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HYPERCUBE DESIGNS VIA GOOD LATTICE
POINT SETS
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L University of Science and Technology Beijing, ? Purdue University

and 3 University of Tennessee

Abstract: Space-filling Latin hypercube designs have found widespread applications in com-
puter experiments, yet the construction methods for such designs pose significant challenges.
Algebraic methods are only applicable to a very limited number of runs and factors, while
algorithmic searches often struggle with computational feasibility for large designs, especially
when there is a need to maintain the statistical efficiency above a certain level. To address
these limitations, an approach is proposed for producing space-filling Latin hypercube designs
that can accommodate flexible numbers of runs and factors. The proposed approach is hybrid
in nature, incorporating an algebraic method and its corresponding algorithm. The algebraic
method, built on good lattice point sets and level permutation techniques, applies to any run
size and flexible numbers of factors. The proposed algorithmic search can further accommodate
any number of factors, especially those not covered by the algebraic method. A theoretical
analysis of optimality is provided for the algebraic component. Numerical studies demonstrate
the superior L,-distance properties of the proposed designs. Furthermore, it is shown that the

proposed designs exhibit good column-orthogonality and projection uniformity as well.

Key words and phrases: column-orthogonality, computer experiment, level permutation, pro-

jection uniformity, space-filling design



1. Introduction

Space-filling designs are widely utilized in computer experiments, such as Latin hy-

percube design (LHD) proposed by McKay, Beckman and Conover] (1979) and uniform

design (Fang and Wang, [1981)). It aims to select experimental runs that efficiently cover

the entire design space. Various criteria have been proposed to assess space-filling prop-

erties, such as the uniformity criterion (Weyl, |1916; |Zhou, Fang and Ning, [2013), max-

imin distance criterion (Johnson, Moore and Ylvisaker, 1990), column-orthogonality

(Owenl, [1994)), ¢, criterion (Joseph and Hung| 2008), projection uniformity

Dean and Santner, 2011) and minimum aberration type criterion (Tian and Xul [2022).

Among them, the maximin distance criterion, which maximizes the minimum pair-

wise distance between design points, is closely connected to other criteria (Joseph and

Hung| 2008; Sun, Wang and Xu, [2019; Wang, Sun and Xu|, [2022). For example,

Sun and Xu| (2022) demonstrated that maximin L,- or Lo-distance designs often per-

form well on criteria of column-orthogonality and projection uniformity, especially for

supersaturated designs , 1993).

Constructing space-filling designs poses significant challenges. Numerous algebraic

construction methods have been proposed, such as Lin, Mukerjee and Tang| (2009),

Zhou and Xu (2015)), Xiao and Xu| (2017) and Wang, Xiao and Xu| (2018). These

algebraic methods are restricted to very specific numbers of runs and factors. For

instance, [Xiao and Xu| (2017) constructed maximin distance LHDs. Their focus was

on saturated and supersaturated designs, accommodating cases where the run size (n)

is a prime number and equals the number of factors (m) or m+ 1. |Zhou and Xu/ (2015)




and [Vazquez and Xu (2024)) proposed the maximin distance design with m = n(n —1)
or m = n(n — 1)/2 for a prime n. To overcome this limitation, algorithmic search
methods are recognized for their adaptability to flexible numbers of runs and factors
(Moon, Dean and Santner|, 2011; Ba, 2013} |Joseph, Gul and Ba, 2015} |Carnell, 2022]).
However, the search space grows exponentially with each additional factor and run,
making it challenging for many existing algorithms to find optimal or near-optimal
solutions within a reasonable time frame.

To address the limitations outlined in the aforementioned existing works, an ef-
ficient method based upon the maximin L,-distance criterion is proposed. There are
two major components in the proposed method: (a) an algebraic method and (b) a
corresponding algorithm. The algebraic method, built on good lattice point (GLP) sets
(Korobov, [1959) and the level permutation technique, allows an arbitrary n and a flexi-
ble m. Specially m ~ ni(n) or m ~ n(n)/2, the Ly- and Lo-distance efficiencies of the
resulting designs are above 93.333% in all cases, where 9 (-) is the Euler function, and
n = n for odd n and n = n+1 for even n. An algorithm based on the algebraic method
is developed for accommodating any number of factors (m) not exceeding ny(n). It
is shown both theoretically and numerically that these proposed designs exhibit ex-
cellent space-filling properties in terms of the L,-distance, column-orthogonality and
projection uniformity:.

The rest of the paper is organized as follows. Section 2] introduces a construction
method and discusses the L;- and Ls-distance of the proposed design. Using those

constructed designs and simulated annealing, this section proposes a hybrid approach



to accommodate any number of columns not exceeding n(n). Section 3| provides a
method to improve the L;- and Ls-distance for the even number of runs. Section
shows (theoretically and numerically) that the proposed designs have other excellent
space-filling properties: column-orthogonality and projection uniformity. Section [f]
provides both quantitative and qualitative comparisons between the proposed method
and the existing works. It is shown that the proposed methods can produce more effi-
cient LHDs than the existing works under these space-filling criteria: the L,-distance,
column-orthogonality, projection uniformity and ¢,. Section m presents concluding

remarks.

2. The proposed construction method: additive column expansion

2.1 Preliminaries

Let (n, s"”) be an n X k (n-run and k-factor) design where each factor takes levels
from the set Z; = {1,...,s}. When each level appears equally often in each column,
(n, sk) is called a U-type design and denoted by U(n, s*). In particular, a U-type design
is called a LHD if s = n. One such example well-studied in the literature is the GLP
set (Korobov, [1959; Zhou and Xu, [2015; Fang et al., |2018)). Let n = ¢i* ---¢;* be the
prime decomposition of n, such that ¢y, ..., q are distinct primes in ascending order
and 7,...,r; are positive integers. Let H,, = {h|gcd(n,h) = 1,h € {1,...,n — 1}},
where ged is the greatest common divisor between two numbers. The cardinality of
H, is |Hn| = ¥(n) = n]]_,(1 — 1/q) where 9(-) is also called the Euler function

in the literature. A design D is called an n x k GLP set if its (i,5)™ element is



2.2 Additive column expansion

x;; = ih; (mod n), where h;’s are distinct elements of #,, and k < )(n). When ih; is
divisible by n, the convention of ih; (mod n) = 0is replaced by n. The h = (hq, ..., hy)
is called the generating vector of this GLP set. Note that each column of the GLP set
is a permutation of {1,...,n}. If & = 1(n), this GLP set has the largest number of
columns and will be denoted by D, hereafter.

Define dy(z;, ;) = v, |zy — 2| as the Ly-distance of the i and j* rows of
a design D, denoted by x; and x;, respectively. Let d,(D) = min{d,(x;, x;) : i #
J, @i, x; € D} be the L,-distance of D. When D is a U(n, s*), Zhou and Xu| (2015))
provided an upper bound of the L,-distance. This bound is defined as the integer
part of the average pairwise L,-distance between rows, denoted as [dpave(D)]. The

formulation of this upper bound for an LHD D is presented in the following lemma.

Lemma 1. (Zhou and Xu, 2015) For an n X k LHD as D, d,(D) < |dpave(D)] =
[P~ Y (n+1) k/(3x2°7Y)] for p=1,2. This bound is achieved when all pairwise dis-

tances of D are equal.

This upper bound is applied to evaluate the L,-distance efficiency of a design D as
Eff,(D) = d,(D)/|dpave(D)|. Note that a design with 100% efficiency is automatically

optimal, while the reverse is not necessarily true.

2.2 Additive column expansion

Let D = (z;;) be an n x k GLP, generated by h = (h4, ..., hj). Under the context

of space-filling designs, |Zhou and Xu (2015) showed that the new design Dy, = (z;; ®

I e



2.2 Additive column expansion

Here, the notation & is a linear level permutation operator as defined by

n it w=n-—uax;,
JTZ‘]'EBU:

zi; +u (mod n) otherwise.

To accommodate a large number of factors, we propose to juxtapose a collection of

such designs as

5<D,U) = (D{u1}> ... D{uv}) ,

and call it the additive column expansion (ACE) of D on U = {uy,...,u,} C Up.
Whenever Uj is used for the construction, the abbreviation £(D) = £(D,Up) is adopted
for any GLP set D. It is shown that £(D,U) is an n x (kv) LHD but not a GLP set.

The L,-distance of £(D,U) is closely related to that of D, as demonstrated below.

Lemma 2. For arbitrary GLP set D and U C Uy, we have dy(E(D,U)) > vd,(D)

where v = |U|.

The bound in Lemma 2 is achieved for specific combinations of D and U, such
as when D is an n X ¢(n) GLP set with n being a prime power, and U4 = {0, 1}.
As v increases, the difference d,(€(D,U)) — vd,(D) does not decrease and tends to
grow larger. It has been demonstrated that GLP sets exhibit favorable space-filling
properties, characterized by discrepancy and the L,-distance (Hua and Wang, [1981)).
These point sets make the ACE an attractive framework for constructing maximin

distance LHDs.



2.3 Theoretical L,-distances of ACEs

2.3 Theoretical L,-distances of ACEs

This section aims to investigate the theoretical lower bounds for the L,-distance
efficiencies of ACEs. We shall focus on cases of p = 1,2, as the L;- and Ls-distances,
are commonly referred to as the rectangular distance and the squared Euclidean dis-
tance, respectively. They are widely employed to evaluate space-filling properties in
experimental design, more than distances with p > 2 (Johnson, Moore and Ylvisaker,
1990; Zhou and Xu, 2015; Wang, Xiao and Xu, 2018; Wang, Sun and Xu, 2022).

A closed-form expression of the L,-distances for ACEs becomes intractable for

other values of m. However, their lower bounds are obtained as follows.

Corollary 1. Forn=gq{"...q", anyU C Uy and D = Dy, we have

3n
if t=1and ¢ =2
int1)
2
i(rz ++q11)) if t=1andq > 2,
n(n
B(ED.0) 2 4
2(an+1) if t=2¢g=2andr; =7y =1,
3(n—1) .
f t=2 2 dri=r,=1.
\4(n+1) 1 ,q1 > 4, and 71 T9

The bound in Corollary [1] is achieved for specific 4 and k(n + 1) (mod 3) = 0,
such as U = {0,1}. As v increases, the value of Eff;(£(D,U)) tends to grow larger.
Based on Theorems 2 and 4 of [Zhou and Xu| (2015), the proof of Corollary (1] follows
directly, which is therefore omitted here. Similar results for p = 2 can be derived using
Theorem 2 of Zhou and Xu/ (2015) and dy(D), where do(D) can be obtained through a

method analogous to that used in the proof of Theorem 4 of |Zhou and Xu| (2015).



2.3 Theoretical L,-distances of ACEs

Table 1: The L;-distance efficiencies of some ACEs.

n m D U dy Effy n m D U dy  Effy
3 2 Dy {0} 2 1 7 6 Dy {3} 13 0.813
4 {0,2} 5 1 12 {0,2} 30 0.938
6 {0,1,2} 8 1 18 {0,3,4} 46 0.958
5 4 D, {0} 6 0.75 24 {0,2,3,4} 62 0.969
8 {0,2} 14 0.875 30 {0,2,3,4,6} 78 0.975
12 {0,2,3} 23 0.958 36 {0,1,2,3,4,5} 94 0.979
16 {0,1,2,3} 30 0.938 42 {0,1,2,3,4,5,6} 112 1
20 {0,1,2,3,4} 40 1 3 D {0} 6 0.75
2 Dy {0} 3 075 6 {3,5} 13 0.813
4 {0,1} 6 0.75 9 {2,4,6} 22 0917
6 {0,1,3} 10 0.833 12 {0,1,2,6} 30 0.938
8 {0,1,2,4} 14 0.875 15 {0,1,3,4,5} 38 0.95
10 {0,1,2,3,4} 20 1 18 {0,1,2,3,4,5} 44 0.917
21 {0,1,2,3,4,5,6} 56 1

Note: d; represents the Li-distance and Eff; represents the L;-distance efficiency.

Example 1. Given n and D, we seek the U that optimizes the ACE under the L;-
distance among all possible sets with the same cardinality. The optimal ACEs for
n = 3,5,7 and D = Dy are displayed in Table [I} It is shown that the L;-distance
efficiencies of all ACEs are greater than 0.75 in most cases (some are reaching 100%).
The situation on the Lo-distance is shown in Table S8 in the supplementary materials.

Overall, ACE performs well on the L;- and Ls-distance criteria.

First, the ACE with the largest number of factors is considered, i.e., D = Dy and
U = Uy, denoted as E(Dy). The closed-form expressions of those distances for £(Dy)

are provided as follows.

Theorem 1. Forn = ¢ ...q", let k =(n) and p=1,2. The L,-distance of E(Dy)



2.3 Theoretical L,-distances of ACEs

18

n?(n® + qi) (g — 1)
2p_13(]1

”p+2(Q1CI2 —1) HLl(‘H — 1)
20-13q145 [ [1—y a

it t=1,

if ¢t>1.

Theorem [1| provides the closed-form expressions for the L;- and Lo-distances of
E(Dy) with any run size. This result generalizes the findings from Zhou and Xu (2015)
from a prime n to an arbitrary n. To further accommodate a more flexible number of
factors, the designs constructed with arbitrary values of k < 1 (n) are considered in
the following.

For a given GLP set D generated by h = (hy,..., hy), its dual design is the GLP

set generated by h' = (n — hy,...,n — hy), denoted by D'.

Lemma 3. For an arbitrary U C Uy and a pair of dual GLP sets, say D and D', their

ACFEs E(D,U) and E(D',U) have the same Ly,-distance for any p.

When h and h' have no common elements, D and D’ are called strictly dual.
Note that the column numbers of the strictly dual GLP sets do not exceed 1(n)/2
since n — h € H, if and only if h € H,. Let D; be a GLP set generated by half of
the elements in H,, such that its dual D] is its strict dual. Then, the two proposed
designs £(D;) and £(D}) have the same number of columns as ni(n)/2. Note that
they complement each other in the sense that the column juxtaposition of £(D;) and
E(D]) reassembles £(Dy). If we change Dy to Dy, Corollary (1| remains valid. The L;-
and Le-distance efficiencies of the ACEs with D = D, are listed in Table [1] and Table

S8. The ACEs perform well on these criteria. Based on Lemma [3] Theorem 2] allows

9



2.3 Theoretical L,-distances of ACEs

us to calculate the L;- and Lo-distances of £(D;) and £(D7).
Theorem 2. For Dy, Dy, D) as defined earlier and any p, we have
(i) dp(E(D1)) = dp(E(D1)) = dp(E(D0))/2,
(i) d,(E(Dy)) > dy(E(D)) for any n x ((n)/2) GLP set D,
where d,(E(Dy)) is as shown in Theorem [1]

Combining Theorem [1]and Theorem [2[(i), we obtain the closed forms of the L;- and
Lo-distances of £(D;) and £(D}). Moreover, Theorem [2| proves that both £(D;) and
E(D}) reach the maximal L,-distance among all £(D)’s, where D is an n x (¢(n)/2)

GLP set.

Theorem 3. Given any n and p, we have d,(E(D.)) = d,(E(D})) > d,(D), for any D

that is an n x ny(n)/2 submatriz of E(Dy)

While Theorem [2] establishes the optimality of £(D;) among all £(D)’s with D
being an n x ¥ (n)/2 GLP set, Theorem [3| strengthens this result by demonstrating
the optimality of £(D;) over all possible ni(n)/2-column combinations within £(Dy).
Combining Theorems [I] & [2] and Lemma [T, the lower bounds of the L,-distance effi-

ciencies for the proposed designs can be derived as follows.

Theorem 4. Let p = 1,2 and D = Dy or Dy. Given any n, the L,-distance efficiency

of £(D) follows

Y E R T
B £(D)) = —2ED) o GED) ! O(n n2> ft=1,
P Ldp,ave(g(D))J - dpvave(g(D)) 1_O(L+l) o
@iq2 N
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2.3 Theoretical L,-distances of ACEs

The implications of Theorem {| are as follows. For the prime n, i.e. t = 1 and
ry = 1, £(D) is an equidistant design and its L,-distance reaches the upper bound
dpave- This design serves as a maximin distance design with Eff,(£(D)) = 1. For
the prime power value of n, i.e. t =1, £(D) is asymptotically optimal under the L;-
and Lo-distance criteria. Otherwise, for ¢t > 1, the limiting efficiency is Eff ,(£(D)) —
1—1/(q1q2) as n — oo. That is, among the nonprimer power n, the limiting efficiency
depends on the two minimum prime numbers in its decomposition. This is because
the terms associated with other primes in the numerator are identical to those in the
denominator. The limiting efficiency increases as ¢;¢2 increases. When (1, ¢2) = (2, 3),
the limiting efficiency reaches its minimum value of 1 —1/(q1¢2) = 1 —1/6 = 83.333%.
In all other cases, except for (q1,q2) = (2,3), the resulting designs yield the limiting
efficiencies of at least 90% occurring at (q1, ¢2) = (2,5). A remedy for those not-so-ideal
cases of (q1,q2) = (2, 3) through the leave-one-out method (Fang and Wang, [1981) will
be provided in Section [3

For any U = {uy, ..., u,} C Uy, its dual set is defined asU’ = {n+1—wuq,...,n+1—
Uy} (mod n). The following lemma reveals the relationships between different ACEs

in terms of the L,-distance.

Lemma 4. Let D and D’ be a pair of n x k dual GLP sets, and U and U" be a pair
of dual sets contained in Uy. For any p, the two ACEs E(D,U) and E(D',U’) have the

same L,-distance.

Unlike Lemma 3] Lemma (4] allows for both the GLP set D and index set U to

be replaced by their dual simultaneously. Combining Lemmas [3| and 4] it holds that

11



2.3 Theoretical L,-distances of ACEs

the L,-distance of £(D,U) remains unchanged if D is replaced by D’ and/or U is
replaced by U'. Note Dy is the dual of itself, i.e. Dy = Dj. Next, the ACEs with
D = Dy and U € {U,,Us} are theoretically investigated for Uy = {1,...,[(n —1)/2]}
and Uy = {1,...,[(n+ 1)/2]}. Here, U; and U, are only one element different when
n is odd, and U; = U, for an even n. Based on Lemma [d] the L;- and Lo-distances of

E(Dy,Uy) and E(Dy,Us) are shown in the following theorem.

Theorem 5. Let p =1,2. For Dy, Uy and Us as defined earlier, we have
(1) when n is even, d,(E(Do,Uy)) = d,(E(Dy,Us)) = dp(E(Dy))/2;
(ii) when n is odd,

(n — 2753%77)d, (£(Dy))

X if U=,
dp(g(Dl)?U)) =
+ 2P=3327P)d,(E(D ,
(n 2n) p( ( 0)) lf u :uz,

where d,(E(Dy)) is as shown in Theorem [1

The designs considered in Theorem [§| have either [(n—1)/2]¢(n) or | (n+1)/2]¢(n)
columns, which is similar to that of £(D;). Note that £(Dy,U;) and E(Dy,Us) com-
plement each other in £(Dy), as well as E(Dy,U;) and E(Dy,Usz). Their L,-distance

efficiencies are obtained as follows.

Corollary 2. Let p = 1,2. For the proposed designs in Theorem [5 and U = U, or Uz,

12



their L,-distance efficiencies follow

1 if t=1,
Eff,(E(Do,U)) — as n — 00.

1— L if ¢t>1,
q1q2

Furthermore, the L,-distance efficiency of each design follows the same order as that

of the design in Theorem [

The Li- and Lo-distance properties of the proposed designs have been investigated
so far for arbitrary values of n. The theoretical results focus on the number of factors
being either m ~ ni(n) or m ~ nip(n)/2, depending on whether the GLP set D; is used

instead of Dg or the index sets U; and Uy are used (instead of Uy for the construction).

3. Leave-one-out additive column expansion

The ACE can efficiently deal with any run size n, and it is particularly well-suited
for odd values of n, as evident from the theoretical results presented in Theorem |3| and
Corollary [2l Tt has been observed that there could be occasional drops in efficiency for
an even n. For instance, when n is a multiple of 6 with (q1,¢2) = (2,3), the limiting
efficiency lower bound equals 83.333% and ¢ (n) does not exceed n/3, implying that
the maximum number of factors that can be constructed by the ACE is n?/3. In such
cases, we shall use the leave-one-out technique (Fang and Wang), [1981) to improve the
efficiency and scalability of resulting designs. This method first constructs an (n + 1)-
run ACE and then adjusts all levels to 1,...,n by removing the last row of the ACE.

As an example when n = 6, this method entails removing the last row of the 7-run

13



E(Dy)as (7,...,7,1,...,1,...,6,...,6) and adjusting all levels to 1,...,6. It is shown
that the resulting design is a 6 x 42 LHD with an L,-distance efficiency of 95.918%.
We call such a design the leave-one-out additive column expansion (LACE).

The LACE can be systematically constructed by a leave-one-out good lattice point
(LGLP) set D. An n x k array (wij)1<i<ni<j<k is called an LGLP set D if TR
ih; (mod n + 1), where h;’s are distinct elements of H,,4; and thus k< ¢(n + 1). Note
that each column of the LGLP set is a permutation of {1,...,n}. The difference
between this n-run LGLP set and the (n + 1)-run GLP set constructed by the same
generating vector is that the former excludes the row with all elements being n + 1.
Nevertheless, the two designs have the same L,-distance. When k = ¢(n + 1), D has
the largest number of columns and will be denoted by D, hereafter. In comparison,

the n-run GLP set Dy has t(n) columns while the n-run LGLP set D has ¢(n + 1)

=t i) >

where the operator @, is defined by

u if u=n+1-uay,
IL‘,']‘@LU =

Ty +u  (mod n+1) otherwise.

Each column of D{u} is a permutation of {1,...,n}. ForasetU = {uy,...,u,} C Uy, an
LACE can be constructed by the LGLP set D and U, as £(D,U) = (Dfuy}, - - - D)
This expansion is abbreviated as £(D) when U = U,. Note that £(D,U) forms an
n x (kv) LHD. For example, the 6 x 42 LHD discussed in the previous paragraph is

an LACE constructed by the 6 x 6 LGLP set Dy and Uy = {0,...,6}. Let (n+ 1) =

14



c’ffl e qN:;f be the prime decomposition of n+1, such that ¢, ..., ¢; are distinct primes in
ascending order and 7y, ..., 7; are positive integers. Without loss of generality, assume

that ¢; < --- < ¢;. The following theorem provides the closed forms of the L;- and

Lo-distance for the largest design £(D).

Theorem 6. Let p = 1,2. For an arbitrary even n (i.e. ¢ = 2), the L,-distance of

E(Do) 18

(4P Ha - D)((n+ 1) +a(n+1) =223((n+1)* =) 7,
d,(L(Dyg)) = ] o |
T e 0 @ - D+ D@d— ) =2 B@e ) o

20136162 14—, G

Theorem @ provides the closed forms of the Li- and Lo-distances for £(Dy). For
an n x m LGLP set D generated by h = (hy, ..., hg), its dual design is the LGLP set
generated by h* = (n +1— hy,...,n+ 1 — hy), denoted by Dt. When h and h*
has no common elements, D and D' are called strictly dual. Let D; be an LGLP set
generated by half of the elements in H,, 1, such that its dual f)f is its strict dual. For
any U = {uy, ..., u,} CUp, its dual set is defined as Ut = {n+1—uy,...,n+1—u,}
(mod (n + 1)). The results in Lemmas [3] and 4] and Theorem 2] regarding ACE also

have their LACE versions, as explicitly stated below.

Corollary 3. For any p and an arbitrary U C Uy, we have

(i) dp(L(D,U)) = dy(L(D,UT)) = dp(L(DT,U)) = dy(L(DT, UT));

15



where d,(L(Dy)) is as shown in Theorem @

Corollary [3| shows that the L,-distance of £(D,U) remains unchanged if D is
replaced by Dt and/or U is replaced by UT. When U = Uy, it is shown that £(D;)
has the largest L,-distance among all £(D)’s, with D being an n x ()(n+1)/2) LGLP
set. Moreover, the L,-distance of £(D;) is half as much as d,(£(Dy)).

Let U3 = {0,1,...,|n/2]}. Based on Corollary [3| the closed forms of the L;- and

Lo-distances for the two special LACEs of Dy on either U; or Us are provided as follows.

Theorem 7. Let p = 1,2 and n be an even integer. For Dy, Do, Uy and Us as defined

carlier, we have
(i) du(L(Do,Un)) = di(£(Dy)) — di(€(Do))/2;
(i) da(L(Do,Un)) = (d2(L(Dyo)) — A(n))/2;
(iii) di(L(Do,Us)) = di(E(Dy))/2;

(iv) dy(L(Dy,Us)) = da(E(Dy))/2 — di(E(Dy))/4 when n+ 1 is a prime,

where d,(L(Dy)) is as shown in Theorem @ d,(E(Dy)) is as shown in Them“em

(replacing n by n + 1 here) and

(n+ D(@n(n —1) — (n+1-G)(n+1 - 2q)) >
3G
(n+ 1) (Mio(@d2 — 0) = B Tizo(@ — O — B Tiol@ — 0) Timgl@ — 1)

36263 [1p—y e

A(n) =

In Theorem [7} the LACEs have either ni(n + 1)/2 columns or (n + 2)¢(n +1)/2

columns for an arbitrary even n, which has a similar design size as £(D;). When n + 1

16



is a prime, the proposed design £(Dy,Us) is an equidistant LHD achieving the upper
bound d,, »v under the L;- and Lo-distance criteria. Analogous to Theorem @, we have

the following result.

Corollary 4. Let p = 1,2 and n be an even integer. For each D in Corollary @ (i1)

and Theorem@ its Ly,-distance efficiency follows

1 ql) oz
1_0(——— it t=1,
Bt () — 5@ 5 b(D) _ non
’ [dpare(P)] ~ dpare(P) | (L + 1) if #>1
Qg2 n

When n + 1 is a prime power, i.e. t = 1, the LACE D is asymptotically optimal
under the L;- and Ly-distance criteria. When ¢ > 2, we have the limiting efficiency
of 1 —1/(¢1G2) as n — oo. The efficiency is at least 93.333%, with the lowest value
obtained when (g1, g2) = (3, 5).

For an arbitrary even n, i.e., ¢ = 2, it holds that ¢(n) < ¥(n + 1), such as
(14) = 6 < ¢(15) = 8. This implies that for an even n, the number of columns in the
LACE with the greatest number of factors exceeds that of the ACE with the greatest
number of factors. Moreover, the LACE improves the limiting L;- and Lo-distance
efficiencies from 83.333% (ACE in Section to 93.333% for an arbitrary even n. In
the context of efficiency and the number of factors, it is advisable to use the ACE for

odd values of n, and use the LACE for even values of n.
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4. Design properties: column-orthogonality and projection uniformity

4.1 Column-orthogonality

In variable selection, column-orthogonality is a desirable feature of a two-level
supersaturated design since estimates of effects will be uncorrelated. |Owen (1994)
proposed the mean squared correlation metric to measure the column-orthogonality of
a k-factor design D, which is defined as p?(D) = 2 Zf;ll Zf:jﬂ 0%/ (k(k — 1)), where
pj is the sample correlation between the jth and /th columns of D. A design D is
column-orthogonal if and only if p?(D) =0 (0 < p?(D) < 1).

Wang, Sun and Xul (2022) established a connection between p? and the Ly-distance
of a design in their Theorem 2 and Corollary 1. They demonstrated that a larger Lo-
distance value corresponds to a smaller p? value. The p? reaching its lower bound if
and only if the design is equidistant, which corresponds to a maximin distance design.
Denote the largest value among all pairwise L,-distances of a design D by d;'**(D).
Based on Theorem , we derive the closed forms of d;'**(E(Dy)) and d**(E(D»)) as

follows.

Lemma 5. For p = 1,2, it holds that

nP2(gi — 1)
20137
" (g + DT (¢ — 1)
2p_13Q1 H;:l qe

if t=1,
dy**(E(Do)) =
if t>1.

Moreover, we have dy**(E(D,)) = d**(£(Dy))/2.

Combining Theorems with Lemma [5] we obtain the upper bounds of =, for
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4.2 Projection uniformity

E(Dy) and £(D;). Then, we derive the following upper bounds of the p? for these

designs.

Theorem 8. For Dy and Dy as defined earlier, we have

n*Y(n)(d5**(E(D)) — daave(E(D)))?
(n = 1)(nip(n) — A)d3 . (E(D))

2,ave

p*(E(D)) < LB (£(D)) +

where LB2(D) = max{(k+1—-n)/(n—1)/(k—1),0}, A=14fD =Dy, and A =2

When n is a prime, the equal sign holds. The resulting proposed designs £(Dy)
and £(D;) are equidistant, ensuring their optimality under the p* criterion. Moreover,
L(Dy,Us) is the optimal LHD under the p? criterion when n + 1 is a prime since
Theorem [7| proves that E(DO,Z/{3) is an equidistant design. It is intractable to provide
tight upper bounds of the p? of an arbitrary proposed design except for the designs in
Theorem [§] [Wang, Sun and Xul (2022) stated that the maximin distance design under
the Lo-distance criterion tends to have a small p?. The proposed LHDs often have

smaller p?’s.

4.2 Projection uniformity

It is well known that good projections to all subspace-fillings of factors are im-
portant in computer experiments (Moon, Dean and Santner} 2011; |Joseph, Gul and
Ba, [2015). Based on the centered Lo-discrepancy, Sun, Wang and Xul (2019) proposed
the two-dimensional uniform projection criterion of D = (n, s*) as ¢(D) =23 oy €D
(Dq) /(k(k — 1)) where the (squared) centered Lo-discrepancy is defined as CD(D) =
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4.2 Projection uniformity

L/n? 370y 325 Ty (L4 1/2 2l + 1/2 || = 1/2 |2 — zal)=2/n 30 TT, (1 +1/2

|za| — 1/2 |Zz‘z|2) + (13/12)%, 2z = (2z4 —s+1) /(2s), Q is a two-element subset of

{1,2,...,k} and Dq, is the projected design of D onto dimensions indexed by the el-
ements of 2. A design is called a uniform projection design if it has the minimum ¢
value. Sun, Wang and Xu| (2019) and Wang, Sun and Xu/ (2022) connected the two-
dimensional projection uniformity with the L;-distance. Wang, Sun and Xu| (2022)) also
established a connection between ¢ and the L;-distance of a design in their Lemma 4
and Corollary 2.

Combining Theorems [1} 2] and [7, we can obtain the upper bounds of Z; for £(Dy),
£(Dy) and L£(Dy,Us). Then, we derive the following upper bounds of the ¢ of these
designs. The following theorem indicates that £(Dy) and £(D;) are also the optimal
LHDs under the ¢ criterion when n is a prime, as well as ﬁ(DO,L{g) when n + 1 is a

prime.
Theorem 9. For Do, Dy, Dy and Us as defined earlier, we have

(n+ 1)*(n — 1)y (n)(d]*** (E(D)) — drave(£(D)))?
36n°(n1(n) — A)di .. (£(D)) ’
n?(n +1)(n — 2)y(n)(d*** (£(D1)) — di ave(£(D1)))?
36(n — 1)3((n + 1)to(n) — 2)d3 .. (£(D1)) ’

$(€(D))) < LBy (£(D)) +

¢(L(Do,Us)) < LBy (L(Do,Us)) +

where LB4(D) = (5k(4n* + 2(13n — 17)n* — n+5) — (n — 1)(8n* + 150n% — 33)) /(720

n*(n —1)(k — 1)) + (14 (=1)")/(64n*), D and A are defined in Theorem[§

The equal sign holds for £(Dy) and &(D;) when n is a prime, and for £(Dy,Us)
when n + 1 is a prime. These designs exhibit equidistant properties under the L;-

distance, ensuring their optimality under the ¢ criterion. The above uniform projection
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criterion primarily emphasizes two-dimensional projections. To provide a thorough
evaluation of projections beyond two dimensions, |Joseph, Gul and Ba| (2015) proposed
the maximum projection criterion, which is defined as ¢(D) = {Z?;ll Y L/ Hle
(xq — x51) /(;‘)}l/k A design D is called a maximum projection design if it has the
minimum ¢(D) value. The existing literature can only search for optimal designs
under the maximum projection criterion using algorithmic methods, due to the lack of
theoretical support to construct them systematically.

In addition to the L,-distance, a commonly used distance-based criterion for mea-
suring space-filling LHDs is the ¢, criterion (Joseph and Hung, 2008). The lower and
upper bounds of ¢, criterion can be straightforwardly derived from Lemma (I} Theo-
rems [}, 5 [6] and []] We will utilize the ¢, criterion to conduct comparisons between

the proposed algorithms and the existing algorithms in Section [6]

5. The algorithms based on (leave-one-out) column expansions

To further accommodate an arbitrary number of factors (m), a straightforward
approach is to apply a stochastic search algorithm to find the best collection of m
columns among the ny(n) columns within the largest ACE as £(Dy). This idea can be
implemented with the assistance of simulated annealing (SA) proposed by Kirkpatrick,
Gelatt and Vecchi| (1983)). Its pseudo-code is provided in Algorithm 0. Corollary
demonstrates that £(Dy) is a good candidate set of design columns. Not only does
it has the maximal number of columns compared to other ACEs, but it also exhibits

a high L,-distance efficiency. The tuning parameters of Algorithm 0 are primarily
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derived from those used in the Simulated Annealing (SA) algorithm, including the
initial temperature 7', the decreasing rate: r and the threshold value: ¢;. These
parameters have been extensively studied in the literature. Specifically, the initial

temperature 7' is set to approximately 10AFE,,,, where AF,,, represents the average

Vg
change in the objective function value when moving between neighboring solutions
(Kirkpatrick, Gelatt and Vecchi, 1983; Ben-Ameur, 2004). To balance convergence
speed and efficiency, many studies recommend r = 0.95 as a standard choice for the
SA algorithm (Singh and Baghel, 2021; Blanzeisky and Cunninghaml, 2022)). A common
stopping criterion involves halting the algorithm when the temperature falls below a
certain threshold (d1), typically set to no larger than 1072,107% or 10~%. Algorithm

0 is able to accommodate any m not exceeding ny(n). An example with m < n is

provided in Example [2] below.

Algorithm 0: The best collection of m columns from £(Dy) by simulated

annealing

Input: the run size: n, number of factors: m, GLP set: Dg, positive integer: p,
initial tuning parameter: T, tuning parameter decreasing rate: r € (0,1),
threshold value: 67;

Output: the design D.

set D = Dy and D as random m columns among the ni(n) columns in £(Dy);

-

2 while T" > §; do
3 randomly interchange two columns drawn from D and £(D)\D, and denote the
updated D as Dyry;

4 if Eff,(D) < Eff)(Dyry) then

5 ‘ set m=1;

6 else

7 | set = exp ((Bffp(Diry) — Eff(D))/T);
8 end

9 update design: D < Dy, with probability 7;
10 update tuning parameter: T < rT7;
11 end
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Table 2: The Li-distance efficiencies of the LHDs generated by Algorithms 0 and Op.

Algorithm 0 Algorithm 0f,
n m dl Effl n m d1 Eﬁl n m dl Effl n m d1 Eﬁl
3 2 2 1 7 4 8 0.8 4 2 3 1 6 3 6 0.857
3 4 1 5 10 0.769 3 4 08 4 8 0.889
5 4 6 075 6 13 0.813 4 6 1 5 10 0.909
5 9 09 7 16 0.889 6 13 0.929

Note: d; represents the Li-distance and Eff; represents the L;-distance efficiency.

Example 2. For each n in Example [, Algorithm 0 is employed to construct some
LHDs with m < n. Their L,-distances and L;-distance efficiencies are displayed in the
left side of Table 2] The L;-distance efficiencies of the LHDs generated by Algorithm
0 are higher than that of ACE in Table [ Furthermore, Algorithm 0 is able to ac-
commodate a wider range of design sizes, including (n,m) = (3,3),(5,5), and (7,4).

Additional results for n < m will be provided in Section [6.2]

When the design space is large, Algorithm 0 may not be feasible. To address this
issue, we start with a well-chosen initial design. In view of Lemma 2] and Corollary
the ACE of either D, or D, is a suitable choice of the initial design, due to its good
space-filling property. Specifically, we add a step in the initial phase of Algorithm
0 to search for a high L,-distance ACE. This additional step unfolds as follows. An
elementary n x k GLP set D is first selected. Then the SA method is employed to
search for the index set ¢ (and the remaining m — kv columns if m — kv > 0), with the
constraint kv < m. In each iteration of SA, one element is randomly chosen from the
current U to exchange with one randomly selected element from Uy\U. The new U is
denoted as Uy,y. If m — kv > 0, the remaining m — kv columns are filled with randomly

selected columns Dtry from £(D,Uy\Uiry). The resulting new design is denoted as
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Dy = (E(D,Usry), Dtry), which is adopted with probability 7 as specified above. The
iteration stops when there is no further improvement of Dy, in the L,-distance efficiency
over several consecutive iterations. Upon iteration completion, the resulting design
serves as the initial design for Algorithm 0 if the current tuning parameter remains
above a pre-specified threshold. This tuning parameter is transmitted to Algorithm 0
as the initial tuning parameter. This algorithm stops when the tuning parameter falls
below a pre-specified threshold.

Corollary (1| indicates that choosing the ACE of Dy and D; is advantageous for
generating designs with large L,-distances. The aforementioned proposed algorithm
utilizes Dy, Dy and D) to yield Algorithms 1-3. Specifically, these algorithms indi-
vidually select ACEs of Dy, ACEs of Dy, and combinations of ACEs of D; and D] to
be the candidate set. The stopping criteria are controlled by the tuning parameters
01, 02, and K. A vector v is introduced to record historical L,-distance efficiencies to
continuously check the stopping criterion of the first iteration loop. The details for
three specific algorithms based on SA are provided as follows.

In Algorithm 1, Dy serves as the elementary GLP set to produce the skeleton ACE.
The loop in lines 4-16 of the algorithm is designed to identify the optimal U that works
best with Dy, aiming to generate an LHD with high efficiency. The iteration will stop
when the variance of the most recent x L,-distance efficiencies is smaller than d, or
the tuning parameter is below d;. The resulting design serves as the initial design for
Algorithm 0 if the tuning parameter remains above ¢;. Notably, the recommendation

for 07 is also applicable to dq, as their purposes are similar. Based on empirical evidence,
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Algorithm 1: The Dy-based algorithm
Input: the run size: n, number of factors: m, GLP set: Dy, positive integer: p,
initial temperature: T, decreasing rate: r € (0, 1), number of consecutive
iterations: k, threshold values: d; and ds;
Output: the design D.
1 set Uy ={0,...,n—1} and v = 0;
2 set v =|m/¢¥(n)|, K =m (mod ¢(n)) and D = Dy;
3 randomly draw a U = (uy,...,u,) C Uy and K columns from &(D,Us\U) to be D,
and set D = (£(D,U), D);
4 while (T > 61) and (|v| < k or 0® > §3) do
update historical L,-distance efficiencies: v = (v, Eff,(D)), calculate the
variance for the most recent x Ly-distance efficiencies in v and denote this
variance by o2;
6 randomly interchange two elements drawn from U and Uy\U, and denote the
updated U as Uiry;
7 randomly draw K columns from &(D,Uy\Usry) to be Diyy;
set Diry = (E(D,Usry), Diry);
if Eff,(D) < Eff)(Dyry) then

10 ‘ set m=1;

11 else

12 | set ™ = exp ((Eff(Dyy) — Eff,(D))/T);

13 end

14 update design and index set: U <— Uiy and D < Dy, with probability r;
15 update tuning parameter: T <+ 7717

16 end

17 run lines 2-11 of Algorithm O;

we recommend setting x = 10 in simulations. Algorithm 0 stops when the tuning
parameter falls below a pre-specified threshold ¢;. The final output design D is a
(nearly) maximin distance LHD. In Algorithm 2, D; serves as the elementary GLP set
instead of Dy. For the cases of m > ni(n)/2, the first ny(n)/2 columns of the output
design are £(D!) and the remaining m —ni(n)/2 columns are selected among columns
of £(D;) with the same algorithm except for some small adjustments. Algorithm 3 is
proposed to study a more flexible framework where ACEs of D; and D’ work together
to form an efficient LHD. More discussions and comparisons of Algorithms 1-3 are

provided in the supplementary materials.
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Algorithm 2: The D;-based algorithm
Input: the run size: n, number of columns: m, GLP set and its strictly dual: Dy
and D/, positive integer: p, initial tuning parameter: T', tuning parameter
decreasing rate: r € (0,1), number of consecutive iterations: r, threshold
values: 41 and d9;
line 2: set K =m (mod (¢(n)/2)), D = Dy and D' = D}; if m = nip(n)/2, set
D = &(D) and stop the algorithm; if m < ni(n)/2, set Dgx = 0 and
v=1[2m/y(n)]; if m > n(n)/2, set Dy = E(D') and v = [2m/y(n)] —n;
line 3: randomly draw a U = (uy,...,uy) C Uy and K columns from E(D,Uy\U) to
be D, and set D = (Dygy, £(D,U), D);
line 8: set Diyy = (Dhix, E(D, Uy ), Diry );
run lines 1, 4-7, 9-17 as those in Algorithm 1;
Output: the design D.

Algorithm 3: The (D;, D)-based algorithm

Input: the run size: n, number of columns: m, GLP set: Dy, GLP set and its
strictly dual: Dy and D}, positive integer: p, initial tuning parameter: T,
tuning parameter decreasing rate: r € (0, 1), number of consecutive
iterations: k, threshold values: d; and ds;
line 2: randomly draw an integer partition as m = mj + meo with non-negative my
and ma, set v; = [2m;/¢¥(n)], K; = m; (mod (¢(n)/2)) for i = 1,2, D = Dy and
D' = Dy;

line 3: randomly draw the v;-element subset of Uy to be U* for i = 1,2, K; columns
from £(D,Uy\U") to be D' and K3 columns from £(D’,Uy\U?) to be D?, and set
D = (&(D,U"),E(D',U?), D', D?);

line 6: randomly draw an i € {1,2}, randomly select one of the two operations: (i)
randomly interchange two elements drawn from U* and Uy \U?, (ii) randomly delete
an element of U* and add an element from Uy\U? to U’ for j € {1,2} and j # i,
and denote the updated U' and U? as Z/ltlry and Ufry respectively;

line 7: randomly draw K columns from & (D,Z/{O\Z/{tlry) to be Dtlry, and Ky columns
from (D', Up\UZ,) to be Dfry;

line 8: set Dyry = (E(D,Uy), E(D',UL,), DLy DE);

line 13: update design and index set: U! < Z/{tlry, U? Z/{fry and D < Dy, with
probability 7r;

run lines 1, 4-5, 9-13, 15-17 as those in Algorithm 1.

Output: the design D.

Besides the SA algorithm, the proposed hybrid approaches can accommodate var-
ious stochastic algorithms, such as the genetic algorithm (Mitchell, [1998) and the par-

ticle swarm algorithm (Kennedy and Eberhart|, 1995). In contrast to directly applying
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these algorithms for the search of maximin distance designs, Algorithms 0, 1, 2 and 3,
leveraging the ACE structure with high L,-distance efficiency, can yield more efficient
designs. Algorithms 1-3 employ a well-chosen initial design via the geometric structure
of ACE. Compared to Algorithm 0, Algorithms 1-3 will accelerate the search process.
This is particularly important when n is large. These three algorithms are inclined to
construct highly efficient designs. Numerical comparisons will be presented in Section
6.2

For an even n and an arbitrary m, we shall modify Algorithms 0, 1, 2 and 3 by
replacing the ACE component therein with the corresponding LACE, and we shall refer
to these new algorithms as Algorithms 1;, 27, 31, and S1;. Further details on them
are deferred to the supplemental materials. They are expected to yield improvements

over Algorithms 0, 1, 2 and 3 when n is even.

Example 3. For n = 4 and 6, Algorithm 0 is used to construct LHDs under the
Lq-distance with m < n. Their L;-distances and Li-distance efficiencies are displayed
in the right side of Table The L;-distance efficiencies of the LHDs generated by
Algorithm 0y are notably high, ranging from 80% to 100%. More results are presented

in Section [6.2

6. Comparisons with the existing works

6.1 Qualitative comparisons

Existing algebraic methods are applicable to specific configurations of run size (n)

and number of factors (m), limiting their flexibility in accommodating arbitrary design
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6.1 Qualitative comparisons

sizes. For instance, the construction methods introduced in Xiao and Xu (2017) and
Wang, Xiao and Xu (2018) are only applicable when either n or 2n + 1 is a prime and
m € {n — 1,n}. Zhou and Xu (2015) and [Vazquez and Xu (2024) proposed maximin
distance designs with m = n(n—1) or m = n(n—1)/2 where n is a prime. Besides, there
is a category of innovative construction methods that expand a space-filling design (B)
through level and/or column expansions based on a specific algebraic structure (A) to
achieve larger space-filling designs (D). The space-filling property of the input design
B ensures that of the resulting design D. However, achieving this goal is challenging
since constructing the input design B is only possible for limited run sizes. In contrast,
the algebraic component of our method allows an arbitrary n and m = kv. The cases
of m =~ mp(n) or m ~ n(n)/2 have been theoretically studied and their asymptotic
optimality has been established.

Algorithmic search methods are only available for small numbers of runs and fac-
tors, such as |Ba| (2013)) and (Carnell (2022). In contrast, our algorithmic component
handles an arbitrary m < ni(n) for all values of n. Numerical studies demonstrate
that the proposed algorithms can efficiently yield (nearly) optimal LHDs under the L;-
and Lo-distance criteria.

To accommodate arbitrary values of n and m, one can employ a stochastic algo-
rithmic search to augment n — ny rows and m — ny columns for the ny x ny (n > ny,
m > nq) optimal L;-distance LHD proposed by |Wang, Xiao and Xu| (2018). This LHD
is limited to the case where 2n; 4+ 1 is a prime. Such a method generally underperform

the proposed algorithms. More details are presented in the supplementary materials
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6.2 Quantitative comparisons

(Section S3.2).

6.2 Quantitative comparisons

In this section, the proposed method is compared with two of the most commonly
used algorithms for constructing arbitrary space-filling LHDs: “SLHD” (Baj, 2013) and
“Ihs” (Carnell, 2022) in the R-packages. Set T' = 1, r = 0.95, x = 10 and d, = 10~
The quantitative comparisons demonstrate that the proposed algorithms outperform
“SLHD” and “lhs” under the space-filling criteria of the L,-distance, p*, ¢, ¢; and ®.

For n = 7and m € {2,...,n¢(n)} = {2,...,42}, Algorithms 0, 1, 2 and 3 are
compared with “SLHD” and “lhs” under the L;- and Lo-distance criteria. Three choices
of (81, R) as (3.5 x 1071,50), (7.5 x 1072,200) and (3.5 x 1075, 1000) are provided where
01 is the tuning parameter and R is the number of iterations corresponding to d;. For
each (m, R), each algorithm is repeated 500 times and the averages of the L;- and
Lo-distance efficiencies are drawn in Figure . Specifically, Figures [1] (a)—(c) display
the average Li-distance efficiencies of all algorithms for m € {2,...,42} with R set
to 50, 200, and 1000 iterations, respectively. Figures [1| (d)—(f) depict the Lo-distance
efficiency versions of Figures [1| (a)—(c), respectively. As shown in Figure [1| (a)—(f), the
L,-distance efficiencies of the proposed designs via Algorithms 0, 1, 2 and 3 consistently
outperform those of the designs generated by “SLHD” and “lhs” across all combinations
of R, m, and p. As R increases, the growth of efficiency is slower for “SLHD” and “lhs”
than for Algorithms 0, 1, 2 and 3. As m approaches ni(n)/2, Algorithm 2 significantly
enhances its efficiency due to the established optimality around m = ni(n)/2. This

ensures a highly efficient design. From m = 21 to 42, the optimality near the boundary
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6.2 Quantitative comparisons
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Figure 1: The L;- and Lo-distance efficiencies under various scenarios: Algorithms 0,
1, 2, 3, “SLHD” and “lhs” in the R-packages (marked as A0, A1, A2, A3, SLHD and
lhs in sequence).

values of m ensures high efficiencies. Even when m deviates from these boundaries,
the L;-distance efficiency of the proposed design remains above 90% in Figure (a) for
m > 35, and in Figures [Ifb)—(c) for m > 19.

Besides the L,-distance criterion, four other space-filling criteria are used: p?

(Owerl, [1994), ¢; (Joseph and Hung, [2008), ¢ (Joseph, Gul and Bal [2015) and ¢

(Sun, Wang and Xul 2019) to compare the proposed algorithms with “SLHD” and

“Ihs”. Denote the p? efficiency of design D by Eff 2(D) = LB,2(D)/ p*(D), the ¢
efficiency of D by Eff,(D) = LB4(D)/¢(D) and the ¢, efficiency of design D by

Eff, (D) = n(n — 1)/(2d1.ave(D)é1(D)). For lack of the theoretical lower bound of ¢,
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6.2 Quantitative comparisons
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Figure 2: The p?, ¢, ¢ and ¢ efficiencies under various scenarios: Algorithms 0, 1, 2,
3, “SLHD” and “lhs” in the R-packages (marked as A0, A1, A2, A3, SLHD and lhs in
sequence).

we utilize its reciprocal (1/¢) to measure the space-filling property. A higher value of
1/ (5 indicates a better space-filling property. For each configuration of m and R, the
variants of Figure [I] based on these criteria are plotted in Figure 2l It turns out that
the designs by Algorithms 1-3 often have smaller p?, ¢, ¢; and (/5 compared to those
from “SLHD” and “lhs”.

Furthermore, we calculate the number of iterations R required for achieving an
efficiency not less than 9 = 0.8 and 0.9. For each algorithm, we perform 100 repetitions

and report min(R,200), with 200 serving as the cutoff point if the needed R exceeds
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6.2 Quantitative comparisons

it. For each algorithm, the average numbers of needed iterations against m are plotted
in Figure S3 in the supplementary materials under the L;- and L,-distance criteria.
The results show that Algorithms 0-3 generally require fewer iterations than “SLHD”
and “lhs” for achieving high efficiency (greater than 0) across arbitrary configurations
of m, p and 9, particularly Algorithms 1-3.

For n = 6, we use LACE as the skeleton for our algorithms since n is even. The
tuning parameters keep the same settings as those used for n = 7. Form € {2,..., (n+
Dy(n+ 1)} = {2,...,42}, we plot the averages of the Li- and Lo-distance, p?, ¢,
¢, efficiencies and 1/ ¢ against m in Figures S1-S2 in the supplementary materials.
Moreover, we also plot the LACE version of Figure S3 in Figure S4 in the supplementary
materials. We have a similar observation of the comparison as that for n = 7. The
computational time for each proposed design shown in Figures ranges between 0.2
and 0.3 seconds.

Other values of n categorized based on their prime decomposition n = ¢i*... ¢
are considered. When t = 1, four distinct values of n: 5, 8, 9, and 11 are examined.
Similarly, for ¢t = 2, four different n values: 10, 12, 18, and 22 are examined. Set §; =
3.5%107°. For each n and any m < ni(n), each algorithm is repeated 100 times among
Algorithms 1-3, “SLHD” and “lhs” to calculate the average L;-distance of the output
design D as d;(D). For each algorithm and each n, the median along with minimum
and maximum (as specified in parentheses) of d,(D)’s with m € {2,3,...,n(n)} are
listed in Table [3| It is shown that Algorithms 1-3 have larger L;-distance efficiencies

than “SLHD” and “lhs” when n € {5,8,9,11}. When n € {10,12, 18,22}, Algorithms
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6.3 Discussions

1-3 have the L;-distance efficiencies similar to those of “SLHD” and “lhs”. For those
selected n’s that are even, we also repeat each algorithm 100 times among Algorithms
1,3, for m < (n+1)y(n+1). These results are presented in Table[3] It is shown that
Algorithms 1;,-3; outperform Algorithms 1-3, “SLHD” and “lhs” for each selected
even n. This indicates that the LACE indeed improves the non-ideal efficiency based
on the ACE for the even n. Moreover, the proposed designs have high L-distance
efficiencies (exceeding 90%) for at least half of all m values. The computational time
for each proposed design presented in Table [3|is under 1 second. For all selected n’s,
similar comparisons under other criteria are carried out: the Lo-distance, p?, ¢, ¢ and
gz~5 criteria, which are listed in Tables S1-S5 in the supplementary materials. Under each
criterion, we have a similar observation of the comparison as that under L;-distance
criterion in Table [3l

The comparison for large design types under all criteria is extended, specifically for
those with n € {60 = 22 x 3 x 5,100 = 22 x 52,210 = 2 x 3 x 5 x 7,1200 = 2* x 3 x 52}.
Due to the limitations of “lhs” in handling these large design sizes, our comparison is
limited to Algorithms 1;,-3, and “SLHD”. The results are displayed in Table [4] It is
shown that the designs by Algorithms 1;,-3, often outperform these by “SLHD” under
these criteria. In Table 4] the computational time for each proposed design is under 5

minutes when n < 210 and is under 2 hours when n = 1200.

6.3 Discussions

The proposed designs are intended for scenarios where space-filling properties are

beneficial, particularly in tasks such as global surrogate modeling in computer exper-
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6.3 Discussions

Table 4: Quantitative comparisons with large values of n under all criteria.

n m  Method Eff; Eff, Eff,, Effy Effy 1/¢ n m  Method Eff, Eff, Eff,, Effy  Effy 1/¢
60 50 Al 0.741 0.551 0 0.588 0.991  117.333 60 600 Al 0.949 0.901 0.931 0.985 1.000 185.948
A2, 0.682  0.499 0 0.562  0.989  104.977 A2, 0.950 0.920 0.931 0.987 1.000  185.944
A3, 0.776 0.545 0 0.683 0.994 138.227 A3, 0.925 0.867 0.950 0.981 1.000  179.421
SLHD  0.686 0.489 0 0.580  0.990 75.221 SLHD  0.911 0.827 0.898 0.964 0.999 165.707
60 Al, 0.915 0.823 0.037 0.861 0.998 186.114 1800 Al 0.975  0.925 0.983 0.996 1.000  197.452
A2, 0.818 0.832 0.041 0.793 0.996  150.908 A2, 0.990 0.985 0.999 1.000 1.000 203.463
A3 0.795  0.696 0.025 0.783 0.995  147.765 A3L 0.964 0.951 0.990 0.995 1.000  193.770
SLHD  0.721 0.551 0.017 0.656 0.993  100.452 SLHD  0.951 0.916 0.969 0.989 1.000  181.130
100 100 Al 0.857 0.748 0.017 0.768 0998  417.122 210 100 Al 0.804 0.660 0 0.203  0.995 1495.290
A2, 0.830 0.727 0.015 0.748 0.997  384.150 A2, 0.794  0.650 0 0.200 0.995  1331.878
A3, 0.885 0.749 0.015 0.840 0.999 471.617 A3, 0.815 0.649 0 0.216 0.996  1482.491
SLHD  0.719 0.563 0.010 0.628 0.995  276.106 SLHD  0.738 0.578 0 0.187  0.995  1030.483
1000 Al;, 0.962 0.908 0.943 0.986 1.000 504.381 200 Al 0.857 0.760 0 0.618 0.998  1597.577
A2, 0.915 0.935 0.953 0.975 1.000 477.036 A2, 0.851  0.746 0 0.635 0.998  1537.790
A3y, 0.939 0.911 0.937 0.984 1.000 484.772 A3, 0.861 0.741 0 0.635 0.998 1695.839
SLHD 0920 0.864 0.901 0.964 1.000 430.906 SLHD  0.769 0.689 0 0.587 0.997  1432.261
210 500 Al 0.912 0.877 0.674 0.903 0.999 1842.205 1200 600 Al 0.855 0.793 0 0.204 0.999 51353.750
A2, 0.916 0.872 0.688 0.896 0.999 1956.835 A2, 0.873 0.787 0 0.202 0.999 53147.620
A3, 0927 0.856 0.705 0.909 1.000 1929.198 A3g 0.823 0.618 0 0.259 0.999  50840.490
SLHD  0.878 0.808 0.583 0.840 0.999  1644.199 SLHD  0.849 0.757 0 0.206 0.999 46063.140
1000 Al 0.930 0.916 0.900 0.940 1.000 2009.328 2000 Al 0.927 0.883 0.479 0.830 1.000 61247.193
A2, 0.946 0.922 0.875 0.960 1.000 2018.350 A2, 0936 0.877 0469 0.842 1.000 62895.417
A3, 0.929 0.902 0.816 0.948 1.000 1975.750 A3, 0.912 0.843 0.475 0.850 1.000 60017.242
SLHD 0911 0.846 0.791 0.919 1.000 1769.360 SLHD 0.910 0.860 0.401 0.762 1.000 57457.881

Note: Algorithms 1, 2, 3;, and R-package “SLHD” (marked as A1y, A2;, A3, and SLHD in sequence). For the case of (n,m) = (60, 50), (210, 100), (210, 200)
or (1200,600), Eff » is equal to 0 since the lower bounds is equal to 0.

iments (Johnson, Moore and Ylvisaker| |1990; Zhou and Xu, [2015), as well as initial

sampling in active learning frameworks (Crombecq et al., 2009; Zhang et al.,|2021) and

multi-start methods for global optimization (Regis and Shoemaker, 2013} [Yu et al.|

2019). When n > m, space-filling LHDs are widely utilized in computer experiments.

Johnson, Moore and Ylvisaker| (1990) demonstrated that maximin distance designs are

asymptotically optimal for fitting Gaussian process models within a Bayesian frame-
work. The proposed hybrid method enables the efficient construction of these designs.
Regardless of whether n > m or n < m, the proposed method is a beneficial tool for
constructing larger space-filling designs. As discussed in Section [6.1] these construction
techniques require flexible space-filling designs (B) to achieve larger and flexible space-

filling designs (D). The proposed designs precisely meet the critical requirements for

the input design (B). For instance, Li, Liu and Tang| (2021)) constructed a maximin

distance U-type design (D) by replacing the u'® level of a U-type design (A) with a
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6.3 Discussions

large Hamming distance by the u'" row of a U-type design (B) foru =1,...,s. Let A
be a 144 x 7 orthogonal array with 12 levels as shown in the R-package “DoE.base”,
with a Hamming distance efficiency of 92.875%. The 12 x 12 LACE of D, on U is the
maximal L;-distance design, where Y = {1,12}. This proposed design can serve as B,
enabling the resulting design D as a 144 x 84 U-type design. It is shown that D exhibits
the L;-distance and Lo-distance efficiencies of 92.875% and 89.881%, respectively. If
U = {1,12} is replaced by U = {0, 1,12}, the proposed design B becomes a 12 x 18
LACE with the L;-distance efficiency of 93.590%. Consequently, the resulting design
D is a 144 x 126 U-type design with the L-distance efficiency of 86.904%.

A space-filling LHD stands out as an excellent choice for initial points in multi-start
methods for global optimization (Regis and Shoemaker] |2013; [Yu et al [2019), espe-
cially beneficial for multimodal optimization. To avoid local optima, diverse starting
points are needed to explore the landscape and identify what appears to be the global
optimum. Compared with random starting points, a space-filling LHD often offers
multi-start methods greater chances of reaching global optima, as it distributes more
uniformly in space and exhibits superior projection uniformity. When the dimension
(m) is high, the proposed designs with n < m are more economical in practice. More
results are provided in the supplementary materials (Section S3.3).

Furthermore, space-filling LHDs have been recommended for applications in vari-
able selection, especially when n < m. Butler| (2005) mentioned supersaturated LHDs
in variable selection. |Chien, Deng and Lin| (2022) demonstrated that space-filling LHDs

significantly enhance the variable selection accuracy of Lasso regression. The proposed
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hybrid method is able to efficiently construct these supersaturated space-filling LHDs.
For predictive accuracy, space-filling designs are advantageous in computer experi-
ments or surrogate modeling, as they uniformly explore the input parameter space
and minimize bias in response surface estimation. More results are provided in the

supplementary materials (Section S3.7).

7. Concluding Remarks

The proposed hybrid method efficiently generates space-filling LHDs to accom-
modate any configuration (n,m) with m < ny(n) where 9(-) is the Euler function,
and n = n for an odd n and n = n 4+ 1 for an even n. The algebraic component,
ACE (LACE), is identified as a high-quality candidate set for constructing space-filling
LHDs. This paper provides a solid theoretical foundation for this choice, expanding
the scope of run sizes outlined in |Vazquez and Xu (2024 from prime numbers to all
integers. We recommend ACE for all odd values of n and LACE for all even values of
n, as they provide high efficiencies in terms of Li- or Lo-distance and provide greater
flexibility in the number of columns. This candidate set ensures that the Li- and Lo-
distance efficiencies are both greater than 93.333%. These theoretical findings validate
the feasibility of the proposed method in accommodating any run size. To accommo-
date an arbitrary number of factors, the proposed algorithm, leveraging the ACE or
LACE structure with high L,-distance efficiency, enables the acceleration of the search
process and the generation of highly efficient designs. Furthermore, theoretical and

simulation-based evidence shows that the proposed LHDs also perform well on criteria
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based on column-orthogonality, projection uniformity, and ¢,.
In addition to the maximin distance criterion, uniformity serves as another key
criterion for space-filling designs. It would be interesting to study the space-filling

properties of the proposed designs under discrepancy criteria in future studies.

Supplementary Material

The online Supplementary Material includes detailed proofs, algorithms based on
the leave-one-out additive column expansion, quantitative comparisons between the
proposed method and existing methods based on criteria such as the L,-distance,

column-orthogonality, projection uniformity and computational costs.
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