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Abstract: Motivated by imaging genetics, this paper introduces a semi-nonparametric

varying coefficients modeling framework to reveal varying associations between

genetic markers and imaging responses. We aim to conduct a comprehensive

theoretical analysis of estimation and inference procedures applicable to these

models. By employing the kernel machine method, we estimate unknown vary-

ing coefficient functions and derive their representer theorem. We also establish

the theoretical properties of these estimated functions, including their rate of con-

vergence, Bahadur representation, point-wise limit distributions, and confidence

intervals. Additionally, we propose test statistics under a linear mixed effects

model framework to assess the significance of all varying coefficients, taking into

account within-subject dependence. The efficacy of our proposed methodology

is demonstrated through simulation studies and an application to data from the
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Alzheimer’s Disease Neuroimaging Initiative study.

Key words and phrases: Imaging Genetics; Kernel ridge regression; Linear mixed

effects model; Reproducing kernel Hilbert space.

1. Introduction

Advancements in modern imaging and genetic techniques have facilitated

large-scale neuroimaging genetics studies aimed at understanding the ge-

netic foundations of human brain structure and function. Prominent exam-

ples include the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study

(Mueller et al., 2005) and the UK Biobank (UKB) study (Miller et al.,

2016). Imaging traits are increasingly used as biomarkers for diagnosis and

prognosis, as well as endophenotypes to identify genetic markers linked to

various brain-related disorders (Elliott et al., 2018; Zhao et al., 2021). These

traits provide critical insights into the biological pathways that connect ge-

netics with imaging characteristics and brain-related disorders which are

confounded with health factors such as diet and alcohol. Nonetheless, the

combined analysis of imaging and genetic data poses significant challenges

to current statistical methods due to their high dimensionality and intricate

spatio-temporal structures (Zhu et al., 2023).

A compelling data example that motivates our proposed method is

derived from ADNI, to identify relevant genetic markers for various brain-
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related diseases (e.g., Alzheimer’s disease) in genome-wide imaging genetics

(Nathoo et al., 2019; Le and Stein, 2019) using imaging endophenotypes.

The hippocampus, crucial for learning and memory, often exhibits signifi-

cant tissue loss at the early stages of Alzheimer’s disease (AD), resulting in a

functional disconnection from other brain regions (Rao et al., 2022). Traits

linked to the hippocampus have become pivotal biomarkers for grasping

the nuances of aging and for diagnostic purposes. Analyzing hippocampus-

related imaging phenotypes alongside genetic data is key to unraveling the

genetic underpinnings that dictate brain structure and function, and it is

instrumental in pinpointing relevant genetic markers. Our focus is to under-

stand the influence of genetic pathways on hippocampal imaging traits after

adjusting for clinical and demographic variables. Given the complex and

less understood relationships between genes and imaging phenotypes, we

propose a versatile framework designed to capture the influence of genetic

pathways effectively.

We introduce a semi-nonparametric varying coefficient (SVC) modeling

framework to correlate imaging traits with genetic markers while controlling

for clinical and demographic covariates. Specifically, we analyze data from

n independent subjects, represented as (yi,xi, zi)
n
i=1, where xi is a q × 1

vector of gene expressions within a pathway, zi is a p× 1 vector of clinical
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covariates, and yi = {yi(s) : s ∈ S} are the imaging traits observed in

a common compact space S. Drawing inspiration from Liu et al. (2007),

our model posits that clinical covariates exert linear effects, while genetic

covariates may have non-linear or linear effects using the least squares kernel

machine. We consider the following SVC model for imaging genetics

yi(s) = h(xi, s) + zTi γ(s) + ϵi(s) for i = 1, . . . , n, (1.1)

where γ(s) = (γ1(s), . . . , γp(s))
T is a p × 1 varying-coefficient function,

h(x, s) is an unknown multivariate smooth function, and {ϵi(s) : s ∈ S} is

a measurement error process and independent of (xi, zi). Model (1.1) cap-

tures the spatial-varying effects of genetic markers x and clinical variables

z on neuroimaging data. In practice, yi can be a 1-dimensional curve, a

2-dimensional surface or matrix, or a 3-dimensional volume extracted from

various neuroimaging modalities. For simplicity, we set S = [0, 1] through-

out the paper, although our results are extensible to higher dimensional

spaces. Each regression function is assumed to reside in a Reproducing

Kernel Hilbert Space (RKHS), with unknown parameters estimated via a

least squares kernel machine technique. In our ADNI dataset, yi(s) mea-

sures morphometry along either the left or right hippocampus, with xi
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comprising genetic data, and zi incorporating clinical variables.

The construction of the SVC model is due to the specific character-

istics of the ADNI dataset. Our primary objective is to investigate the

genetic pathway effects on the hippocampus, while controlling for the para-

metric effects of clinical and demographic covariates. Given the complex

relationship between genetic factors and hippocampal structure, we intro-

duce a flexible nonparametric framework for the genetic data to capture

these intricate effects more effectively. In contrast, the clinical variables

are modeled linearly, as linear adjustments suffice to account for their in-

fluence. This also helps to balance model flexibility with computational

feasibility, avoiding the substantial computational burden that would arise

from a fully nonparametric approach across all covariates. This strategy

is consistent previous studies such as Liu et al. (2007); Kwee et al. (2008);

Wu et al. (2011), which utilized general nonparametric models for genetic

effects while adjusting for linear effects of clinical covariates.

Model (1.1) reduces to popular function-on-scalar regression models un-

der the functional data analysis (FDA) framework when h(·, ·) = 0. Various

advanced approaches have been proposed to study the effects of scalar co-

variates on functional responses, such as basis expansion (Reiss et al., 2010;

Krafty et al., 2008; Li et al., 2021), kernel smoothing (Zhang and Chen,
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2007; Li et al., 2011; Zhu et al., 2014), and methods within the Bayesian

framework (Lindquist et al., 2010; Yang et al., 2020). Comprehensive re-

views of FDA models can be found in Morris (2015) and Wang et al. (2016).

However, these approaches do not account for the nonlinear varying coeffi-

cient effect h(xi, s) of the scalar covariates.

Meanwhile, over the past decade, there have been significant advance-

ments in functional data analysis, particularly tailored for imaging data.

Notably, varying coefficient models (Zhu et al., 2012; Yuan et al., 2013;

Zhu et al., 2014) have been employed to treat imaging data as functional

responses, which aids in identifying causal clinical variables and examining

their explanatory capabilities. Furthermore, functional principal compo-

nent analysis (Goodlett et al., 2009; Zhu et al., 2011) is utilized to isolate

factor functions that capture the variability in brain structures; while func-

tional (linear) regression analysis (Zhu et al., 2010; Kong et al., 2018; Yu

et al., 2021) explores the predictive capacity of imaging data in forecasting

certain neurological or clinical outcomes. Despite these methodologies’ suc-

cess in analyzing complex imaging data, they exhibit inherent limitations

when applied to massive imaging genetics studies.

In this paper, we introduce the SVC model to study the linear or non-

linear varying coefficient effects of clinical and genetic covariates on the
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functional response. We make several contributions compared to existing

literature: (i) We propose an estimation procedure utilizing the kernel ma-

chine technique within the RKHS framework. We establish a representer

theorem, showing that the solution can be found in a finite-dimensional sub-

space. (ii) We explore the theoretical properties of our estimators, including

convergence rates, the Bahadur representation, and point-wise limiting dis-

tribution of the estimators. Additionally, we observe a phase transition

phenomenon in the SVC model, where the rate of convergence remains un-

affected by the number of design points once they exceed a certain thresh-

old, thereby extending the findings of Cai and Yuan (2011) from the mean

function to the SVC model. (iii) We derive point-wise confidence bands for

the coefficient functions γν(·) and the multivariate function h, and develop

test statistics for assessing the clinical and genetic effects within a linear

mixed effects model framework (Zhang and Lin, 2003). We estimate the

covariance function from the data nonparametrically, which is non-trivial

and more practical. (iv) Our analysis of the ADNI dataset validates the

effectiveness and advantages of the proposed SVC model.

2. Estimation Procedure

For ν = 1, . . . , p, each function γν(s) is assumed to reside in a Reproducing

Kernel Hilbert Space (RKHS)Hs. We also assume h(·, ·) belongs to a tensor
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product spaceHx⊗Hs withHx being another RKHS. To ensure the model’s

identification, it is assumed that the expected value of the covariate z is

zero, and the expected value of h(·, ·) is zero. For background information

and examples of RKHS, refer to references (Wahba, 1990; Hofmann et al.,

2008; Gu, 2013). We further assume that yi(s) is sampled at a sequence of

m design points, 0 = s1 ≤ s2 ≤ . . . ≤ sm = 1 for all i. Define

µ(x, z, s) = h(x, s) + zTγ(s) =
∑p

ν=1 zνγν(s) + h(x, s).

Subsequently, µ is characterized within an RKHSH asH =
⊕p

ν=1

[
[zν ]⊗Hs

]
⊕[

Hx ⊗Hs

]
, where [zν ] represents the subspace spanned by the basis {zν}.

We denote Hν = [zν ] ⊗ Hs for ν = 1, . . . , p and Hp+1 = Hx ⊗ Hs. Given

that Hs and Hx are constructed by the reproducing kernels Ks and Kx, the

reproducing kernels Kν for the subspace Hν are defined as

Kν

(
(zν , s), (z̃ν , s̃)

)
= zν z̃νKs

(
s, s̃

)
and Kp+1

(
(x, s), (x̃, s̃)

)
= Kz

(
x, x̃

)
Ks

(
s, s̃

)
.

The reproducing kernel for the Hilbert space H can be defined as

K
(
(x, z, s), (x̃, z̃, s̃)

)
=

p∑
ν=1

θνKν

(
(zν , s), (z̃ν , s̃)

)
+ θp+1Kp+1

(
(x, s), (x̃, s̃)

)
=

{
p∑

ν=1

θνzν z̃ν + θp+1Kz(x, x̃)

}
Ks(s, s̃), (2.1)
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where θ = (θ1, θ2, . . . , θp+1)
T is a vector of subsidiary regularization pa-

rameters. Estimation in (1.1) is derived by minimizing the following loss

function with roughness penalties such that µ̂ = argminµ∈H ℓn,m,λ(µ), where

ℓn,m,λ(µ) = (2nm)−1
n∑

i=1

m∑
j=1

[
yi(sj)− µ(xi, zi, sj)

]2
+

λ

2

p+1∑
ν=1

θ−1
ν ∥P νµ∥2H, (2.2)

in which P ν is the orthogonal projector in H onto Hν and λ is the primary

regularization parameter. Specifically, the unknown function lies in the

space H such that µ(x, z, s) =
∑p+1

ν µν(x, z, s), where µν(·) ∈ Hν . The

penalty term can be written as ∥P νµ∥2H = θ2ν∥µν∥2Hν
with ∥ · ∥2Hν

being

the norm in the RKHS Hν . This model incorporates p + 2 regularization

parameters in total, however, any configurations of (λ,θ) that maintain

consistent ratios λν = λ/θν for ν = 1, . . . , p are considered equivalent. The

parameter λ serves two main purposes. It first aligns the model with the

one-dimensional least squares kernel machine framework, facilitating the

application of established analytical results. It also acts as a stabilizing

factor in the optimization algorithm. This stabilization ensures that the

search for λ within the algorithm remains closely aligned with the optimal

solution. The minimization problem in equation (2.2) is solved by applying

the representer theorem below.
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Theorem 1. There exists a matrix C = [cij]
n
i=1

m
j=1 ∈ Rn×m such that

µ̂(·) =
n∑

i=1

m∑
j=1

cijK
(
(xi, zi, sj), ·

)
. (2.3)

The representer theorem (Theorem 1) shows that the solution to the

optimization problem in (2.2) resides within a finite-dimensional subspace.

This subspace is spanned by the kernel function K, evaluated at the design

points {(xi, zi, sj)|i = 1, . . . , n; j = 1, . . . ,m}. Consequently, the solution

is expressible as a linear combination of these kernel evaluations, C is the

matrix of the coefficients {cij}ni=1
m
j=1, making the implementation of the

method simple and efficient.

Let Ks = [Ks(sj1 , sj2)]
m
j1=1

m
j2=1 and Kx = [Kx(xi1 ,xi2)]

n
i1=1

n
i2=1 be the

Gram kernel matrices for the kernel functions Ks and Kx, respectively. The

Gram kernel matrices of the kernel functions Kν for ν = 1, . . . , p + 1 are

defined as Kν = ZνZ
T
ν ⊗Ks for ν = 1, . . . , p and Kp+1 = Kx ⊗Ks. where

Zν denotes the ν-th column of the matrix Z and ⊗ denotes the Kronecker

product. As µ̂(·) = c⊤
∑p+1

ν=1 θνKν((xi, zi, s), ·) due to the formulation of

K in (2.1) and (2.3), then we can have ∥P νµ̂∥2H = θ2νc
TKνc, where c =

vec(CT ) = (c11, . . . , c1m, . . . , cn1, . . . , cnm)
T . Defining K =

∑p+1
ν=1 θνKν and
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Y = (y11, . . . , y1m, . . . , yn1, . . . , ynm)
T , then

µ̂ = argmin
c

{
1

nm
∥Y −Kc∥2 + λcTKc

}
, (2.4)

resulting in ĉ = (K + nmλI)−1Y. Upon reconverting ĉ into matrix form,

we obtain the estimator for the parameter matrix C, denoted as Ĉ. Let

Ks(s) = [Ks(s, s1), . . . , Ks(s, sm)]
T andKx(x) = [Kx(x,x1), . . . , Kx(x,xn)]

T ,

the estimators for γν(s) for ν = 1, . . . , p and h(x, s) are expressed as

γ̂ν(s) = θνZ
T
ν ĈKs(s) and ĥ(x, s) = θp+1Kx(x)

T ĈKs(s). (2.5)

The selection of appropriate kernel functions is required for our pro-

posed SVC model. Among the common choices are the Gaussian, polyno-

mial, and sigmoid kernels. The decision on which kernel to employ typically

hinges on prior insights into the nature of the regression function being

modeled. Notably, the Gaussian kernel is frequently favored in practice due

to its advantageous properties and robust performance (Poggio and Girosi,

1990). Detailed discussions on tuning parameter selection are provided in

Section S2 of the supplementary material. We have refined the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970) for optimiz-

ing multiple smoothing parameters using the Generalized Cross-Validation
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(GCV) criterion. Additionally, we have developed a novel algorithm for

selecting kernel parameters, which is inspired by scale space theory.

In practice, the kernel based method may be affected by the curse of

dimensionality. To address this, several strategies can be employed to mit-

igate these challenges. The Gaussian kernel works by computing the simi-

larity between data points based on their Euclidean distance in the feature

space. It emphasizes local relationships, which can help to mitigate some ef-

fects of high dimensionality by focusing on local patterns rather than global

ones (Schölkopf and Smola, 2002). Meanwhile, prior to applying the Kernel

Machine method, we can consider dimensionality reduction techniques such

as Principal Component Analysis (PCA) to reduce the number of features

while retaining the most informative components of the data, thus alle-

viating the burden of high dimensionality. Furthermore, feature selection

algorithms can be employed to identify and retain only the most relevant

features for the model, reducing the dimensionality of the input space.

3. Linear Operators

In this section, we introduce a novel inner product and some linear oper-

ators to derive the Fréchet derivatives of the loss function, which greatly

facilitates theoretical studies. Let u = (x, z, s) be an element of the space

U = X ×Z × S, and define g(z, s) = zTγ(s). Consequently, the regression
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function is given by µ(u) = g(z, s) + h(x, s) , which belongs to the RKHS

H = [Hz ⊗ Hs] ⊕ [Hx ⊗ Hs], where Hz,Hx and Hs are individual RKHSs

generated by theirs kernel respectively, and ⊗ denotes the tensor product

of these spaces. Here, Hz is the RKHS associated with z, which is gener-

ated by by the first-order polynomial kernel Kz(z1, z2) = zT1 z2. This kernel

corresponds to the space of linear functions in z. Therefore, any g belongs

to the tensor product Hz⊗Hs can be expressed z⊤β(s). The inner product

in H is defined as ⟨µ1, µ2⟩H =
∑p+1

ν=1 θ
−1
ν ⟨P νµ1, P

νµ2⟩H for any µ1, µ2 ∈ H,

which is equivalent to
∑p+1

ν=1⟨P νµ1, P
νµ2⟩H for θν > 0 (Gu, 2013). For

simplicity, we assume {θν = 1}p+1
ν through our theoretical investigation.

We consider a convenient representation of our error function in (2.2).

First, we equip H with a new inner product defined by

⟨µ1, µ2⟩H̃ = ⟨µ1, µ2⟩L2 + λ⟨µ1, µ2⟩H, (3.1)

where ⟨µ1, µ2⟩L2 = Eu{µ1(u)µ2(u)}. The corresponding reproducing kernel

is denoted as K̃, such that for any f ∈ H, ⟨K̃u, f⟩H̃ = f(u) with K̃u =

K̃(u, ·). We further introduce a positive definite operatorWλ : H 7→ H such
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that ⟨Wλµ, µ̃⟩H̃ := λ⟨µ1, µ2⟩H, the loss function in (2.2) can be rewritten as

ℓn,m,λ(µ) =
1

2nm

n∑
i=1

m∑
j=1

[
yi(sj)− ⟨K̃uij

, µ⟩H̃
]2

+
1

2
⟨Wλµ, µ̃⟩H̃.

Define Sn,m,λ(µ) = −(nm)−1
∑n

i=1

∑m
j=1[yi(sj) − µ(uij)]K̃uij

+ Wλµ.

We have Sn,m,λ(µ̂) = 0 and Sn,m,λ(µ0) can be expressed as Sn,m,λ(µ0) =

−(nm)−1
∑n

i=1

∑m
j=1 K̃uij

ϵi(sj) + Wλµ0, which plays an important role in

deriving the convergence rate and Bahadur representation.

We further explore the series expansion of the two operators K̃u and

Wλµ. According to Mercer’s theorem, the kernel functions Kz, Kx, and Ks

can be decomposed as

Kz(z1, z2) =

∞∑
k=1

φ
(z)
k (z1)φ

(z)
k (z2) =

p∑
k=1

z1kz2k, (3.2)

Kx(x1,x2) =
∞∑
k=1

τ
(x)
k φ

(x)
k (x1)φ

(x)
k (x2), Ks(s1, s2) =

∞∑
k=1

τ
(s)
k φ

(s)
k (s1)φ

(s)
k (s2) (3.3)

for any z1, z2 ∈ Hz, x1,x2 ∈ Hx and s1, s2 ∈ Hs. Here, {τ (x)k }∞k=1

and {τ (s)k }∞k=1 represent the eigenvalues associated with Kx and Ks, while

{φ(z)
k }∞k=1, {φ

(x)
k }∞k=1 and {φ(s)

k }∞k=1 are eigenfunctions for Kz, Kx and Ks.

The eigenfunctions in (3.2) can be specified as φ
(z)
k (z) = zk for k = 1, . . . , p

and φ
(z)
k (z) = 0 for k > p, where z = (z1, . . . , zp)

T ∈ Rp. Leveraging (3.2)–

(3.3), the eigen-decomposition of the kernel functionKu = Kz(z, ·)Ks(s, ·)+
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Kx(x, ·)Ks(s, ·) can be expressed as

Ku = {
∞∑
k=1

φ
(z)
k (z)φ

(z)
k +

∞∑
k=1

τ
(x)
k φ

(x)
k (x)φ

(x)
k }{

∞∑
k′=1

τ
(s)
k′ φ

(s)
k′ (s)} =:

∞∑
k=1

∞∑
k′=1

τkk′φkk′(u)φkk′

for u ∈ H, where ϕkk′ denotes a function ϕkk′(·) and τkk′ := (1 + τ
(x)
k )τ

(s)
k′

if k ≤ p, τkk′ := τ
(x)
k τ

(s)
k′ if k > p, and φkk′(u) := {φ(z)

k (z) + φ
(x)
k (x)}φ(s)

k′ (s).

4. Theoretical Properties

In this section, we investigate the asymptotic properties of µ̂. In the smooth-

ing spline framework, rates of convergence can be obtained through either

the quadratic approximation approaches (Gu, 2013) or the empirical pro-

cess techniques (Shang and Cheng, 2013). In our setting, we tackle the

problem following a similar spirit as the empirical process techniques.

We need the following assumptions. For positive sequences an and bn,

let an ≲ bn (an ≳ bn) to indicate that there exists a universal constant c > 0

(c′ > 0) independent of n such that an ≤ cbn (an ≥ c′bn) for all n ∈ N.

Assumption 1. There are constants Cφx , Cφs ∈ (0,∞) and Cτx , Cτs ∈

(0,∞) ensuring that supk ∥φ
(x)
k ∥sup ≤ Cφx, supk ∥φ

(s)
k ∥sup ≤ Cφs, supxKx(x,x) ≤

Cτx, and sups Ks(s, s) ≤ Cτs. Here, ∥ · ∥sup denotes the supremum norm,

defined by ∥f∥sup := supx |f(x)|. Additionally, zi are uniformly bounded by

a constant Cz ∈ (0,∞).
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Assumption 2. The errors ϵi are identically independent and satisfy that

E{ϵi(s)} = 0, infs E{ϵ2i (s)} < σ2
ϵ < ∞, and Cov(ϵi(s), ϵi(s

′)) = r(s, s′) for

s, s′ ∈ [0, 1]. Also,
∑

k,k′ E
{∫

φkk′(u)ϵi(s)ds
∫
φkk′(u

′)ϵi(s
′)ds′

}
< ∞.

Assumption 1 is widely accepted in the literature (Zhao et al., 2016;

Cheng and Shang, 2015). Specifically, for kernels that decay polynomi-

ally, it has been established that eigenfunctions derived from the ν-th order

Sobolev space are uniformly bounded, provided certain mild smoothness

conditions are met (Cheng and Shang, 2015). Similarly, for exponentially

decaying kernels, Zhao et al. (2016) has demonstrated that eigenfunctions

can be uniformly bounded by 1.336. Assumption 2 imposes expectation

conditions on the error function. The proposition below gives the connec-

tion between the norms ∥ · ∥sup and ∥ · ∥H̃.

Proposition 1. For any µ ∈ H, we have ∥µ∥sup ≤ Cφd(λ)
1/2∥µ∥H̃ where

Cφ = (Cz + Cφx)Cφs and d(λ) :=
∑

kk′{1 + λ/τkk′}−1.

The term d(λ) can be viewed as the effective dimension of H (Zhang,

2005). Putting τkk′ in an increasing order as τ̃k leads to d(λ) =
∑

k 1/(1 +

λ/τ̃k). Using different kernel functions can result in different effective di-

mensions. We give some specific cases in Examples 1–3.

We present the convergence rate of the SVC estimator. The following

theorem details the convergence properties of µ̂ to its true value µ0.
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Theorem 2. Suppose that Assumptions 1 and 2 are satisfied, and sj are

independent and identically distributed with a density function such that

infs P (s) ≥ c0 > 0. Furthermore, if d(λ)−1 = o(1), (nm)−1d(λ) = o(1)

and
√

log log
(
nmJ(Q, 1)

)
J(Q, 1) = op((nm)1/2d(λ)−1) hold, where J(Q, 1)

is a function of covering number defined in (S1.2) of the supplementary

material, then we have ∥µ̂− µ0∥2H̃ = Op(d(λ)(nm)−1 + n−1 + λ).

Theorem 2 presents the rate of convergence for µ̂ in ∥·∥2H̃, which depends

on λ, n, and m. The optimal choice of λ depends on the type of kernels

and (n,m). When the number of locations m is large, it has no effect on

the rate of convergence and the rate of convergence would be dominated by

the term n−1. A phase transition phenomenon happens, and the transition

orders for m are different for different kernels. Hence, we extend the results

in Cai and Yuan (2011) for the mean function with polynomial kernels to

the SVC model with a broad class of reproducing kernels. Furthermore,

we consider a substantially different structure which involves not only the

observation points of the functional response, but also the scalar covariates.

This immediately causes a difference in building the reproducing kernel of

the mean function. Implicitly, the term d(λ) in the rate of convergence

is also related to the dimension of x, which will also influence the rate.

Following are some commonly encountered examples.
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Example 1. If Kx(·) is the finite rank kernel, then the decay rate of τ̃k =

qτ
(s)
k . For the polynomial decay kernel of order r with τ̃k ≍ qk−2r and d(λ) ≍

(λ/q)−1/(2r), the optimal choice of λ is λ ≍ (nm)−2r/(2r+1)q1/(2r+1), which

yields the optimal convergence rate Op(q
1/(2r+1)(nm)−2r/(2r+1) + n−1). The

optimal rate is of order (nm)−2r/(2r+1)q1/(2r+1) if m is below the order n1/2r,

and it is of order n−1 if m > n1/2r. For the exponential decay kernel of order

r, we have τ̃k ≍ q exp(−αkr) for a constant α > 0 and d(λ) ≍ (log λ−1q)1/r

(Zhao et al., 2016). In this case, the optimal choice of λ is λ ≍ q(nm)−1

and the corresponding optimal convergence rate isOp((nm)−1(log(nm))1/r+

(nm)−1q+n−1). The phase transition happens whenm is of order (log n)1/r.

Example 2. If Kx(·) and Ks(·) are all polynomial decay kernels of order r,

then we have τ̃k ≍ k−2r/(q+1) by Wahba (1990) due to the (p+ 1) elements

in h and d(λ) ≍ λ−(q+1)/(2r) by explicit calculations. Then the optimal

choice of λ is λ ≍ (nm)−2r/(2r+(q+1)) and the optimal convergence rate is

Op((nm)−2r/(2r+q+1)+n−1). In this case, the phase transition happens when

m is of order n(q+1)/2r, which is larger than the order n1/2r of the single

polynomial decay kernel case in Example 1. When m < n(q+1)/2r, the rate

of convergence is the same as the optimal convergence rate in multivariate

function estimation (Stone, 1994).

Example 3. If Kx(·) and Ks(·) are all exponential decay kernel of order
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r with τ
(s)
k ≍ τ

(x)
k ≍ exp(−αkr) of each element for a constant α > 0,

then τ̃k ≍ exp(−αkr/(q+1)) and d(λ) ≍ (log λ−1)(q+1)/r by direct calcula-

tions. Therefore, the optimal choice of λ is λ ≍ (nm)−1 and the optimal

convergence rate is Op((nm)−1(log(nm))(q+1)/r+n−1). The phase transition

happens when m is of order (log n)(q+1)/r.

We present the Bahadur representation in the following theorem to

characterize the leading term of our estimator, which is the first-order

Fréchet derivative of the loss function. The Bahadur representation is a

precise approximation of an estimator, and provides an approximation that

facilitates the analysis of the asymptotic properties of the estimator.

Theorem 3. Suppose that the conditions in Theorem 2 hold, then we have

∥µ̂− µ0 + Sn,m,λ(µ0)∥H̃ = Op(an),

where an = (nm)−1/2d(λ)
√

log log
(
nmJ(Q, 1)

)
J(Q, 1)(d(λ)/(nm)+n−1+λ)1/2.

Theorem 3 has two important implications. First, it provides a higher

order approximation of µ̂. Different from the result that targets the non-

parametric regression for scalar response Shang and Cheng (2013), the func-

tional response and different types of scalar covariates lead to a more com-

plex theoretical investigation. Second, the Bahadur representation greatly
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facilitates the study of point-wise limit distribution of the estimator µ̂(u0).

We define d2(λ) =
∑∞

k=1

∑∞
k′=1 (1 + λ/τkk′)

−2. For any u0 ∈ U , denote

σ2
u0

= σ2
ϵ

∞∑
k=1

∞∑
k′=1

φkk′(u0)
2

(1 + λ/τkk′)2
and r2u0

=
∞∑
k=1

∞∑
k′=1

rkk′φkk′(u0)
2

(1 + λ/τkk′)2
,

where rkk′ = E(
∫ ∫

φkk′(u)r(s, s
′)φkk′(u

′)dsds′) and the expectation is taken

over u and u′.

Theorem 4. If the conditions in Theorem 3 are satisfied and a2nd(λ) =

op((nm)−1(d2(λ) + m)) , recall that µ0 admits the expansion that µ0 =∑∞
k=1

∑∞
k′=1 µkk′φkk′, if

∑∞
k=1

∑∞
k′=1 µkk′/(τkk′)

1/2 < ∞ and (nmλ)/(d2(λ)+

m) = Op(1), then we have

√
nm

σ2
u0

+mr2u0

(µ̂(u0)− µ0(u0))
d−→ N(0, 1). (4.1)

Theorem 4 can be used to construct confidence and prediction intervals

for the estimated mean function µ̂(u0), as well as point-wise intervals for

the estimated coefficients γ̂ and ĥ. Specifically, we can carefully choose

x0 such that h(x0, s) = 0. For example, it can be achieved by setting

x0 = ∞ for the Gaussian kernel. Then, the asymptotic properties of γ̂j(s)

are the same as those of µ̂(x0, z0, s) with z0j = 1 and z0j′ = 0 for j ̸= j′.
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Similarly, the asymptotic properties of ĥ(x, s) are the same as those of

µ̂(x, 0, s) corresponding to z = 0.

5. Inference procedures

In this section, we derive the covariance functions of the proposed estimators

in order to construct point-wise confidence bands of γ̂ν(s) and ĥ(x, s) and

investigate the nullity of γν(s) and h(x, s) based on a score test approach.

There are two methods for calculating the covariance functions. Both

are based on an equivalent formulation of (2.5), which is given by

ĥ(x, s) = θp+1(Kx(x)
T ⊗Ks(s)

T )ĉ and γ̂ν(s) = θν(Z
T
ν ⊗Ks(s)

T )ĉ (5.1)

for ν = 1, . . . , p. The first method is based on a frequentist statistical ap-

proach. Specifically, we treat γν and h as fixed unknown functions and

directly calculate the variance functions of ĥ(x, s) and γ̂ν(s) based on (5.1)

and ĉ = K̃−1Y, where K̃ = K + nmλI. Based on a frequentist approach,

We have for ν, ω = 1, . . . , p,

CovF (γ̂ν(s), γ̂ω(s̃)) = θνθω(Z
T
ν ⊗Ks(s)

T )K̃−1ΣϵK̃
−1(Zω ⊗Ks(s̃)),

CovF (ĥ(x, s), ĥ(x̃, s̃)) = θ2p+1(Kx(x)
T ⊗Ks(s)

T )K̃−1ΣϵK̃
−1(Kx(x̃)⊗Ks(s̃)),
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where Σϵ = diag(Σ, . . . ,Σ) and Σ = (Σij) with Σii = σϵ for i = 1, . . . ,m

and Σij = r(si, sj) for i ̸= j.

Utilizing a Bayesian statistical framework, the true underlying func-

tions γν(·) and h(·, ·) are treated as random functions, which are assumed

to follow prior Gaussian processes with zero mean and covariance functions

τνKν(·, ·) and τp+1Kp+1(·, ·). This approach aligns with the methodologies

used in Zhang and Lin (2003) and Liu et al. (2007), where it is posited

that y|(γ(s), h(x, s)) follows a normal distribution N(zTγ(s)+h(x, s),Σϵ).

Therefore, model (1.1) can be reformulated as the linear mixed effects

model, for ν = 1, . . . , p+ 1, τν = (nmλ)−1σ2
ϵ θν ,

Y =

p+1∑
ν=1

ζν + ϵ and ζν ∼ N(0, τνKν).

Denote τ = (nmλ)−1σ2
ϵ and V = τK + Σϵ, The covariances of the

random effects ζν , for ν = 1, . . . , p and ω = 1, . . . , p, can be computed as

CovB(γ̂ν(s), γ̂ω(s̃)) = τνKs(s, s̃)1(ν = ω)− τντω(Z
T
ν ⊗Ks(s)

T )V −1(Zω ⊗K(s̃)),

CovB(ĥ(x, s), ĥ(x̃, s̃)) = τp+1Kx(x, z̃)Ks(s, s̃)− τ2p+1(Kx(x)
T ⊗Ks(s)

T )V −1(Kx(x̃)⊗Ks(s̃)),

where 1(·) represents the indicator function. These covariances are de-

scribed as Bayesian posterior covariances within the smoothing spline ANOVA
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framework as discussed in Gu and Wahba (1993).

We examine two types of hypothesis testing problems,

H0 : γν = 0 vs. H1 : γν ̸= 0 ∈ Hs for ν = 1, . . . , p, (5.2)

H0 : h = 0 vs. H1 : h ̸= 0 ∈ Hx ⊗Hs. (5.3)

These hypothesis testing problems are addressed using a score test method

derived from the mixed effects framework of the SVC model. The test prob-

lems in (5.2) and (5.3) correspond to the following equivalent hypotheses,

H0 : τν = 0 vs. H1 : τν > 0 for ν = 1, . . . , p+ 1. (5.4)

Following Liu et al. (2007), we apply the score test method to address

the hypothesis testing problem defined in (5.4). This method involves fixing

the kernel parameters initially and subsequently varying them to evaluate

the sensitivity of the score test outcomes relative to these parameters. Let

ϕ = (τ1, . . . , τp, τp+1)
⊤ represent the vector of parameters. The score test

statistic for τν is defined as:

Sν(ϕ,Σϵ,ρν) =
1

2
YTV −1Kν(ρν)V

−1Y, (5.5)
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where ρν are the kernel parameters, taking the form of ρs for ν = 1, . . . , p

or (ρx, ρs) for ν = p + 1. Assuming that the true covariance matrix Σϵ

is known, the quadratic form in (5.5) implies that Sν(ϕ,Σϵ,ρν) approxi-

mately follows a mixture of chi-square distributions when ρν is fixed. In

practice, however, Σϵ is often unknown, necessitating its estimation through

a consistent estimator, Σ̂ϵ. This estimated matrix is then substituted into

Sν(ϕ,Σϵ,ρν).

Theorem 5. Suppose that H0 : τν = 0 is true and ϕ0 = (τ 01 , . . . , τ
0
ν−1, 0, τ

0
ν+1, . . . , τ

0
p+1)

⊤

is the true value of ϕ, then

(i) Sν(ϕ
0,Σϵ,ρν)

d→
∑

ℓ λℓx
2
ℓ , where xℓs independently follow N(0, 1) and

{λℓ} are eigenvalues of V −1Kν(ρν)/2.

(ii) If H1 : τν = τn hold, then for any sequence cn → ∞ and τn ≥

cn
∑

ℓ λℓ/
∑

ℓ λ
2
ℓ , the proposed test can reject H0 with probability ap-

proaching one.

(iii) If ϕ̂ is a
√
n consistent estimator of ϕ0 under null and if Σ̂ϵ is a

consistent estimator of Σ in terms of spectral norm such that ∥Σ̂−1
ϵ −

Σ−1
ϵ ∥s = op(1), then we have Sν(ϕ̂, Σ̂ϵ,ρν)

d→
∑

ℓ λℓx
2
ℓ .

In Theorem 5 (i), computing λℓs and probability of
∑

ℓ λℓx
2
ℓ is compu-

tationally difficult, so we approximate the null distribution of Sν(ϕ̂, Σ̂ϵ,ρν)
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for fixed ρν by a scaled chi-square κνχ
2
ζν

distribution using the Satterth-

waite method. Specifically, let ϕ̂ν = (τ̂1, . . . , τ̂ν−1, τ̂ν+1, . . . , τ̂p+1)
T denote

the estimators under the null model. We derive that κν = Ĩτντν/2ẽν and

ζν = 2ẽ2ν/Ĩτντν , where ẽν = tr(V−1Kν)/2 and Ĩτντν = Iτντν−IτνϕνI−1
ϕνϕν

IT
τνϕν

with Iτντν = 0.5tr (V−1KνV
−1Kν) , [Iτνϕν ]j = 0.5tr(V−1KνV

−1 ∂V
∂ϕν,j

), and

[Iϕνϕν ]jj′ = 0.5tr(V−1 ∂V

∂ϕν,j

V−1 ∂V

∂ϕν,j′
) for j, j′ = 1, . . . , p+ 1.

In contrast to the existing literature, which mainly focuses on the null limit

distribution of score test under a linear mixed effect model, we explore

the separation rate under the alternative hypothesis in Theorem 5 (ii).

Theorem 5 (iii) confirms that the null distribution can be approximated

using plug-in estimates. To estimate the covariance matrix, we first use

model (1.1) to obtain residuals ϵ̂ij = yij − ŷij and then adopt functional

principal component analysis (Yao et al., 2005; Zhang and Chen, 2007) to

obtain Σ̂ϵ.

6. Simulation Studies

In this section, we present simulation studies to evaluate the effectiveness

of the proposed estimation and inference methods.

Example 4. In this example, we present a study based on real data. To
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mimic the characteristics of genetic data, we generate the genetic vector xi

using data from the first LD block on the 15th chromosome in the ADNI

dataset. This block consists of 72 SNPs from 606 subjects. Specifically,

each xi is randomly sampled with replacement from these 72 SNPs across

the 606 subjects. We define the function h(x, s) = 0.05 · (
∑20

j=1 cos(2π(xj −

xj+20)/3) + s ·
∑5

j=41 5 sin(π(xj + xj+15)/3) + x71x72), where sj =
j−1
m

is an

equally spaced design. The covariate z is generated such that zi1 ∼ N(0, 1)

and zi2 ∼ N(0, 1), with the true functions specified as: γ1(s) = 10s3 −

15s2 + 5s+ 1 and γ2(s) = 3 · (10s6 − 30s5 + 25s4 − 5s2 + 5/21 + sin(6πs)).

The response yi(sj) is given by: yi(sj) = zTi γ(sj) + h(xi, sj) + ϵi(sj), where

ϵi(sj) ∼ N(0, σ2
ϵ ).

We explore eight settings by varying n ∈ {30, 50}, m ∈ {10, 20}, and

σ2
ϵ ∈ {0.5, 1}, with 100 replicates for each setting. In each replicate, the es-

timation accuracy is assessed using the mean squared errors (MSE) defined

as ∥f̂−f∥2L2
=

∫
D(f̂(δ)−f(δ))2dδ/Λ(D), where f represents one of the com-

ponent functions γ1(·), γ2(·), or h(·, ·), and Λ(D) is the Lebesgue measure

of D, the domain of f . Detailed calculations can be found in (S3.1)-(S3.3)

in the supplementary material.

Figure 1 displays the average MSE of the estimates across the eight

settings. The number of design points m in domain S significantly impacts
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Figure 1: Average MSE in Example 4.

the estimation accuracy. As m increases, the estimation errors for γ̂(s)

and ĥ(x, s) diminish, owing to enhanced resolution in capturing the func-

tional shapes. Similarly, the sample size n positively influences estimation

performance. This effect is intuitive for ĥ(x, s) as it involves x and more

observations of h(xi, ·) lead to improved estimates. For γ̂1(s) and γ̂2(s),

increased n provides more information through z1 and z2, enhancing the

SVC model’s accuracy. This improvement is attributed to estimating γ(s)

based on n repeated measurements across m grid points, facilitating better

statistical inference as either n or m increases.

Example 5. This example assesses the efficacy of the proposed test for

the null hypothesis H0 : γ1(s) = 0. In this example, the underlying true

functions are defined using Bernoulli polynomials {Bk(z)}k≥1. Specifically,

the functions γ1(s) and γ2(s) are given by γ1(s) = a(10B3(s)+sin(2πs)) and

γ2(s) = 10B6(s) + sin(6πs). The true h function is defined as h(x1, x2, s) =

a[B2(x1)B2(x2)B1(s)+10B1(x1)B2(x2) cos(2πs)]. We set sj = j−1/(m−1)
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for j = 1, . . . ,m, and generate training data with (zi1, zi2)
T ∼ N((0, 0)T , I2)

and (xi1, xi2)
T ∼ U [0, 1]2. The error term ϵij ∼ N(0, 1) and n = 50,m = 20.

We evaluate the test size at a = 0 and analyze the test power by

incrementally increasing a. For both size and power assessments, 2000

datasets are simulated. The same datasets are used to evaluate the test’s

sensitivity to kernel parameter ρs variations, ranging from 0.0001 to 0.2.

Figure 2(a) illustrates the power curves of the score test for γ1(s), indicating

that the empirical test size approximates the nominal value of 0.05 and

remains robust across variations in ρs. As a increases, the power of the

test rapidly approaches one, irrespective of the ρs values. Nonetheless, an

optimal choice of ρs, such as ρs = 0.02, can enhance performance.

A similar simulation is conducted to assess the effectiveness of the score

test for the hypothesis H0 : h(x, s) = 0. The kernel parameters ρs are

varied from 0.1 to 10, and ρx from 0.0001 to 0.2 to examine their effects

on test performance. The power curves, depicted in Figures 2(b) to 2(d),

show that the empirical size of the test closely approximates the nominal

level of 0.05 across different (ρx, ρs) combinations. Notably, the test power

ascends rapidly to one and exhibits robustness against variations in the

kernel parameters (ρx, ρs).

We carry out additional simulations to examine the sensitivity of the
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Figure 2: Power curves for the score test under various settings of the kernel parameters
ρs and ρx. Panel (a) shows the effect of different ρs values under H0 : γ1 = 0. Panels
(b), (c), and (d) illustrate the power curves for H0 : h = 0 with ρs set to 0.1, 1, and 10,
respectively.

kernel and spread parameters and present the results in Section S3 of the

supplementary material. It is observed that when the tuning parameters

are within a certain range, the estimates are similar.

7. ADNI Data Analysis

We analyze a dataset extracted from ADNI to investigate the effects of

genetic markers and clinical variables on the human hippocampus. The

ADNI dataset consists of 606 subjects and includes demographic variables

such as Age, Gender (0=Male; 1=Female), Handedness (0=Right; 1=left),

Retirement (0=No; 1=Yes), and Years of education. The mean age of the

participants is 75.6 years with a standard deviation of 6.6 years, and the

average years of education is 15.7 with a standard deviation of 2.9. The

sample composition is as follows: 361 males and 245 females; 562 right-

handed and 44 left-handed; 497 retired and 109 not retired. Marital status

is represented through three dummy variables—Widowed, Divorced, and
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Never Married—with the reference category (all three dummies at zero)

indicating Married status. At baseline, 482 participants were married, 75

were widowed, 32 were divorced, and 18 were never married.

For each subject, we extracted the hippocampal morphometry surface

measure along the left and right hippocampi and obtained the correspond-

ing density values. We applied the log quantile density transformation pro-

posed in Petersen and Müller (2016) as density functions do not live in a

linear space. These morphometry curves along the left or right hippocampus

are the functional responses. The hippocampus, a critical brain structure

located deep within the temporal lobe, plays vital roles in learning, mem-

ory, and spatial navigation. It is particularly susceptible to pathological

changes and is associated with various neurodegenerative and neuropsychi-

atric disorders, including Alzheimer’s disease (AD) (Dubois et al., 2016).

We extracted ultra-high dimensional genetic markers by considering

linkage disequilibrium (LD) blocks for the genotyped and imputed single-

nucleotide polymorphisms (SNPs) across all 22 chromosomes. Linkage dis-

equilibrium is a common biological phenomenon where genetic variants

exhibit strong blockwise correlations, as described in Wall and Pritchard

(2003). This correlation may cause significant SNPs within a specific LD

block to be overlooked if analyzed individually due to their relatively weak
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signals. To leverage the structural information of LD blocks effectively, we

utilized the SVC model to assess the impact of SNPs within each LD block

on the hippocampus separately. We implemented the method proposed

by Berisa and Pickrell (2016) to identify approximately independent LD

blocks, resulting in a total of 1703 LD blocks. The hippocampus surface

measure yi(s) has been centered for each point s.

Given the established asymmetry between the two parts of the hip-

pocampus (Pedraza et al., 2004), we applied our SVC model separately

to the left and right hippocampi. To facilitate comparison, we standard-

ized all SNPs and continuous variables. We treated either the left or right

hippocampus morphometry curves as the response yi(s) and considered

the following demographic covariates: Age, Gender, Age2, Age·Gender,

Age2·Gender. These variables has been demonstrated to be important vari-

ables in the literature (Lupton et al., 2010; Nebel et al., 2018; Li et al.,

2024). We also included the top 10 principal components (PCs) of the whole

genome data to correct for population stratification(Price et al., 2006). The

xi is the SNPs in one of the 1703 LD blocks, leading to 1703 SVC models

for either the left or right hippocampus.

Table 1 presents the p-values for demographic covariates associated with

the bilateral hippocampus (left and right), which are nearly identical across
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the 1703 models. This is likely because genetic data typically explain only a

small proportion of the variation in hippocampal volume (Stein et al., 2012).

Moreover, genetic and clinical variables influence brain structure through

distinct pathways. It shows that Age, Gender, Age2, and their interaction

terms Age·Gender and Age2·Gender are significant for both the bilateral

hippocampus. These findings are consistent with literature showing that

age and gender are strongly associated with the hippocampus (Guerreiro

and Bras, 2015). Figure S4.1 in the supplementary material displays the

estimated effects of Age, Gender, Age2, Age·Gender, and Age2·Gender for

the bilateral hippocampus. The figure reveals strong evidence of symmetry

in these estimated covariates in the left and right hippocampi. However,

Handedness is found to be significant for the left hippocampus, while Never

Married and Education are significant for the right hippocampus, demon-

strating the asymmetric structure of the bilateral hippocampus. Figure

S4.2 in the supplementary material shows the corresponding estimates and

reveals that the three covariates exhibit positive and negative effects on

quantile densities of the hippocampus morphometry measures at different

quantile levels. This left-right hemispheric asymmetry is an important phe-

nomenon of brain organization (Sha et al., 2021).

In this study, we obtained 1703 p-values by testing the nullity of SNPs
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Table 1: The p-values of all demographic covariates for the left and right hippocampi.

Age Gender Handedness Widowed Divorced Never Married
Left <1e-16 <1e-16 0.030 0.401 0.326 0.999
Right <1e-16 <1e-16 0.992 0.166 0.441 0.009

Retirement Education Age·Gender Age2 Age2·Gender
Left 0.784 0.784 <1e-16 <1e-16 <1e-16
Right 0.934 0.006 <1e-16 <1e-16 <1e-16

within one block for either the left or right hippocampus. The Bonferroni

correction method, with a commonly used level of 0.05, was adopted to

identify important blocks from the 1703 blocks tested. Figure 3 shows the

ideogram and Manhattan plots of the significant blocks for the bilateral

hippocampus. Specifically, 109 and 245 blocks were declared to be signif-

icant for the left and the right hippocampus, respectively. 27 blocks were

found to be in common. The figure also reveals polygenic effects on the bi-

lateral hippocampus and different genetic architectures of the left and right

hippocampi. Among the 27 common blocks, the well-known block 19q13.32

region on the 19th chromosome is identified to be important for both the

left and right hippocampi. This region contains the well-known APOE, a

major genetic risk factor for AD (Kim et al., 2009).

Furthermore, we focused on the top 10 significant blocks for the left

and right hippocampi. According to the NHGRI-EBI GWAS catalog(Sollis

et al., 2023), Figure 4 presents indications of associations between the top

10 blocks and some selected traits. The most significant block for the left

hippocampus is located on chromosome 17 and is associated with traits
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such as education attainment, amyloid-beta, brain measure, reaction time,

mathematical ability, and cognitive decline rate in late mild cognitive im-

pairment. The most significant block for the right hippocampus is located

on chromosome 5 and is associated with traits such as amyloid beta and

neurofibrillary tangles, language functional connectivity, brain morphology,

reaction time, educational attainment and mathematical ability. In addi-

tion, Figure S4.3 in the supplementary material presents the median posi-

tions and p-values of the common 27 blocks and the range and p-values of

the top 10 significant blocks for the left and right hippocampi. It shows that

the well-known block 19q13.32 region on the 19th chromosome is identified

to be important for both the left and right hippocampi.

8. Discussion

We used a semi-nonparametric varying coefficients modeling framework to

study the relationship between genetic markers and imaging responses in

imaging genetics. We developed an estimation and inference procedure for

SVC using the kernel machine method and derived a representer theorem

to simplify computation. We also established theoretical properties of the

estimated varying coefficient functions. Our analysis of the ADNI study

illustrates that our proposed method effectively quantifies the relationship

between genetic markers and imaging responses.
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Figure 3: The left panel displays the ideogram plot of significant blocks, with blue
and green points indicating the positions of significant blocks for the left and right
hippocampi, respectively. The right panel presents the Manhattan plot of significant
blocks, where the blue line represents the threshold p-value = 0.05/1703.

Figure 4: Associations between the SNPs in the top LD blocks for left and right hip-
pocampi with some selected traits. The color indicates the p-value of the LD blocks to
the left and right hippocampi.
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Supplementary Material

Additional simulation results, additional real data analysis, and details of

all the proofs can be found in the supplementary material.
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