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Abstract: Space-filling Latin hypercube designs have found widespread applications in com-

puter experiments, yet the construction methods for such designs pose significant challenges.

Algebraic methods are only applicable to a very limited number of runs and factors, while

algorithmic searches often struggle with computational feasibility for large designs, especially

when there is a need to maintain the statistical efficiency above a certain level. To address

these limitations, an approach is proposed for producing space-filling Latin hypercube designs

that can accommodate flexible numbers of runs and factors. The proposed approach is hybrid

in nature, incorporating an algebraic method and its corresponding algorithm. The algebraic

method, built on good lattice point sets and level permutation techniques, applies to any run

size and flexible numbers of factors. The proposed algorithmic search can further accommodate

any number of factors, especially those not covered by the algebraic method. A theoretical

analysis of optimality is provided for the algebraic component. Numerical studies demonstrate

the superior Lp-distance properties of the proposed designs. Furthermore, it is shown that the

proposed designs exhibit good column-orthogonality and projection uniformity as well.

Key words and phrases: column-orthogonality, computer experiment, level permutation, pro-

jection uniformity, space-filling design
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1. Introduction

Space-filling designs are widely utilized in computer experiments, such as Latin hy-

percube design (LHD) proposed by McKay, Beckman and Conovcr (1979) and uniform

design (Fang and Wang, 1981). It aims to select experimental runs that efficiently cover

the entire design space. Various criteria have been proposed to assess space-filling prop-

erties, such as the uniformity criterion (Weyl, 1916; Zhou, Fang and Ning, 2013), max-

imin distance criterion (Johnson, Moore and Ylvisaker, 1990), column-orthogonality

(Owen, 1994), ϕp criterion (Joseph and Hung, 2008), projection uniformity (Moon,

Dean and Santner, 2011) and minimum aberration type criterion (Tian and Xu, 2022).

Among them, the maximin distance criterion, which maximizes the minimum pair-

wise distance between design points, is closely connected to other criteria (Joseph and

Hung, 2008; Sun, Wang and Xu, 2019; Wang, Sun and Xu, 2022). For example, Wang,

Sun and Xu (2022) demonstrated that maximin L1- or L2-distance designs often per-

form well on criteria of column-orthogonality and projection uniformity, especially for

supersaturated designs (Lin, 1993).

Constructing space-filling designs poses significant challenges. Numerous algebraic

construction methods have been proposed, such as Lin, Mukerjee and Tang (2009),

Zhou and Xu (2015), Xiao and Xu (2017) and Wang, Xiao and Xu (2018). These

algebraic methods are restricted to very specific numbers of runs and factors. For

instance, Xiao and Xu (2017) constructed maximin distance LHDs. Their focus was

on saturated and supersaturated designs, accommodating cases where the run size (n)

is a prime number and equals the number of factors (m) or m+1. Zhou and Xu (2015)
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and Vazquez and Xu (2024) proposed the maximin distance design with m = n(n− 1)

or m = n(n − 1)/2 for a prime n. To overcome this limitation, algorithmic search

methods are recognized for their adaptability to flexible numbers of runs and factors

(Moon, Dean and Santner, 2011; Ba, 2013; Joseph, Gul and Ba, 2015; Carnell, 2022).

However, the search space grows exponentially with each additional factor and run,

making it challenging for many existing algorithms to find optimal or near-optimal

solutions within a reasonable time frame.

To address the limitations outlined in the aforementioned existing works, an ef-

ficient method based upon the maximin Lp-distance criterion is proposed. There are

two major components in the proposed method: (a) an algebraic method and (b) a

corresponding algorithm. The algebraic method, built on good lattice point (GLP) sets

(Korobov, 1959) and the level permutation technique, allows an arbitrary n and a flexi-

blem. Speciallym ≈ ñψ(ñ) orm ≈ ñψ(ñ)/2, the L1- and L2-distance efficiencies of the

resulting designs are above 93.333% in all cases, where ψ(·) is the Euler function, and

ñ = n for odd n and ñ = n+1 for even n. An algorithm based on the algebraic method

is developed for accommodating any number of factors (m) not exceeding ñψ(ñ). It

is shown both theoretically and numerically that these proposed designs exhibit ex-

cellent space-filling properties in terms of the Lp-distance, column-orthogonality and

projection uniformity.

The rest of the paper is organized as follows. Section 2 introduces a construction

method and discusses the L1- and L2-distance of the proposed design. Using those

constructed designs and simulated annealing, this section proposes a hybrid approach

3

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0145



to accommodate any number of columns not exceeding ñψ(ñ). Section 3 provides a

method to improve the L1- and L2-distance for the even number of runs. Section 4

shows (theoretically and numerically) that the proposed designs have other excellent

space-filling properties: column-orthogonality and projection uniformity. Section 6

provides both quantitative and qualitative comparisons between the proposed method

and the existing works. It is shown that the proposed methods can produce more effi-

cient LHDs than the existing works under these space-filling criteria: the Lp-distance,

column-orthogonality, projection uniformity and ϕp. Section 7 presents concluding

remarks.

2. The proposed construction method: additive column expansion

2.1 Preliminaries

Let
(
n, sk

)
be an n× k (n-run and k-factor) design where each factor takes levels

from the set Zs = {1, . . . , s}. When each level appears equally often in each column,(
n, sk

)
is called a U-type design and denoted by U(n, sk). In particular, a U-type design

is called a LHD if s = n. One such example well-studied in the literature is the GLP

set (Korobov, 1959; Zhou and Xu, 2015; Fang et al., 2018). Let n = qr11 · · · qrtt be the

prime decomposition of n, such that q1, . . . , qt are distinct primes in ascending order

and r1, . . . , rt are positive integers. Let Hn = {h| gcd(n, h) = 1, h ∈ {1, . . . , n − 1}},

where gcd is the greatest common divisor between two numbers. The cardinality of

Hn is |Hn| = ψ(n) = n
∏t

ℓ=1(1 − 1/qℓ) where ψ(·) is also called the Euler function

in the literature. A design D is called an n × k GLP set if its (i, j)th element is
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2.2 Additive column expansion

xij = ihj (mod n), where hj’s are distinct elements of Hn and k ≤ ψ(n). When ihj is

divisible by n, the convention of ihj (mod n) = 0 is replaced by n. The h = (h1, . . . , hk)

is called the generating vector of this GLP set. Note that each column of the GLP set

is a permutation of {1, . . . , n}. If k = ψ(n), this GLP set has the largest number of

columns and will be denoted by D0 hereafter.

Define dp(xi,xj) =
∑k

l=1 |xil − xjl|p as the Lp-distance of the ith and jth rows of

a design D, denoted by xi and xj, respectively. Let dp(D) = min{dp(xi,xj) : i ̸=

j,xi,xj ∈ D} be the Lp-distance of D. When D is a U(n, sk), Zhou and Xu (2015)

provided an upper bound of the Lp-distance. This bound is defined as the integer

part of the average pairwise Lp-distance between rows, denoted as ⌊dp,ave(D)⌋. The

formulation of this upper bound for an LHD D is presented in the following lemma.

Lemma 1. (Zhou and Xu, 2015) For an n × k LHD as D, dp(D) ≤ ⌊dp,ave(D)⌋ =

⌊np−1(n+ 1) k/(3× 2p−1)⌋ for p = 1, 2. This bound is achieved when all pairwise dis-

tances of D are equal.

This upper bound is applied to evaluate the Lp-distance efficiency of a design D as

Effp(D) = dp(D)/⌊dp,ave(D)⌋. Note that a design with 100% efficiency is automatically

optimal, while the reverse is not necessarily true.

2.2 Additive column expansion

Let D = (xij) be an n× k GLP, generated by h = (h1, . . . , hk). Under the context

of space-filling designs, Zhou and Xu (2015) showed that the new design D{u} = (xij ⊕

u)1≤i≤n,1≤j≤k does not have a smaller Lp-distance thanD where u ∈ U0 = {0, . . . , n−1}.
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2.2 Additive column expansion

Here, the notation ⊕ is a linear level permutation operator as defined by

xij ⊕ u =


n if u = n− xij,

xij + u (mod n) otherwise.

To accommodate a large number of factors, we propose to juxtapose a collection of

such designs as

E(D,U) =
(
D{u1}, . . . , D{uv}

)
,

and call it the additive column expansion (ACE) of D on U = {u1, . . . , uv} ⊆ U0.

Whenever U0 is used for the construction, the abbreviation E(D) = E(D,U0) is adopted

for any GLP set D. It is shown that E(D,U) is an n× (kv) LHD but not a GLP set.

The Lp-distance of E(D,U) is closely related to that of D, as demonstrated below.

Lemma 2. For arbitrary GLP set D and U ⊆ U0, we have dp(E(D,U)) ≥ vdp(D)

where v = |U|.

The bound in Lemma 2 is achieved for specific combinations of D and U , such

as when D is an n × ψ(n) GLP set with n being a prime power, and U = {0, 1}.

As v increases, the difference dp(E(D,U)) − vdp(D) does not decrease and tends to

grow larger. It has been demonstrated that GLP sets exhibit favorable space-filling

properties, characterized by discrepancy and the Lp-distance (Hua and Wang, 1981).

These point sets make the ACE an attractive framework for constructing maximin

distance LHDs.
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2.3 Theoretical Lp-distances of ACEs

2.3 Theoretical Lp-distances of ACEs

This section aims to investigate the theoretical lower bounds for the Lp-distance

efficiencies of ACEs. We shall focus on cases of p = 1, 2, as the L1- and L2-distances,

are commonly referred to as the rectangular distance and the squared Euclidean dis-

tance, respectively. They are widely employed to evaluate space-filling properties in

experimental design, more than distances with p > 2 (Johnson, Moore and Ylvisaker,

1990; Zhou and Xu, 2015; Wang, Xiao and Xu, 2018; Wang, Sun and Xu, 2022).

A closed-form expression of the Lp-distances for ACEs becomes intractable for

other values of m. However, their lower bounds are obtained as follows.

Corollary 1. For n = qr11 . . . qrtt , any U ⊆ U0 and D = D0, we have

Eff1(E(D,U)) ≥



3n

4(n+ 1)
if t = 1 and q1 = 2,

3(n2 + q1)

4n(n+ 1)
if t = 1 and q1 > 2,

3(q2 − 1)

2(n+ 1)
if t = 2, q1 = 2 and r1 = r2 = 1,

3(n− 1)

4(n+ 1)
if t = 2, q1 > 2, and r1 = r2 = 1.

The bound in Corollary 1 is achieved for specific U and k(n + 1) (mod 3) = 0,

such as U = {0, 1}. As v increases, the value of Eff1(E(D,U)) tends to grow larger.

Based on Theorems 2 and 4 of Zhou and Xu (2015), the proof of Corollary 1 follows

directly, which is therefore omitted here. Similar results for p = 2 can be derived using

Theorem 2 of Zhou and Xu (2015) and d2(D), where d2(D) can be obtained through a

method analogous to that used in the proof of Theorem 4 of Zhou and Xu (2015).
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2.3 Theoretical Lp-distances of ACEs

Table 1: The L1-distance efficiencies of some ACEs.
n m D U d1 Eff1 n m D U d1 Eff1

3 2 D0 {0} 2 1 7 6 D0 {3} 13 0.813
4 {0, 2} 5 1 12 {0, 2} 30 0.938
6 {0, 1, 2} 8 1 18 {0, 3, 4} 46 0.958

5 4 D0 {0} 6 0.75 24 {0, 2, 3, 4} 62 0.969
8 {0, 2} 14 0.875 30 {0, 2, 3, 4, 6} 78 0.975
12 {0, 2, 3} 23 0.958 36 {0, 1, 2, 3, 4, 5} 94 0.979
16 {0, 1, 2, 3} 30 0.938 42 {0, 1, 2, 3, 4, 5, 6} 112 1
20 {0, 1, 2, 3, 4} 40 1 3 D1 {0} 6 0.75
2 D1 {0} 3 0.75 6 {3, 5} 13 0.813
4 {0, 1} 6 0.75 9 {2, 4, 6} 22 0.917
6 {0, 1, 3} 10 0.833 12 {0, 1, 2, 6} 30 0.938
8 {0, 1, 2, 4} 14 0.875 15 {0, 1, 3, 4, 5} 38 0.95
10 {0, 1, 2, 3, 4} 20 1 18 {0, 1, 2, 3, 4, 5} 44 0.917

21 {0, 1, 2, 3, 4, 5, 6} 56 1

Note: d1 represents the L1-distance and Eff1 represents the L1-distance efficiency.

Example 1. Given n and D, we seek the U that optimizes the ACE under the L1-

distance among all possible sets with the same cardinality. The optimal ACEs for

n = 3, 5, 7 and D = D0 are displayed in Table 1. It is shown that the L1-distance

efficiencies of all ACEs are greater than 0.75 in most cases (some are reaching 100%).

The situation on the L2-distance is shown in Table S8 in the supplementary materials.

Overall, ACE performs well on the L1- and L2-distance criteria.

First, the ACE with the largest number of factors is considered, i.e., D = D0 and

U = U0, denoted as E(D0). The closed-form expressions of those distances for E(D0)

are provided as follows.

Theorem 1. For n = qr11 . . . qrtt , let k = ψ(n) and p = 1, 2. The Lp-distance of E(D0)
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2.3 Theoretical Lp-distances of ACEs

is

dp(E(D0)) =


np(n2 + q1)(q1 − 1)

2p−13q1
if t = 1,

np+2(q1q2 − 1)
∏t

ℓ=1(qℓ − 1)

2p−13q1q2
∏t

ℓ=1 qℓ
if t > 1.

Theorem 1 provides the closed-form expressions for the L1- and L2-distances of

E(D0) with any run size. This result generalizes the findings from Zhou and Xu (2015)

from a prime n to an arbitrary n. To further accommodate a more flexible number of

factors, the designs constructed with arbitrary values of k < ψ(n) are considered in

the following.

For a given GLP set D generated by h = (h1, . . . , hk), its dual design is the GLP

set generated by h′ = (n− h1, . . . , n− hk), denoted by D′.

Lemma 3. For an arbitrary U ⊂ U0 and a pair of dual GLP sets, say D and D′, their

ACEs E(D,U) and E(D′,U) have the same Lp-distance for any p.

When h and h′ have no common elements, D and D′ are called strictly dual.

Note that the column numbers of the strictly dual GLP sets do not exceed ψ(n)/2

since n − h ∈ Hn if and only if h ∈ Hn. Let D1 be a GLP set generated by half of

the elements in Hn, such that its dual D′
1 is its strict dual. Then, the two proposed

designs E(D1) and E(D′
1) have the same number of columns as nψ(n)/2. Note that

they complement each other in the sense that the column juxtaposition of E(D1) and

E(D′
1) reassembles E(D0). If we change D0 to D1, Corollary 1 remains valid. The L1-

and L2-distance efficiencies of the ACEs with D = D1 are listed in Table 1 and Table

S8. The ACEs perform well on these criteria. Based on Lemma 3, Theorem 2 allows

9

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0145



2.3 Theoretical Lp-distances of ACEs

us to calculate the L1- and L2-distances of E(D1) and E(D′
1).

Theorem 2. For D0, D1, D
′
1 as defined earlier and any p, we have

(i) dp(E(D1)) = dp(E(D′
1)) = dp(E(D0))/2,

(ii) dp(E(D1)) ≥ dp(E(D)) for any n× (ψ(n)/2) GLP set D,

where dp(E(D0)) is as shown in Theorem 1.

Combining Theorem 1 and Theorem 2(i), we obtain the closed forms of the L1- and

L2-distances of E(D1) and E(D′
1). Moreover, Theorem 2 proves that both E(D1) and

E(D′
1) reach the maximal Lp-distance among all E(D)’s, where D is an n × (ψ(n)/2)

GLP set.

Theorem 3. Given any n and p, we have dp(E(D1)) = dp(E(D′
1)) ≥ dp(D), for any D

that is an n× nψ(n)/2 submatrix of E(D0)

While Theorem 2 establishes the optimality of E(D1) among all E(D)’s with D

being an n × ψ(n)/2 GLP set, Theorem 3 strengthens this result by demonstrating

the optimality of E(D1) over all possible nψ(n)/2-column combinations within E(D0).

Combining Theorems 1 & 2 and Lemma 1, the lower bounds of the Lp-distance effi-

ciencies for the proposed designs can be derived as follows.

Theorem 4. Let p = 1, 2 and D = D0 or D1. Given any n, the Lp-distance efficiency

of E(D) follows

Effp(E(D)) =
dp(E(D))

⌊dp,ave(E(D))⌋
≥ dp(E(D))

dp,ave(E(D))
=


1−O

(
1

n
− q1
n2

)
if t = 1,

1−O
(

1

q1q2
+

1

n

)
if t > 1.
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2.3 Theoretical Lp-distances of ACEs

The implications of Theorem 4 are as follows. For the prime n, i.e. t = 1 and

r1 = 1, E(D) is an equidistant design and its Lp-distance reaches the upper bound

dp,ave. This design serves as a maximin distance design with Effp(E(D)) = 1. For

the prime power value of n, i.e. t = 1, E(D) is asymptotically optimal under the L1-

and L2-distance criteria. Otherwise, for t > 1, the limiting efficiency is Effp(E(D)) →

1− 1/(q1q2) as n→∞. That is, among the nonprimer power n, the limiting efficiency

depends on the two minimum prime numbers in its decomposition. This is because

the terms associated with other primes in the numerator are identical to those in the

denominator. The limiting efficiency increases as q1q2 increases. When (q1, q2) = (2, 3),

the limiting efficiency reaches its minimum value of 1− 1/(q1q2) = 1− 1/6 = 83.333%.

In all other cases, except for (q1, q2) = (2, 3), the resulting designs yield the limiting

efficiencies of at least 90% occurring at (q1, q2) = (2, 5). A remedy for those not-so-ideal

cases of (q1, q2) = (2, 3) through the leave-one-out method (Fang and Wang, 1981) will

be provided in Section 3.

For any U = {u1, . . . , uv} ⊆ U0, its dual set is defined as U ′ = {n+1−u1, . . . , n+1−

uv} (mod n). The following lemma reveals the relationships between different ACEs

in terms of the Lp-distance.

Lemma 4. Let D and D′ be a pair of n × k dual GLP sets, and U and U ′ be a pair

of dual sets contained in U0. For any p, the two ACEs E(D,U) and E(D′,U ′) have the

same Lp-distance.

Unlike Lemma 3, Lemma 4 allows for both the GLP set D and index set U to

be replaced by their dual simultaneously. Combining Lemmas 3 and 4, it holds that
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2.3 Theoretical Lp-distances of ACEs

the Lp-distance of E(D,U) remains unchanged if D is replaced by D′ and/or U is

replaced by U ′. Note D0 is the dual of itself, i.e. D0 = D′
0. Next, the ACEs with

D = D0 and U ∈ {U1,U2} are theoretically investigated for U1 = {1, . . . , ⌈(n− 1)/2⌉}

and U2 = {1, . . . , ⌊(n + 1)/2⌋}. Here, U1 and U2 are only one element different when

n is odd, and U1 = U2 for an even n. Based on Lemma 4, the L1- and L2-distances of

E(D0,U1) and E(D0,U2) are shown in the following theorem.

Theorem 5. Let p = 1, 2. For D0, U1 and U2 as defined earlier, we have

(i) when n is even, dp(E(D0,U1)) = dp(E(D0,U2)) = dp(E(D0))/2;

(ii) when n is odd,

dp(E(D0,U)) =


(n− 22p−332−p)dp(E(D0))

2n
if U = U1,

(n+ 2p−332−p)dp(E(D0))

2n
if U = U2,

where dp(E(D0)) is as shown in Theorem 1.

The designs considered in Theorem 5 have either ⌈(n−1)/2⌉ψ(n) or ⌊(n+1)/2⌋ψ(n)

columns, which is similar to that of E(D1). Note that E(D0,U1) and E(D0,U ′
2) com-

plement each other in E(D0), as well as E(D0,U ′
1) and E(D0,U2). Their Lp-distance

efficiencies are obtained as follows.

Corollary 2. Let p = 1, 2. For the proposed designs in Theorem 5 and U = U1 or U2,
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their Lp-distance efficiencies follow

Effp(E(D0,U))→


1 if t = 1,

1− 1
q1q2

if t > 1,

as n→∞.

Furthermore, the Lp-distance efficiency of each design follows the same order as that

of the design in Theorem 4.

The L1- and L2-distance properties of the proposed designs have been investigated

so far for arbitrary values of n. The theoretical results focus on the number of factors

being eitherm ≈ nψ(n) orm ≈ nψ(n)/2, depending on whether the GLP setD1 is used

instead of D0 or the index sets U1 and U2 are used (instead of U0 for the construction).

3. Leave-one-out additive column expansion

The ACE can efficiently deal with any run size n, and it is particularly well-suited

for odd values of n, as evident from the theoretical results presented in Theorem 3 and

Corollary 2. It has been observed that there could be occasional drops in efficiency for

an even n. For instance, when n is a multiple of 6 with (q1, q2) = (2, 3), the limiting

efficiency lower bound equals 83.333% and ψ(n) does not exceed n/3, implying that

the maximum number of factors that can be constructed by the ACE is n2/3. In such

cases, we shall use the leave-one-out technique (Fang and Wang, 1981) to improve the

efficiency and scalability of resulting designs. This method first constructs an (n+ 1)-

run ACE and then adjusts all levels to 1, . . . , n by removing the last row of the ACE.

As an example when n = 6, this method entails removing the last row of the 7-run

13

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0145



E(D0) as (7, . . . , 7, 1, . . . , 1, . . . , 6, . . . , 6) and adjusting all levels to 1, . . . , 6. It is shown

that the resulting design is a 6 × 42 LHD with an Lp-distance efficiency of 95.918%.

We call such a design the leave-one-out additive column expansion (LACE).

The LACE can be systematically constructed by a leave-one-out good lattice point

(LGLP) set D̃. An n × k array (xij)1≤i≤n,1≤j≤k is called an LGLP set D̃ if xij =

ihj (mod n+ 1), where hj’s are distinct elements of Hn+1 and thus k≤ ψ(n+ 1). Note

that each column of the LGLP set is a permutation of {1, . . . , n}. The difference

between this n-run LGLP set and the (n + 1)-run GLP set constructed by the same

generating vector is that the former excludes the row with all elements being n + 1.

Nevertheless, the two designs have the same Lp-distance. When k = ψ(n + 1), D̃ has

the largest number of columns and will be denoted by D̃0 hereafter. In comparison,

the n-run GLP set D0 has ψ(n) columns while the n-run LGLP set D̃ has ψ(n + 1)

columns. Define the new design D̃{u} = (xij⊕Lu)1≤i≤n,1≤j≤k for u ∈ Ũ0 = {0, . . . , n},

where the operator ⊕L is defined by

xij⊕Lu =


u if u = n+ 1− xij,

xij + u (mod n+ 1) otherwise.

Each column of D̃{u} is a permutation of {1, . . . , n}. For a set U = {u1, . . . , uv} ⊆ Ũ0, an

LACE can be constructed by the LGLP set D̃ and U , as L(D̃,U) = (D̃{u1}, . . . , D̃{uv}).

This expansion is abbreviated as L(D̃) when U = Ũ0. Note that L(D̃,U) forms an

n × (kv) LHD. For example, the 6 × 42 LHD discussed in the previous paragraph is

an LACE constructed by the 6 × 6 LGLP set D̃0 and Ũ0 = {0, . . . , 6}. Let (n + 1) =

14

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0145



q̃r̃11 · · · q̃
r̃t̃
t̃
be the prime decomposition of n+1, such that q̃1, . . . , q̃t̃ are distinct primes in

ascending order and r̃1, . . . , r̃t̃ are positive integers. Without loss of generality, assume

that q̃1 < · · · < q̃t̃. The following theorem provides the closed forms of the L1- and

L2-distance for the largest design L(D̃0).

Theorem 6. Let p = 1, 2. For an arbitrary even n (i.e. q1 = 2), the Lp-distance of

L(D̃0) is

dp(L(D̃0)) =


(n+ 1)p−1(q̃1 − 1)((n+ 1)3 + q̃1(n+ 1)− 2p−23((n+ 1)2 − q̃1))

2p−13q̃1
if t̃ = 1,

(n+ 1)p+1
∏t̃

ℓ=1(q̃ℓ − 1)((n+ 1)(q̃1q̃2 − 1)− 2p−23(q̃1q̃2 + 1))

2p−13q̃1q̃2
∏t̃

ℓ=1 q̃ℓ
if t̃ > 1.

Theorem 6 provides the closed forms of the L1- and L2-distances for L(D̃0). For

an n×m LGLP set D̃ generated by h = (h1, . . . , hk), its dual design is the LGLP set

generated by h+ = (n + 1 − h1, . . . , n + 1 − hk), denoted by D̃+. When h and h+

has no common elements, D̃ and D̃+ are called strictly dual. Let D̃1 be an LGLP set

generated by half of the elements in Hn+1, such that its dual D̃+
1 is its strict dual. For

any U = {u1, . . . , uv} ⊆ Ũ0, its dual set is defined as U+ = {n+1− u1, . . . , n+1− uv}

(mod (n + 1)). The results in Lemmas 3 and 4, and Theorem 2 regarding ACE also

have their LACE versions, as explicitly stated below.

Corollary 3. For any p and an arbitrary U ⊆ Ũ0, we have

(i) dp(L(D̃,U)) = dp(L(D̃,U+)) = dp(L(D̃+,U)) = dp(L(D̃+,U+));

(ii) dp(L(D̃1)) = dp(L(D̃+
1 )) = dp(L(D̃0))/2;

(iii) dp(L(D̃1)) ≥ dp(L(D̃)) for any n× (ψ(n+ 1)/2) LGLP set D̃,
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where dp(L(D̃0)) is as shown in Theorem 6.

Corollary 3 shows that the Lp-distance of L(D̃,U) remains unchanged if D̃ is

replaced by D̃+ and/or U is replaced by U+. When U = Ũ0, it is shown that L(D̃1)

has the largest Lp-distance among all L(D̃)’s, with D̃ being an n× (ψ(n+1)/2) LGLP

set. Moreover, the Lp-distance of L(D̃1) is half as much as dp(L(D̃0)).

Let U3 = {0, 1, . . . , ⌊n/2⌋}. Based on Corollary 3, the closed forms of the L1- and

L2-distances for the two special LACEs of D̃0 on either U1 or U3 are provided as follows.

Theorem 7. Let p = 1, 2 and n be an even integer. For D0, D̃0, U1 and U3 as defined

earlier, we have

(i) d1(L(D̃0,U1)) = d1(L(D̃0))− d1(E(D0))/2;

(ii) d2(L(D̃0,U1)) = (d2(L(D̃0))− Λ(n))/2;

(iii) d1(L(D̃0,U3)) = d1(E(D0))/2;

(iv) d2(L(D̃0,U3)) = d2(E(D0))/2− d1(E(D0))/4 when n+ 1 is a prime,

where dp(L(D̃0)) is as shown in Theorem 6, dp(E(D0)) is as shown in Theorem 1

(replacing n by n+ 1 here) and

Λ(n) =


(n+ 1)(q̃1n(n− 1)− (n+ 1− q̃1)(n+ 1− 2q̃1))

3q̃1
if t̃ = 1,

(n+ 1)3
(∏2

ℓ=0(q̃1q̃2 − ℓ)− q̃21
∏2

ℓ=0(q̃2 − ℓ)− q̃22
∏2

ℓ=0(q̃1 − ℓ)
)∏t̃

ℓ=3(q̃ℓ − 1)

3q̃21 q̃
2
2

∏t̃
ℓ=1 q̃ℓ

if t̃ > 1.

In Theorem 7, the LACEs have either nψ(n + 1)/2 columns or (n + 2)ψ(n + 1)/2

columns for an arbitrary even n, which has a similar design size as L(D̃1). When n+1
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is a prime, the proposed design L(D̃0,U3) is an equidistant LHD achieving the upper

bound dp,ave under the L1- and L2-distance criteria. Analogous to Theorem 4, we have

the following result.

Corollary 4. Let p = 1, 2 and n be an even integer. For each D in Corollary 3 (ii)

and Theorem 7, its Lp-distance efficiency follows

Effp(D) =
dp(D)

⌊dp,ave(D)⌋
≥ dp(D)
dp,ave(D)

=


1−O

(
1

n
− q̃1
n2

)
if t̃ = 1,

1−O
(

1

q̃1q̃2
+

1

n

)
if t̃ > 1.

When n + 1 is a prime power, i.e. t̃ = 1, the LACE D is asymptotically optimal

under the L1- and L2-distance criteria. When t̃ ≥ 2, we have the limiting efficiency

of 1 − 1/(q̃1q̃2) as n → ∞. The efficiency is at least 93.333%, with the lowest value

obtained when (q̃1, q̃2) = (3, 5).

For an arbitrary even n, i.e., q1 = 2, it holds that ψ(n) < ψ(n + 1), such as

ψ(14) = 6 < ψ(15) = 8. This implies that for an even n, the number of columns in the

LACE with the greatest number of factors exceeds that of the ACE with the greatest

number of factors. Moreover, the LACE improves the limiting L1- and L2-distance

efficiencies from 83.333% (ACE in Section 2.3) to 93.333% for an arbitrary even n. In

the context of efficiency and the number of factors, it is advisable to use the ACE for

odd values of n, and use the LACE for even values of n.
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4. Design properties: column-orthogonality and projection uniformity

4.1 Column-orthogonality

In variable selection, column-orthogonality is a desirable feature of a two-level

supersaturated design since estimates of effects will be uncorrelated. Owen (1994)

proposed the mean squared correlation metric to measure the column-orthogonality of

a k-factor design D, which is defined as ρ2(D) = 2
∑k−1

j=1

∑k
l=j+1 ρ

2
jl/(k(k − 1)), where

ρjl is the sample correlation between the jth and lth columns of D. A design D is

column-orthogonal if and only if ρ2(D) = 0 (0 ≤ ρ2(D) ≤ 1).

Wang, Sun and Xu (2022) established a connection between ρ2 and the L2-distance

of a design in their Theorem 2 and Corollary 1. They demonstrated that a larger L2-

distance value corresponds to a smaller ρ2 value. The ρ2 reaching its lower bound if

and only if the design is equidistant, which corresponds to a maximin distance design.

Denote the largest value among all pairwise Lp-distances of a design D by dmax
p (D).

Based on Theorem 1, we derive the closed forms of dmax
p (E(D0)) and d

max
p (E(D1)) as

follows.

Lemma 5. For p = 1, 2, it holds that

dmax
p (E(D0)) =


np+2(q21 − 1)

2p−13q21
if t = 1,

np+2(q1 + 1)
∏t

ℓ=1(qℓ − 1)

2p−13q1
∏t

ℓ=1 qℓ
if t > 1.

Moreover, we have dmax
p (E(D1)) = dmax

p (E(D0))/2.

Combining Theorems 1–2 with Lemma 5, we obtain the upper bounds of Ξ2 for
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4.2 Projection uniformity

E(D0) and E(D1). Then, we derive the following upper bounds of the ρ2 for these

designs.

Theorem 8. For D0 and D1 as defined earlier, we have

ρ2(E(D)) ≤ LBρ2(E(D)) +
n2ψ(n)(dmax

2 (E(D))− d2,ave(E(D)))2

(n− 1)(nψ(n)−∆)d22,ave(E(D))
,

where LBρ2(D) = max {(k + 1− n)/(n− 1)/(k − 1), 0}, ∆ = 1 if D = D0, and ∆ = 2

if D = D1.

When n is a prime, the equal sign holds. The resulting proposed designs E(D0)

and E(D1) are equidistant, ensuring their optimality under the ρ2 criterion. Moreover,

L(D̃0,U3) is the optimal LHD under the ρ2 criterion when n + 1 is a prime since

Theorem 7 proves that L(D̃0,U3) is an equidistant design. It is intractable to provide

tight upper bounds of the ρ2 of an arbitrary proposed design except for the designs in

Theorem 8. Wang, Sun and Xu (2022) stated that the maximin distance design under

the L2-distance criterion tends to have a small ρ2. The proposed LHDs often have

smaller ρ2’s.

4.2 Projection uniformity

It is well known that good projections to all subspace-fillings of factors are im-

portant in computer experiments (Moon, Dean and Santner, 2011; Joseph, Gul and

Ba, 2015). Based on the centered L2-discrepancy, Sun, Wang and Xu (2019) proposed

the two-dimensional uniform projection criterion of D =
(
n, sk

)
as ϕ(D) = 2

∑
{Ω}CD

(DΩ) /(k(k − 1)) where the (squared) centered L2-discrepancy is defined as CD(D) =
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4.2 Projection uniformity

1/n2
∑n

i=1

∑n
j=1

∏k
l=1 (1 + 1/2 |zil|+ 1/2 |zjl| − 1/2 |zil − zjl|)−2/n

∑n
i=1

∏k
l=1 (1 + 1/2

|zil| − 1/2 |zil|2
)
+ (13/12)k , zil = (2xil − s+ 1) /(2s), Ω is a two-element subset of

{1, 2, . . . , k} and DΩ is the projected design of D onto dimensions indexed by the el-

ements of Ω. A design is called a uniform projection design if it has the minimum ϕ

value. Sun, Wang and Xu (2019) and Wang, Sun and Xu (2022) connected the two-

dimensional projection uniformity with the L1-distance. Wang, Sun and Xu (2022) also

established a connection between ϕ and the L1-distance of a design in their Lemma 4

and Corollary 2.

Combining Theorems 1, 2 and 7, we can obtain the upper bounds of Ξ1 for E(D0),

E(D1) and L(D̃0,U3). Then, we derive the following upper bounds of the ϕ of these

designs. The following theorem indicates that E(D0) and E(D1) are also the optimal

LHDs under the ϕ criterion when n is a prime, as well as L(D̃0,U3) when n + 1 is a

prime.

Theorem 9. For D0, D1, D̃0 and U3 as defined earlier, we have


ϕ(E(D))) ≤ LBϕ(E(D)) +

(n+ 1)2(n− 1)ψ(n)(dmax
1 (E(D))− d1,ave(E(D)))2

36n2(nψ(n)−∆)d21,ave(E(D))
,

ϕ(L(D̃0,U3)) ≤ LBϕ(L(D̃0,U3)) +
n2(n+ 1)(n− 2)ψ(n)(dmax

1 (E(D1))− d1,ave(E(D1)))
2

36(n− 1)3((n+ 1)ψ(n)− 2)d21,ave(E(D1))
,

where LBϕ(D) = (5k(4n4 + 2(13n− 17)n2 − n+ 5)− (n− 1)(8n4 + 150n2 − 33))/(720

n4(n− 1)(k − 1)) + (1 + (−1)n)/(64n4), D and ∆ are defined in Theorem 8.

The equal sign holds for E(D0) and E(D1) when n is a prime, and for L(D̃0,U3)

when n + 1 is a prime. These designs exhibit equidistant properties under the L1-

distance, ensuring their optimality under the ϕ criterion. The above uniform projection
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criterion primarily emphasizes two-dimensional projections. To provide a thorough

evaluation of projections beyond two dimensions, Joseph, Gul and Ba (2015) proposed

the maximum projection criterion, which is defined as ϕ̃(D) =
{∑n−1

i=1

∑n
j=i+1 1/

∏k
l=1

(xil − xjl)2 /
(
n
2

)}1/k
. A design D is called a maximum projection design if it has the

minimum ϕ̃(D) value. The existing literature can only search for optimal designs

under the maximum projection criterion using algorithmic methods, due to the lack of

theoretical support to construct them systematically.

In addition to the Lp-distance, a commonly used distance-based criterion for mea-

suring space-filling LHDs is the ϕp criterion (Joseph and Hung, 2008). The lower and

upper bounds of ϕp criterion can be straightforwardly derived from Lemma 1, Theo-

rems 1, 5, 6 and 7. We will utilize the ϕ1 criterion to conduct comparisons between

the proposed algorithms and the existing algorithms in Section 6.

5. The algorithms based on (leave-one-out) column expansions

To further accommodate an arbitrary number of factors (m), a straightforward

approach is to apply a stochastic search algorithm to find the best collection of m

columns among the nψ(n) columns within the largest ACE as E(D0). This idea can be

implemented with the assistance of simulated annealing (SA) proposed by Kirkpatrick,

Gelatt and Vecchi (1983). Its pseudo-code is provided in Algorithm 0. Corollary 2

demonstrates that E(D0) is a good candidate set of design columns. Not only does

it has the maximal number of columns compared to other ACEs, but it also exhibits

a high Lp-distance efficiency. The tuning parameters of Algorithm 0 are primarily
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derived from those used in the Simulated Annealing (SA) algorithm, including the

initial temperature T , the decreasing rate: r and the threshold value: δ1. These

parameters have been extensively studied in the literature. Specifically, the initial

temperature T is set to approximately 10∆Eavg, where ∆Eavg represents the average

change in the objective function value when moving between neighboring solutions

(Kirkpatrick, Gelatt and Vecchi, 1983; Ben-Ameur, 2004). To balance convergence

speed and efficiency, many studies recommend r = 0.95 as a standard choice for the

SA algorithm (Singh and Baghel, 2021; Blanzeisky and Cunningham, 2022). A common

stopping criterion involves halting the algorithm when the temperature falls below a

certain threshold (δ1), typically set to no larger than 10−2, 10−3 or 10−4. Algorithm

0 is able to accommodate any m not exceeding nψ(n). An example with m ≤ n is

provided in Example 2 below.

Algorithm 0: The best collection of m columns from E(D0) by simulated
annealing
Input: the run size: n, number of factors: m, GLP set: D0, positive integer: p,

initial tuning parameter: T , tuning parameter decreasing rate: r ∈ (0, 1),
threshold value: δ1;

Output: the design D.
1 set D = D0 and D as random m columns among the nψ(n) columns in E(D0);
2 while T ≥ δ1 do
3 randomly interchange two columns drawn from D and E(D)\D, and denote the

updated D as Dtry;
4 if Effp(D) < Effp(Dtry) then
5 set π = 1;
6 else
7 set π = exp ((Effp(Dtry)− Effp(D))/T );
8 end
9 update design: D ← Dtry with probability π;

10 update tuning parameter: T ← rT ;

11 end
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Table 2: The L1-distance efficiencies of the LHDs generated by Algorithms 0 and 0L.
Algorithm 0 Algorithm 0L

n m d1 Eff1 n m d1 Eff1 n m d1 Eff1 n m d1 Eff1

3 2 2 1 7 4 8 0.8 4 2 3 1 6 3 6 0.857
3 4 1 5 10 0.769 3 4 0.8 4 8 0.889

5 4 6 0.75 6 13 0.813 4 6 1 5 10 0.909
5 9 0.9 7 16 0.889 6 13 0.929

Note: d1 represents the L1-distance and Eff1 represents the L1-distance efficiency.

Example 2. For each n in Example 1, Algorithm 0 is employed to construct some

LHDs with m ≤ n. Their L1-distances and L1-distance efficiencies are displayed in the

left side of Table 2. The L1-distance efficiencies of the LHDs generated by Algorithm

0 are higher than that of ACE in Table 1. Furthermore, Algorithm 0 is able to ac-

commodate a wider range of design sizes, including (n,m) = (3, 3), (5, 5), and (7, 4).

Additional results for n < m will be provided in Section 6.2.

When the design space is large, Algorithm 0 may not be feasible. To address this

issue, we start with a well-chosen initial design. In view of Lemma 2 and Corollary 1,

the ACE of either D0 or D1 is a suitable choice of the initial design, due to its good

space-filling property. Specifically, we add a step in the initial phase of Algorithm

0 to search for a high Lp-distance ACE. This additional step unfolds as follows. An

elementary n × k GLP set D is first selected. Then the SA method is employed to

search for the index set U (and the remaining m−kv columns if m−kv > 0), with the

constraint kv ≤ m. In each iteration of SA, one element is randomly chosen from the

current U to exchange with one randomly selected element from U0\U . The new U is

denoted as Utry. If m−kv > 0, the remaining m−kv columns are filled with randomly

selected columns Ďtry from E(D,U0\Utry). The resulting new design is denoted as
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Dtry = (E(D,Utry), Ďtry), which is adopted with probability π as specified above. The

iteration stops when there is no further improvement ofDtry in the Lp-distance efficiency

over several consecutive iterations. Upon iteration completion, the resulting design

serves as the initial design for Algorithm 0 if the current tuning parameter remains

above a pre-specified threshold. This tuning parameter is transmitted to Algorithm 0

as the initial tuning parameter. This algorithm stops when the tuning parameter falls

below a pre-specified threshold.

Corollary 1 indicates that choosing the ACE of D0 and D1 is advantageous for

generating designs with large Lp-distances. The aforementioned proposed algorithm

utilizes D0, D1 and D′
1 to yield Algorithms 1–3. Specifically, these algorithms indi-

vidually select ACEs of D0, ACEs of D1, and combinations of ACEs of D1 and D′
1 to

be the candidate set. The stopping criteria are controlled by the tuning parameters

δ1, δ2, and κ. A vector v is introduced to record historical Lp-distance efficiencies to

continuously check the stopping criterion of the first iteration loop. The details for

three specific algorithms based on SA are provided as follows.

In Algorithm 1, D0 serves as the elementary GLP set to produce the skeleton ACE.

The loop in lines 4–16 of the algorithm is designed to identify the optimal U that works

best with D0, aiming to generate an LHD with high efficiency. The iteration will stop

when the variance of the most recent κ Lp-distance efficiencies is smaller than δ2 or

the tuning parameter is below δ1. The resulting design serves as the initial design for

Algorithm 0 if the tuning parameter remains above δ1. Notably, the recommendation

for δ1 is also applicable to δ2, as their purposes are similar. Based on empirical evidence,
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Algorithm 1: The D0-based algorithm
Input: the run size: n, number of factors: m, GLP set: D0, positive integer: p,

initial temperature: T , decreasing rate: r ∈ (0, 1), number of consecutive
iterations: κ, threshold values: δ1 and δ2;

Output: the design D.
1 set U0 = {0, . . . , n− 1} and v = ∅;
2 set v = ⌊m/ψ(n)⌋, K = m (mod ψ(n)) and D = D0;

3 randomly draw a U = (u1, . . . , uv) ⊆ U0 and K columns from E(D,U0\U) to be Ď,

and set D = (E(D,U), Ď);
4 while (T ≥ δ1) and (|v| ≤ κ or σ2 ≥ δ2) do
5 update historical Lp-distance efficiencies: v = (v,Effp(D)), calculate the

variance for the most recent κ Lp-distance efficiencies in v and denote this
variance by σ2;

6 randomly interchange two elements drawn from U and U0\U , and denote the
updated U as Utry;

7 randomly draw K columns from E(D,U0\Utry) to be Ďtry;

8 set Dtry = (E(D,Utry), Ďtry);
9 if Effp(D) < Effp(Dtry) then

10 set π = 1;
11 else
12 set π = exp ((Effp(Dtry)− Effp(D))/T );
13 end
14 update design and index set: U ← Utry and D ← Dtry with probability π;
15 update tuning parameter: T ← rT ;

16 end
17 run lines 2-11 of Algorithm 0;

we recommend setting κ = 10 in simulations. Algorithm 0 stops when the tuning

parameter falls below a pre-specified threshold δ1. The final output design D is a

(nearly) maximin distance LHD. In Algorithm 2, D1 serves as the elementary GLP set

instead of D0. For the cases of m > nψ(n)/2, the first nψ(n)/2 columns of the output

design are E(D′
1) and the remaining m−nψ(n)/2 columns are selected among columns

of E(D1) with the same algorithm except for some small adjustments. Algorithm 3 is

proposed to study a more flexible framework where ACEs of D1 and D
′
1 work together

to form an efficient LHD. More discussions and comparisons of Algorithms 1-3 are

provided in the supplementary materials.
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Algorithm 2: The D1-based algorithm
Input: the run size: n, number of columns: m, GLP set and its strictly dual: D1

and D′
1, positive integer: p, initial tuning parameter: T , tuning parameter

decreasing rate: r ∈ (0, 1), number of consecutive iterations: κ, threshold
values: δ1 and δ2;

line 2: set K = m (mod (ψ(n)/2)), D = D1 and D′ = D′
1; if m = nψ(n)/2, set

D = E(D) and stop the algorithm; if m < nψ(n)/2, set Dfix = ∅ and
v = ⌊2m/ψ(n)⌋; if m > nψ(n)/2, set Dfix = E(D′) and v = ⌊2m/ψ(n)⌋ − n;

line 3: randomly draw a U = (u1, . . . , uv) ⊆ U0 and K columns from E(D,U0\U) to
be Ď, and set D = (Dfix, E(D,U), Ď);

line 8: set Dtry = (Dfix, E(D,Utry), Ďtry);
run lines 1, 4-7, 9-17 as those in Algorithm 1;
Output: the design D.

Algorithm 3: The (D1, D
′
1)-based algorithm

Input: the run size: n, number of columns: m, GLP set: D0, GLP set and its
strictly dual: D1 and D′

1, positive integer: p, initial tuning parameter: T ,
tuning parameter decreasing rate: r ∈ (0, 1), number of consecutive
iterations: κ, threshold values: δ1 and δ2;

line 2: randomly draw an integer partition as m = m1 +m2 with non-negative m1

and m2, set vi = ⌊2mi/ψ(n)⌋, Ki = mi (mod (ψ(n)/2)) for i = 1, 2, D = D1 and
D′ = D′

1;
line 3: randomly draw the vi-element subset of U0 to be U i for i = 1, 2, K1 columns
from E(D,U0\U1) to be Ď1 and K2 columns from E(D′,U0\U2) to be Ď2, and set
D = (E(D,U1), E(D′,U2), Ď1, Ď2);

line 6: randomly draw an i ∈ {1, 2}, randomly select one of the two operations: (i)
randomly interchange two elements drawn from U i and U0\U i, (ii) randomly delete
an element of U i and add an element from U0\U j to U j for j ∈ {1, 2} and j ̸= i,
and denote the updated U1 and U2 as U1

try and U2
try respectively;

line 7: randomly draw K1 columns from E(D,U0\U1
try) to be Ď1

try, and K2 columns

from E(D′,U0\U2
try) to be Ď2

try;

line 8: set Dtry = (E(D,U1
try), E(D′,U2

try), Ď
1
try, Ď

2
try);

line 13: update design and index set: U1 ← U1
try, U2 ← U2

try and D ← Dtry with
probability π;

run lines 1, 4-5, 9-13, 15-17 as those in Algorithm 1.
Output: the design D.

Besides the SA algorithm, the proposed hybrid approaches can accommodate var-

ious stochastic algorithms, such as the genetic algorithm (Mitchell, 1998) and the par-

ticle swarm algorithm (Kennedy and Eberhart, 1995). In contrast to directly applying
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these algorithms for the search of maximin distance designs, Algorithms 0, 1, 2 and 3,

leveraging the ACE structure with high Lp-distance efficiency, can yield more efficient

designs. Algorithms 1–3 employ a well-chosen initial design via the geometric structure

of ACE. Compared to Algorithm 0, Algorithms 1–3 will accelerate the search process.

This is particularly important when n is large. These three algorithms are inclined to

construct highly efficient designs. Numerical comparisons will be presented in Section

6.2.

For an even n and an arbitrary m, we shall modify Algorithms 0, 1, 2 and 3 by

replacing the ACE component therein with the corresponding LACE, and we shall refer

to these new algorithms as Algorithms 1L, 2L, 3L and S1L. Further details on them

are deferred to the supplemental materials. They are expected to yield improvements

over Algorithms 0, 1, 2 and 3 when n is even.

Example 3. For n = 4 and 6, Algorithm 0L is used to construct LHDs under the

L1-distance with m ≤ n. Their L1-distances and L1-distance efficiencies are displayed

in the right side of Table 2. The L1-distance efficiencies of the LHDs generated by

Algorithm 0L are notably high, ranging from 80% to 100%. More results are presented

in Section 6.2.

6. Comparisons with the existing works

6.1 Qualitative comparisons

Existing algebraic methods are applicable to specific configurations of run size (n)

and number of factors (m), limiting their flexibility in accommodating arbitrary design
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sizes. For instance, the construction methods introduced in Xiao and Xu (2017) and

Wang, Xiao and Xu (2018) are only applicable when either n or 2n+ 1 is a prime and

m ∈ {n − 1, n}. Zhou and Xu (2015) and Vazquez and Xu (2024) proposed maximin

distance designs withm = n(n−1) orm = n(n−1)/2 where n is a prime. Besides, there

is a category of innovative construction methods that expand a space-filling design (B)

through level and/or column expansions based on a specific algebraic structure (A) to

achieve larger space-filling designs (D). The space-filling property of the input design

B ensures that of the resulting design D. However, achieving this goal is challenging

since constructing the input design B is only possible for limited run sizes. In contrast,

the algebraic component of our method allows an arbitrary n and m = kv. The cases

of m ≈ ñψ(ñ) or m ≈ ñψ(ñ)/2 have been theoretically studied and their asymptotic

optimality has been established.

Algorithmic search methods are only available for small numbers of runs and fac-

tors, such as Ba (2013) and Carnell (2022). In contrast, our algorithmic component

handles an arbitrary m ≤ ñψ(ñ) for all values of n. Numerical studies demonstrate

that the proposed algorithms can efficiently yield (nearly) optimal LHDs under the L1-

and L2-distance criteria.

To accommodate arbitrary values of n and m, one can employ a stochastic algo-

rithmic search to augment n − n1 rows and m − n1 columns for the n1 × n1 (n ≥ n1,

m ≥ n1) optimal L1-distance LHD proposed by Wang, Xiao and Xu (2018). This LHD

is limited to the case where 2n1+1 is a prime. Such a method generally underperform

the proposed algorithms. More details are presented in the supplementary materials
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(Section S3.2).

6.2 Quantitative comparisons

In this section, the proposed method is compared with two of the most commonly

used algorithms for constructing arbitrary space-filling LHDs: “SLHD” (Ba, 2013) and

“lhs” (Carnell, 2022) in the R-packages. Set T = 1, r = 0.95, κ = 10 and δ2 = 10−4.

The quantitative comparisons demonstrate that the proposed algorithms outperform

“SLHD” and “lhs” under the space-filling criteria of the Lp-distance, ρ
2, ϕ, ϕ1 and ϕ̃.

For n = 7 and m ∈ {2, . . . , nψ(n)} = {2, . . . , 42}, Algorithms 0, 1, 2 and 3 are

compared with “SLHD” and “lhs” under the L1- and L2-distance criteria. Three choices

of (δ1, R) as (3.5×10−1, 50), (7.5×10−2, 200) and (3.5×10−5, 1000) are provided where

δ1 is the tuning parameter and R is the number of iterations corresponding to δ1. For

each (m,R), each algorithm is repeated 500 times and the averages of the L1- and

L2-distance efficiencies are drawn in Figure 1. Specifically, Figures 1 (a)–(c) display

the average L1-distance efficiencies of all algorithms for m ∈ {2, . . . , 42} with R set

to 50, 200, and 1000 iterations, respectively. Figures 1 (d)–(f) depict the L2-distance

efficiency versions of Figures 1 (a)–(c), respectively. As shown in Figure 1 (a)–(f), the

Lp-distance efficiencies of the proposed designs via Algorithms 0, 1, 2 and 3 consistently

outperform those of the designs generated by “SLHD” and “lhs” across all combinations

of R, m, and p. As R increases, the growth of efficiency is slower for “SLHD” and “lhs”

than for Algorithms 0, 1, 2 and 3. As m approaches nψ(n)/2, Algorithm 2 significantly

enhances its efficiency due to the established optimality around m = nψ(n)/2. This

ensures a highly efficient design. From m = 21 to 42, the optimality near the boundary
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Figure 1: The L1- and L2-distance efficiencies under various scenarios: Algorithms 0,
1, 2, 3, “SLHD” and “lhs” in the R-packages (marked as A0, A1, A2, A3, SLHD and
lhs in sequence).

values of m ensures high efficiencies. Even when m deviates from these boundaries,

the L1-distance efficiency of the proposed design remains above 90% in Figure 1(a) for

m ≥ 35, and in Figures 1(b)–(c) for m ≥ 19.

Besides the Lp-distance criterion, four other space-filling criteria are used: ρ2

(Owen, 1994), ϕ1 (Joseph and Hung, 2008), ϕ̃ (Joseph, Gul and Ba, 2015) and ϕ

(Sun, Wang and Xu, 2019) to compare the proposed algorithms with “SLHD” and

“lhs”. Denote the ρ2 efficiency of design D by Effρ2(D) = LBρ2(D)/ ρ2(D), the ϕ

efficiency of D by Effϕ(D) = LBϕ(D)/ϕ(D) and the ϕ1 efficiency of design D by

Effϕ1(D) = n(n − 1)/(2d1,ave(D)ϕ1(D)). For lack of the theoretical lower bound of ϕ̃,
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Figure 2: The ρ2, ϕ, ϕ1 and ϕ̃ efficiencies under various scenarios: Algorithms 0, 1, 2,
3, “SLHD” and “lhs” in the R-packages (marked as A0, A1, A2, A3, SLHD and lhs in
sequence).

we utilize its reciprocal (1/ϕ̃) to measure the space-filling property. A higher value of

1/ϕ̃ indicates a better space-filling property. For each configuration of m and R, the

variants of Figure 1 based on these criteria are plotted in Figure 2. It turns out that

the designs by Algorithms 1–3 often have smaller ρ2, ϕ, ϕ1 and ϕ̃ compared to those

from “SLHD” and “lhs”.

Furthermore, we calculate the number of iterations R required for achieving an

efficiency not less than δ = 0.8 and 0.9. For each algorithm, we perform 100 repetitions

and report min(R, 200), with 200 serving as the cutoff point if the needed R exceeds
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it. For each algorithm, the average numbers of needed iterations against m are plotted

in Figure S3 in the supplementary materials under the L1- and L2-distance criteria.

The results show that Algorithms 0–3 generally require fewer iterations than “SLHD”

and “lhs” for achieving high efficiency (greater than δ) across arbitrary configurations

of m, p and δ, particularly Algorithms 1–3.

For n = 6, we use LACE as the skeleton for our algorithms since n is even. The

tuning parameters keep the same settings as those used for n = 7. Form ∈ {2, . . . , (n+

1)ψ(n + 1)} = {2, . . . , 42}, we plot the averages of the L1- and L2-distance, ρ
2, ϕ,

ϕ1 efficiencies and 1/ϕ̃ against m in Figures S1–S2 in the supplementary materials.

Moreover, we also plot the LACE version of Figure S3 in Figure S4 in the supplementary

materials. We have a similar observation of the comparison as that for n = 7. The

computational time for each proposed design shown in Figures 1–2 ranges between 0.2

and 0.3 seconds.

Other values of n categorized based on their prime decomposition n = qr11 . . . qrtt

are considered. When t = 1, four distinct values of n: 5, 8, 9, and 11 are examined.

Similarly, for t = 2, four different n values: 10, 12, 18, and 22 are examined. Set δ1 =

3.5×10−5. For each n and anym ≤ nψ(n), each algorithm is repeated 100 times among

Algorithms 1–3, “SLHD” and “lhs” to calculate the average L1-distance of the output

design D as d̄1(D). For each algorithm and each n, the median along with minimum

and maximum (as specified in parentheses) of d̄1(D)’s with m ∈ {2, 3, . . . , nψ(n)} are

listed in Table 3. It is shown that Algorithms 1–3 have larger L1-distance efficiencies

than “SLHD” and “lhs” when n ∈ {5, 8, 9, 11}. When n ∈ {10, 12, 18, 22}, Algorithms
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1–3 have the L1-distance efficiencies similar to those of “SLHD” and “lhs”. For those

selected n’s that are even, we also repeat each algorithm 100 times among Algorithms

1L–3L for m ≤ (n+1)ψ(n+1). These results are presented in Table 3. It is shown that

Algorithms 1L–3L outperform Algorithms 1–3, “SLHD” and “lhs” for each selected

even n. This indicates that the LACE indeed improves the non-ideal efficiency based

on the ACE for the even n. Moreover, the proposed designs have high L1-distance

efficiencies (exceeding 90%) for at least half of all m values. The computational time

for each proposed design presented in Table 3 is under 1 second. For all selected n’s,

similar comparisons under other criteria are carried out: the L2-distance, ρ
2, ϕ, ϕ1 and

ϕ̃ criteria, which are listed in Tables S1–S5 in the supplementary materials. Under each

criterion, we have a similar observation of the comparison as that under L1-distance

criterion in Table 3.

The comparison for large design types under all criteria is extended, specifically for

those with n ∈ {60 = 22× 3× 5, 100 = 22× 52, 210 = 2× 3× 5× 7, 1200 = 24× 3× 52}.

Due to the limitations of “lhs” in handling these large design sizes, our comparison is

limited to Algorithms 1L–3L and “SLHD”. The results are displayed in Table 4. It is

shown that the designs by Algorithms 1L–3L often outperform these by “SLHD” under

these criteria. In Table 4, the computational time for each proposed design is under 5

minutes when n ≤ 210 and is under 2 hours when n = 1200.

6.3 Discussions

The proposed designs are intended for scenarios where space-filling properties are

beneficial, particularly in tasks such as global surrogate modeling in computer exper-
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Table 4: Quantitative comparisons with large values of n under all criteria.
n m Method Eff1 Eff2 Effρ2 Effϕ Effϕ1 1/ϕ̃ n m Method Eff1 Eff2 Effρ2 Effϕ Effϕ1 1/ϕ̃
60 50 A1L 0.741 0.551 0 0.588 0.991 117.333 60 600 A1L 0.949 0.901 0.931 0.985 1.000 185.948

A2L 0.682 0.499 0 0.562 0.989 104.977 A2L 0.950 0.920 0.931 0.987 1.000 185.944
A3L 0.776 0.545 0 0.683 0.994 138.227 A3L 0.925 0.867 0.950 0.981 1.000 179.421
SLHD 0.686 0.489 0 0.580 0.990 75.221 SLHD 0.911 0.827 0.898 0.964 0.999 165.707

60 A1L 0.915 0.823 0.037 0.861 0.998 186.114 1800 A1L 0.975 0.925 0.983 0.996 1.000 197.452
A2L 0.818 0.832 0.041 0.793 0.996 150.908 A2L 0.990 0.985 0.999 1.000 1.000 203.463
A3L 0.795 0.696 0.025 0.783 0.995 147.765 A3L 0.964 0.951 0.990 0.995 1.000 193.770
SLHD 0.721 0.551 0.017 0.656 0.993 100.452 SLHD 0.951 0.916 0.969 0.989 1.000 181.130

100 100 A1L 0.857 0.748 0.017 0.768 0.998 417.122 210 100 A1L 0.804 0.660 0 0.203 0.995 1495.290
A2L 0.830 0.727 0.015 0.748 0.997 384.150 A2L 0.794 0.650 0 0.200 0.995 1331.878
A3L 0.885 0.749 0.015 0.840 0.999 471.617 A3L 0.815 0.649 0 0.216 0.996 1482.491
SLHD 0.719 0.563 0.010 0.628 0.995 276.106 SLHD 0.738 0.578 0 0.187 0.995 1030.483

1000 A1L 0.962 0.908 0.943 0.986 1.000 504.381 200 A1L 0.857 0.760 0 0.618 0.998 1597.577
A2L 0.915 0.935 0.953 0.975 1.000 477.036 A2L 0.851 0.746 0 0.635 0.998 1537.790
A3L 0.939 0.911 0.937 0.984 1.000 484.772 A3L 0.861 0.741 0 0.635 0.998 1695.839
SLHD 0.920 0.864 0.901 0.964 1.000 430.906 SLHD 0.769 0.689 0 0.587 0.997 1432.261

210 500 A1L 0.912 0.877 0.674 0.903 0.999 1842.205 1200 600 A1L 0.855 0.793 0 0.204 0.999 51353.750
A2L 0.916 0.872 0.688 0.896 0.999 1956.835 A2L 0.873 0.787 0 0.202 0.999 53147.620
A3L 0.927 0.856 0.705 0.909 1.000 1929.198 A3L 0.823 0.618 0 0.259 0.999 50840.490
SLHD 0.878 0.808 0.583 0.840 0.999 1644.199 SLHD 0.849 0.757 0 0.206 0.999 46063.140

1000 A1L 0.930 0.916 0.900 0.940 1.000 2009.328 2000 A1L 0.927 0.883 0.479 0.830 1.000 61247.193
A2L 0.946 0.922 0.875 0.960 1.000 2018.350 A2L 0.936 0.877 0.469 0.842 1.000 62895.417
A3L 0.929 0.902 0.816 0.948 1.000 1975.750 A3L 0.912 0.843 0.475 0.850 1.000 60017.242
SLHD 0.911 0.846 0.791 0.919 1.000 1769.360 SLHD 0.910 0.860 0.401 0.762 1.000 57457.881

Note: Algorithms 1L, 2L, 3L and R-package “SLHD” (marked as A1L, A2L, A3L and SLHD in sequence). For the case of (n,m) = (60, 50), (210, 100), (210, 200)
or (1200, 600), Effρ2 is equal to 0 since the lower bounds is equal to 0.

iments (Johnson, Moore and Ylvisaker, 1990; Zhou and Xu, 2015), as well as initial

sampling in active learning frameworks (Crombecq et al., 2009; Zhang et al., 2021) and

multi-start methods for global optimization (Regis and Shoemaker, 2013; Yu et al.,

2019). When n ≥ m, space-filling LHDs are widely utilized in computer experiments.

Johnson, Moore and Ylvisaker (1990) demonstrated that maximin distance designs are

asymptotically optimal for fitting Gaussian process models within a Bayesian frame-

work. The proposed hybrid method enables the efficient construction of these designs.

Regardless of whether n ≥ m or n < m, the proposed method is a beneficial tool for

constructing larger space-filling designs. As discussed in Section 6.1, these construction

techniques require flexible space-filling designs (B) to achieve larger and flexible space-

filling designs (D). The proposed designs precisely meet the critical requirements for

the input design (B). For instance, Li, Liu and Tang (2021) constructed a maximin

distance U-type design (D) by replacing the uth level of a U-type design (A) with a
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large Hamming distance by the uth row of a U-type design (B) for u = 1, . . . , s. Let A

be a 144 × 7 orthogonal array with 12 levels as shown in the R-package “DoE.base”,

with a Hamming distance efficiency of 92.875%. The 12× 12 LACE of D̃1 on U is the

maximal L1-distance design, where U = {1, 12}. This proposed design can serve as B,

enabling the resulting design D as a 144×84 U-type design. It is shown that D exhibits

the L1-distance and L2-distance efficiencies of 92.875% and 89.881%, respectively. If

U = {1, 12} is replaced by U = {0, 1, 12}, the proposed design B becomes a 12 × 18

LACE with the L1-distance efficiency of 93.590%. Consequently, the resulting design

D is a 144× 126 U-type design with the L1-distance efficiency of 86.904%.

A space-filling LHD stands out as an excellent choice for initial points in multi-start

methods for global optimization (Regis and Shoemaker, 2013; Yu et al., 2019), espe-

cially beneficial for multimodal optimization. To avoid local optima, diverse starting

points are needed to explore the landscape and identify what appears to be the global

optimum. Compared with random starting points, a space-filling LHD often offers

multi-start methods greater chances of reaching global optima, as it distributes more

uniformly in space and exhibits superior projection uniformity. When the dimension

(m) is high, the proposed designs with n < m are more economical in practice. More

results are provided in the supplementary materials (Section S3.3).

Furthermore, space-filling LHDs have been recommended for applications in vari-

able selection, especially when n < m. Butler (2005) mentioned supersaturated LHDs

in variable selection. Chien, Deng and Lin (2022) demonstrated that space-filling LHDs

significantly enhance the variable selection accuracy of Lasso regression. The proposed
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hybrid method is able to efficiently construct these supersaturated space-filling LHDs.

For predictive accuracy, space-filling designs are advantageous in computer experi-

ments or surrogate modeling, as they uniformly explore the input parameter space

and minimize bias in response surface estimation. More results are provided in the

supplementary materials (Section S3.7).

7. Concluding Remarks

The proposed hybrid method efficiently generates space-filling LHDs to accom-

modate any configuration (n,m) with m ≤ ñψ(ñ) where ψ(·) is the Euler function,

and ñ = n for an odd n and ñ = n + 1 for an even n. The algebraic component,

ACE (LACE), is identified as a high-quality candidate set for constructing space-filling

LHDs. This paper provides a solid theoretical foundation for this choice, expanding

the scope of run sizes outlined in Vazquez and Xu (2024) from prime numbers to all

integers. We recommend ACE for all odd values of n and LACE for all even values of

n, as they provide high efficiencies in terms of L1- or L2-distance and provide greater

flexibility in the number of columns. This candidate set ensures that the L1- and L2-

distance efficiencies are both greater than 93.333%. These theoretical findings validate

the feasibility of the proposed method in accommodating any run size. To accommo-

date an arbitrary number of factors, the proposed algorithm, leveraging the ACE or

LACE structure with high Lp-distance efficiency, enables the acceleration of the search

process and the generation of highly efficient designs. Furthermore, theoretical and

simulation-based evidence shows that the proposed LHDs also perform well on criteria
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based on column-orthogonality, projection uniformity, and ϕp.

In addition to the maximin distance criterion, uniformity serves as another key

criterion for space-filling designs. It would be interesting to study the space-filling

properties of the proposed designs under discrepancy criteria in future studies.

Supplementary Material

The online Supplementary Material includes detailed proofs, algorithms based on

the leave-one-out additive column expansion, quantitative comparisons between the

proposed method and existing methods based on criteria such as the Lp-distance,

column-orthogonality, projection uniformity and computational costs.
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Weyl, H. (1916). Über die gleichverteilung von zahlen mod. eins. Mathematische Annalen 77, 313–352.

Xiao, Q. and H. Xu (2017). Construction of maximin distance Latin squares and related Latin hypercube

designs. Biometrika 104, 455–464.

Yu, H., Y. Tan, C. Sun and J. Zeng (2019). A generation-based optimal restart strategy for surrogate-assisted

social learning particle swarm optimization. Knowledge-Based Systems 163, 14–25.

Zhang, Y., S. Wang, C. Zhou, L. Lv and X. Song (2021). A fast active learning method in design of exper-

iments: multipeak parallel adaptive infilling strategy based on expected improvement. Structural and

Multidisciplinary Optimization 64, 1259–1284.

Zhou, Y. D., K. T. Fang and J. H. Ning (2013). Mixture discrepancy for quasi-random point sets. Journal of

Complexity 29, 283–301.

Zhou, Y. D. and H. Xu (2015). Space-filling properties of good lattice point sets. Biometrika 102, 959–966.

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, BJ 100083, China

Email: xueruzhang@ustb.edu.cn

41

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0145



REFERENCES

Department of Statistics, Purdue University, West Lafayette, IN 47907, U.S.A

E-mail: dkjlin@purdue.edu

Department of Business Analytics and Statistics, University of Tennessee, Knoxville, TN 37996, U.S.A

E-mail: wzheng9@utk.edu

42

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0145


	Introduction
	The proposed construction method: additive column expansion
	Preliminaries
	Additive column expansion
	Theoretical Lp-distances of ACEs

	Leave-one-out additive column expansion
	Design properties: column-orthogonality and projection uniformity
	Column-orthogonality
	Projection uniformity

	The algorithms based on (leave-one-out) column expansions
	Comparisons with the existing works
	Qualitative comparisons
	Quantitative comparisons
	Discussions

	Concluding Remarks



