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1 Powerful Spatial Multiple Testing
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Abstract: Clustered effects are often encountered in multiple hypothesis testing of spatial

signals. In this paper, we propose a new method, termed two-dimensional spatial multiple

testing (2d-SMT) procedure, to control the false discovery rate (FDR) and improve the de-

tection power by exploiting the spatial information encoded in neighboring observations. The

proposed method provides a novel perspective of utilizing spatial information by gathering

signal patterns and spatial dependence into an auxiliary statistic. 2d-SMT rejects the null

when a primary statistic at the location of interest and the auxiliary statistic constructed

based on nearby observations are greater than their corresponding cutoffs. 2d-SMT can also

be combined with different variants of the weighted BH procedures to improve the detection

power further. A fast algorithm is developed to accelerate the search for optimal cutoffs in

2d-SMT. In theory, we establish the asymptotic FDR control of 2d-SMT under weak spatial

dependence. Extensive numerical experiments demonstrate that the 2d-SMT method com-

bined with various weighted BH procedures achieves the most competitive performance in

FDR and power trade-off.
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2 Powerful Spatial Multiple Testing

1. Introduction

Large-scale multiple testing with spatial structure has become increasingly important

in various areas, e.g., Functional Magnetic Resonance Imaging research, genome-wide

association studies, environmental studies, and astronomical surveys. The essential

task is identifying locations that exhibit significant deviations from the background

to build scientific interpretations. Since thousands or even millions of spatially corre-

lated hypotheses tests are often conducted simultaneously, incorporating informative

spatial patterns to provide a powerful multiplicity adjustment for dependent multiple

testing is becoming a significant challenge.

There has been a growing literature on spatial signal detection with false discovery

rate control (FDR, Benjamini and Hochberg, 1995). Heller et al. (2006) and Sun

et al. (2015) proposed to perform multiple testing on cluster-wise hypotheses by

aggregating location-wise hypotheses to increase the signal-to-noise ratio. Benjamini

and Heller (2007), Sun et al. (2015) and Basu et al. (2018) defined new error rates to

reflect the relative importance of hypotheses associated with different clusters, e.g,

a hypothesis related to a larger cluster is more important than the one associated

with a smaller cluster. Scott et al. (2015) considered a two-group mixture model

with the prior null probability dependent on the auxiliary spatial information. Yun

et al. (2022) proposed a spatial-adaptive FDR-controlling procedure by exploiting

the mirror conservatism of the null p-values and the spatial smoothness under the

alternative. Tansey et al. (2018) enforced spatial smoothness by imposing a penalty
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on the pairwise differences of log odds of hypotheses being signals between adjacent

locations. Along a related line, Genovese et al. (2006) suggested to weight p-values or

equivalently assign location-specific cutoffs by leveraging the tendency of hypotheses

being null. This idea has been further developed in recent papers to include different

types of structural and covariate information. See, e.g., Ignatiadis et al. (2016), Li

and Barber (2019), Cai et al. (2022), Zhang and Chen (2022), and Cao et al. (2022).

In many applications, signals tend to exhibit in clusters. As a result, hypotheses

around a non-null location are more likely to be under the alternative than under the

null. One way to account for spatially clustered signals is to screen out the locations

where the average signal strength of the neighbors captured by an auxiliary statistic

is weak (Shen et al., 2002). The locations passing the screening step are subjected

to further analysis. This procedure suffers from the so-called selection bias as the

downstream statistical inference needs to account for the selection effect from the

screening step. A simple remedy is sample splitting (Wasserman and Roeder, 2009;

Liu et al., 2022), where a subsample is used to perform screening, and the remaining

samples are utilized for the downstream inference. Sample splitting is intuitive and

easy to implement, but it inevitably sacrifices the detection power because it does

not excavate complete information. Furthermore, there are often no completely

independent observations to conduct sample splitting in spatial settings.

We propose the two-dimensional spatial multiple testing (2d-SMT) procedure

that fundamentally differs from the existing spatial multiple testing procedures. 2d-

SMT consists of a two-dimensional rejection region built on an auxiliary statistic
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T1(s) and a primary statistic T2(s), for each hypothesis. The first dimension utilizes

the auxiliary information from the neighbors of a location of interest to perform fea-

ture screening, which helps to increases the signal density and lessen the multiple

testing burdens in the second dimension. The second dimension uses a statistic com-

puted from the data at the location of interest to pick out signals. 2d-SMT declares

the hypothesis at location s to be non-null if T1(s) ≥ t1 and T2(s) ≥ t2. The optimal

cutoffs t?1 and t?2 are chosen to achieve the maximum number of discoveries while

controlling the FDR at the desired level. 2d-SMT involves three main ingredients to

improve its robustness and efficiency: (1) accounting for the dependence between the

auxiliary and primary statistics, which alleviates the selection bias; (2) borrowing

spatial signal information through an empirical Bayes approach; and (3) accelerating

the search for the bivariate cutoff through an efficient algorithm. In a related study,

Yi et al. (2021) proposed the 2dFDR approach to detect the association between

omics features and covariates of interest in the presence of confounding factors, bor-

rowing information from confounder-unadjusted test statistics to boost the power in

testing with confounder-adjustment. In contrast, 2d-SMT is designed for the spatial

multiple testing by borrowing information from neighboring observations.

The contribution of this work lies in its innovative methodology, theoretical analy-

sis, and a new searching algorithm. First, 2d-SMT explores spatial information from

a completely different perspective compared to the existing weighted procedures.

It thus can be combined with these methods to improve power further. Examples

include the group BH procedure (GBH, Hu et al., 2010), independent hypothesis
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weighting (IHW, Ignatiadis et al., 2016), structure adaptive BH algorithm (SABHA,

Li and Barber, 2019), and locally adaptive weighting and screening approach (LAWS,

Cai et al., 2022). The readers are referred to Section 2.7 for more details. Second,

our asymptotic analysis allows weak spatial dependence, which goes beyond the

independence assumption required by the existing empirical Bayes theory, thereby

broadening its application scope. To the best of our knowledge, this is the first an-

alytical framework where dependent observations are allowed within the context of

empirical Bayes theory. Third, we develop an algorithm to overcome the computa-

tional bottleneck in finding the 2d cutoff values without sacrificing accuracy, which

can be applied to methods using 2d rejection regions, including 2dFDR and 2d-SMT.

The rest of the paper is organized as follows. Section 2 develops the 2d-SMT

procedure, including the oracle procedure, the feasible procedure with estimated

covariance structure, and the extension by combining it with various weighted BH

procedures. Section 3 discusses some implementation details. Section 4 establishes

the asymptotic FDR control and power analysis of 2d-SMT. In Sections 5 and 6,

extensive simulation studies and an ozone data analysis demonstrate the effectiveness

of the 2d-SMT procedure. Section 7 concludes and points out a few future research

directions. Additional details of the experiments and proofs are given in an online

supplementary file.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0152



6 Powerful Spatial Multiple Testing

2. Method

Consider a random field {X(s) : s ∈ S} defined on a spatial domain S ⊆ RK with

K ≥ 1 that takes the form of X(s) = µ(s) + ε(s), where µ(s) is an unobserved

process of interest and ε(s) is a mean-zero Gaussian process. The model is prevalent

in spatial multiple testing across various domains, such as fMRI (Heller et al., 2006),

environment study (Sun et al., 2015), temperature data analysis (Huang et al., 2021).

We are interested in examining whether µ(s) belongs to an indifference region A. For

example, A = {µ ∈ R : µ ≤ µ0} for a one-sided test and A = {µ ∈ R : |µ| ≤ µ0} for

a two-sided test, where µ0 is some pre-specified value. The unobserved process µ(s)

and the indifference region A induce a background statement θ(s) = 1{µ(s) 6∈ A} on

the spatial domain S. We define S0 = {s ∈ S : θ(s) = 0} and S1 = {s ∈ S : θ(s) = 1}

as the sets of null and non-null locations respectively.

We focus on the point-wise analysis, testing the hypothesis H0,s : µ(s) ∈ A versus

Ha,s : µ(s) /∈ A. At each s ∈ S, we make a decision δ(s), where δ(s) = 1 if H0,s is

rejected and δ(s) = 0 otherwise. Let ∆1 = {s ∈ S : δ(s) = 1} be the set of rejections

associated with the decision rule δ. The false discovery rate (FDR) is defined as

FDR = E

(
|∆1 ∩ S0|
1 ∨ |∆1|

)
,

where | · | denotes the cardinality of a set and ∆1 ∩ S0 is the set of false discoveries.

We next present a spatial multiple testing procedure that borrows neighboring infor-
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mation to improve the signal detection power without sacrificing the FDR control.

2.1 Motivation

For clarity, we focus on the one-sided test for the rest of the paper, i.e.,

H0,s : µ(s) ≤ 0 versus Ha,s : µ(s) > 0.

For each s ∈ S, we define a set of its neighbors as N (s) ⊆ S\{s}. Because of the spa-

tial dependence and smoothness encountered in many applications, the neighboring

observations {X(v) : v ∈ N (s)} is expected to provide side information on deter-

mining the state of θ(s). To formalize this idea, we consider the auxiliary statistic

T1(s) =
1

τ(s)

∑
v∈N (s)

X(v) (2.1)

based on the averaged observed values in the neighborhood of s and the primary

statistic T2(s) = σ−1(s)X(s) based on the observation from s, where σ2(s) = Var{ε(s)}

and τ 2(s) =
∑

v,v′∈N (s) cov {ε(v), ε(v′)}. For s ∈ S, we have T1(s) = ξ(s) + V1(s) and

T2(s) = σ−1(s)µ(s) + V2(s) where ξ(s) = τ−1(s)
∑

v∈N (s) µ(v) and

 V1(s)

V2(s)

 ∼ N

 0

0

 ,

 1 ρ(s)

ρ(s) 1




with ρ(s) = {σ(s)τ(s)}−1
∑

v∈N (s) cov{ε(s), ε(v)}. Our method is motivated by the

following two-stage procedure. At stage 1, we use the auxiliary statistic T1(s) to
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screen out the nulls based on the belief that observations around a non-null location

tend to take larger values on average. At stage 2, we use T2(s) to pick out signals

among those who survive from stage 1. Given the cutoffs (t1, t2) of these two stages,

the procedure can be described as follows:

Stage 1. Use the auxiliary statistic T1(s) to determine a preliminary set of signals

D1 = {s ∈ S : T1(s) ≥ t1}.

Stage 2. Reject H0,s for T2(s) ≥ t2 and s ∈ D1. As a result, the final set of

discoveries is given by D2 = {s ∈ S : T1(s) ≥ t1, T2(s) ≥ t2}.

Since the screening step reduces the multiple testing burden for the second stage,

we expect the above method to be more powerful than the traditional method based

only on the primary statistic. Indeed, the 1d rejection region is a special case of

the 2d rejection region {s ∈ S : T1(s) ≥ t1, T2(s) ≥ t2} by setting t1 ≤ mins∈S T1(s),

i.e., the first stage preserves all locations. If we select the two cutoffs one by one,

then the choice of t2 should consider the selection effect from the first stage. Here

we propose a new method to address this issue by simultaneously selecting the two

cutoffs, which we name the 2-dimensional (2d) procedure.

2.2 Approximation of the false discovery proportion

Note that H0,s is rejected when T1(s) ≥ t1 and T2(s) ≥ t2. Recalling that S0 is the

set of true nulls, the false discovery proportion (FDP) is then given by

FDP(t1, t2) =

∑
s∈S0 1 {T1(s) ≥ t1, T2(s) ≥ t2}

1 ∨R(t1, t2)
≤
∑

s∈S0 1 {V1(s) + ξ(s) ≥ t1, V2(s) ≥ t2}
1 ∨R(t1, t2)

,
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9 Powerful Spatial Multiple Testing

where R(t1, t2) =
∑

s∈S 1 {T1(s) ≥ t1, T2(s) ≥ t2} corresponds to the total number

of rejections, and the inequality holds because µ(s) ≤ 0 for s ∈ S0. Motivated by

the law of large numbers, we follow the approaches in multiple testing (Benjamini

and Hochberg, 1995; Storey, 2002), further developed for detecting spatial signals

(Benjamini and Heller, 2007; Sun et al., 2015; Cai et al., 2022), to substitute the

numerator of the right-hand side (RHS) of the above inequality by its expected

value. This substitution leads to an asymptotic upper bound of FDP as

FDP(t1, t2) .

∑
s∈S0 P {V1(s) + ξ(s) ≥ t1, V2(s) ≥ t2}

1 ∨R(t1, t2)

:=

∑
s∈S0 L {t1, t2, ξ(s), ρ(s)}

1 ∨R(t1, t2)
,

(2.2)

where L {t1, t2, ξ(s), ρ(s)} = P {V1(s) + ξ(s) ≥ t1, V2(s) ≥ t2} . The major challenge

here is the estimation of
∑

s∈S0 L {t1, t2, ξ(s), ρ(s)}, the expected number of false

rejections which involves a large number of nuisance parameters ξ(s). To overcome

this difficulty, we adopt an empirical Bayes viewpoint to borrow spatial information

across different locations and directly estimate the expected number of false rejections

without estimating individual ξ(s) at each location explicitly.

2.3 Nonparametric empirical Bayes

Let GS0 be the empirical distribution of {ξ(s) : s ∈ S0}. The expected number of

false rejections in (2.2) can be approximated by
∑

s∈S0

∫
L {t1, t2, x, ρ(s)} dGS0(x).

However, directly estimating GS0 is challenging as the auxiliary statistics {T1(s) : s ∈

S} blend information from both the null and alternative hypotheses. To overcome

Statistica Sinica: Preprint 
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this difficulty, we observe that ξ(s) typically takes greater values under the alternative

than under the null and L {t1, t2, x, ρ(s)} is a monotonically increasing function of x.

Thus, we have

∑
s∈S0

∫
L {t1, t2, x, ρ(s)} dGS0(x) .

∑
s∈S0

∫
L {t1, t2, x, ρ(s)} dGS(x)

≤
∑
s∈S

∫
L {t1, t2, x, ρ(s)} dGS(x),

(2.3)

where GS is the empirical distribution {ξ(s) : s ∈ S}. Consequently, we aim to

estimate GS based on the whole set of auxiliary statistics {T1(s) : s ∈ S} through

the nonparametric empirical Bayes (NPEB) approach.

The estimation in NPEB can be achieved by maximizing the marginal distribution

of T1(s) = ξ(s)+V1(s), which is given by fGS (x) =
∫
φ(x−u)dGS(u) with φ denoting

the density function of the standard normal distribution. Classical empirical Bayes

methods often assume independence among the observations, which is violated in

our case due to spatial dependence. To reduce the dependence, we select a subset

S̃ of S such that any two points in S̃ have a distance larger than some cutoff c0 (so

that the dependence between T1(v) and T1(v′) for any v, v′ ∈ S̃ is sufficiently weak).

Following Kiefer and Wolfowitz (1956) and Zhang (2009), we consider the general

maximum likelihood estimator (GMLE) defined as

G̃S̃ = arg max
G∈G

∑
s∈S̃

log fG{T1(s)}, (2.4)
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where G represents the set of all probability distributions on R and fG(x) =
∫
φ(x−

u)dG(u) is the convolution between G and φ. Our theoretical analysis in Lemma S.8

of the supplement shows that the estimated GMLE is close to the limit of the empiri-

cal distribution of {ξ(s) : s ∈ S}, denoted by G0; see Assumption 7 for the definition

of G0. The optimization in (2.4) can be cast as a convex optimization problem that

can be efficiently solved by interior point methods (Koenker and Mizera, 2014).

2.4 2d spatial multiple testing procedure

We now describe a procedure to select the two cutoffs simultaneously. In view of

(2.2)–(2.4), we consider an approximated upper bound for FDP(t1, t2) given by

F̃DP(t1, t2) :=

∑
s∈S
∫
L {t1, t2, x, ρ(s)} dG̃S̃(x)

1 ∨R(t1, t2)
. (2.5)

As shown in Lemma S.1 of the supplement,
∑

s∈S
∫
L {t1, t2, x, ρ(s)} dG0(x) can

be consistently estimated by the numerator of (2.5). For a desired FDR level

q ∈ (0, 1), the 2d-SMT procedure chooses the optimal cutoff such that (t̂?1, t̂
?
2) =

arg max(t1,t2)∈Fq
R(t1, t2), where Fq = {(t1, t2) ∈ R2 : F̃DP(t1, t2) ≤ q}.

We argue that the 2d-SMT procedure is generally more powerful than the classical

BH procedure based on the primary statistics alone. When setting t1 = −∞, 2d-

SMT is equivalent to BH, as it fails to exclude any hypotheses at the first stage so

that signal detection relies solely on the second stage, and our FDP estimator in
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(2.5) is equivalent to the FDP estimator in the BH procedure, i.e.,

∑
s∈S
∫
P {V1(s) + x ≥ −∞, V2(s) ≥ t2} dG̃S̃(x)

1 ∨R(−∞, t2)
=

∑
s∈S P {V2(s) ≥ t2}

1 ∨
∑

s∈S 1 {T2(s) ≥ t2}
.

The 2d-SMT procedure has the flexibility to choose an additional cutoff t1 to maxi-

mize the number of rejections and guarantees to make more rejections. Section 4 will

show 2d-SMT has asymptotic FDR control; thus more rejections typically translate

into a higher power.

Similar to the FDP estimator of the BH procedure, the conservatism of (2.5)

arises partly from expanding the index set S0 of the summation in (2.2) to S in

(2.3). For a target FDR level q, the realized FDR level of the BH procedure is

approximately π0q, where π0 = |S0|/|S| is the null proportion. The conservatism

motivates us to estimate the null proportion to improve power; see Section 2.5.

Theorem 2 rigorously proves that our procedure is more powerful than the one using

primary statistics alone.

Remark 1. Shen et al. (2002) and Huang et al. (2021) considered the case where

µ has a sparse wavelet representation. One of the goal is to detect the significant

wavelet coefficients while controlling the FDR. Observing that the wavelet coefficients

within each scale and across different scales are related, they screened the wavelet

coefficients based on the largest adjacent wavelet coefficients to gain more power. The

generalized degrees of freedom determine the number of locations for the subsequent

FDR-controlling procedure. Our approach can be potentially applied to their settings
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by exploring the signal structure encoded in the neighboring wavelet coefficients.

2.5 Estimating the null proportion

It is well known that when the number of signals is a substantial proportion of the to-

tal number of hypotheses, the BH procedure will be overly conservative. We develop

a modification of Storey’s approach (Storey, 2002; Storey et al., 2004) to incorporate

the estimation of the null proportion. As a motivation, we assume that T2(s) ap-

proximately follows the mixture model T2(s) ∼ π0N (µ0(s), 1) + (1− π0)N (µ1(s), 1),

where µ0(s) ≤ 0, µ1(s) > 0, and π0 is the prior probability that s ∈ S0. Let Φ be

the cumulative distribution function of N (0, 1). Fixing some λ ∈ R, we have

P{T2(s) < λ} = π0P{N (µ0(s), 1) < λ}+ (1− π0)P{N (µ1(s), 1) < λ}

≥ π0P{N (µ0(s), 1) < λ} ≥ π0Φ(λ),

where the first inequality in the second line is tighter if (1− π0)P{N (µ1(s), 1) < λ}

is closer to zero and the second inequality becomes an equality when µ0(s) = 0. The

above derivation suggests a conservative estimator for π0 given by

π̂0 :=

∑
s∈S 1{T2(s) < λ}
|S|Φ(λ)

≈ P{T2(s) < λ}
Φ(λ)

≥ π0. (2.6)

2.6 A feasible procedure

So far we have assumed that the spatial covariance function k(s, s′) = cov{ε(s), ε(s′)}

of the error process is known. In practice, we need to estimate the spatial covari-
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ance function cov{ε(s), ε(s′)}, which has been widely investigated in the literature

(Sang and Huang, 2012; Katzfuss and Guinness, 2021); see Section S.VI of the sup-

plement for more details. Given the estimated covariance function, we let T̂1(s)

and T̂2(s) respectively denote the feasible statistics of T1(s) and T2(s) by replacing

{σ(s), τ(s), ρ(s)} with their estimates {σ̂(s), τ̂(s), ρ̂(s)}. Let ĜS̃(u) denote the non-

parametric empirical Bayes estimate of GS based on {T̂1(s) : s ∈ S̃}. We propose

the following FDP estimate which accounts for the null proportion using the idea in

Section 2.5,

F̂DPλ,S̃(t1, t2) :=

∑
s∈S 1{T̂2(s) < λ}

mΦ(λ)

∑
s∈S
∫
L {t1, t2, x, ρ̂(s)} dĜS̃(x)

1 ∨ R̂(t1, t2)
, (2.7)

where R̂(t1, t2) =
∑

s∈S 1
{
T̂1(s) ≥ t1, T̂2(s) ≥ t2

}
. Thus, given the desired FDR level

q ∈ (0, 1), the optimal rejection cutoffs are defined as

(t̃?1, t̃
?
2) = arg max

(t1,t2)∈Fq

R̂(t1, t2), (2.8)

where Fq = {(t1, t2) ∈ R2 : F̂DPλ,S̃(t1, t2) ≤ q}. The left panel in Figure 1 exemplifies

the cutoffs for the BH and 2d-SMT procedures with the target FDR level at 10%.

Compared to the BH, the 2d-SMT realizes a lower cutoff for T2(s) (the vertical

line) as it excludes locations exhibiting weak neighboring signals with a cutoff for

T1(s) (the horizontal line). The lower cutoff for T2(s) in 2d-SMT leads to more true

rejections in this example.
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Figure 1: An illustration of 2d-SMT and the fast searching algorithm. The spatial
domain S includes 300 points. The triangle (4) and circle (◦) in the left panel denote
non-null and null locations, respectively. The solid and dashed lines are the cutoffs
for the 2d-SMT procedure and the BH procedure, respectively. The cross (×) in the
right panel corresponds to the cutoff whose corresponding FDP is less than 0.1. The
set T ′ in the middle panel contains 14,534 points, whereas the set after our proposed
pruning steps in the right panel significantly reduces the number of candidates to
345.

2.7 Spatial varying null proportions and cutoffs

Our proposed 2d-SMT is a flexible framework that can accommodate weighted BH

procedures (wBH), a broad class of multiple testing procedures. The wBH method

leverages the hypothesis heterogeneity by assigning location-specific cutoffs. Accord-

ing to wBH, H0,s will be rejected with the rule p(s) := 1−Φ{T̂2(s)} ≤ min{τ, w(s)t},

τ ∈ (0, 1], where τ is the censoring level for all p-values and w(s) is a location-specific

weight that encodes external information for location s. Apparently, the rejection

rule is equivalent to assigning location-specific cutoffs to the primary statistic, i.e.,

T̂2(s) ≥ Φ−1[1−min{τ, w(s)t}]. Inspired by the idea behind wBH, we extend 2d-SMT

by allowing location-specific cutoffs to further incorporate external information on

the prior null probability and signal distribution. Specifically, we reject H0,s when-
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16 Powerful Spatial Multiple Testing

ever T̂1(s) ≥ c(t1, s) and T̂2(s) ≥ c(t2, s), where c(t, s) = Φ−1[1 − min{τ, w(s)t}].

With some abuse of notation, we let

F̂DPλ,S̃(t1, t2) :=

∑
s∈S π̂0(s)

∫
L {c(t1, s), c(t2, s), x, ρ̂(s)} dĜS̃(x)

1 ∨ R̂(t1, t2)
, (2.9)

where π̂0(s) is an estimate of the null proportion π0(s) = P{θ(s) = 0} at location s.

We reject H0,s if T1(s) ≥ c(t̃?1, s) and T2(s) ≥ c(t̃?2, s), where (t̃?1, t̃
?
2) is the solution to

(2.8) with the FDP estimate given in (2.9).

There have been extensive recent studies on the choice of w(s) in wBH. Examples

include GBH (Hu et al., 2010), IHW (Ignatiadis et al., 2016; Ignatiadis and Huber,

2021), SABHA (Li and Barber, 2019) and LAWS (Cai et al., 2022). The weights in

these examples are either proportional to 1/π0(s) or {1− π0(s)}/π0(s), where π0(s)

can be estimated using various approaches. In the spatial setting, we often use the

location associated with each hypothesis as the external covariate to estimate π0(s).

If additional types of covariate information are available, the proposed 2d-SMT

framework is able to leverage both covariate and spatial information. Some covariate-

adaptive FDR procedures can be utilized by assigning weights based on an estimation

of covariate-specific null proportions; and the spatial information is, again, captured

by the auxiliary test statistics. In Section S.I.6 of the supplement, we present a sim-

ulation experiment that uses the group information as the covariate. The simulation

results show that integrating both the group covariate and the spatial information

can further improve the detection power.
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17 Powerful Spatial Multiple Testing

3. Implementation Details

In this section, we discuss a few crucial points for the implementation of our method.

First of all, the auxiliary statistic T̂1(s) requires the specification of a pre-chosen

neighborhood N (s) for each location. In our implementation, we let N (s) be the

set of the κ-nearest neighbors around location s, and find that 2d-SMT is not quite

sensitive to the choice of κ and shows satisfactory power improvement provided

2 ≤ κ ≤ 7; see Section S.I.4 of the supplement for more details. Alternatively, one can

also choose the locations within a certain distance from the location s of interest as its

neighbors. Furthermore, the neighborhood set of location s can also be adaptively

determined when external information that is independent of {X(s) : s ∈ S} is

provided; see Section S.I.5 of the supplement for more details.

Second, the auxiliary statistics used in NPEB estimation, {T̂1(s) : s ∈ S̃}, should

be from far enough spatial locations to weaken their spatial dependency. In practice,

we choose S̃ ⊂ S whose neighbors have no overlaps.

Third, when the signal is sparse, the estimation of the number of false rejec-

tions in the 2d-SMT procedure may be unstable. Inspired by the idea of Knock-

off+, we add a small offset to improve the selection stability. More precisely, we re-

place
∑

s∈S
∫
L {t1, t2, x, ρ̂(s)} dĜS̃(x) in (2.7) by

∑
s∈S
∫
L {t1, t2, x, ρ̂(s)} dĜS̃(x)+q,

where q is the target FDR level. This replacement improves the selection stability for

sparse signals but does not influence the power and FDR control for dense signals.

Finally, finding the optimal cutoffs in 2d-SMT requires solving the discrete con-
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18 Powerful Spatial Multiple Testing

strained optimization problem (2.8). Due to the discrete nature of (2.8), the solu-

tion can be obtained if we replace Fq by {(t1, t2) ∈ T : F̂DPλ,S̃(t1, t2) ≤ q}, where

T = {(T̂1(s), T̂2(s′)) : s, s′ ∈ S} is the set of all candidate cutoffs. A naive grid

search algorithm would evaluate F̂DPλ,S̃ at |S|2 values, which is computationally

prohibitive for a large number of spatial locations. To overcome the computational

bottleneck, we propose a fast algorithm to utilize the specific structure of (2.8)

through the following three steps. We briefly introduce the basic idea below and

defer the comprehensive discussion to Section S.VII of the supplement.

Algorithm 1 Fast Searching Algorithm.

Input: Test Statistics
{(
T̂1(s), T̂2(s)

)
: s ∈ S

}
; target FDR level q;

Initialization:

1: Initialize {t̃?1, t̃?2, Rmax,FDPmin} =
{
−∞, t̃#2 , R̂(−∞, t̃#2 ), F̂DP

λ,S̃(−∞, t̃#2 )
}

Search Step:

1: for i = 1, 2, . . . , m̆ do
2: Calculate R = R̂(t1,i,1, t2,i);
3: Set j = 1 + max(0, Rmax −R);
4: while j ≤ mi do
5: Calculate R = R̂(t1,i,j , t2,i) and F̂DP = F̂DP

λ,S̃(t1,i,j , t2,i) according to (2.7);

6: if R = Rmax and F̂DP < FDPmin or R > Rmax and F̂DP ≤ q then
7: (t̃?1, t̃

?
2, Rmax,FDPmin) = (t1,i,j , t2,i, R, F̂DP);

8: Update j = j + 1;
9: else

10: Calculate Rreq = dF̂DP×R/qe;
11: Update j = j + max(1, Rreq −R);
12: end if
13: end while
14: end for

Output: Rejection cutoff (t̃?1, t̃
?
2).

Step 1. We retain the cutoffs that achieve the minimum FDP among all the cutoffs

realizing the same rejection sets. The derivation in Section S.VII of the supplement
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19 Powerful Spatial Multiple Testing

suggests that we only need to consider the following set of candidate cutoffs:

T ′ =
{

(T̂1(sl), T̂2(sk)) : T̂1(sl) ≤ T̂1(sk) and l ≤ k, k = 1, 2, . . . ,m
}
∪ {(∞,∞)} .

Step 2. Let t̃#2 be the minimum value satisfying F̂DPλ,S̃(−∞, t2) ≤ q. It is not hard

to see that the optimal cutoff for the primary statistic in 2d-SMT is no more than t̃#2 .

Hence we can reduce the set of candidate cutoffs to T ′′ =
{

(t1, t2) ∈ T ′ : t2 ≤ t̃#2

}
.

Step 3. Denote the elements in T ′′ by (t1,i,j, t2,i) for i = 1, 2 . . . , m̆ and j = 1, . . . ,mi,

where m̆ is the number of T̂2(s)’s that are smaller than or equal to t̃#2 . Suppose the

points are sorted in the following way: (1) t2,1 > t2,2 > · · · > t2,m̆; (2) t1,i,1 > t1,i,2 >

· · · > t1,i,mi
for all 1 ≤ i ≤ m̆. Our algorithm involves two loops. In the outer loop,

we search the cutoff for the primary statistic, while in the inner loop, we search the

cutoff for the auxiliary statistic. The key idea here is to skip those cutoffs in the

inner loop that are impossible to procedure a value of F̂DP equal to or below the

level q. For example, consider a cutoff (t1,i,j, t2,i) which induces R rejections with

F̂DPλ,S̃(t1,i,j, t2,i) = 2q. Then the next cutoff, denoted as (t1,i,j′ , t2,i), needs to induce

at least 2R rejections to ensure that F̂DPλ,S̃(t1,i,j′ , t2,i) ≤ q. When there is no tie,

increasing j by k brings exactly k more rejections. Therefore, the next possible cutoff

to be examined is (t1,i,j+R, t2,i). The middle and left panels in Figure 1 illustrate how

the set of candidate cutoff values can be reduced by Step 3.
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20 Powerful Spatial Multiple Testing

4. Asymptotic Results

In this section, we investigate the asymptotic property of the 2d-SMT procedure.

Let U ⊂ RK denote the spatial domain. Suppose we observe {X(s) : s ∈ Sm},

where Sm = {s1, s2, · · · , sm} ⊆ U are the locations. Let U0 = {s ∈ U : θ(s) = 0}

and U1 = {s ∈ U : θ(s) = 1}. We denote by S0,m = Sm ∩ U0 with m0 = |S0,m|

be the set of null locations and let S1,m = Sm ∩ U1 with m1 = |S1,m| be the set of

non-null locations. We further let S̃m ⊆ Sm with |S̃m| = m̃ be the set of randomly

selected locations for implementing the NPEB. Our asymptotic analysis requires the

following regularity conditions.

Assumption 1 (Spatial Domain). The domain U is infinitely countable. There

exist 0 < ∆l < ∆u < ∞, such that for every element in U , the distance to its

nearest neighbor is bounded from below and above respectively by ∆l and ∆u, i.e.,

∆l ≤ infs′ 6=s dist(s, s′) ≤ ∆u, for all s ∈ U , where dist(·, ·) is the Euclidean distance

of two points.

Assumption 2 (Neighborhood). For each location s in U , its neighborhood N (s) ⊂

S\{s} used in 2d-SMT is its nearest neighbors with size uniformly upper bounded

by some positive integer Nnei ∈ N+, i.e., 0 < |N (s)| < Nnei, ∀s ∈ U .

Assumption 1 states that the distance between any location in U and its near-

est neighbor is moderately uniform (Cressie, 1993; Jenish and Prucha, 2012). One

example satisfying Assumption 1 is the lattice U = ZK where ∆l = ∆u = 1. Partic-

ularly, the lower bound ensures maxs,s′∈Sm dist(s, s′) tend to infinity as m increases.
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21 Powerful Spatial Multiple Testing

Assumption 2 specifies the neighborhood of each location and requires the number

of neighbors to be bounded for each location.

Assumption 3 (Second-order Structure). The variance and covariance of the er-

ror process ε(s) satisfy: (a) There exist positive constants Bud,σ, Bup,σ, Bud,τ , and

Bup,τ , such that Bud,σ ≤ infs∈U σ(s) ≤ sups∈U σ(s) < Bup,σ and Bud,τ ≤ infs∈U τ(s) ≤

sups∈U τ(s) < Bup,τ for all s ∈ U ; (b) The estimated covariance of X are uni-

formly weakly consistent with a polynomial rate, i.e., sups,s′∈Sm |ĉov{ε(s), ε(s′)} −

cov{ε(s), ε(s′)}| = oP (m−q) for some q > 0.

Assumptions 3(a) requires the variance of the error process to be bounded away

from zero and infinity. Assumption 3(b) imposes condition on the convergence rate of

the covariance estimate, which is satisfied by many commonly-used estimators. For

example, the maximum likelihood estimator achieves the desired convergence rate

with q = 1/2 when the parametric covariance function is locally Lipschitz continuous

(Mardia and Marshall, 1984).

To describe the spatial dependence structure, we adopt the near epoch depen-

dency (NED), which has been extensively studied in time series analysis (Davidson,

1994) and first introduced to the spatial analysis by Jenish and Prucha (2012). The

NED is satisfied by many classical models in spatial statistics, e.g., spatial autore-

gression models (Cliff and Ord, 1981). Denote by V a spatial domain such that

U ⊆ V ⊂ RK . Let {Y (v), v ∈ V} be a random field and set F(S) = σ {Y (s), s ∈ S}

as the σ-field generated by Y (s) for s ∈ S ⊂ V . In reality, V represents a physical

spatial domain in consideration, which might encompass a wide geographical area;

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0152
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S, on the other hand, is a set of locations to collect the data.

Definition 1 (NED). Let X = {X(s), s ∈ Sm} be a random field with ‖X(s)‖p <∞

where ‖X(s)‖p = {E|X(s)|p}1/p, p ≥ 1. Define Y = {Y (s), s ∈ Vm} as a random

field where Sm ⊆ Vm and let d = {dm(s), s ∈ Sm} be a set of finite positive constants.

Then, X is said to be Lp(d)-near-epoch dependent on Y if

‖X(s)− E {X(s) | F(S)}‖p ≤ dm(s)ψ(r),

where S ⊂ Vm, r = max {t ≥ 0 : B(s; t) ⊆ S} with B(s; t) being a ball centered

around s with radius t, and ψ(r) ≥ 0 is a non-increasing sequence with limr→∞ ψ(r) =

0. Here ψ(r) and dm(s) are called NED coefficients and NED scaling factors, respec-

tively. We say X is Lp(d)-NED of size −λ if ψ(r) = O(r−µ) for some µ > λ > 0.

Furthermore, if supm sups∈Sm dm(s) <∞, we say X is uniformly Lp-NED on Y .

Assumption 4 (Uniform NED). X = {X(s), s ∈ Sm} is uniformly Lp-NED on

Y = {Y (s) : s ∈ Vm} of size −λ, for λ > 0, p ≥ 2, where Y (s) are independently

distributed.

In Definition 1, B(s; t) is the maximum ball that is completely included in S. The

quantity ‖X(s) − E{X(s) | F(S)}‖p satisfies a generalized non-decreasing property

with respect to S. Specifically, if ‖X(s) − E{X(s) | F(S)}‖p ≤ dm(s)ψ(r), we

then have ‖X(s) − E{X(s) | F(V )}‖p ≤ dm(s)ψ(r) for any S ⊆ V ⊆ S. We can

choose dm(s) = 2‖X(s)‖p as the scaling factor such that 0 ≤ ψ(r) ≤ 1. In addition,

if X is Lp-NED on Y , then X is also Lq-NED on Y with the same {dm(s)} and
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ψ(r) for any q ≤ p. The condition p ≥ 2 in Assumption 4 guarantees that the

variance of E {X(s) | F(S)} converges to that of X(s) as S expands. Jenish and

Prucha (2012) demonstrated that the NED property can be validated in examples

from both Gorodetskii (1978) and Andrews (1984). The former showed that strong

mixing might fail in linear processes with normal innovations and slowly declining

coefficients, while the latter illustrated the absence of α-mixing in a simple first-

order autoregressive process with independent Bernoulli innovations. Furthermore,

for infinity-order moving average random fields, verifying the NED property involves

checking the smoothness of the functional form and the absolute summability of

coefficients, which is an easier task compared to verifying mixing conditions.

Under the NED assumption, we can approximate X(s) with E[X(s) | F{B(s; r)}]

and in turn approximate T1(s) with

T ∗1 (s; r) = E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}]
/ζr(s), (4.1)

where ζ2
r (s) = Var

(
E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}])
. We further require the condi-

tional statistics to be normally distributed as required by the theory for NPEB.

Assumption 5 (Normality). For any S ⊂ V , E {X(s) | F(S)} is normal.

Spatial linear autoregression models with Gaussian white noise satisfy Assump-

tions 4 and 5 (Jenish, 2012). Under Assumptions 4 and 5, {T ∗1 (s; r) : s ∈ S̃m}

defined in (4.1) are independent and normally distributed random variables with
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unit variance if r > 0 satisfies

∪v∈N (s)B(v; r) ∩ ∪v∈N (s′)B(v; r) = ∅, s, s′ ∈ S̃m. (4.2)

Under Assumptions 1 and 2, setting r = ∆̃l,m/2−Nnei∆u indicates (4.2), where

∆̃l,m = inf
s,s′∈S̃m

dist(s, s′). (4.3)

Assumption 6 (Size of Subset). The subset for implementing NPEB, S̃m ⊂ Sm,

satisfies m̃1/(λp){log(m̃)}−1/(2λ) = o(∆̃l,m) and m̃ → ∞ as m → ∞, where ∆̃l,m is

defined as in (4.3).

Let Gm(u) = m−1
∑

s∈Sm 1{ξ(s) ≤ u} and Gm̃(u) = m̃−1
∑

s∈S̃m 1{ξ(s) ≤ u} be

the empirical distributions of the unknown means for s ∈ Sm and s ∈ S̃m, respec-

tively.

Assumption 7 (Limiting Distribution). There exists a limiting distribution G0 on

[−ν0, ν0] for some positive constant ν0 such that dH(fGm , fG0) = oP (1), as m → ∞,

and the subset S̃m satisfies dH(fGm̃
, fG0) = oP (1), as m̃ → ∞, where fG(x) =∫

φ(x−u)dG(u) and d2
H(f, g) = 2−1

∫ {√
f(x)−

√
g(x)

}2
dx is the squared Hellinger

distance between densities f and g.

The condition about m̃ and ∆̃l,m in Assumption 6 trades off the number of S̃m

and the distance between them, which becomes milder when decreasing the strength

of near epoch dependency, i.e., increasing λ or p. In fact, we can choose S̃m satisfying
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Assumption 6 under Assumptions 1 and 2; see Section S.IV.1 of the supplement for

more details. Assumption 7 states that the empirical distributions of ξ(s) using

s ∈ Sm and s ∈ S̃m have the same limiting distribution G0, as the number of spatial

samples goes to infinity.

Assumption 8 (Null Proportion). m0/m→ π0 ∈ (0, 1), as m→∞.

Assumption 9 (Asymptotic True/False Rejection Proportion). As m0 and m1 tend

to infinity, for every (t1, t2) ∈ R× R, we have

∑
s∈S0,m P {T1(s) ≥ t1, T2(s) ≥ t2}

m0

:= E

{
Vm(t1, t2)

m0

}
→K0 (t1, t2) ,∑

s∈S1,m P {T1(s) ≥ t1, T2(s) ≥ t2}
m1

:= E

{
Sm(t1, t2)

m1

}
→K1 (t1, t2) ,

where K0 (t1, t2) ≤ limm→∞
∑

s∈Sm

∫
L{t1, t2, x, ρ(s)} dG0(x)/m, and both K0 (t1, t2)

and K1 (t1, t2) are non-negative continuous functions of (t1, t2).

Let K1(−∞, t2) be the limit of
∑

s∈S1,m P {T2(s) ≥ t2} /m1 as m1 goes to infinity.

Define

FDP∞λ (t1, t2) := lim
m→∞

F (λ)
∑

s∈Sm

∫
L(t1, t2, x, ρ(s))dG0(x)

mΦ(λ)K(t1, t2)
, (4.4)

where K(t1, t2) = π0K0(t1, t2) + (1− π0)K1(t1, t2) and F (λ) =
∑

s∈Sm π0Φ(λ) + (1−

π0){1−K1(−∞, λ)}.

Assumption 10 (Existence of Cutoffs). There exist t?1 and t?2 such that FDP∞λ (t?1, 0) <

q, FDP∞λ (0, t?2) < q, and K (t?1, t
?
2) > 0.

Assumption 8 requires the asymptotic null proportion to be strictly between zero
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and one, which rules out the case of very sparse signals. Assumption 9 characterizes

the expected proportions of true and false rejections among the alternative and null

hypotheses, respectively, as functions with respect to threshold (t1, t2). The upper

bound condition of K0(t1, t2) appeared in Assumption 9 is valid in many examples.

For instance, it is fulfilled when (a) the signal strength around the null locations is

weaker than that around the non-null locations on average; and (b) the error process

is stationary, Sm is observed at the lattice S = ZK , and N (s) is selected as the

κ-nearest neighbors, so that ρ(s) ≡ ρ for some ρ ∈ (0, 1). Assumption 10 reduces

the searching region for the optimal cutoff to a rectangle. Assumptions 8, 9, and

10 align with existing conditions for proving asymptotic FDR control (Storey et al.,

2004; Ferreira and Zwinderman, 2006; Benjamini and Heller, 2007), in which just the

primary statistic is considered.

These assumptions are in general mild conditions for asymptotic FDR control in

spatial multiple testing. Assumptions 1, 3, 8, 9, and 10 are widely used in spatial

multiple testing (Cressie, 1993; Storey et al., 2004; Ferreira and Zwinderman, 2006;

Benjamini and Heller, 2007; Jenish and Prucha, 2012); and Assumptions 2, 4, 5, 6,

and 7 are specifically required for the 2d-SMT method. In particular, the condition

on distances between locations in Assumption 1 is requisite for increasing domain

asymptotics (Cressie, 1993). Assumptions 2 and 6 regularize the sizes of subsets

for constructing auxiliary statistics and implementing NPEB. When a practitioner

implements the 2d-SMT method, these two assumptions can be directly satisfied

by choosing suitable neighbors and a subset used for NPEB. Assumption 3 imposes
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regular conditions on the moment of the error process and requires the covariance of

the error process can be consistently estimated (Sun et al., 2015). Assumptions 4,

5, and 7 are technical conditions for showing the convergence of the GMLE under

certain dependencies: Assumption 4 imposes some specific weak dependence on the

random field; Assumption 5 is crucial as we utilize the theory of NPEB developed for

Gaussian location model; Assumption 7 requires that the empirical distribution of

means possesses a limit. Assumptions 8, 9, and 10 naturally generalize the conditions

for asymptotic FDR control in the Storey’s procedure (Storey et al., 2004; Ferreira

and Zwinderman, 2006; Benjamini and Heller, 2007), where the rejection regions

transit from one-dimensional to two-dimensional.

The FDR of the 2d-SMT procedure is given by

F̃DRm = E
{

FDP
(
t̃?1, t̃

?
2

)}
, with FDP(t1, t2) =

V̂m(t1, t2)

V̂m(t1, t2) + Ŝm(t1, t2)
, (4.5)

where (t̃?1, t̃
?
2) is defined in (2.8), and V̂m (t1, t2) =

∑
s∈S0,m 1{T̂1(s) ≥ t1, T̂2(s) ≥ t2}

and Ŝm (t1, t2) =
∑

s∈S1,m 1{T̂1(s) ≥ t1, T̂2(s) ≥ t2} are respectively the numbers of

false and true rejections.

Theorem 1. Under Assumptions 1–10, we have lim supm→∞ F̃DRm ≤ q.

Theorem 1 states that 2d-SMT procedure asymptotically controls the FDR. The

proof of Theorem 1, which is deferred to Section S.II of the supplement, relies on

two facts: (i) (2.7) uniformly converges to (4.4) and FDP(t1, t2) in (4.5) satisfies

the uniform law of large numbers over the rectangle encompassed by |t1| ≤ t?1 and
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|t2| ≤ t?2; (ii) (4.4) is asymptotically larger than FDP(t1, t2) in (4.5). We make two

technical innovations. First, we establish dH
(
fĜm̃

, fG0

)
= oP (1) in Lemma S.8 of

the supplement, which is the first result, to our knowledge, for the convergence of

GMLE estimated from dependent observations. Second, we address the challenge

posed by the non-Lipschitz nature of 1{T1(s) ≥ t1, T2(s) ≥ t2} in Lemma S.9 of the

supplement, which expands the applications of the NED-based law of large numbers.

We next formalize the power improvement of 2d-SMT over 1d-SMT (setting

t1 as −∞) and defer the proof to Section S.V.1 of the supplement. Denote the

thresholds for 1d- and 2d-SMT as t1d2 = arg maxt2∈F1d
q,∞

K(−∞, t2) and (t2d1 , t
2d
2 ) =

arg max(t1,t2)∈F2d
q,∞

K(t1, t2), respectively, where F1d
q,∞ = {t2 : FDP∞λ (−∞, t2) ≤ q}

and F2d
q,∞ = {(t1, t2) : FDP∞λ (t1, t2) ≤ q}. The corresponding percentages of true

discoveries in the asymptotic sense are respectively defined as PTD1d = K1(−∞, t1d2 )

and PTD2d = K1(t2d1 , t
2d
2 ).

Theorem 2. Under Assumptions 8 and 9, we have (i) PTD2d ≥ PTD1d and (ii)

PTD2d > PTD1d if alsoK0

(
t2d1 , t

2d
2

)
< limm→∞

∑
s∈Sm

∫
L{t2d1 , t2d2 , x, ρ(s)} dG0(x)/m.

Theorem 2 shows that 2d-SMT offers superior power compared to 1d-SMT. Inter-

estingly, 2d-SMT can achieve a strictly higher power than 1d-SMT, even when both

methods yield the same total number of discoveries, i.e., K(t2d1 , t
2d
2 ) = K(−∞, t1d2 ).

This power boost, as discussed alongside Assumption 9, stems not only from more

discoveries but also because signals near null locations tend to be weaker than those

near non-null locations.
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5. Simulation Studies

We conduct extensive simulations to evaluate the performance of the proposed 2d-

SMT procedure. We consider various simulation settings, including (1) 1d and 2d

spatial domains; (2) known and unknown covariance structures; (3) different signal

shapes; and (4) simple and composite nulls. We investigate the specificity and sensi-

tivity of different methods under different settings by varying the signal intensities,

magnitudes, and degrees of dependency.

We compare the 2d procedure with the following competing methods: Storey’s

procedure (Storey, 2002, ST); Independent hypothesis weighting (Ignatiadis et al.,

2016; Ignatiadis and Huber, 2021, IHW); Structure adaptive BH procedure with the

stepwise constant weights (Li and Barber, 2019, SABHA); Locally adaptive weighting

and screening (Cai et al., 2022, LAWS); Adaptive p-value thresholding procedure (Lei

et al., 2018, AdaPT); Dependence-adjusted BH procedure (Fithian and Lei, 2022,

dBH). As discussed in Section 2.7, our idea can combine with the ST, SABHA, and

IHW methods to further enhance their power by borrowing neighboring information.

We denote the corresponding procedures by 2D (ST), 2D (SA), and 2D (IHW),

respectively, and include them in the numerical comparisons.

Throughout, we focus on testing the one-sided hypotheses H0,s : µ(s) ≤ 0 versus

Ha,s : µ(s) > 0. We set the target FDR level at q = 0.1 and report the FDP and

power (the number of true discoveries divided by the total number of signals) by

averaging over 100 simulation runs. For the set of neighbors N (s) of the location s,
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we use the κ-nearest neighbors for each s. A sensitivity analysis of κ is conducted in

Section S.I.4 of the supplement and empirically suggests κ to be an integer between

2 and 7. In this section, we use κ = 4.

We consider the processX(s) = µ(s)+ε(s) defined on the one-dimensional domain

S = [0, 30]. We observe the process X(s) at 900 locations that are evenly distributed

over S. We introduce three data generating mechanisms for the signal process µ(s)

and consider three signal sparsity levels within each mechanism.

• Setup I: µ(s) = γµ0(s), where γ determines the magnitude and µ0(s) is gener-

ated from B-spline basis functions to control the signal densities and locations.

Three different shapes of µ0(s) are considered, which correspond to the sparse,

medium, and dense signal cases, respectively.

• Setup II: µ(s) = γδ(s) with δ(s) ∼ Bernoulli(π̄0(s)). The non-null probability

functions π̄0(s) exhibit similar patterns as those of µ0(s) described in Setup I.

• Setup III: µ(s) = γG(s), where G(s) follows a Gaussian process with a con-

stant mean µ̄ and the covariance function kµ(s, s′) = σ2
µ exp{− (‖s− s′‖/ρµ)k}

with k = 1, σ2
µ = 3 and ρµ = 0.3. We set µ̄ = −2.5,−2,−1 for the sparse,

medium, and dense signal cases, respectively. Their non-null proportions are

nearly 4%, 8%, and 25%.

The shapes of µ0(s) in Setup I, the generated signals δ(s) in Setup II, and the

simulated signalsG(s) in Setup III are depicted in Figures S.1(a)–S.1(c) of the supple-

ment, respectively. For the magnitude γ, we considered γ ∈ {2, 3, 4} in Setups I and
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III, and γ ∈ {1, 1.5, 2} in Setup II. We generated the noise process ε(s) from a mean-

zero Gaussian process with the covariance function kε(s, s
′; r, k, ρε) = (1 − r)1(s =

s′) + r exp{− (‖s− s′‖ /ρε)k}. Here, r determines the relative percentage of nugget

effect, ρε measures the strength of dependency, and k controls the decay rate of de-

pendence. We demonstrated three different degrees of spatial dependence through

the following choices of (r, k, ρε): (1) r = 0.5, k = 1, ρε = 0.05 (exponential kernel);

(2) r = 0.8, k = 1, ρε = 0.1 (exponential kernel); and (3) r = 0.6, k = 2, ρε = 0.2

(Gaussian kernel). The above (1)–(3) combinations of (r, k, ρε) represent the weak,

medium, and strong correlation among locations, respectively; see Figure S.3 of the

supplement. Here we assume only one observation is available at each location and

the covariance is known.

We applied the competing methods to the generated datasets, and the empirical

FDP and power under Setups I and III are summarized in Figures 2 and 3 based

on 100 replicates. Under Setup I, ST, IHW, SABHA, 2D (ST), and dBH controlled

the FDR reasonably well across all cases. LAWS, AdaPT, 2D (IHW), and 2D (SA)

were inflated for the medium and strong correlation cases, with LAWS being the

worst. 2D (SA) and AdaPT were generally more powerful than the other methods,

while dBH was quite conservative. As expected, the 2d procedures outperformed

their 1d counterparts in terms of power. The results for Setup II were displayed in

Figure S.4 of the supplement and generally similar to those in Setup I. Under Setup

III, the empirical FDPs were close to zero, indicating all methods were conserva-

tive due to the composite null effect. The 2d-SMT procedures provided the highest
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Figure 2: The mean and (1.96 multiple of) the standard error of FDP (Panel A)
and power (Panel B) under Setup I with γ ∈ {2, 3, 4}. The percentages on the top
of bars represent the power improvement of 2d procedures compared to their 1d
counterparts.

power compared to the other approaches. Overall, the 2d-SMT procedures achieved

remarkable improvements in power for either the weak correlation, the sparse signal,

or the feeble magnitude cases. In Section S.I.2 of the supplement, we also per-

formed simulations where the location sizes are increased to m = 2000. With larger

location sizes, the 2d-SMT procedures exhibited more reliable FDR control under

Setups I–II and demonstrated a significant improvement in power under Setup III. In

Section S.I.3 of the supplement, we further considered a spatial process defined on a
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two-dimensional domain with multiple observations at each location to estimate the

unknown covariance. The 2d-SMT procedures generally provided the best trade-off

between FDR and power, especially when the correlation was weak. LAWS achieved

the highest power at the cost of higher FDR. AdaPT provided reliable FDR control

in all cases but their power were dominated by 2D (ST), 2D (IHW), and 2D (SA) for

sparse signals and weak correlation. Additionally, 2d-SMT appeared to be robust to

covariance function misspecifications, as we used an exponential kernel to estimate

the covariance which was indeed generated from a Gaussian kernel.

6. Ozone Data Analysis

Ozone has double-edged effects on human health: ozone in the upper atmosphere

(stratospheric ozone) shields humans from harmful ultraviolet (UV) radiation; while

ozone at ground level (tropospheric ozone) triggers a variety of adverse health effects

on human, sensitive vegetation and ecosystems (Weinhold, 2008; Liu et al., 2022).

The US Environmental Protection Agency (EPA) formulates regulations to reduce

tropospheric ozone levels in outdoor air. The majority of tropospheric ozone occurs

through the reaction of nitrogen oxides (NOx), carbon monoxide (CO), and volatile

organic compounds (VOCs) in the atmosphere when exposed to sunlight, particularly

under the UV spectrum (Warneck, 2000).

We applied our 2d procedures and their 1d alternatives to identify the locations

where the decreasing trend is below a pre-specified level for the Contiguous United

States from 2010 to 2021. The data (see http://www.epa.gov/airexplorer/index.htm)
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Figure 3: The mean and (1.96 multiple of) the standard error of FDP (Panel A)
and power (Panel B) under Setup III with γ ∈ {2, 3, 4}. The percentages on the
top of bars represent the power improvement of 2d procedures compared to their 1d
counterparts.

were the annual averages of the fourth-highest daily maximum 8-hour ozone concen-

trations. To facilitate the analysis, we retained 697 stations (i) having a single

site, (ii) having full records across the years, and (iii) being recorded by the World

Geodetic System (WGS84). A regression model with mean-zero stationary Gaussian

process of error has been widely used to analyze spatial data, e.g., for temperature

(French and Sain, 2013) and for ozone (Sun et al., 2015). We followed the model

in Sun et al. (2015) to obtain the test statistics. In particular, we first fitted the
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following linear model for each location

X(s) = µ0(s) + β(s)t + σε(s)ε(s), (6.1)

where X(s) = (X2010(s), · · · , X2021(s))> was the observed ozone level measured in

parts per billion (ppb), t = (2010, 2011, · · · , 2021)> was the predictor capturing

the time trend, β(s) was the slope at site s, ε(s) = (ε2010(s), · · · , ε2021(s))> was

assumed to follow a mean-zero Gaussian process with the exponential kernel function

kε(·, ·; r, 1, ρε), and σε(s) was the standard deviation of noise at site s. For each β0 ∈

{0.1, 0.2, 0.3, 0.4, 0.5}, we were interested in testing whether the ozone level declined

more than β0 ppb per year at each site, i.e., H0,s : β(s) ≥ −β0 versus H1,s : β(s) <

−β0. We first conducted simple linear regression and obtained the OLS estimates

of {µ0(s), β(s), σε(s)}, denoted as {µ̂0(s), β̂(s), σ̂ε(s)}. Then, we obtained (r̂, ρ̂ε) by

fitting the kernel function to the residuals ε̂(s) := {X(s) − β̂(s)t − µ̂0(s)}/σ̂ε(s).

Finally, the proposed 2d procedures are conducted with the target FDR level at 10%

using the primary test statistic calculated as T̂2(s) = {β̂(s) + β0}/σ̂β̂(s), and the

auxiliary test statistic given by T̂1(s) =
∑

v∈N (s){β̂(v)+β0}/τ̂(s), whereN (s) was the

set containing the two-nearest neighbors of s and τ̂(s) =
∑

v,v′∈N (s) ĉov{β̂(v), β̂(v′)}.

Locations with significant ozone level decline. We applied 2D (ST), 2D (IHW),

2D (SA), and their 1d alternatives to identify the non-null locations. We trisected

the ranges of the latitude and longitude, which divided the whole area into nine

different regions and allocated each site a categorical variable; see Figure S.19 of
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the supplement for the division. Our analysis employed the categorical variable as

the covariate in IHW and as the group indicator in SABHA. As shown in Figure 4,

2d procedures generally discovered more locations with significant decreasing ozone

levels than their 1d counterparts did.

a

b

c

d e
fg

Detect.ST Null ST 2D(ST) ST & 2D(ST)

(a) β0 = 0.2, ST versus 2D (ST)

a b

cd

e

f

g

h

i

j

Detect.ST Null ST 2D(ST) ST & 2D(ST)

(b) β0 = 0.3, ST versus 2D (ST)

(c) β0 = 0.3, SABHA versus 2D (SA)

a

b

c
d e

f

g

h

i

Detect.SA Null SA 2D(SA) SA & 2D(SA)

(d) β0 = 0.5, SABHA versus 2D (SA)

Figure 4: Results for ozone data analysis. The solid triangles (N), solid circles (•),
hollow triangles (4), and plus (+) signs represent the locations detected by the
2d procedure only, the 1d procedure only, both procedures, and neither one of the
procedures, respectively. The labeled locations: (i) are detected by either 1d or 2d
procedures but not both; and (ii) possess either CO or NO2 records across 2010 to
2021. In each sub-figure, the location with a shaded background/ thin-outlined label
indicates the greatest decline in CO/NO2 among the labeled locations.

Ozone precursor. The EPA has been making efforts to reduce tropospheric ozone
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by executing air pollution control strategies, including formulating vehicle and trans-

portation standards, regional haze and visibility rules, and regularly reviewing the

National Ambient Air Quality Standards. The universal ozone precursors (NOx,

CO, and VOCs) first respond to these strategies and then influence the ozone levels.

Indeed, some studies found the emissions of NO2 and CO account for the increase

in background ozone levels (Chin et al., 1994; Vingarzan, 2004; Han et al., 2011).

Motivated by these findings, we collected the contemporaneous CO and NO2 data

from EPA and focused on the locations detected by either the 1d procedures or the

2d procedures but not both. We aimed to scrutinize the trends of CO and NO2 at

these locations and explain our findings.

To this end, we regressed the CO and NO2 levels on t separately and recorded

the slopes to understand the increasing/decreasing trends of the CO and NO2 levels.

We summarized the major findings in Figure 4 and Tables S.1–S.2 (of the supple-

ment). First, the locations detected only by the 2d procedures always included the

ones with the most significant decline in the CO or NO2 levels (i.e., the locations

with the shaded background or thin-outlined labels in Figure 4); see Table S.1 of

the supplement. Second, the average decline (measured by the average of the stan-

dardized slopes) of the locations detected only by the 2d procedures was larger than

that of the locations detected only by the 1d procedures. Take Figure 4(d) as an

example, where we had NO2 records at locations a, b, c, d, f, g, h and i, and CO

records at locations b, c, e, f and h. SABHA detected the locations b and d, while

2D (SA) identified the locations a, c, e, f, g, h, and i. The average decline in the NO2
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levels was -3.63 for the locations detected by SABHA as compared to -4.68 for the

locations detected by 2D (SA). As for CO, the average standardized slope was -0.96

for locations detected by SABHA in comparison to -1.40 for the locations identified

by 2D (SA). In general, the CO and NO2 levels tended to decrease more rapidly for

those locations detected by 2D (SA) except for the case with β0 = 0.3; see Table S.2

of the supplement.

Ozone data simulation. To further validate our findings and to demonstrate the

effectiveness of the 2d procedures, we conducted a simulation where we generated

data mimicking the structure of the original data. Specifically, we generated the

ozone level data from 2010 to 2021 through (6.1) by setting β(s) = β̂(s), µ(s) = µ̂(s),

σε(s) = σ̂ε(s), r = r̂, and ρε = ρ̂ε. We processed the data and conducted multiple

testing in the same way as discussed before. Table 1 shows that the 2d procedures

achieved equal or higher power compared to the 1d alternatives while controlling

FDR under 10%. To assess the robustness of our method, we followed Sun et al.

(2015) to conduct additional simulations by using Gaussian kernel and empirical

covariance matrix to generate synthetic data based on (6.1) and remained to use

the exponential kernel to analyze the synthetic data. The results are summarized

in Section S.I.7 of the supplement, which is consistent with the findings reported in

Table 1.
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Table 1: Mean and standard deviation of FDPs and percentage of true discoveries
(PTDs) for the simulated ozone data. The results are based on 100 simulation runs.

Criterion β0 ST IHW SABHA 2D (ST) 2D (IHW) 2D (SA)

FDP

0.5 0.021(0.028) 0.021(0.027) 0.038(0.036) 0.022(0.029) 0.021(0.028) 0.052(0.040)
0.4 0.019(0.021) 0.018(0.019) 0.024(0.020) 0.021(0.022) 0.018(0.019) 0.028(0.020)
0.3 0.014(0.015) 0.012(0.013) 0.012(0.012) 0.015(0.015) 0.012(0.013) 0.013(0.012)
0.2 0.014(0.012) 0.008(0.009) 0.010(0.009) 0.015(0.013) 0.008(0.009) 0.010(0.009)
0.1 0.014(0.012) 0.006(0.007) 0.007(0.007) 0.014(0.012) 0.007(0.007) 0.007(0.007)

PTD

0.5 0.287(0.123) 0.287(0.120) 0.416(0.150) 0.292(0.125) 0.287(0.120) 0.474(0.151)
0.4 0.409(0.153) 0.393(0.139) 0.474(0.111) 0.414(0.154) 0.393(0.139) 0.506(0.106)
0.3 0.545(0.150) 0.508(0.137) 0.520(0.125) 0.552(0.151) 0.507(0.137) 0.532(0.121)
0.2 0.691(0.125) 0.627(0.112) 0.632(0.114) 0.697(0.125) 0.627(0.112) 0.638(0.113)
0.1 0.796(0.090) 0.714(0.087) 0.721(0.088) 0.799(0.090) 0.714(0.087) 0.725(0.087)

7. Discussion

This paper proposes a new FDR-controlling procedure, 2d-SMT, to improve the sig-

nal detection power by incorporating the spatial information encoded in neighboring

observations. It provides a unique perspective on utilizing spatial information, which

is fundamentally different from the existing covariate and structural adaptive mul-

tiple testing procedures. The spatial information is gathered through an auxiliary

statistic, which is used to screen out the noise. A primary statistic from the location

of interest is then used to determine the existence of the signal. 2d-SMT is partic-

ularly effective when the signals exhibit in clusters. We demonstrate the usefulness

of 2d-SMT through simulation studies and the analysis of an ozone data set. We

recommend 2D (ST) among different variants of 2d-SMT because it provides the

most stable FDR control performance in numerical experiments and enjoys proven

asymptotic FDR control under weak spatial dependence.

To conclude, we point out a few future research directions. First, as discussed
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in Section 2.7, the 2d-SMT is flexible to combine with various weighted BH proce-

dures. One challenge is, however, to establish a rigorous FDR control theory for

the resulting weighted 2d-SMT procedures. Second, we use the κ-nearest neigh-

bors to construct the auxiliary statistic in implementation. A more delicate strategy

is to apply a weighting scheme to pool sufficient information from nearby locations.

Third, extending the idea in 2d-SMT to other statistical problems, such as mediation

analysis in causal inference, is of interest.

Supplementary Material

The online Supplementary Material contains our proofs of Theorems 1 and 2, ad-

ditional numerical results, some discussions about the estimation for the covariance

of noises, the details of Algorithm 1, and the address to download the reproducible

code of this work.
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