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1. Introduction

Ranking problems are widely studied in various disciplines, including information

retrieval (Cambazoglu et al., 2010), computational biology (Duh and Kirchhoff,

2008), recommender systems (Lv et al., 2011), and sports games (Bong et al.,

2020), among others. These problems have garnered considerable attention and

have been extensively explored across different fields (Wang et al., 2013; Chen

et al., 2019; Liu et al., 2023). The Bradley-Terry (BT) model (Bradley and Terry,

1952) is one of the most widely acclaimed statistical ranking models.

Though there have been tremendous studies on the BT model, such as Simons

and Yao (1999); Hunter (2004); Huang et al. (2006); Yan et al. (2012); Han et al.

(2020); Gao et al. (2023), most of them focus on the static case. However, in real-

ity, data is often collected with timestamps, and it is more reasonable to assume

that audience preferences for movies change over time, as well as the potential

ability of a basketball team is time-varying. Some studies on the dynamic BT

model have been conducted from the Bayesian perspective (Glickman, 1999, 2001;

Maystre et al., 2019), while McHale and Morton (2011); Bong et al. (2020) employ

the maximum likelihood approach. When involved in large-scale dynamic calcu-

lations, a spectral method called rank centrality demonstrates better performance

(Negahban et al., 2017; Tian et al., 2024). Different from all these papers focus-

ing on score estimation, this paper addresses some critical test problems, which
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remain unexplored in the existing literature. Additionally, this paper introduces

novel theoretical findings that reveal the properties of functional estimations, which

play crucial roles in dynamic inferences.

When generalizing the static BT model to its dynamic version, a primary con-

cern is to determine if there is sufficient evidence indicating that the latent abilities

of the model truly vary over time. The more precise dynamic BT model comes

at the expense of a slower convergence rate, as detailed in Section 3. Therefore,

it would be beneficial to identify items with equal latent abilities since concating

their comparison results allows for more efficient use of information. We address

these two concerns by discussing several hypothesis test problems. Another in-

teresting inferential problem relates to ranking properties, which have received

limited attention in the existing literature. Unlike classical parameters, ranks are

discrete transformations of individual ability comparisons, making their inference

a novel and distinct combinatorial problem. Liu et al. (2023) first introduce an

inferential framework for ranking problems in the static case, and it is extended

to the static Plackett-Luce model (Fan et al., 2025). Mogstad et al. (2023) con-

struct confidence sets for static ranks, and Bazylik et al. (2024) apply the methods

to rank journals and universities. However, in a dynamic situation, estimations

of individual abilities are stochastic processes, giving rise to a different and in-

triguing problem. In this work, we establish an inferential framework for dynamic
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scenarios. Furthermore, different from all the existing work based on an absolute

form perturbation term, we introduce a novel signed statistic, effectively addressing

the conservatism issue. To the best of our knowledge, we are the first to present

the confidence band of dynamic rank and provide the general test scheme for dy-

namic ranking properties. It is important to note that ranks are discontinuous

and complicated functions of eigenvectors in spectral methods, as illustrated in

Section 4. As highlighted in Chen et al. (2019), generating confidence regions for

deterministic functions of eigenvectors in the spectral method remains an open

and challenging problem. We partially address this problem by providing a novel

solution to perform efficient statistical inference for a specific class of complicated

functions involving eigenvalues.

The rest of the paper is organized as follows. In Section 2, we introduce the

dynamic BT model. Section 3 focuses on the tests for variation and equality of

score functions. The confidence band of rank and general ranking property test

schemes are presented in Section 4. Section 5 and 6 include simulation results and

practical applications, followed by concluding remarks in Section 7. Additional

simulations and proofs are deferred to the supplementary material.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0153



2. Dynamic BT Model

In this section, we introduce the dynamic BT model and review the estimation

algorithm to facilitate further discussions.

Suppose there are n items for comparison. We normalize the time interval

to [0, 1] without loss of generality. The dynamic BT model assumes a latent score

vector π∗(t) =
(
π∗
1(t), π

∗
2(t), . . . , π

∗
n(t)

)⊤
for items. In general, π∗(t) is unobservable

and represents qualities of goods, abilities of sports teams, or other factors that

determine the comparison outcomes and are specific to the application domain.

When π∗(t) is constant, the model reduces to the static case. For each pair (i, j) ∈

E , assume the observations take place in the time set Tij. Set Mij = #|Tij|. We use

y :=
{
yij(t) | (i, j) ∈ E , i ̸= j, t ∈ Tij

}
to denote the comparison results, which are

independent random variables following the Bernoulli distribution. Specifically,

the comparison yij(t) ∼ Bernoulli(y∗ij(t)), where y∗ij(t) =
π∗
j (t)

π∗
i (t)+π∗

j (t)
. We have

yij(t) = 1 represent that item j wins, and yij(t) = 0 indicates that item i wins.

Let [n] represent {1, 2, . . . , n} and y∗ :=
{
y∗ij(t) | i, j ∈ [n], i ̸= j, t ∈ [0, 1]

}
. Since

y∗(t) remain unchanged with π∗(t) multiplying a nonzero constant, we assume∑n
i=1 π

∗
i (t) = 1 for identifiability. To model the compared pairs, we introduce the

comparison graph G = (E ,V). Items i and j are compared if and only if (i, j)

belongs to the edge set E . We let G be an Erdős-Rényi (ER) graph Gn,p, which

consists of n vertices and each edge appears independently with probability p. Let
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M = min(i,j)∈E Mij.

We establish our test methods on a spectral method called Rank Centrality

(RC) (Negahban et al., 2017), which builds a connection between the latent scores

π∗(t) and the stationary probability of a random walk on the comparison graph.

RC has garnered attention due to its intuitive interpretation, simplified solution

form, and faster computation speed. Further, the Kernel Rank Centrality (KRC)

method incorporates a kernel function into the transition probability matrix to

accommodate the dynamic case (Tian et al., 2024). Specifically, let K(·) be the

kernel function and h be the bandwidth, and define Kh(t, s) = 1
h
K

(
t−s
h

)
. The

estimation algorithm consists of two main steps. First, we estimate the stochastic

transition matrix P (t) =
(
Pij(t)

)
i,j∈[n]

.

Pij(t) =



1
2np

∑
tk∈Tij

yij(tk)Kh(t,tk)∑
tk∈Tij

Kh(t,tk)
if (i, j) ∈ E ,

1−
∑

s̸=i Pis(t) if i = j,

0 otherwise.

Then we compute the stationary distribution π̂(t) of the Markov chain defined by

P (t), i.e., π̂(t)⊤ = π̂(t)⊤P (t). The following assumptions are required to ensure

the theoretical properties of the estimations.

Assumption (A)

(A1). supt∈[0,1]
maxi π

∗
i (t)

mini π∗
i (t)

≤ κ, where κ > 0 is a constant. y∗ij(t) is three times
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continuously differentiable.

(A2). The kernel function is symmetric, nonnegative, and satisfies
∫∞
−∞ K(v) dv = 1

and
∫∞
−∞ v2K(v) dv < ∞.

(A3). There exists a constant κ1 > 0, such that
max(i,j)∈E Mij

min(i,j)∈E Mij
≤ κ1.

(A4). K(|x|) = O( 1
|x|ς ) for some ς > 0.

Assumptions (A1)-(A3) are commonly used in BT model estimation and kernel

methods (Gao et al., 2023; Liu et al., 2023; Tian et al., 2024). Most commonly

used kernel functions satisfy assumption (A4).

3. Tests on Score Functions

With the increasing amount of data collected with timestamps and the growing

interest in dynamic situations, selecting the appropriate estimation model becomes

a fundamental challenge to ensure accurate and efficient results. In this section,

we address this problem by presenting the variation and equality tests.

3.1 Test of the Variation of Score Functions

When dealing with time-dependent observed pairwise comparison results, it is cru-

cial to choose between the static and dynamic models. Opting for the dynamic

method in every case may result in reduced estimation accuracy due to the under-

utilization of available information. Specifically, the estimation convergence rate
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3.1 Test of the Variation of Score Functions

for the static case ∥π− π∗∥∞/∥π∗∥∞ is Op

(√
logn
npM

)
(Chen et al., 2019; Gao et al.,

2023), whereas the convergence rate for the dynamic case is Op

(√
logn
npMh

)
(see The-

orem 3). On the other hand, misusing the static method can also be detrimental

as it can lead to imprecise estimation of the score function, subsequently affecting

further inference. We focus on the following hypothesis test for i ∈ [n].

Ha
i0 : π

∗
i (t) is a constant for t in [0, 1]; Ha

i1 : π
∗
i (t) is not a constant for t in [0, 1].

Define the scaling factor αi(t) =

√
h{

∑
j:(i,j)∈E y∗ij(t)}2∫

K2(v)dv π∗
i (t)

∑
j:(i,j)∈E

π∗
j
(t)

Mij

. Let α̂i(t) be the

sample version of αi(t) with π̂(t) plugged in. We construct the test statistic

Tai =

∑
t∈S [α̂i(t){π̂i(t)− 1

m

∑
s∈S π̂i(s)}]2 −m

√
2m

,

where set S is constructed by equidistant time points spanning from 0 to 1 and

m is the cardinality of S. We reject Ha
i0 if Tai > z1−α, where z1−α is the (1 − α)-

th quantile of standard normal distribution. The test procedure is based on the

following theorem. We first present a lemma analyzing the main term. For notation

simplicity, we set βn = min{
√

npMh2, 1√
npMh5

,
√
n

logn
, 1

h
2ς

1+2ς
}.

Lemma 1. Let Assumptions (A1)-(A4) hold. If np > c log n for some sufficiently

large c, nMh5 = o(1), logn
Mh

= o(1) and m = o(βn), then we have∑
t∈S [αi(t){π̂i(t)− π∗

i (t)}]2 −m
√
2m

D−→ N(0, 1)

as n → ∞.
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3.1 Test of the Variation of Score Functions

Based on Lemma 1, we have the following theorem, validating our test proce-

dure.

Theorem 1. Under the conditions of Lemma 1, we have

Tai
D−→ N(0, 1)

as n → ∞ under Ha
i0, and we have

P (Tai > z1−α) → 1

as n,m → ∞ under Ha
i1.

Remark 1. To differentiate the dynamic scores, we construct the test statistic

Tai, whose main component is
∑

t∈S [α̂i(t){π̂i(t) − 1
m

∑
s∈S π̂i(s)}]2. Under Ha

i0, as

shown in Theorem 1, the leading term is
∑

t∈S [αi(t){π̂i(t) − π∗
i (t)}]2 . However,

we note that it is not feasible to directly deduce the asymptotic distribution of

this summation due to the high correlation among the m terms, which arises from

kernel smoothing. Utilizing a precise expansion detailed in Section S2.1 of the

supplementary material, we reformulate the leading term as a quadratic form in-

volving
∑

j:(i,j)∈E Mji independent variables. By carefully controlling the growth of

m, we establish the asymptotic distribution utilizing results from de Jong (1987).

Remark 2. The first part of Theorem 1 is valid for both finite m and divergent m,

where the divergence speed is governed by βn. For the second part of Theorem 1,

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0153



3.1 Test of the Variation of Score Functions

a divergent m is necessary to adequately capture the behavior of π̂i across the

entire time interval, ensuring the test’s consistency. Consequently, the divergence

of βn is required. Specifically, the condition m → ∞ implies that npMh2 → ∞.

This ensures that βn → ∞ combining the conditions of Theorem 1. The choice of

m is dependent on βn. For example, if M ≍ np, h ≍ (np)−1/2 and ς ≥ 1
2
, then

m = o((np)1/4) satisfies the condition of the theorem, where a ≍ b denotes that

a = O(b) and b = O(a).

Then we consider the multiple hypothesis testing problem. Let K be a finite

subset of [n] with #K = k. We aim to simultaneously test the following hypotheses:

H ã
i0 : π

∗
i (t) is a constant for t in [0, 1]; H ã

i1 : π
∗
i (t) is not a constant for t in [0, 1], i ∈ K.

We provide the test procedure as follows utilizing the Benjamini-Yekutieli proce-

dure (Benjamini and Yekutieli, 2001).

1. Calculate the p-values pi = P (z > Tai) for i ∈ K, where z follows the standard

normal distribution.

2. Order the observed p-values as p(1) ≤ p(2) ≤ . . . ≤ p(k). Define s = max{i :

p(i) ≤ i
k

α∑k
i=1 1/i

} and reject hypotheses H ã
(1)0, H

ã
(2)0, . . . , H

ã
(s)0. If no such i exists,

no hypotheses are rejected.

Given the number of true null hypotheses k0, the above procedure controls the

false discovery rate (FDR) at level k0α/k (Benjamini and Yekutieli, 2001).
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3.1 Test of the Variation of Score Functions

Remark 3. Extending the results of Theorem 1 to diverging n is challenging.

Given the assumption
∑n

i=1 π
∗
i (t) = 1, we consider the straightforward summation

of n−1 items, [
∑n−1

i=1

∑
t∈S{α̂i(t)(π̂i(t)− 1

m

∑
s∈S π̂i(s))}2−m(n−1)]/

√
2m(n− 1).

With both m and n diverging, stringent conditions are required to ensure the test’s

validity. Specifically, following the proof of Theorem 1, we decompose the test

statistic as follows:∑n−1
i=1

∑
t∈S [α̂i(t){π̂i(t)− π∗

i (t)}]2 −m(n− 1)√
2m(n− 1)

+

∑n−1
i=1

∑
t∈S α

2
i (t){2π̂i(t)− π∗

i (t)− 1
m

∑
s∈S π̂i(s)}{π∗

i (t)− 1
m

∑
s∈S π̂i(s)}√

2m(n− 1)
.

Intuitively, the first term approaches a normal distribution, while the second term

converges to

√
m

2(n− 1)

n−1∑
i=1

∫ 1

0

α2
i (t)

{
π∗
i (t)−

∫ 1

0

π∗
i (s)ds

}2

dt

asm,n → ∞. Letting nd represent the number of dynamic items, the above term is

of order O(
√
mnndpMh). If nd is a constant, m needs to be sufficiently large such

that
√
mnpMh → ∞ to maintain the test’s validity. This condition is stringent, as

the growth rate of m is constrained by βn to control the correlation among different

t induced by kernel smoothing.

Remark 4. Given the test results of the BY procedure, identifying even a single

dynamic π∗(t) provides valuable insight into the necessity of dynamic ranking. To
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3.2 Test of the Equality of Two Score Functions

further make statistical inferences, we recommend allowing h to vary across pairs.

A natural approach is to assign larger h to pairs involving items with higher p-

values, enabling more efficient utilization of the available information. However,

determining the optimal h for different pairs is a challenging problem, which we

leave for future work.

3.2 Test of the Equality of Two Score Functions

For two items, a primary concern is whether they essentially have the same ability

score, which is difficult to determine directly from the complex dynamic pairwise

comparison results. On the other hand, compared to the static estimation method,

the dynamic method utilizes less information at a fixed time point. Specifically, if

we choose the Epanechnikov kernel function, for instance, 2Mh nearby observation

results are used on average for each point. The bandwidth h is typically smaller

than 0.5, resulting in a slower convergence rate for the dynamic case, as mentioned

in Section 3.1. If there is additional information indicating that the score functions

of several items are identical, the related observation results can be combined for

more accurate estimation. Therefore, we consider the score equality test for two

items i and j:

Hb
0 : ∀t, π∗

i (t) = π∗
j (t); H

b
1 : ∃t0, π∗

i (t0) ̸= π∗
j (t0).
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Enlightened by the results in the preceding part, we define the test statistic as

Tb =

∑
t∈S [

1√
2
α̂i(t){π̂i(t)− π̂j(t)}]2 −m

√
2m

.

Recall that we define the scaling factor αi(t) =

√
h{

∑
j:(i,j)∈E y∗ij(t)}2∫

K2(v)dv π∗
i (t)

∑
j:(i,j)∈E

π∗
j
(t)

Mij

in Sec-

tion 3.1 and let α̂i(t) be the sample version of αi(t), obtained by substituting π̂(t)

for π∗(t). We then deduce the asymptotic distribution of Tb and present the test

procedure.

Theorem 2. Under the conditions of Lemma 1, we have

Tb
D−→ N(0, 1)

as n → ∞ under Hb
0, and we have

P (Tb > z1−α) → 1

as n,m → ∞ under Hb
1.

Based on Theorem 2, we reject the null hypothesis if Tb > z1−α. We calculate

the p-value pb = P (z > Tb), where z follows the standard normal distribution.

4. Inference of Dynamic Ranking Properties

The ranking problem has received significant attention across diverse fields. In

current practical applications, it is common to directly display rank outcomes ob-

tained through estimations of latent abilities. However, the absence of uncertainty
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quantification in these estimations and predictions raises doubts about their relia-

bility. To address this limitation, it becomes crucial to develop tools for tackling

inference questions, such as ascertaining the probability of a stock ranking first at

0.9 or 0.6. Should the latter probability prove accurate, investors would be bet-

ter served by allocating their resources toward diversified portfolios. Additionally,

simply stating that player i is ranked higher than player j without providing a

confidence level diminishes practical informativeness. Our objective is to address

these uncertainty problems head-on and provide effective solutions.

Within this section, we focus on the ranking of items. We recognize that the

relative value of latent abilities serves as the determining factor for rank positions.

Leveraging this insight, our approach begins by approximating the distribution of

a supremum of score difference error and deducing the confidence band of rank.

Subsequently, we present a comprehensive test scheme that addresses the general

ranking property in dynamic settings. This scheme is versatile and can be adapted

to various test problems. We provide rigorous theoretical guarantees for the infer-

ence process. However, it is worth noting that while the inferential error can be

controlled theoretically, the use of a supreme type statistic often results in conser-

vatism, leading to wider confidence intervals and potentially lower test power. To

mitigate this issue, we delve deeper into the relationship between scores and ranks

and propose a novel perturbation statistic, which yields a more practical inference
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method.

Differing from the inference in the static case, the elements of π̂(t) are stochas-

tic processes. Therefore, a certain degree of uniformity in π̂(t) is necessary for

deducing the rank property within an interval. Before presenting the test frame-

work, we establish a uniform error bound for π̂, which plays a fundamental role

in the subsequent deduction and is meaningful in itself. We need the following

assumption on the smoothness of y∗.

Assumption (A5). There exist constants c1, c2, such that supt maxi,j |ẏ∗ij(t)| ≤ c1

and suptmaxi,j |ÿ∗ij(t)| ≤ c2, where ẏ∗ij(t) and ÿ∗ij(t) represent the first and second

order derivatives respectively.

Theorem 3. Let Assumptions (A1)-(A3) and (A5) hold. If np > c log n for some

sufficiently large c, nMh5 = o(1), then there exists constant c3, such that

P (sup
t

∥π̂(t)− π∗(t)∥∞ ≤ c3

√
log n

n3pMh
) → 1 (4.1)

as n,Mh → ∞.

Remark 5. From Theorem 3, we can obtain the convergence rate that supt ∥π̂(t)−

π∗(t)∥∞/ supt ∥π∗(t)∥∞ = Op(
√

logn
npMh

). By employing a truncation kernel such as

the Epanechnikov kernel with bandwidth h, the effective number of observations

used for estimation at a single time point is 2Mh. Our result aligns with the optimal

rate Op(
√

logn
npL

) for the static case (Theorem 3 in Chen et al. (2019)), where L is the
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4.1 Confidence Band of Rank

number of comparisons for each pair. For the dynamic case, our rate is consistent

with Op(
√

logn
np(t)L

) (Theorem 7 in Karlé and Tyagi (2023)), where L is the number

of comparisons at each time point in the comparison set { i
T
| i = 0, . . . , T} and p(t)

is the probability of comparing items at time t.

4.1 Confidence Band of Rank

Suppose r∗i (t) represents the rank position of item i, where r∗i (t) < r∗j (t) if π
∗
i (t) <

π∗
j (t). The definition of r∗i is flexible, allowing for the possibility that the rank of

item i is not unique. Specifically, r∗i (t) can be any value within the range rr∗i (t) =

[ri(t), r̄i(t)], where ri(t) = 1+
∑

j∈[n] 1{π∗
j (t) > π∗

i (t)}, r̄i(t) = n−
∑

j∈[n] 1{π∗
j (t) <

π∗
i (t)} represent the smallest and largest possible ranks of item i, respectively. If

item i is not tied with any other item at t, then ri(t) = r̄i(t) and the rank is unique.

Conversely, if item i is tied with at least one other item, then ri(t) < r̄i(t).

Since rank is a global attribute, it is necessary to take into account all the

other latent scores, rather than focusing solely on π∗
i . To establish a uniform band

for the specified time set T ⊂ [0, 1], we construct a supreme form statistic of score

differences for all points in T . Recognizing the relationship between ri and πi−πj,

we consider the random variable

S = sup
t∈T

max
j:j ̸=i

γij|π̂i(t)− π̂j(t)− π∗
i (t) + π∗

j (t)|,

where {γij}i,j∈[n],i̸=j are the scaling parameters. We assume that there exist con-
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4.1 Confidence Band of Rank

stants c, C, such that c
√

n3pMh ≤ γij ≤ C
√

n3pMh for all i, j ∈ [n], i ̸= j. A

natural choice of γij is the standard deviation of π̂i(t) − π̂j(t), which are of order√
n3pMh. S is dependent on i. We omit the subscript for simplicity without

ambiguity.

Let S1−α represent the (1− α)-th quantile of S, i.e.,

S1−α = inf{a ∈ R : P (S ≤ a) ≥ 1− α}. (4.2)

Define Rl(t) = 1 +
∑

j:j ̸=i 1{π̂i(t) − π̂j(t) + S1−α

γij
< 0}, and Ru(t) = n −∑

j:j ̸=i 1{π̂i(t) − π̂j(t) − S1−α

γij
> 0}. We claim that {[Rl(t), Ru(t)]}t∈T is a con-

fidence band for ri(t), t ∈ T , which is a direct result of the following proposition.

Proposition 1. Let E1 = {for all t ∈ T, rr∗i (t) ∈ [Rl(t), Ru(t)]} and E2 =

{supt∈T supj:j ̸=i |π∗
i (t)− π∗

j (t)− {π̂i(t)− π̂j(t)}| ≤ S1−α

γij
}, then we have E2 ⊂ E1.

From Proposition 1 and (4.2), we have

P (E1) ≥ P (E2) ≥ 1− α,

indicating that {[Rl(t), Ru(t)]}t∈T is a valid confidence band.

Note that S1−α is an unknown quantity. Estimating S1−α essentially involves

determining the asymptotic distribution in a high-dimensional space. Utilizing

Theorem 3, we will show that the distribution of the supremum statistic can be

approximated by its discretized counterpart using the Gaussian multiplier boot-

strap. For simplicity, we assume that Mij = M for all i, j ∈ [n] in the subsequent
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4.1 Confidence Band of Rank

derivation. The following deduction can be readily extended to accommodate the

general scenario where the number of observations for different pairs may vary. Let

Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. Let ni denote the degree of item i in

the comparison graph. Building upon the expansion of the estimation

π̂i(t)− π∗
i (t) =

1∑
j:(i,j)∈E y

∗
ij(t)

∑
j:(i,j)∈E

{π∗
i (t) + π∗

j (t)}∆̄ij(t) + op(1),

where ∆̄ij(t) =

∑
tk∈Tji

{yji(tk)−y∗ji(tk)}Kh(t,tk)∑
tk∈Tji

Kh(t,tk)
(see Theorem S1 in the supplementary

material for detailed deduction), we have

S =sup
t∈T

max
j:j ̸=i

γij

∣∣∣∣∣
∑

l:(i,l)∈E{π∗
i (t) + π∗

l (t)}∆̄il(t)∑
l:(i,l)∈E y

∗
il(t)

−
∑

l:(j,l)∈E{π∗
j (t) + π∗

l (t)}∆̄jl(t)∑
l:(j,l)∈E y

∗
jl(t)

∣∣∣∣∣+ op(1)

= sup
t∈T

max
j:j ̸=i

∣∣∣∣∣∣
√

1

Mnij

M∑
k=1

{ ∑
l:(i,l)∈E,l ̸=j

xkli(t) +
∑

l:(i,l)∈E,l ̸=j

xklj(t) + Aijxkji(t)
}∣∣∣∣∣∣+ op(1)

= : sup
t∈T

max
j:j ̸=i

∣∣∣∣∣
√

1

Mnij

M∑
k=1

nij∑
l=1

x
(ij)
kl (t)

∣∣∣∣∣+ op(1), (4.3)

where nij = ni + nj − 1((i, j) ∈ E), and

xkli(t) =

√
γ2
ijnijMKh(t, tk){π∗

i (t) + π∗
l (t)}{yli(tk)− y∗li(tk)}∑M

k=1Kh(t, tk)
∑

l:(i,l)∈E y
∗
il(t)

,

xklj(t) =

√
γ2
ijnijMKh(t, tk){π∗

j (t) + π∗
l (t)}{−ylj(tk) + y∗lj(tk)}∑M

k=1Kh(t, tk)
∑

l:(j,l)∈E y
∗
jl(t)

,

xkji(t) =

√
γ2
ijnijMKh(t, tk){π∗

i (t) + π∗
j (t)}{yji(tk)− y∗ji(tk)}∑M

k=1Kh(t, tk)
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4.1 Confidence Band of Rank

×
{ 1∑

l:(i,l)∈E y
∗
il(t)

+
1∑

l:(j,l)∈E y
∗
jl(t)

}
if (i, j) ∈ E ,

for k ∈ [M ], l ̸= i, j are nijM independent variables with unknown variances. tk is

dependent on the corresponding items. For instance, tk in xkli represents the kth

comparison time between items l and i. We omit these symbols for brevity.

From equation (4.3), S represents the supreme coordinate of a 2(n − 1)|T |-

dimensional vector, with the last (n−1)|T | components equal to the opposite value

of the first (n−1)|T | components to handle the absolute value. We discretize T into

v time points T , where T is a set satisfying maxt,s∈T |t − s|/mint,s∈T |t − s| ≤ κ2

and κ2 > 0 is a constant. If T is a continuous interval, equidistant points are a

natural choice. The value of v can be allowed to diverge to infinity.

Given that 2(n − 1)v can be significantly larger than nijM , and the covari-

ance structure of {x(ij)
kl (t)}t∈T , j:j ̸=i is complex, we employ the Gaussian multiplier

bootstrap for high-dimensional vectors (Chernozhukov et al., 2013). The main

idea is to approximate the distribution of the maximum of a sum of independent

random vectors with their Gaussian equivalent. We multiply the original vectors

with independently and identically distributed standard normal variables to obtain

conditional Gaussian vectors through bootstrap. We define the following Gaussian

analogue of S that

V =max
t∈T

max
j:j ̸=i

∣∣∣∣∣∣
√

1

Mnij

M∑
k=1

{ ∑
l:(i,l)∈E,l ̸=j

x̂kli(t)zkli +
∑

l:(i,l)∈E,l ̸=i

x̂klj(t)zklj + Aijx̂kji(t)zkji

}∣∣∣∣∣∣
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4.1 Confidence Band of Rank

= : max
t∈T

max
j:j ̸=i

∣∣∣∣∣
√

1

Mnij

M∑
k=1

nij∑
l=1

x̂
(ij)
kl (t)zkl

∣∣∣∣∣ ,
where x̂ represents x with estimators π̂ plugged in, for example, x̂kli(t) =
√

γ2
ijnijMKh(t,tk){π̂i(t)+π̂l(t)}{yli(tk)−ŷli(tk)}∑M

k=1 Kh(t,tk)
∑

l:(i,l)∈E ŷil(t)
. And {zkl}k∈[M ],l∈[nij ] are independent stan-

dard normal random variables. Let V1−α be the (1 − α)-th quantile of V given y,

i.e.,

V1−α = inf{a ∈ R : P (V ≤ a|y) ≥ 1− α}.

The following theorem verifies the correspondence between S and V . Let ploy(x)

represent the polynomial of x.

Theorem 4. Given that Assumptions (A1)-(A3) and (A5) hold, let h ≍ 1
na1Mb1

for

1
5
< a1 < 1

2
, 1

5
< b1 < 1, v ≍ naMb

h1/2 for a, b > 1
2
, poly(logM)

n
= o(1). If np > c log n

for some sufficiently large c, then we have supα∈(0,1) |P (S > V1−α) − α| → 0 as

n,Mh → ∞.

Theorem 4 demonstrates that V is a valid approximation of S. By sub-

stituting S1−α with V1−α in Rl(t) and Ru(t), we obtain the confidence band

{[R̂l(t), R̂u(t)]}t∈T .

Notice that (1−α) is essentially the level of score differences. When we employ

a discretized transformation on scores for rank inferences, a wide gap between each

pair of items tends to push the rank level toward 1. This phenomenon enhances the
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4.1 Confidence Band of Rank

precision of rank inferences. The following proposition provides a more detailed

explanation.

Proposition 2. Under the conditions of Theorem 3, if minj:j ̸=i inft∈T |π∗
i (t) −

π∗
j (t)| ≫

√
log(nM)
n3pMh

, then we have P{R̂l(t) = i and R̂u(t) = i, ∀t ∈ T} → 1 as

n,Mh → ∞.

The proposition demonstrates that as long as the difference among items is

higher than the order of
√

log(nM)
n3pMh

, the coverage probability will no longer be 1−α,

but 1. This distinction is significant compared to classical parameter inference,

arising from the unique nature of ranks and contributing to the high accuracy of

rank inference.

We now briefly discuss the one-sided confidence band, which is particularly

significant for the top-K test discussed in Section 4.2. Given the previous results,

the deduction of a one-sided confidence band is straightforward, so we omit the

detailed proof. We consider the random variable that

W =sup
t∈T

max
j:j ̸=i

γij{π̂i(t)− π̂j(t)− π∗
i (t) + π∗

j (t)}

=sup
t∈T

max
j:j ̸=i

√
1

Mnij

M∑
k=1

nij∑
l=1

x
(ij)
kl (t) + op(1),

and define its Gaussian analog that

U = max
t∈T

max
j:j ̸=i

√
1

Mnij

M∑
k=1

nij∑
l=1

x̂
(ij)
kl (t)zkl.
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4.2 Dynamic Ranking Inference (DRI)

Let U1−α be the (1 − α)-th quantile of U given y. Under the conditions of

Theorem 4, we can obtain supα∈(0,1) |P (W > U1−α) − α| → 0. Let R̃u(t) =

n −
∑

j:j ̸=i 1{π̂i(t) − π̂j(t) − W1−α

γij
> 0}. Then we have the one-sided confidence

band estimation {[1, ˆ̃Ru(t)]}t∈T by substituting W1−α with U1−α.

4.2 Dynamic Ranking Inference (DRI)

We introduce formal definitions of the dynamic ranking property first. We denote

the rank of n items by r = (r1, . . . , rn)
⊤, where ri is the rank of item i. We use

rr(π) to represent the corresponding rank of score π = (π1, . . . , πn)
⊤. Specifically,

we let rri(t) = [1 +
∑

j∈[n] 1{πj(t) > πi(t)}, n−
∑

j∈[n] 1{πj(t) < πi(t)}] to include

the presence of ties. The collection of all possible ranks is denoted as R. Recall that

we use r∗ to denote the truth. Let Ri(t) ⊂ R be the subset of ranks that exhibit a

specific ranking property regarding item i. For instance, Ri(t) could indicate that

item i is ranked among the top K items or that it is ranked higher than a fixed

item j. In other words, if r(t) ∈ Ri(t), then r(t) satisfies the property represented

by Ri(t). We still use T to represent the time set of interest. The general ranking

property test takes the following form:

Hc
0 : ∃t0 ∈ T, r∗(t0) /∈ Ri(t0); H

c
1 : ∀t ∈ T, r∗(t) ∈ Ri(t), (4.4)

which covers various scenarios with different settings of T and Ri := {Ri(t)}t∈T .

As a simple example, letting T = {t0} and Ri(t0) = {r : ri(t0) ≤ K}, the test
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4.2 Dynamic Ranking Inference (DRI)

concerns whether item i ranks top K at t0:

Hc
0 : r

∗
i (t0) > K; Hc

1 : r
∗
i (t0) ≤ K.

Notice that the correspondence between {πi}i∈[n] and {ri}i∈[n] is not one-to-

one, as different latent scores can result in the same rank. To measure the distance

betweenHc
0 andHc

1, we adapt the concept of legal pair (Liu et al., 2023) to dynamic

scenarios. Supposing that r(t) ∈ Ri(t), if the new rank r′(t) /∈ Ri(t) after swapping

the scores of items i and j, then we call (i, j) a legal pair. Define ∆(π,Ri, t) =

min
j:(i,j) is a legal pair for Ri(t)

|πi(t)− πj(t)| and ∆̃(π,Ri, T ) = inft∈T ∆(π,Ri, t).

Then we present a general test procedure for (4.4). Define the score set Π̃t(α) =

{π(t) : πj(t) = π̂j(t) for j ̸= i, πi(t) ∈ [π̂i(t) − V1−α

γij
, π̂i(t) +

V1−α

γij
]}. For a given

α, if for all t ∈ T , for all π ∈ Π̃t(α), for all r ∈ rr(π), if we have r ∈ Ri(t),

then we reject Hc
0. In other words, we reject the null hypothesis if the event

∩t∈T ∩π∈Π̃t(α)
∩r∈rr(π){r ∈ Ri(t)} holds. Intuitively, the rejection set is given by

introducing a perturbation term of V1−α

γij
to π̂i(t).

Theorem 5. Under the conditions of Theorem 4, as n,Mh → ∞, we have

P (reject Hc
0|Hc

0) ≤ α.

Further, if ∆̃(π∗, Ri, T ) > c4

√
log(nM)
n3pMh

, where c4 is a constant, then we have

P (reject Hc
0|Hc

1) → 1.
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4.3 Dynamic Rank Inference Using Signed Differences (DRIS)

According to the theorem, the type I error can be controlled, and the power of

the test approaches 1 with proper ∆̃(π,Ri, T ).

Then we focus on the specific top-K test, for which we can develop a more

efficient test procedure utilizing the one-sided confidence band. The formalization

of the top-K test is as follows:

Hc
0 : ∃t0 ∈ T, r∗i (t0) > K; Hc

1 : ∀t ∈ T, r∗i (t) ≤ K.

If for any t ∈ T , we have ˆ̃Ru(t) ≤ K, then we reject Hc
0. We have the type I error

below α since that

P (reject Hc
0|Hc

0) = P{∀t ∈ T, ˆ̃Ru(t) ≤ K|∃t0 ∈ T, r∗i (t0) > K}

≤ P{∃t0 ∈ T, r∗i (t0) /∈ [1, ˆ̃Ru(t0)]} ≤ α + o(1).

In addition, the test power tends to 1 under the conditions of Theorem 5, with

∆̃(π,Ri, T ) replaced by inft∈T |π∗
i (t) − π∗

(K+1)(t)|, where π∗
(K+1)(t) represents the

(K + 1)-th largest score at time point t.

4.3 Dynamic Rank Inference Using Signed Differences (DRIS)

Since the relationship between score differences and rank positions is inherently

flexible, the combinatorial inference of the ranking properties is conservative, which

is a challenge that persists even in static scenarios (Liu et al., 2023; Mogstad et al.,

2023; Fan et al., 2025). To address the limitation, we delve deeper into the interplay
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4.3 Dynamic Rank Inference Using Signed Differences (DRIS)

between scores and ranks and propose the creation of precise bands based on a novel

signed score difference perturbation.

We define the perturbation that

S† =sup
t∈T

max
j:j ̸=i

γij sj(t){π∗
i (t)− π∗

j (t)− π̂i(t) + π̂j(t)}

=sup
t∈T

max
j:j ̸=i

{−sj(t)}

√
1

Mnij

M∑
k=1

nij∑
l=1

x
(ij)
kl (t) + op(1),

where sj(t) = sign{π̂j(t)− π̂i(t)}. Based on S†, we construct the confidence band

{[R†
l (t), R

†
u(t)]}t∈T , where R†

l (t) = 1 +
∑

j:sj(t)>0 1{π̂i(t) − π̂j(t) +
S†
1−α

γij
< 0} and

R†
u(t) = n −

∑
j:sj(t)<0 1{π̂i(t) − π̂j(t) −

S†
1−α

γij
> 0}. Proposition 3 verifies the

effectiveness of the confidence band.

Proposition 3. Let E3 = {for all t ∈ T, rr∗i (t) ∈ [R†
l (t), R

†
u(t)]} and E4 =

{supt∈T supj:j ̸=i sj(t){π∗
i (t)− π∗

j (t)− π̂i(t) + π̂j(t)} ≤ S†
1−α

γij
}, then E4 ⊂ E3.

Proposition 3 ensures the coverage probability of the interval, as indicated by

P (E3) ≥ P (E4) ≥ 1 − α. Furthermore, we demonstrate that the newly imposed

sign sj(t) induces a narrower confidence band. Specifically, we can obtain that

R†
l (t) =1 +

∑
j:sj(t)>0

1
{
π̂i(t)− π̂j(t) +

S†
1−α

γij
< 0

}
≥1 +

∑
j:sj(t)>0

1
{
π̂i(t)− π̂j(t) +

S1−α

γij
< 0

}
=1 +

∑
j:j ̸=i

1
{
π̂i(t)− π̂j(t) +

S1−α

γij
< 0

}
= Rl(t). (4.5)
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4.3 Dynamic Rank Inference Using Signed Differences (DRIS)

The second line holds since S†
1−α ≤ S1−α. We haveR†

u(t) ≤ Ru(t) following a similar

manner. We then consider the estimation of S†. It’s noteworthy that S† exhibits

greater complexity compared to S. While S signifies the supremum of π̂i(t)−π̂j(t)−

π∗
i (t) + π∗

j (t), which can be uniformly approximated by the sum of independent

variables, sj(t) in S† is discontinuous and entails an intricate relationship with

π̂i(t) − π̂j(t) − π∗
i (t) + π∗

j (t). This complexity poses challenges in studying the

distribution of S†.

We use the Gaussian multiplier bootstrap to approximate S†. Let

V † = max
t∈T

max
j:j ̸=i

{−sj(t)}

√
1

Mnij

M∑
k=1

nij∑
l=1

x̂
(ij)
kl (t)zkl.

By substituting sj(t) with s∗j := sign{π∗
j (t)−π∗

i (t)}, Theorem 4 holds for S† and V †

with a simple modification. However, due to the discontinuity and randomness of

sj(t), it is challenging to provide an analog theorem for sj(t). We omit the rigorous

proof and consider it an approximation based on the given sj(t). Substituting S†
1−α

with V †
1−α, we obtain the modified confidence band {[R̂†

l (t), R̂
†
u(t)]}t∈T .

Accordingly, we have the one-sided confidence band {[1, R̃†
u(t)]}t∈T , where

R̃†
u(t) = n−

∑
j:sj(t)<0 1

{
π̂i(t)− π̂j(t)−

W †
1−α

γij
> 0

}
and

W † =sup
t∈T

max
j:sj(t)<0

γij{π̂i(t)− π̂j(t)− π∗
i (t) + π∗

j (t)}

=sup
t∈T

max
j:sj(t)<0

√
1

Mnij

M∑
k=1

nij∑
l=1

x
(ij)
kl (t) + op(1),
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4.3 Dynamic Rank Inference Using Signed Differences (DRIS)

If α is less than 0.5, the band is asymptotically narrower than {[1, R̃u(t)]}t∈T in

that

R̃†
u(t) =n−

∑
j:sj(t)<0

1
{
π̂i(t)− π̂j(t)−

W †
1−α

γij
> 0

}
≤n−

∑
j:sj(t)<0

1
{
π̂i(t)− π̂j(t)−

W1−α

γij
> 0

}
=n−

∑
j:j ̸=i

1
{
π̂i(t)− π̂j(t)−

W1−α

γij
> 0

}
= R̃u(t).

The second line holds since W † ≤ W and W1−α ≥ 0 asymptotically when

α ≤ 0.5. By substituting W † with its corresponding Gaussian analog U † =

maxt∈T maxj:sj(t)<0

√
1

Mnij

∑M
k=1

∑nij

l=1 x̂
(ij)
kl (t)zkl, we can obtain the confidence

band estimation.

Remark 6. We point out that the DRIS test framework is universally applicable

to score-based ranking models like Elo rating (Elo, 1967) beyond the dynamic BT

model. Provided the item ability estimations and their variances, the distribution

of S† can be approximated through the bootstrap technique, rendering the validity

of the framework.

Remark 7. The test procedure can be modified for situations where the ranking

property Ri is only relevant to specific items I ⊂ [n]. An example of such a

situation arises when comparing global universities and aiming to draw inferences

within a specific region. For instance, suppose we wish to determine whether King’s
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College London ranks among the top 3 to 5 universities in the United Kingdom.

In this case, I represents all universities in the UK. It is important to note that we

typically do not directly exclude data related to other items, as they can provide

additional information and help mitigate the risk of disconnection between items.

We can adjust the perturbation term as S̄ = supt∈T maxj∈I\{i} γij{π̂i(t) − π∗
i (t) −

π̂j(t)+ π∗
j (t)}, and maintaining the above test framework. The type I error can be

controlled through a simple modification of Theorem 5. Additionally, by noticing

that we enlarge the rejection region, the consistency of the test still holds.

Remark 8. Notice that if all pairwise comparisons appear without timestamps

and we set T as a single point, the dynamic ranking inference methods (DRI and

DRIS) reduce to a static scenario, which we refer to as SRI and SRIS. It’s important

to emphasize that SRIS, based on a novel signed perturbation statistic S†, is more

powerful than the SRI proposed in Liu et al. (2023), Mogstad et al. (2023), and

Fan et al. (2025), while still maintaining the coverage probability and test level.

We demonstrate this in (4.5) and further validate it in Section 5.1.

5. Simulation Study

In our simulations, we observe effective control over type I errors and increasing

test power trends as sample sizes grow in all proposed test frameworks. We provide

detailed simulation results in the supplementary material, while we emphasize a
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5.1 Comparisons in the Static Case

compelling comparison with existing methods for the static case in this section.

5.1 Comparisons in the Static Case

As pointed out in Remark 8, the test procedure can be naturally adapted to the

static case. In this section, we demonstrate that SRIS is significantly more powerful

than SRI proposed in Liu et al. (2023).

We set n = 100, p = 1, π∗
i = exp(θ∗i ) and consider two sets of parameters. For

case 1, the parameter θ∗i is set to 10 for i ranging from 1 to 30, then decreases

by δ to 10-δ for i = 31, and finally becomes 7.5 for i ranging from 32 to 100.

For case 2, the parameter θ∗i is set to 12 for i ranging from 1 to 15, remains at

10 for i ranging from 16 to 30, decreases by δ to 10-δ for i = 31, and finally

becomes 8 for i ranging from 32 to 100. The first setting is similar to those in Liu

et al. (2023), and case 2 is a more complex scenario. We employ 500 bootstrap

repetitions and repeat 500 times. We set δ = 10−5 and test whether item 31 is

ranked among the top 30 items under H0. For the empirical power, we vary δ and

test whether item 30 ranks in the top 30. We set γij =
√

n3pMh, i, j ∈ [n], i ̸= j for

the simplicity of computation. In practice, we observe that using either standard

deviation estimation or the constants exhibits similar empirical performances.

Table 1 indicates that for both sets of parameters, the type I errors are ef-

fectively controlled close to 0.05 for both methods. However, in the second set of
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Table 1: Type I error of top-K test in the static cases.

Case1 Case2

M SRI SRIS SRI SRIS

50 0.026 0.018 0.000 0.040

100 0.032 0.030 0.000 0.040

200 0.044 0.040 0.000 0.042

300 0.020 0.020 0.000 0.048

500 0.050 0.034 0.000 0.054

parameters, the SRI method appears to be overly conservative and does not exhibit

the expected trend toward the nominal significance level of 0.05.

Based on Figure 1, it is evident that SRIS outperforms SRI in terms of sta-

tistical power, particularly when considering the second set of parameters. The

difference in power between the two methods is quite pronounced, with SRIS

demonstrating a higher increasing speed compared with SRI.

6. Empirical Study

We collected the NBA regular season game results from season 2008-2009 to 2018-

2019, which comprises 13,289 pairwise comparison results among 30 teams. We

set the bandwidth to 0.1. We calculate the p-values for each team as described

in Section 3.1, which are represented by the dashed line in Figure 2. The solid
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Figure 1: Test power of top-K test in the static cases.

line depicts the threshold determined by the Benjamini-Yekutieli Procedure. We

observe that all p-values are considerably smaller than 0.05, except for the team

POR, whose p-value is 0.099982. Notably, the p-values for 29 teams fall below the

threshold line, suggesting that adopting the dynamic model is reasonable.
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Figure 2: The p-values of the score function invariance test for the NBA data.

Next, we test whether the score functions of two selected teams are equal.

We consider three pairs: MIN and SAC, DET and CHA, and MIN and SAS.

The corresponding score function estimations are displayed in Figure 3, and the

resulting p-values are 0.967391, 0.023472, and 0, respectively. Consequently, we

can’t reject the null hypothesis that the teams have the same score function for

the first pair (MIN and SAC), while we reject the null hypotheses for the last two

pairs (DET and CHA, MIN and SAS), which aligns with the direct impression in

Figure 3.

For ranking inference, we employ the DRIS method. We first conduct top3,

top5, top10, and top15 tests for team SAS at the midpoint of each season. We set

the number of bootstrap repetitions to 1000. The results are presented in Table 2.
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Figure 3: Score function estimators of three selected pairs in the NBA data.

We then test whether a team consistently ranks top K for a selected season. We set

v = 10 and perform 1000 bootstraps for quantile estimation. Table 3 presents the

resulting p-values inf
{
α : ∩t∈T ∩π∈Π̃t(α)

∩r∈rr(π){r ∈ Ri(t)}
}
for team i, which is a

direct extension of the p-values in Liu et al. (2023). The findings align with actual

competition outcomes. For example, team GSW had a winning rate of 81.7% in

the 2016-2017 season, while the winning rate of BKN was 46.3% in the 2014-2015

season.

7. Conclusion

This paper focuses on a series of inferential problems of the dynamic BT model

and ranking properties. We first address a fundamental and critical concern, dis-

tinguishing between static and dynamic cases. Subsequently, we develop a test

procedure to identify identical individuals, offering a fresh perspective for the clus-

tering problem in the BT model. Furthermore, we propose an innovative dynamic
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Table 2: The p-values of top-K test for team SAS at time points.

Time point Top 3 Top 5 Top 10 Top 15

0809Mid 1.000 1.000 0.527 0.044

0910Mid 0.970 0.895 0.272 0.044

1011Mid 0.521 0.400 0.025 0.001

1112Mid 0.088 0.060 0.002 0.001

1213Mid 0.241 0.026 0.004 0.000

1314Mid 0.254 0.126 0.004 0.000

1415Mid 0.060 0.022 0.002 0.000

1516Mid 0.017 0.003 0.000 0.000

1617Mid 0.077 0.040 0.000 0.000

1718Mid 0.984 0.677 0.156 0.010

1819Mid 1.000 1.000 0.930 0.163

Table 3: The p-values of the top-K test at time intervals.

Team Season Test type P-value

GSW 2016-2017 top 3 0.047

SAS 2015-2016 top 5 0.021

LAL 2009-2010 top 15 0.063

ORL 2009-2010 top 15 0.311

BKN 2014-2015 top 20 1.000
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ranking inference scheme. In addition to establishing a novel confidence band of

dynamic rank, we present a test procedure for general dynamic ranking properties.

The DRIS method employs a novel signed score differences statistic, effectively

addressing the overly conservative issue, and the framework is widely applicable

to various score estimation methods. The extensive experiments substantiate the

satisfactory performance of our methods.

Supplementary Material

The online Supplementary Material contains additional simulation results and

proofs.
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