X (Cook 1998). The existence of central subspace is ensured under mild

conditions (Cook 1998). In the spirit of (2.1), by replacing the original
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2.3 Elliptically-contoured distribution

data X with the reduced data PSY |XX, all the information about the con-

ditional distribution of Y | X is preserved. Various SDR methods have

been proposed to estimate the central subspace, including inverse regres-

sion methods (Li 1991, Cook & Weisberg 1991, Li & Wang 2007, Zhu et al.

2010, Cook & Li 2002, Chen et al. 2010, Yu et al. 2016), likelihood-based

methods (Cook & Forzani 2008, Bura et al. 2016), and semi-parametric or

non-parametric methods (Xia et al. 2002, Ma & Zhu 2012, Fukumizu &

Leng 2014). For an overview of SDR methods, interested readers can refer

to the monograph Li (2018).

2.3 Elliptically-contoured distribution

For a random vector X following an elliptically-contoured (EC) distribution

with a mean vector µ ∈ Rp and a scatter matrix Σ ∈ Rp×p, its probability

density function is given by f(x) = kp|Σ|−1/2g{(x − µ)⊤Σ−1(x − µ)} for

x ∈ Rp, where the one-dimensional function g is independent of p, and kp

is a normalizing constant (Johnson 1987). To ensure the identifiability of

Σ, we assume tr(Σ) = p.

We focus on the EC distribution for several reasons. First, it covers

a broad spectrum of distributions, including light-tailed and heavy-tailed

distributions. Commonly used distributions, such as multivariate normal,

multivariate t, multivariate Laplacian, multivariate slash, and multivariate
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contaminated normal distributions fall into the range of the EC distribution.

This flexibility enables us to accommodate various types of data and han-

dle more complicated situations. Second, the EC distribution assumption

has been widely employed in SDR, especially for modeling the heavy-tailed

data, see e.g., Wang et al. (2008), Luo et al. (2009), and Chen et al. (2022).

One possible reason is that the linearity condition (Eaton 1986), a widely

used assumption in inverse-regression based SDR methods, is automati-

cally satisfied by the EC-distributed data. Moreover, SDR in the context of

extreme regression also requires the linearity condition, see e.g., Aghbalou

et al. (2024). Since our proposal relies on the linearity condition and accom-

modates the heavy-tailedness, the EC distribution assumption is a natural

choice. Third, the linear combination of EC random vectors remains an EC

random vector, making the reduced predictors more interpretable.

3. Dimension reduction subspace for extreme regression

In extreme regression, a central focus lies in inferring the extreme values

of Y | X. Without loss of generality, we work on the right tail of Y , i.e.,

Y | (Y > y), where y represents a large thresholding value. Note that

studying the left tail of Y is equivalent to studying the right tail of −Y .

Therefore, once the dimension reduction theory of the right tail of Y is well

understood, the results can be easily generalized to the left tail of Y . Let y+
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denote the supremum of the support of Y , we assume that Pr(Y > y) → 0

as y → y+, excluding the special case where a point mass is at the right

endpoint of Y . The EDR subspace is introduced in the following.

Definition 1 (EDR subspace). The subspace Sβ ⊆ Rp, spanned by some

basis matrix β ∈ Rp×d, is called an EDR subspace of Y given X if and only

if, for any ε > 0, there exists some constant y0 such that for all y ≥ y0,∣∣∣∣Pr(Y > y | X = x)− Pr(Y > y | β⊤X = β⊤x)

Pr(Y > y)

∣∣∣∣ ≤ ε, for all x ∈ ΩX,

where ΩX is the support of X.

It is evident that any SDR subspace is also an EDR subspace. A simi-

lar relationship between the SDR subspace and the extreme SDR subspace

defined in Aghbalou et al. (2024) has been discussed in Aghbalou et al.

(2024). Aghbalou et al. (2024) has further clarified through concrete exam-

ples that the SDR subspace contains redundant information immaterial to

the inference for the conditional extremes in some cases.

Moreover, any EDR subspace is also an extreme SDR subspace, which is

defined in Aghbalou et al. (2024). However, the question remains whether

the intersection of the extreme SDR subspaces is still an extreme SDR

subspace, thus the minimal extreme SDR subspace may not be uniquely

defined. In comparison, as we will clarify later, the intersection of all EDR

subspaces is still an EDR subspace under very mild condition, guaranteeing
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the uniqueness of the minimal EDR subspace, which we refer to as the

central extreme subspace (CES). The CES is formally defined as follows.

Definition 2 (CES). The intersection of all EDR subspaces of Y given X

is called the CES if it is itself an EDR subspace, denoted by SY∞|X.

If the CES exists, it is uniquely defined. Since the CES is the minimal

EDR subspace in the sense that it belongs to any EDR subspace, it stands as

the most economical and efficient dimension reduction subspace, preserving

all the information for inferring the extreme values of Y givenX. A concrete

guarantee of the existence of the CES is provided in the following theorem,

which only requires a mild condition on the distribution of X.

Theorem 1. Assume that X is supported on a convex set ΩX ⊆ Rp, then

SY∞|X exists.

The convexity condition for ΩX is considered mild and is satisfied by

many commonly adopted distributions. It is also a requirement for the ex-

istence of the central subspace (Cook 1998, Proposition 6.4). Under this

weak assumption, the minimal EDR subspace is uniquely defined. In con-

trast, the uniqueness of the minimal extreme SDR space in Aghbalou et al.

(2024) is uncertain. Gardes (2018) established the uniqueness of the mini-

mal tail dimension reduction subspace under a stronger condition, requiring
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X to be supported on Rp. In the remainder of the paper, we assume that

X is supported on a convex set ΩX ⊆ Rp so that SY∞|X exists. Denote the

dimension d∗ = dim(SY∞|X).

4. COPES

Heavy-tailed data poses challenges to dimension reduction in extreme re-

gression, as confirmed by our empirical findings. In this section, we assume

that X follows an EC distribution and develop COPES methods, which

efficiently estimate SY∞|X even when the predictors have heavy tails.

We first project the predictors onto an elliptical contour, construct-

ing the contour-projected predictors
−→
X. Then, we develop specific COPES

methods based on
−→
X from three classical SDR methods, namely, sliced in-

verse regression (SIR; Li 1991), sliced average variance estimate (SAVE;

Cook & Weisberg 1991), and directional regression (DR; Li & Wang 2007).

We choose SIR, SAVE, and DR for several reasons. First, they are im-

portant representative first-order and second-order SDR methods, which

have gained comprehensive studies in the literature. Second, their imple-

mentation is easy, facilitating the computation of our proposal, as we will

elaborate in Section 5.1 and 5.2. Third, all these inverse moment meth-

ods demand the linearity condition, which is automatically satisfied by the

EC distribution. For each specific COPES method, we define the working
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4.1 Contour projection

subspace and provide their non-asymptotic approximations.

4.1 Contour projection

We project the centered EC-distributed predictors X−µ onto the elliptical

contour C = {u : ∥u∥Σ = 1}, where ∥u∥Σ = (u⊤Σ−1u)1/2, resulting the

contour-projected predictors
−→
X = (X−µ)/∥X−µ∥Σ. Due to its bounded

nature,
−→
X possess finite moments of all orders. Such a favorable finite-

moment property brings ease to the parameter estimation. For instance, the

contour projection method also proves effective in SDR under the heavy-

tailed predictors (Wang et al. 2008, Luo et al. 2009). If we are able to

establish some connection between an EDR subspace of Y given X and

that of Y given
−→
X, the challenges posed by heavy-tailed predictors can be

mitigated. The following result implies such a connection.

Lemma 1. Assume that X follows an EC distribution. Then, any EDR

subspace of Y given X is also an EDR subspace of Y given
−→
X. Moreover,

the CES SY∞|X is an EDR subspace of Y given
−→
X.

Remark 1. Lemma 1 assumes that X follows an EC distribution. This

assumption can be relaxed to that
−→
X and ∥X− µ∥Σ are independent.

The direct implication of Lemma 1 is that the intersection of all EDR

subspaces of Y given
−→
X belongs to SY∞|X. One can further define the CES
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4.2 COPES-SIR

of Y given
−→
X as the intersection of all EDR subspaces of Y given

−→
X if it is

itself an EDR subspace of Y given
−→
X. The existence of the CES of Y given

−→
X is under investigation and left for future research.

In fact, the existence of the CES of Y given
−→
X is not quite crucial since

the target parameter in the current paper is SY∞|X. In the following, we

propose three working subspaces contained in an EDR subspace of Y given

−→
X. More importantly, we establish the connections between the working

subspaces and SY∞|X.

4.2 COPES-SIR

The working subspace for COPES-SIR is called the extreme SIR subspace,

denoted by SeSIR. Its existence depends on the following convergence as-

sumption related to the tail inverse moment of
−→
X:

(A1) There exists a non-zero vector ν ∈ Rp such that ν = limy→y+ E(
−→
X |

Y > y).

In Aghbalou et al. (2024), a convergence assumption similar to Assump-

tion (A1) was also required. They assumed the tail inverse moment con-

vergence for Y and original predictors X, i.e., limy→y+ E(X|Y > y) exists.

However, E(X|Y > y) may diverge to infinity for many common distribu-

tions, including the multivariate normal and t distributions. To illustrate

how the convergence assumption of their tail inverse moment is violated
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4.2 COPES-SIR

and how the contour projection alleviates such an issue, we provide a toy

example in Section S2 of the Supplementary Material.

Under Assumption (A1), we define the extreme SIR subspace as SeSIR =

Σ−1span(ν). Note that the non-zero assumption on ν eliminates the de-

generate case where SeSIR is null. In classical SIR, the linearity condition is

necessarily assumed, ensuring that SIR recovers at least a portion of the cen-

tral subspace (Li 1991). The linearity condition states that E(X | PSY |XX)

is a linear function of PSY |XX, a condition satisfied when X follows the EC

distribution. Since
−→
X is elliptically contoured, it automatically satisfies the

linearity condition. This property facilitates the connection between SeSIR

and an EDR subspace of Y |
−→
X, formally stated in the following theorem.

Theorem 2. Let span(β) ⊆ Rp denote an EDR subspace of Y given
−→
X.

Under the EC distribution assumption of X and Assumption (A1), we have

SeSIR ⊆ span(β). Moreover, we have SeSIR ⊆ SY∞|X.

The direct estimation of SeSIR is tricky since SeSIR is defined in a lim-

iting manner. We overcome this issue by approximating SeSIR with a non-

asymptotic surrogate. Let Ỹ = −Y denote the opposite of the response

and F denote the cumulative distribution function of Ỹ . For h ∈ (0, 1], we

introduce the kernel matrix Mh
eSIR =

∫ 1

0
Ch(u)C

⊤
h (u)du, where Ch(u) ∈ Rp

is a vector-valued function of u, specified by Ch(u) = (1/h)E{
−→
XI(Ỹ <
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4.3 COPES-SAVE

F−1(uh))}, for 0 ≤ u ≤ 1. Such a cumulative slicing estimation is in the

same spirit of Aghbalou et al. (2024) and Zhu et al. (2010). The following

lemma affirms that Σ−1span(Mh
eSIR) is a valid approximation of SeSIR.

Lemma 2. Under Assumption (A1), there exists a matrix MeSIR ∈ Rp×p

such that Mh
eSIR → MeSIR as h → 0. Moreover, Σ−1span(MeSIR) = SeSIR.

According to Lemma 2, as h converges to zero, the matrixΣ−1span(Mh
eSIR)

converges to SeSIR. Since Mh
eSIR is defined in a non-asymptotic manner, it

can be readily estimated from samples to approximate SeSIR. By consis-

tently estimating Σ and Mh
eSIR with a sufficiently small h, we can obtain

the accurate estimation of SeSIR.

Since the limit ν = limy→y+ E(
−→
X | Y > y) is unique, SeSIR captures

at most one direction, which is different from the classical SIR method

based on E(
−→
X|Y ). By varying Y over its range, classical SIR may detect

multiple directions. Therefore, for scenarios where multiple directions are

on demand, higher-order moments become imperative for a more exhaustive

search of dimension reduction directions.

4.3 COPES-SAVE

In this section, we introduce the COPES-SAVE method, using higher-order

moments to discover additional dimension reduction directions. The con-

struction of the extreme SAVE subspace SeSAVE, the working subspace for
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4.3 COPES-SAVE

COPES-SAVE, relies on the following convergence assumption:

(A2) There exists a positive semi-definite matrix T ∈ Rp×p such that T =

limy→y+ E(
−→
X
−→
X⊤ | Y > y).

While it might be tempting to directly follow the SAVE method and define

a naive extreme SAVE subspace as Σ−1span(T − Σ), its connection to

an EDR subspace of Y given
−→
X, span(β), requires the linearity condition

and the constant covariance condition. The constant covariance condition

assumes that Cov(
−→
X | Pβ

−→
X) is a deterministic matrix. However, these two

conditions essentially imply the normality for
−→
X (Ma & Zhu 2013), which

is inherently impossible for
−→
X distributed on the sphere.

In fact, the constant covariance condition is not structurally necessary

for constructing the extreme SAVE subspace; instead, the explicit form of

the covariance Cov(
−→
X | Pβ

−→
X) is crucial. Leveraging the properties of the

EC distribution and contour projection, Luo et al. (2009) established, in

the proof of their Lemma 3, that the conditional covariance Cov(
−→
X | Pβ

−→
X)

has an explicit form. The following lemma is a variant of this conclusion.

Lemma 3. Assume that X follows the EC distribution, then for any matrix

η ∈ Rp×d, we have Cov(
−→
X | η⊤−→X) = ζ(η⊤−→X)ΣQη(Σ), where ζ(η⊤−→X) =

∥Q⊤
η(Σ)

−→
X∥2Σ/(p− d).

Lemma 3 differs from the corresponding result in Luo et al. (2009)
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4.3 COPES-SAVE

in that X is not necessarily standardized in our setting. Define τβ =

limy→y+ E{ζ(β⊤−→X) | Y > y}. By rewriting ζ(β⊤−→X) = tr{Qβ(Σ)Σ
−1Q⊤

β(Σ)

−→
X
−→
X⊤}/(p−

d), it is easy to verify that under Assumption (A2), the limit τβ exists. We

define the extreme SAVE subspace in terms of span(β) as

SeSAVE = Σ−1span(T− τβΣ). (4.2)

The following theorem shows that SeSAVE is a subset of span(β).

Theorem 3. Let span(β) ⊆ Rp denote an EDR subspace of Y given
−→
X.

Under the EC distribution assumption of X and Assumption (A2), we have

SeSAVE ⊆ span(β). In special, for the extreme SAVE subspace defined in

terms of SY∞|X, we have SeSAVE ⊆ SY∞|X.

It is worth noting that the constant covariance condition is not re-

quired for Theorem 3. While the ultimate goal of proposing SeSAVE is

to approach span(β), the parameter τβ in (4.2) itself, however, contains

the target parameter β, making SeSAVE more like a recursive definition of

span(β). We realize that when dim(SeSAVE) < p, i.e., the matrix T− τβΣ

is rank-deficient, τβ must coincide with some eigenvalues of Σ−1/2TΣ−1/2.

If we further assume that dim(SeSAVE) < p/2, then more than half of eigen-

values of Σ−1/2TΣ−1/2 equal τβ. Consequently, the scalar parameter τβ can

be substituted by the median of the eigenvalues of Σ−1/2TΣ−1/2, providing

a computationally feasible parameterization of SeSAVE as follows.
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4.3 COPES-SAVE

Lemma 4. Assume that dim(SeSAVE) < p/2, then SeSAVE = Σ−1span(T−

τΣ) with τ = median{σ(Σ−1/2TΣ−1/2)}.

For the extreme SAVE subspace defined in terms of SY∞|X, the assump-

tion that dim(SeSAVE) < p/2 is essentially mild, implied by requiring that

dim(SY∞|X) < p/2. In the context of dimension reduction, we expect a low

dimension of the CES SY∞|X such that the dimensionality of predictors is

reduced to a low level for more efficient subsequent analysis.

Similar to COPES-SIR, we provide a non-asymptotic approximation of

SeSAVE for an easier estimation. For h ∈ (0, 1], define the kernel matrix

Mh
eSAVE =

∫ 1

0
Dh(u)D

⊤
h (u)du, where the matrix-valued function Dh(u) ∈

Rp×p is defined asDh(u) = Th(u)−median[σ{Σ−1/2Th(u)Σ
−1/2}]Σ, for 0 ≤

u ≤ 1, and Th(u) = (1/h)E[
−→
X
−→
X⊤I{Ỹ < F−1(uh)}]. When dim(SeSAVE) <

p/2, Σ−1span(Mh
eSAVE) provides a proper approximation of SeSAVE.

Lemma 5. Under Assumption (A2), there exists a matrix MeSAVE ∈ Rp×p

such that Mh
eSAVE → MeSAVE as h → 0. Further assume that dim(SeSAVE) <

p/2, then we have Σ−1span(MeSAVE) = SeSAVE.

COPES-SIR and COPES-SAVE bear similarities with TIREX1 and

TIREX2 methods which are proposed by Aghbalou et al. (2024), as both

are inspired by SIR and SAVE methods and introduce kernel matrices to

facilitate the estimation of working subspaces. However, their proposal
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assumes the existence of tail inverse moments limy→y+ E(X|Y > y) and

limy→y+ E(XX⊤|Y > y) and requires uniform integrability conditions con-

cerning the tail inverse moments of ∥X∥ and ∥X∥2. As clarified earlier, these

conditions are quite stringent even for common distributions. In contrast,

our approach relaxes these conditions by exploiting the contour-projected

predictors. While the contour projection approach avoids the stringent con-

ditions required by Aghbalou et al. (2024), it faces the new challenge not

encountered in their work, that is, the constant covariance condition is not

met for the contour-projected predictors. To address this challenge, we ex-

ploit the distributional characteristics of
−→
X and explicitly incorporate the

conditional variance Cov(
−→
X | Pβ

−→
X) in the construction of SeSAVE. These

aspects distinguish our methodology from that of Aghbalou et al. (2024).

4.4 COPES-DR

It is known in the literature that SIR and SAVE have acknowledged limi-

tations: SIR may fall short in identifying SDR directions when the model

exhibits a symmetric structure, and SAVE could be inefficient in capturing

the monotone trend, especially when the sample size is limited. In response

to these limitations, directional regression (DR) was introduced to integrate

the advantages of both SIR and SAVE. Li & Wang (2007) and subsequent

works have demonstrated the high effectiveness of DR across a broader
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range of models. Motivated by these findings, we extend the DR method-

ology to an extreme version, namely, COPES-DR, making our study more

comprehensive.

Let (
−→
X∗, Y ∗) be an independent copy of (

−→
X, Y ). Define the matrix

A = limy,y∗→y+ E{(
−→
X −

−→
X∗)(

−→
X −

−→
X∗)⊤ | Y > y, Y ∗ > y∗}, which is a

crucial component in the extreme DR subspace SeDR, the working subspace

of COPES-DR. The next lemma claims the existence of A.

Lemma 6. Under Assumptions (A1) & (A2), the matrix A exists.

Motivated by DR, a naive extreme DR subspace can be defined as

Σ−1span(A − 2Σ). However, the constant covariance condition is also re-

quired by DR, which is absent when we consider the contour-projected pre-

dictors
−→
X. Hence, analogous to COPES-SAVE, we define the extreme DR

subspace in terms of an EDR subspace of Y given
−→
X, span(β), as follows,

SeDR = Σ−1span(A− 2τβΣ). We connect SeDR and span(β) as follows.

Theorem 4. Let span(β) ⊆ Rp denote an EDR subspace of Y given
−→
X.

Under the EC distribution assumption of X and Assumptions (A1) & (A2),

we have SeDR ⊆ span(β). In special, for the extreme DR subspace defined

in terms of SY∞|X, we have SeDR ⊆ SY∞|X.

In defining SeDR, an issue similar to SeSAVE arises as the parameter τβ
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contains the target parameter β. To address this, we restrict the dimension

of SeDR, allowing for an estimable parameterization.

Lemma 7. Assume that dim(SeDR) < p/2− 1, then SeDR = Σ−1span(A−

2τΣ) with τ = median{σ(Σ−1/2TΣ−1/2)}, where T = limy→y+ E(
−→
X
−→
X⊤ |

Y > y).

The non-asymptotic approximation of SeDR is introduced in the follow-

ing. Let Ỹ ∗ = −Y ∗, for h ∈ (0, 1], define the kernel matrix Mh
eDR =∫ 1

0

∫ 1

0
Gh(u, u

∗)G⊤
h (u, u

∗)dudu∗, where Gh(u, u
∗) ∈ Rp×p is the matrix-

valued function of the pair (u, u∗) and is defined as

Gh(u, u
∗) =

1

h2
E
[
(
−→
X −

−→
X∗)(

−→
X −

−→
X∗)⊤I{Ỹ < F−1(uh)}I{Ỹ ⋆ < F−1(u∗h)}

]
− u∗ ·median{σ(Σ−1/2Th(u)Σ

−1/2)}Σ− u ·median[σ{Σ−1/2Th(u
∗)Σ−1/2}]Σ,

and Th(u) = (1/h)E[
−→
X
−→
X⊤I{Ỹ < F−1(uh)}]. The following lemma con-

firms the integrality of Σ−1span(Mh
eDR) as an approximation of SeDR.

Lemma 8. Under Assumptions (A1) & (A2), there exists a matrix MeDR ∈

Rp×p such that Mh
eDR → MeDR as h → 0. Further assume that dim(SeDR) <

p/2− 1, then we have Σ−1span(MeDR) = SeDR.

The kernel matrix Mh
eDR has a complicated form, and its estimation

demands intense computations. We alleviate the computational burden by

re-expressing Mh
eDR as Mh

eDR = 2
∑8

i=1Ki, where the expressions of Ki,

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0159



4.4 COPES-DR

i = 1, . . . , 8, are given in Section S1 of the Supplementary Material. It

can be seen that Mh
eDR is nothing special but the combinations of integrals

of Ch(u) and Dh(u), which are key components of Mh
eSIR and Mh

eSAVE,

respectively. Thus, the estimation of Mh
eDR is no harder than that of Mh

eSIR

and Mh
eSAVE. Once we obtain the empirical estimates of Ch(u) and Dh(u),

the estimation of Mh
eDR can be easily obtained.

We make some remarks on the exhaustiveness of the three working sub-

spaces, i.e., SeSIR, SeSAVE, and SeDR, where a working subspace S is called

exhaustive if S = SY∞|X, following the terminology in Li & Wang (2007).

According to Lemma 1, the CES SY∞|X is also an EDR subspace of Y and

−→
X. In Theorems 2–4, we have established that each working subspace covers

at least a portion of SY∞|X. When the dimension d∗ = dim(SY∞|X) = 1, the

three working subspaces are exhaustive if they are non-degenerate. How-

ever, when d∗ > 1, the dimension-deficient SeSIR is definitely not exhaustive

since it has at most one direction. For SeSAVE and SeDR, they still reflect

important information in the extreme regression if they are only subsets of

SY∞|X. In practice, the exhaustiveness assumption for SeSAVE and SeDR is

often mild. In real-world applications, it is often assumed that d∗ is small,

allowing SeSAVE and SeDR to potentially recover all directions. The exhaus-

tiveness is often assumed in SDR literature (Cook & Ni 2005, 2006, Li &
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Wang 2007) and commonly regarded as mild. In addition, the exhaustive-

ness of SeSAVE and SeDR has also been supported by our empirical find-

ings in Section S4.3 of the Supplementary Material, where COPES-SAVE

and COPES-DR provide the accurate dimension determination for CES.

To fix our focus, we assume throughout the paper that SeSAVE = SY∞|X

and SeDR = SY∞|X so that the working subspaces in COPES-SAVE and

COPES-DR reflect the complete information in SY∞|X.

Moreover, when the EC distribution assumption is violated, we are still

able to estimate working subspaces. In fact, the existence of the CES and

three working subspaces is independent of the EC distribution assumption.

Without the EC distribution assumption, we can still construct the contour-

projected predictors
−→
X = {X − E(X)}/∥X − E(X)∥Cov(X), given that the

first two moments ofX exist, and the approximation results in Lemmas 2, 5,

and 8 remain valid. The EC distribution is required only when one connects

working subspaces to the CES (cf. Lemma 1, Theorems 2, 3, and 4). In

Section S4.5 of the Supplementary Material, we also demonstrate through

empirical results that COPES methods remain high estimation accuracy

even when the EC distribution assumption is violated.

It is also possible to develop new methods based on other linearity-

condition-free SDR methods, if the linearity condition is a concern. For
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instance, non-parametric methods (e.g., Xia et al. 2002), semi-parametric

methods (e.g., Ma & Zhu 2012, Huang & Chiang 2017), and distance-based

methods (e.g., Sheng & Yin 2016) are free from the linearity condition. We

leave the development of these methods as a future direction.

5. Estimation and asymptotic theory

In this section, we present the estimators for three specific COPES meth-

ods, i.e., COPES-SIR, COPES-SAVE, and COPES-DR, along with a study

of their asymptotic properties. For the exhaustive COPES-SAVE and

COPES-DR, we develop their estimation and theoretical results given the

true d∗. When d∗ is unknown, we also provide an approach to determine it,

elaborated in Section 5.4.

Let (xi, yi), i = 1, . . . , n, denote i.i.d. samples. The first step in COPES

is to construct the contour-projected predictors, for which we need estima-

tors of the unknown µ and Σ. Once the corresponding estimators µ̂ and

Σ̂ are obtained, we construct the sample contour-projected predictors as

−→x i = (xi − µ̂)/∥xi − µ̂∥Σ̂, for i = 1, . . . , n. We adopt the
√
n-consistent

estimators for µ and Σ from Luo et al. (2009). The estimator µ̂ is the

element-wise median of samples xi, i = 1, . . . , n, and is
√
n-consistent. The

estimator Σ̂ is obtained from an iterative algorithm. It has been demon-

strated in Luo et al. (2009) that when xi follows an EC distribution, the
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5.1 Estimation of extreme SIR subspace

iterative algorithm is guaranteed to converge with probability one, leading

to a
√
n-consistent estimator Σ̂.

5.1 Estimation of extreme SIR subspace

In COPES-SIR, the kernel matrix Mh
eSIR is indexed by h. As we have shown

in Lemma 2, h is expected to converge to zero for the recovery of SeSIR. In

this section, in the context of n i.i.d. samples, we replace h with k/n, where

k denotes the actual number of samples used in the estimation. We choose

k = k(n) such that k → ∞ and k/n → 0 as n → ∞.

Let ỹi = −yi, i = 1, . . . , n. For the vector-valued function Ck/n(u), we

estimate it by Ĉk/n(u) = (1/k)
∑n

i=1
−→x iI{ỹi ≤ F̂−1(uk/n)}, where F̂ (t) is

the empirical cumulative distribution function computed from ỹi, defined

as F̂ (t) = n−1
∑n

i=1 I(ỹi ≤ t). The inverse of F̂ (t) is F̂−1(x) = inf{t :

F̂ (t) ≥ x} for 0 ≤ x ≤ 1. For simplicity, we assume that the responses

ỹi, i = 1, . . . , n, are all distinct. Let ỹ(i) denote the sorted responses for

ỹi, i = 1, . . . , n, such that ỹ(1) < ỹ(2) < · · · < ỹ(n), and let −→x (i) denote the

correspondingly sorted contour-projected predictors. Then, when u is in

((m − 1)/k,m/k], the estimator Ĉk/n(u) = Ĉk/n (m/k) = k−1
∑m

i=1
−→x (i),

for m = 1, . . . , k. Accordingly, the estimator for the kernel matrix M
k/n
eSIR is

M̂
k/n
eSIR =

∫ 1

0

Ĉk/n(u)Ĉ
⊤
k/n(u)du =

1

k

k∑
m=1

Ĉk/n (m/k) Ĉ⊤
k/n (m/k) .

Since dim(SeSIR) = 1, we estimate the basis of SeSIR by taking the leading
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left singular vector of Σ̂−1M̂
k/n
eSIR, that is, β̂

k/n
eSIR = SVD1(Σ̂

−1M̂
k/n
eSIR).

5.2 Estimations of extreme SAVE and DR subspaces

The estimations for SeSAVE and SeDR are conducted in a similar manner

as that for SeSIR. We begin by estimating the matrix-valued functions

Tk/n(u) and Dk/n(u) by T̂k/n(u) = (1/k)
∑n

i=1
−→x i

−→x ⊤
i I{ỹi ≤ F̂−1(uk/n)}

and D̂k/n(u) = T̂k/n(u)−median{σ(Σ̂−1/2T̂k/n(u)Σ̂
−1/2)}Σ̂. The function

T̂k/n(u) is constant with respect to u on ((m−1)/k,m/k], for m = 1, . . . , k,

given by T̂k/n(u) = T̂k/n (m/k) = k−1
∑m

i=1
−→x (i)

−→x ⊤
(i). The function D̂k/n(u)

is also constant within ((m − 1)/k,m/k], for m = 1, . . . , k. Subsequently,

we define the estimator for the kernel matrix M
k/n
eSAVE as

M̂
k/n
eSAVE =

∫ 1

0

D̂k/n(u)D̂
⊤
k/n(u)du =

1

k

k∑
m=1

D̂k/n

(m
k

)
D̂⊤

k/n

(m
k

)
.

Given the oracle knowledge of the dimension d∗, we estimate the basis

of SeSAVE by taking the leading d∗ left singular vectors of Σ̂−1M̂
k/n
eSAVE as

β̂
k/n
eSAVE = SVDd∗(Σ̂

−1M̂
k/n
eSAVE).

Next, we estimate the kernel matrix M
k/n
eDR. As outlined in Section 4.4,

M
k/n
eDR can be re-expressed as the sum of different integrals of Ck/n(u) and

Dk/n(u). Then we estimate M
k/n
eDR by M̂

k/n
eDR = 2

∑8
i=1 K̂

k/n
i , where each

component K̂
k/n
i , i = 1, . . . , 8, is obtained by substituting Ck/n(u) and

Dk/n(u) with the corresponding sample estimators. The specific formula

for K̂
k/n
i can be found in Section S1 of the Supplementary Material. With

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0159



5.3 Asymptotic theory

the known d∗, the basis of SeDR is estimated by β̂
k/n
eDR = SVDd∗(Σ̂

−1M̂
k/n
eDR).

5.3 Asymptotic theory

In this section, we investigate the asymptotic property of the estimated ker-

nel matrix M̂
k/n
eDR and the estimated extreme DR subspace span(β̂

k/n
eDR). The

asymptotic theory for COPES-SIR and COPES-SAVE is similar to that for

COPES-DR and is gathered in Section S3 of the Supplementary Material.

Before presenting our asymptotic result, we introduce the following techni-

cal assumption to ensure the
√
n-consistency of Σ̂.

(A3) Assume that ∥X∥2 has a continuous distribution with probability den-

sity f(·). Further assume that there exist some constants α > 1 and

Cα > 0 such that t−αf(t) → Cα as t → 0.

This assumption is quite mild and satisfied by many EC distributions, in-

cluding multivariate normal and multivariate t distributions. We now derive

the asymptotic property for the estimated kernel matrix and the corre-

sponding estimated working subspace.

Theorem 5. Assume that X follows an EC distribution and Assump-

tions (A1)–(A3) hold. Moreover, assume that Cov(
−→
X|Y > y) and Cov{vec(

−→
X
−→
X⊤)|Y >

y} converge as y → y+, where vec(·) is the vectorization operator concate-

nating all columns of a matrix. As n → ∞, we have (i) ∥M̂k/n
eDR−M

k/n
eDR∥F =

OP (k
−1/2); (ii) ∥M̂k/n

eDR −MeDR∥F = oP (1). Moreover, under the additional
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assumption that dim(SeDR) < p/2− 1, we have (iii) ∥P
β̂
k/n
eDR

−PSY∞|X∥F =

oP (1) as n → ∞.

The statement (i) in Theorems 5 suggests that the difference between

the estimated kernel matrix M̂
k/n
eDR and its population counterpart M

k/n
eDR is

√
k-consistent. By statement (ii), the estimated kernel matrix is a consistent

estimator for the limit matrix MeDR. We have also shown in statement (iii)

that the estimated subspace span(β̂
k/n
eDR) is consistent estimator for SeDR.

However, claiming specific convergence rates for ∥M̂k/n
eDR − MeDR∥F and

∥P
β̂
k/n
eDR

− PSY∞|X∥F requires additional assumptions on the convergence of

M
k/n
eDR. To understand this more clearly, note that ∥M̂k/n

eDR − MeDR∥F ≤

∥M̂k/n
eDR − M

k/n
eDR∥F + ∥Mk/n

eDR − MeDR∥F . Thus, the convergence rate of

∥M̂k/n
eDR−MeDR∥F is determined by ∥M̂k/n

eDR−M
k/n
eDR∥F and ∥Mk/n

eDR−MeDR∥F .

In Section S3 of the Supplementary Material, we show that M̂
k/n
eDR and

span(β̂
k/n
eDR) exhibit

√
k-consistency in estimating MeDR and SY∞|X under

additional convergence assumptions.

5.4 Determination of structural dimension

We provide a dimension determination approach by exploiting the spectral

structures of the kernel matrices in SeSAVE and SeDR, which recover SY∞|X

exhaustively. We take SeDR as an example. Recall that under the method-

specific assumptions, By Lemma 8, SeDR = Σ−1span(MeDR), then d∗ =
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max{i | σi(MeDR) > 0}.

For some constant ε > 0, we define the adjusted ratio of the consecutive

singular values of MeDR as

ri = {σi(MeDR) + ε}/{σi+1(MeDR) + ε}, i = 1, . . . , ⌊p/2⌋ − 1,

where ⌊a⌋ denotes the largest integer less or equal to a. By taking suffi-

ciently small ε, we have d∗ = argmaxi {ri}. Intuitively, we estimate d∗ by

d̂ = argmaxi {r̂i}, where

r̂i := {σi(M̂
k/n
eDR) + ε}/{σi+1(M̂

k/n
eDR) + ε}, i = 1, . . . , ⌊p/2⌋ − 1.

The following result shows that d̂ is a consistent estimator for d∗.

Lemma 9. Assume the same assumptions as in Theorem 5 and d∗ < p/2−

1. By taking the constant ε > 0 such that ε{σ1(MeDR) − 2σd∗(MeDR)} <

σ2
d∗(MeDR), we have d̂ → d∗ in probability as n → ∞.

The dimension determination based on SeSAVE is similar to that based

on SeDR. As supported by our empirical findings in Section S4.3 of the

Supplementary Material, our proposed dimension determination procedure

consistently estimates the structural dimension, especially when sample size

n is large.

6. Simulation studies

We generate the predictors X = (X1, . . . , Xp)
⊤ from the multivariate t

distribution and set p = 10. Specifically, we construct X = W/
√

u/ν,
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where W ∼ N(0, Ip), u ∼ χ2
ν , and u is independent of W. We consider

degrees of freedom ν = 2, 3, 5, and ∞, representing different magnitudes of

heavy-tailedness. Specifically, X reduces to the multivariate normal random

vector when ν = ∞. Let ξ1 and ξ2 be two random variables following the

Pareto distribution such that P (ξ1 > t) = (1 + t)−1 and P (ξ2 > t) =

(1 + t)−2, for t ≥ 0. Assume that the random elements {X, ξ1, ξ2} are

mutually independent.

Let B denote a Bernoulli random variable with a success probability of

0.5, independent of {X, ξ1, ξ2}. Let U denote a uniform random variable

supported on [0, 1], independent of X. Additionally, let Fξi denote the

cumulative distribution function for the variable ξi, i = 1, 2. We consider

four different models, described in the following.

(Model A) Y = Bξ1 sin(X1/2) + (1−B)ξ2 sin(X2/2).

(Model B) Y = Bξ1{4X1+(X2+0.25)2}+(1−B)ξ2/{(X3+0.25)2+0.25}.
(Model C) Y = F−1

ξ1
(U) {cos(X1 + π/4) + I (U ≤ 0.95) cos(X2 + π/4)}.

(Model D) Y = F−1
ξ1

(U) sin(X1)/{(X2+0.25)2+0.25}+I (U ≤ 0.95)F−1
ξ2

(U) sin(X3).

In Models A and C, we have SY∞|X = span(e1) and d∗ = 1, and in Mod-

els B and D, we have SY∞|X = span(e1, e2) and d∗ = 2. In each model, we

generate i.i.d. samples (yi,xi), i = 1, . . . , n, where n = 5000. We compare

our three COPES methods, COPES-SIR, COPES-SAVE, and COPES-DR,

with two other extreme dimension reduction approaches, namely, TIREX1
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and TIREX2. In this section, we assume that the dimension d∗ is given.

Note that in Models B and D, TIREX1 and COPES-SIR can only estimate

one direction. Despite this limitation, we include these two methods in the

comparison under Models B and D for demonstration purposes. Addition-

ally, we estimate the rank-d∗ subspace for TIREX2.

We measure the subspace estimation error via the subspace distance.

Given two basis matrices β̂,β ∈ Rp×d, the subspace distance between

span(β̂) and span(β) is defined as D(β̂,β) = ∥Pβ̂ − Pβ∥2F/(2d). Simi-

lar definition of subspace distance is adopted in SDR literature (Tan et al.

2020, Zeng et al. 2024). We report the mean squared error (MSE) of the

subspace estimation for each method over 200 data replicates.

In Figure 1, we present the MSE results versus k for Model B with dif-

ferent ν’s. The results under other models are displayed in Section S4.2 of

the Supplementary Material. In general, the curve of COPES decreases as k

increases up to some point, and then it starts to increase. This phenomenon

is commonly observed in extreme value analysis. When k is small, the used

samples reflect the extreme nature more accurately, resulting in low bias

but high variance in the estimation. With larger k, since more samples are

exploited, the estimation variance is then reduced. However, this poten-

tially introduces bias, which gradually becomes the dominant term in the
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Figure 1: MSEs for different competitors under various ν’s under Model B.

estimation error. Across all models, when X exhibits heavy-tailedness, i.e.,

when ν is small, TIREX1 and TIREX2 are inferior to our proposal. As ν

increases from 2 to ∞, the estimation of COPES is relatively stable. In

comparison, TIREX1 and TIREX2 are sensitive to the tails. When ν = ∞,

TIREX1 and TIRES2 perform similarly to COPES-SIR and COPES-SAVE,

respectively. In this sense, our COPES methods are more robust against

heavy-tailedness. In Models B and D, where d∗ = 2, since COPES-SIR and

TIREX1 only estimate one direction, perform the worst in all situations.

We observe that our COPES methods partly inherit the characteristics

of their counterparts in SDR; more detailed discussion is provided in Sec-

tion S4.1 of the Supplementary Material. In addition, the accuracy of our
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dimension determination procedure and the robustness of COPES against

the violation of the EC distribution assumption are supported by the em-

pirical results in Sections S4.3 and S4.5.

7. Application

In this section, we demonstrate the effectiveness of our methodology using

an example from the Chinese stock market. The dataset contains account-

ing information for Chinese stock market firms from 1997 to 2000, previ-

ously studied by Luo et al. (2009) and Wang & Tsai (2009). The data

set comprises 2951 observations, where the original response variable Y0

represents the next year’s return on equity (ROEt) of the firm. To be con-

sistent with notations in our theory, let Y = −Y0, meaning the loss of the

firm in the next year. The predictors X ∈ R6 are current year accounting

variables, including return on equity (ROE), log-transformed total assets

(ASSET), profit margin ratio (PM), sales growth rate (GROWTH), lever-

age level (LEV), and asset turnover ratio (ATO). Our focus lies in the right

tail of the response, denoted by Y |(Y > y0), where y0 is selected as the 90%

quantile of Y .

In this study, we compare our proposed methods, COPES-SIR, COPES-

SAVE, and COPES-DR, with TIREX1 and TIREX2. Additionally, we in-

clude robust SDR methods, CP-SIR, CP-SAVE, and CP-DR, proposed by
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Luo et al. (2009), into comparison. First, we reduce the dimension of X

by projecting it onto the estimated subspace from each competitor. Subse-

quently, we employ the K-nearest neighbor (KNN) algorithm with K = 10

to predict the event {Y > y0} using the reduced predictors, and we measure

the performance using the AUC score as the evaluation metric. Addition-

ally, to verify the effectiveness of dimension reduction, we implement the

classification without dimension reduction (WODR).

The dataset is randomly split into a training set and a testing set at a

ratio of 75/25 for 100 replicates. For COPES methods and TIREX meth-

ods, the parameter k is selected via five-fold cross-validation on the training

set. The optimal k is determined as the one that yields the highest averaged

AUC score across all five folds. Using the selected optimal k, each com-

petitor is evaluated on the independent test set through the AUC score.

Notably, when d∗ = 1, all methods exhibit poor performance. Thus, we set

d∗ = 2 for all competitors. Since COPES-SIR and TIREX1 can at most

recover one direction, we omit their results. The averaged AUC scores and

standard deviations for the competitors are presented in Table 1.

From Table 1, it is evident that all the dimension reduction methods

exhibit higher AUC scores than WODR, indicating that proper dimension

reduction improves classification. Moreover, COPES methods outperform
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Table 1: Averaged AUC scores (and standard errors) on Chinese stock

market data by using the KNN and AdaBoost algorithms.

Classifier COPES-SAVE COPES-DR TIREX2 WODR CP-SIR CP-SAVE CP-DR

KNN 0.737 (0.003) 0.721 (0.003) 0.637 (0.007) 0.687 (0.004) 0.727 (0.003) 0.716(0.003) 0.716 (0.003)

AdaBoost 0.774 (0.002) 0.757 (0.003) 0.639 (0.008) 0.757 (0.004) 0.762 (0.003) 0.757(0.003) 0.756 (0.004)

Table 2: The estimated directions from COPES-SAVE on Chinese stock

market data.

ROE ASSET PM GROWTH LEV ATO

β̂1 -0.980 0.001 0.130 -0.029 0.110 0.093

β̂2 -0.088 0.130 0.250 0.137 -0.288 0.901

SDR methods, with COPES-SAVE achieving the highest AUC score. This

suggests that SDR is less efficient on this dataset since the central subspace

might contain redundant information irrelevant to the inference of the con-

ditional extremes of Y | X. In addition, by replacing the KNN with the

AdaBoost in classification, our proposal still performs the best as indicated

by the second row of Table 1.

In Table 2, we present the two directions, β̂1 and β̂2, estimated by

COPES-SAVE on the original dataset. It can be seen that ROE and ATO

have relatively larger absolute coefficients and contribute the most to the

association with the firm’s tail risk. The results in Luo et al. (2009) suggest

that ROE, PM, and ATO are the most important variables in SDR. This
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interesting finding implies that PM is possibly a redundant variable for

inferring the extremely high values of the response. Moreover, we observed

the heavy-tailedness of ROE and ATO, which partly explains the advantage

of our robust COPES methods over the non-robust TIREX methods.

Visualization is another intriguing feature of COPES. We display the

scatter plot of the reduced predictors β̂⊤
1 X and β̂⊤

2 X from COPES-SAVE

in Figure S11 of the Supplementary Material. The distribution pattern

of the two classes is well observed. It can be seen that most of the tail

observations are located in the right-upper part of the plots.

Supplementary Material

The Supplementary Material includes additional discussions, theories, nu-

merical results, and technical proofs.
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