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Abstract: We propose a joint mean and correlation regression model for multivariate dis-

crete and (semi-)continuous response data, that simultaneously regresses the mean of each

response against a set of covariates, and the correlations between responses against a set

of similarity/distance measures. A set of joint estimating equations are formulated to con-

struct an estimator of both the mean regression coefficients and the correlation regression

parameters. Under a general setting where the number of responses can tend to infinity, the

joint estimator is demonstrated to be consistent and asymptotically normally distributed,

with differing rates of convergence due to the mean regression coefficients being heteroge-

neous across responses. An iterative estimation procedure is developed to obtain parame-

ter estimates in the required (constrained) parameter space. Simulations demonstrate the

strong finite sample performance of the proposed estimator in terms of point estimation

and inference. We apply the proposed model to a count dataset of 38 Carabidae ground

beetle species sampled throughout Scotland, along with information about the environ-

mental conditions of each site and the traits of each species. Results show the relationship

between mean abundance and environmental covariates differs across the beetle species,
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and that beetle total length is important in driving the correlations between species.

Key words and phrases: Covariance regression, Generalized estimating equation, Joint

mean-covariance modeling, Multivariate discrete data

1. Introduction

The analysis of correlated multivariate or multi-response data is becoming in-

creasingly important nowadays, as it provides enhanced opportunities to answer

more diverse and deeper scientific questions relative to studying a univariate re-

sponse. A prime example is the ability to simultaneously study how responses

vary together as a function of covariates, as well as how correlations between

responses are related to similarity (or distance) measures of predictors. For in-

stance, in ecology there is a growing interest in jointly modeling how species’

distributions are associated with environmental covariates along with how the

covariation between species varies with phylogenetic and trait distances (Warton

et al., 2015; Tikhonov et al., 2017; Ovaskainen and Abrego, 2020).

To study how the means of a set of responses vary as a function of covariates,

a popular approach in the statistical literature is generalized estimating equations

(GEEs, Liang and Zeger, 1986) or variations thereof, where a mean model for

each response is coupled with a working, between-response correlation matrix.

The latter can be specified in different ways, leading to varying degrees of im-
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proved statistical efficiency for inference on the mean regression coefficients

(e.g., Qu et al., 2000; Ye and Pan, 2006; Warton, 2011). GEEs focus primar-

ily on modeling and estimating the mean component; they are not designed to

answer scientific questions relating to the correlation between responses them-

selves. On the other hand, various methods have been developed that explicitly

link the covariance matrix of the response vector, or functions thereof, to a lin-

ear combination of known symmetric matrices (e.g., Anderson, 1973; Chiu et al.,

1996; Zwiernik et al., 2017). Of particular note are the studies of Pourahmadi

(1999), Zhang and Leng (2012), Zhang et al. (2015) and Bonat and Jørgensen

(2016), who integrated mean modeling with multivariate covariance modeling

using covariate information under specific model structures. These studies fo-

cused primarily on longitudinal or spatio-temporal data, so they considered com-

mon structures e.g., compound symmetry or neighborhood structure in Bonat

and Jørgensen (2016), to account for known longitudinal or spatio-temporal as-

sociations in the data. More recently, Hu et al. (2024) considered to regress the

elements of the generalized z-transformed correlation matrices of general corre-

lated data on covariates that are formed by taking the difference of the predictors

associated with each pair of responses, while Tang et al. (2019) studied a joint

mean-correlation regression for discrete longitudinal data by modeling the cor-

relation matrix in a Gaussian copula via a hyperspherical reparameterization.
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In this article, we propose a new joint mean and correlation regression model

that simultaneously quantifies the relationship between the mean of each re-

sponse and a set of covariates, and the relationship between the response cor-

relation matrix and a set of similarity measures of predictors. Analogous to

classical GEEs, the proposed joint model requires specifying only the first two

moments of each response along with the correlation matrix between responses.

The first moment of each response is regressed against a set of covariates with

the help of link functions, and using mean regression coefficients that are hetero-

geneous across responses i.e., each response has its own set of regression coef-

ficients. The specification of the second moment uses variance functions to cap-

ture potential mean-variance relationships within each response. Turning to the

between-response correlation matrix, we propose to regress this against a set of

similarity matrices that are either observed directly as part of the data collection

process, or induced from available predictor information associated with each

response. As one example of such similarity measures, in text frequency anal-

ysis where the responses are frequencies of different words across documents,

similarity matrices can be formed from various characteristics of the words such

as their topical meanings (e.g., Zhu and Xing, 2011); see also Section 5 for

similarity matrices formed from species traits in ecology. Unlike the aforemen-

tioned works on joint mean-covariance modeling that focused on longitudinal or
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spatio-temporal data, we aim to provide an explicit, data-driven quantification of

how the unknown dependence structure for general correlated data is informed

by these similarity measures of auxiliary predictor information, through a set

of correlation regression parameters that are common across responses. Further-

more, unlike the studies of Tang et al. (2019) and Hu et al. (2024) that considered

hyperspherical reparameterization and generalized z-transformation of the cor-

relation matrices, respectively, we directly model the correlation matrix, noting

that the covariates constructed by Hu et al. (2024) are analogous to our idea of

similarity measures.

The idea of correlation regression builds upon recent developments of co-

variance regression in Zou et al. (2017, 2020, 2022), although we make three

clear advances on these works. First, we extend covariance regression to corre-

lation regression, while allowing for heterogeneous variances across responses.

This differs from Zou et al. (2017, 2020, 2022) who all assumed a homogeneous

variance across responses. Note also that we model the correlation rather than

the covariance matrix, as our method is developed within the GEE framework

which requires the specification of a working correlation matrix. Second, our

proposed joint mean and correlation regression model can handle a much wider

variety of discrete and (semi-)continuous responses e.g., overdispersed counts,

binomial, and non-negative continuous responses that arise in ecology and quan-
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titative genetics among other fields. Third, we develop and study asymptotic in-

ference for both the heterogeneous mean regression coefficients and correlation

regression parameters, in contrast to Zou et al. (2017, 2020, 2022) who focused

solely on the covariance regression parameters.

In the spirit of GEEs, we formulate a set of joint estimating equations for

estimating the heterogeneous mean regression coefficients and correlation re-

gression parameters. Note unlike the classical GEE literature which often treats

the working correlation matrix either as known or effectively as a nuisance pa-

rameter (e.g., Liang and Zeger, 1986; Qu et al., 2000; Wang and Carey, 2003),

here we consider both mean and correlation components to be equally important

in the modeling process. That is, we are interested in performing inference on

both the mean regression coefficients and correlation regression parameters, and

this requires an asymptotic theory for the joint set of parameters.

Under a setting where the number of responses can diverge with an increas-

ing number of clusters, we establish estimation consistency and asymptotic nor-

mality of the mean regression coefficient estimators and correlation regression

parameter estimators, showing that they exhibit differing rates of convergence.

We note that the total number of mean regression coefficients can still tend to

infinity even if the number of covariates is fixed, since the mean regression co-

efficients are heterogeneous across responses. Hence, the involvement of both
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the multivariate mean and correlation regression substantially increases the dif-

ficulty in deriving the theoretical properties of the proposed estimators. Indeed,

to our knowledge, this article is the first to formally demonstrate consistency

and asymptotic normality for the estimator of a joint model specifying hetero-

geneous mean regression coefficients, where the number of responses is allowed

to diverge.

We develop an estimation procedure that iterates between the aforemen-

tioned estimating equations to update the mean regression coefficients (along

with any dispersion parameters) and correlation regression parameters. For the

latter, estimation must be done in a way to obtain an overall valid correlation ma-

trix i.e., positive definite with ones on the diagonals and off-diagonals between

-1 and 1. To overcome this challenge, we propose a novel algorithm that adapts

the positive definiteness constrained algorithm of Zou et al. (2017) to attain a

positive definite covariance matrix estimate under the GEE framework first, be-

fore standardizing it to produce valid correlation regression parameter estimates.

Simulation studies across a number of response types demonstrate our pro-

posed approach provides similar performance to several existing GEE-type meth-

ods for estimating the mean regression coefficients, but outperforms them in

recovering the between-response correlation matrix. We also investigate the im-

pact of misspecified similarity measures on the proposed estimator, with results
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demonstrating the robustness of the mean regression coefficient estimators. The

proposed model is applied to a multivariate abundance dataset in ecology com-

prising overdispersed counts of 38 Carabidae ground beetle species sampled

throughout Scotland, along with information about the environmental covariates

of each site and the traits of each species. Results show the beetle species ex-

hibit quite differing relationships with key environmental indicators such as soil

pH and land management, while species traits such as beetle total length and

breeding season have important effects in driving the correlations between the

species. These findings are not particularly sensitive to different specifications

of trait similarity measures.

The rest of this article is organized as follows. Section 2 introduces the joint

mean and correlation regression model, a set of associated estimating equations,

and asymptotic results for the resulting joint estimator. Section 3 presents details

of the iterative estimation procedure, while Sections 4 and 5 discuss results of

the simulation study and application to the ground beetle dataset, respectively.

Section 6 offers some concluding remarks. All technical conditions, proofs, and

additional simulation results are presented in the Appendix and supplementary

material.
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2. A Joint Mean and Correlation Regression Model

Let Yi = (Yi1, · · · , Yip)
⊤ be a p-dimensional response vector collected from

the i-th cluster for i = 1, · · · , n. In this article, we follow Pourahmadi (1999),

Warton (2011) and Müller et al. (2013) among others and use i to index the i-th

“cluster”, noting related works adopt other terminologies such as “subject” in

Liang and Zeger (1986) and Qu et al. (2000), “observation” in Zou et al. (2021),

and “observational unit” in Hui et al. (2023) to refer to cluster. Note also that

we focus our developments on the balanced data setting i.e., all n clusters have

the same number of responses p; see Section 6 for a discussion on extensions

to the case of unequal number of responses pi for each of the i-th cluster. Let

xi = (xi1, · · · , xid)
⊤ denote a set of covariates associated with the i-th cluster

that we will relate to the mean of the responses, where xi1 = 1 corresponds to

the intercept term for i = 1, · · · , n, and {Wk = (w
(k)
j1j2

)p×p : k = 1, · · · , K}

denote a set of K similarity matrices of dimension p × p that we will link to

the correlation matrix of the responses. The matrices Wk may be available di-

rectly as part of the data collection process itself, or constructed from auxiliary

information vectors zj = (zj1, · · · , zjK)⊤ associated with the j-th response for

j = 1, · · · , p. For the latter, each element w(k)
j1j2

in Wk measures the similarity

between zj1k and zj2k for j1 ̸= j2. For instance, if zjk is quantitative, then the

similarity w
(k)
j1j2

can be defined as w(k)
j1j2

= exp(−|zj1k − zj2k|2), whereas if zjk is
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qualitative we can set w(k)
j1j2

= 1 if zj1k and zj2k have the same categorical level,

and w
(k)
j1j2

= 0 otherwise (see also Johnson and Wichern, 2013). For reasons of

parameter identifiability, as will be illustrated later on, the diagonals w(k)
jj are set

to zeros for all j = 1, · · · , p and k = 1, · · · , K.

The proposed joint mean and correlation regression model is formulated as

follows. First, we assume the mean of each response, denoted here as E(Yij) =

µij(βj), is related to the covariates as given by

g{µij(βj)} = x⊤
i βj, for i = 1, · · · , n and j = 1, · · · , p, (2.1)

where βj = (βj1, · · · , βjd)
⊤ is a vector of mean regression coefficients that

are heterogeneous across responses, and g(·) is a known link function. Next, we

specify the second moment of Yij as Var(Yij) = h{µij(βj);ϕj} for i = 1, · · · , n

and j = 1, · · · , p, where ϕj > 0 are dispersion parameters that are also het-

erogeneous across j = 1, · · · , p, and h(·) is a known function characterizing

the mean-variance relationship of the responses. Common examples of link and

variance functions include the logit link g(µ) = log{µ/(1−µ)} and the variance

function h(µ;ϕ) = ϕµ(1 − µ) for binary responses, the log link g(µ) = log(µ)

and the variance function h(µ;ϕ) = ϕµ (or h(µ;ϕ) = µ + ϕµ2) for (overdis-

persed) counts, and the identity link g(µ) = µ coupled with the constant func-
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tion h(µ;ϕ) = ϕ for continuous responses (Fitzmaurice et al., 2011). Turn-

ing to the correlation regression component of the model, let Corr(Yij1 , Yij2) =

rj1j2(ρ) for j1, j2 = 1, · · · , p, and subsequently define R(ρ) = (rj1j2(ρ))p×p as

the p × p (working) correlation matrix of Yi for i = 1, · · · , n. Building upon

Zou et al. (2017, 2020, 2022), we model this correlation matrix as

R(ρ) = Ip +
K∑
k=1

ρkWk, (2.2)

where Ip is the p-dimensional identity matrix, and ρ = (ρ1, · · · , ρK)⊤ is a vec-

tor of correlation regression parameters that possess a simple, direct interpre-

tation as quantifying the impact of the similarities on the correlation between

responses. For example, in ecology where similarity matrices are constructed

from species traits, a higher, positive value of ρk implies that, conditional on

other traits, two species with more similar values in their k-th trait variable are

expected to have a stronger positive correlation after accounting for differences

in their mean response (which may suggest this trait is important in mediating

biotic interactions between species; see the application in Section 5).

Equation (2.2) offers a parsimonious yet explicit way to model correlations

between responses, as it only involves estimating a vector of K correlation re-

gression parameters, ρ. This formulation also includes various structured cor-
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relation matrices (not driven by the data itself) as special cases, including tradi-

tional autoregressive, moving average, compound symmetry, and banded struc-

tures (see Zou et al., 2017). By denotingW0 = Ip and ρ0 = 1, the correlation re-

gression model can be written as R(ρ) =
∑K

k=0 ρkWk. As reviewed in Section

1, similar ideas of expressing the covariance or correlation matrix as a function

of a linear combination of matrices have been considered previously in the liter-

ature. Importantly, we consider ρ as being equal in importance to β. This is in

contrast to previous studies and variations of GEEs, where the (parameters char-

acterizing the) working correlation have been either treated as a nuisance or used

largely to improve the efficiency of inference on the mean model. Therefore, it

is imperative to develop asymptotic theory for the joint estimator of all the re-

gression parameters θ = (β⊤,ρ⊤)⊤, so as to provide a basis for simultaneous

inference on the mean and correlation components of the proposed model.

Note we model R(ρ) as a correlation instead of a covariance matrix: this

is consistent with the requirement of a working correlation matrix in the GEE

framework where the response variances are already modeled by the variance

function, and also circumvents parameter identifiability problems between the

covariance parameters and dispersion parameters when the variance function has

a multiplicative relationship with the dispersion parameter e.g., if h(µ;ϕ) = ϕµ

and R(ρ) = ρ0Ip +
∑K

k=1 ρkWk is modeled as a covariance matrix, then the
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2.1 Estimating Equations

covariance parameters cρ0, · · · , cρK and dispersion parameters ϕ1/c, · · · , ϕp/c

would result in the same covariance structure of Yi vectors for any value of c >

0. On the other hand, the estimation of ρ is now more challenging compared to

previous covariance regression models of Zou et al. (2017, 2020, 2022). Specif-

ically, since equation (2.2) is a regression model for the correlation matrix, ρ

must be in the parameter space P+ = {ρ : R(ρ) is a valid correlation matrix}.

That is, the diagonals of R(ρ) need to be ones and off-diagonals between -

1 and 1, in addition to R(ρ) being positive definite. We provide two simple

but insightful examples to illustrate this, in the case of a single similarity ma-

trix W1. First, if W1 is a compound symmetry matrix i.e., w(1)
j1j2

= c > 0

for j1 ̸= j2, then P+ = {ρ1 : ρ1 ∈ (−(p − 1)−1c−1, c−1)}. Second, if W1

is a tridiagonal matrix with w
(1)
j1j2

= c ̸= 0 for |j1 − j2| = 1 and zero other-

wise, then the parameter space is P+ = {ρ1 : ρ1 ∈ (0.5|c|−1[cos{pπ/(p +

1)}]−1,−0.5|c|−1[cos{pπ/(p + 1)}]−1)}. Needless to say, when multiple gen-

eral similarity matrices are involved the requirement for ρ ∈ P+ becomes even

more complex; this motivates the estimating equations proposed in the following

subsection, which will take this requirement into consideration.

2.1 Estimating Equations

We establish a set of estimating equations that will be used as the basis for es-

timation and inference with the proposed joint model. To this end, we write
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2.1 Estimating Equations

the model in a vectorized form as follows. Let Y = (Y ⊤
1 , · · · ,Y ⊤

n )⊤ and

β = (β⊤
1 , · · · ,β⊤

p )
⊤ denote the stacked np- and pd-dimensional vectors of all

responses and mean regression coefficients, respectively. Subsequently, we can

write µi(β) = (µi1(β1), · · · , µip(βp))
⊤ for i = 1, · · · , n and µ(β) = (µ⊤

1 (β),

· · · ,µ⊤
n (β))

⊤. Next, let Ai(β) = diag[h{µi1(β1);ϕ1}, · · · , h{µip(βp);ϕp}]

denote p × p diagonal matrices of the variance functions at the i-th cluster for

i = 1, · · · , n, where for ease of notation we have suppressed the dependence

on the ϕj’s, and letA(β) = diag{A1(β), · · · ,An(β)} be a block diagonal ma-

trix with the i-th block being Ai(β). By denoting Cov(Y ) as the full np × np

covariance matrix of the vector Y , equations (2.1) – (2.2) can be expressed as

E(Y ) = µ(β), Cov(Y ) = A1/2(β) {In ⊗R(ρ)}A1/2(β), (2.3)

where ⊗ is the Kronecker product operator and the form of the covariance in

equation (2.3) is analogous to that seen in GEEs previously (e.g., Liang and

Zeger, 1986; Warton, 2011).

Next, consider the matrix-valued function Σ(α) = α0Ip +
∑K

k=1 αkWk,

where α = (α0, · · · , αK)
⊤ ∈ A + lies in the positive definite parameter space

A + = {α : Σ(α) is positive definite}. Recall the diagonals of Wk are zeros

for k = 1, · · · , K. Then we have the following proposition.
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2.1 Estimating Equations

Proposition 1. If there exists an α ∈ A +, then (α1/α0, · · · , αK/α0)
⊤ ∈ P+.

The above result follows directly from the definition of a correlation matrix.

Importantly, it implies if we are able to obtain values α ∈ A +, then a valid (es-

timated) correlation matrix R(ρ) can be immediately obtained by setting ρ1 =

α1/α0, · · · , ρK = αK/α0, with the resulting values of ρ satisfying ρ ∈ P+.

Motivated by this, we propose to consider a slight reparameterization of the cor-

relation regression model in equation (2.2) as Σ(α) = α0Ip +
∑K

k=1 αkWk =

R(ρ), with α0 = 1 and αk = ρk for k = 1, · · · , K. The covariance equation

in (2.3) can then be rewritten as Cov(Y ) = A1/2(β){In ⊗Σ(α)}A1/2(β), and

subsequently the parameters we solve for are now ϑ = (β⊤,α⊤)⊤.

Let D(β) = ∂µ(β)/∂β⊤ ∈ Rnp×pd and Σ̃(α) = In ⊗Σ(α). For estimat-

ing the mean regression coefficients β, we consider the estimating equation

ψβ (β,α) =D
⊤ (β)A−1/2 (β) Σ̃−1 (α)A−1/2 (β) {Y − µ (β)} = 0pd,

(2.4)

where 0pd is a pd-dimensional vector of zeros. Equation (2.4) for the mean re-

gression coefficients is the same as in GEEs, meaning we have E{ψβ (β,α)} =

0pd when the estimating equation is evaluated at the true values of the mean re-

gression coefficients regardless of the specification of Σ̃−1(α). Next, let ϵi(β) =

A
−1/2
i (β){Yi − µi(β)} for i = 1, · · · , n, ϵ(β) = (ϵ⊤1 (β), · · · , ϵ⊤n (β))⊤, and
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2.1 Estimating Equations

W̃k = In ⊗Wk for k = 0, · · · , K. Then for the reparameterized correlation

regression parameters α, we consider solving the estimating equation

ψα (β,α) =
(
ϵ⊤ (β) W̃kϵ (β)

)
(K+1)×1

−
(
tr(W̃k1W̃k2)

)
(K+1)×(K+1)

α = 0K+1,

(2.5)

where (tr(W̃k1W̃k2))(K+1)×(K+1) denotes a (K + 1) × (K + 1) matrix whose

(k1 + 1, k2 + 1)-th element is given by tr(W̃k1W̃k2) for k1, k2 = 0, · · · , K, and

(ϵ⊤(β)W̃kϵ(β))(K+1)×1 is a (K + 1)-dimensional vector whose (k + 1)-th ele-

ment is ϵ⊤(β)W̃kϵ(β) for k = 0, · · · , K. Equation (2.5) is related to the first or-

der condition of the least squares optimization problem considered by Zou et al.

(2017, 2020), who estimated covariance regression parameters by minimizing

the least squares loss function Q(β,α) =
∑n

i=1

∥∥ϵi(β)ϵ⊤i (β)−Σ(α)
∥∥2

F
with

respect to α when β is given, where ∥H∥F = {tr(H⊤H)}1/2 is the Frobenius

norm for a generic matrix H . Specifically, the solution of equation (2.5) sat-

isfies the first order condition of the optimization problem minαQ(β,α) since

−2ψα(β,α) = ∂Q(β,α)/∂α. It can also be verified that E{ψα(β,α)} =

0K+1 where ψα is evaluated at the true values of the mean regression coeffi-

cients and the reparameterized correlation regression parameters. Other forms

of estimating equation could be considered for the reparameterized correlation

regression parameters e.g. see Section 3.3.1 of Lipsitz and Fitzmaurice (2008),

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0109



2.2 Asymptotic Theory

although we focus our developments on equation (2.5) in this article.

By solving the joint estimating equationψ(ϑ) = (ψ⊤
β (β,α),ψ

⊤
α(β,α))

⊤ =

0pd+K+1, we obtain the estimator ϑ̂ = (β̂⊤, α̂⊤)⊤. Afterward, following Propo-

sition 1 we obtain the joint estimator of the mean regression coefficients and the

correlation regression parameters as θ̂ = (β̂⊤, ρ̂⊤)⊤, where ρ̂1 = α̂1/α̂0, · · · ,

ρ̂K = α̂K/α̂0.

2.2 Asymptotic Theory

We first study the asymptotic properties of ϑ̂ = (β̂⊤, α̂⊤)⊤ as the number of

clusters n → ∞ and the number of responses p can grow with increasing n, with

the dispersion parameters assumed to be known. We emphasize that although

both d and K are assumed to be fixed, ϑ̂ has a growing dimension as p → ∞

since the dimension of β grows with order p. To facilitate developments of the

asymptotic theory, we introduce a matrix Ξ(S) = diag(T (S) ⊗ Id, IK+1), where

S = {s1, · · · , sq} generically denotes a subset of {1, · · · , p} with finite size q,

T (S) = (ts1 , · · · , tsq)⊤ with tsj being the sj-th column of the identity matrix Ip

for j = 1, · · · , q, and 0k1×k2 denotes a k1 × k2 matrix of zeros. It follows that

Ξ(S)ϑ̂ = (β̂⊤
s1
, · · · , β̂⊤

sq , α̂
⊤)⊤ is a finite dimensional sub-vector of ϑ̂.

Let ϑ(0) = (β(0)⊤,α(0)⊤)⊤ denote the true parameter value for ϑ, where

Σ(α(0)) is positive definite. In the following theorem, the estimators (β̂⊤
s1
, · · · ,
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2.2 Asymptotic Theory

β̂⊤
sq)

⊤ and α̂ have differing rates of convergence towards their respective true

values. To accommodate this, we define Z = diag(
√
nIqd,

√
npIK+1) and pro-

ceed to derive the asymptotic distribution of the quantity ZΞ(S)(ϑ̂− ϑ(0)). Let

Z̃ = diag(
√
nIpd,

√
npIK+1) and define the matricesB = Z̃−1E{∂ψ(ϑ(0))/∂ϑ⊤

}Z̃−1, U = Z̃−1Cov{ψ(ϑ(0))}Z̃−1 and Ω(Ξ(S)) = Ξ(S)B−1UB−1⊤Ξ(S)⊤,

where closed-form expressions for both E{∂ψ(ϑ(0))/∂ϑ⊤} and Cov{ψ(ϑ(0))}

are provided in Lemma S1 of supplementary material S4 . We then have the

following result for the estimator ϑ̂ = (β̂⊤, α̂⊤)⊤.

Theorem 1. Under Conditions 1 – 5 in the Appendix, it follows that Ω−1/2(Ξ(S))Z

Ξ(S)(ϑ̂− ϑ(0))
d−→ N(0qd+K+1, Iqd+K+1), as n → ∞ and p = o(n1/2).

The selection of the subset S = {s1, · · · , sq} ⊂ {1, · · · , p} and its size

q is arbitrary in Theorem 1, so long as q is finite. Accordingly, for any given

S, Theorem 1 provides the joint limiting distribution for (β̂⊤
s1
, · · · , β̂⊤

sq , α̂
⊤)⊤.

Furthermore, the theorem implies (β̂⊤
s1
, · · · , β̂⊤

sq)
⊤ and α̂ are

√
n- and

√
np-

consistent, respectively. This is not an overly surprising result: since the mean

regression coefficients are heterogeneous across responses, then only n observa-

tions {Yij : i = 1, · · · , n} contribute information to the estimation of each βj .

By contrast,α are parameters common across all responses, and so its estimation

leverages information across both i = 1, · · · , n and j = 1, · · · , p.

Based on the finding in Theorem 1, we have the following result for α̂.
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2.2 Asymptotic Theory

Corollary 1. Under Conditions 1 – 5 in the Appendix, it follows that P(α̂ ∈

A +) → 1, as n → ∞ and p = o(n1/2).

Corollary 1 provides a theoretical guarantee that the estimated reparameter-

ized correlation regression parameters α̂ from the joint estimator ϑ̂ will fall into

the required parameter space A + with probability tending to one. This allows us

to apply Proposition 1 to obtain the estimated correlation regression parameters

ρ̂ ∈ P+ via the transformation ρ̂1 = α̂1/α̂0, · · · , ρ̂K = α̂K/α̂0.

We now proceed to the estimated parameter vector of interest, namely θ̂ =

(β̂⊤, ρ̂⊤)⊤. Based on the transformation used to obtain ρ̂ from α̂, we can apply

techniques similar to the multivariate delta method with the vector-valued func-

tion f(ϑ) = (β⊤, α1/α0, · · · , αK/α0)
⊤ as follows. Let θ(0) = (β(0)⊤,ρ(0)⊤)⊤

denote the true parameter value for θ, where R(ρ(0)) is a valid correlation ma-

trix, and define Ξ̄(S) = diag(T (S)⊗Id, IK) such that Ξ̄(S)θ̂ = (β̂⊤
s1
, · · · , β̂⊤

sq , ρ̂
⊤)⊤

is a finite dimensional sub-vector of θ̂. Furthermore, let Z̄ = diag(
√
nIqd,

√
npIK)

and Ω̄(Ξ̄(S)) = Ξ̄(S){∂f(ϑ(0))/∂ϑ⊤}B−1UB−1⊤{∂f(ϑ(0))/∂ϑ⊤}⊤Ξ̄(S)⊤. We

now state our main result for the joint estimator θ̂ = (β̂⊤, ρ̂⊤)⊤.

Theorem 2. Under Conditions 1 – 5 in the Appendix, it follows that Ω̄−1/2(Ξ̄(S))Z̄

Ξ̄(S)(θ̂ − θ(0)) d−→ N(0qd+K , Iqd+K), as n → ∞ and p = o(n1/2).

Theorem 2 is valid under both cases of fixed p and diverging p as long as

p/
√
n → 0. The theorem shows any finite dimensional sub-vector of the es-
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timator θ̂ is consistent and asymptotically normally distributed, and forms the

basis by which we can perform inference on the mean regression coefficients

and correlation regression parameters of the proposed model. Moreover, The-

orem 2 (again) implies (β̂⊤
s1
, · · · , β̂⊤

sq)
⊤ and ρ̂ are

√
n- and

√
np- consistent,

respectively, and that the asymptotic covariance matrix of (β̂⊤
s1
, · · · , β̂⊤

sq , ρ̂
⊤)⊤

is G(S) = Z̄−1Ω̄(Ξ̄(S))Z̄−1. In practice, to apply the above theorem we need a

consistent estimator ofG(S) whose expression (see Lemma S1 in supplementary

material S4) turns out to be dependent on ϑ(0), the third-order moment µ(3), and

the fourth-order moment µ(4) defined in Condition 1. From this, we can verify

that a consistent estimator can be obtained by replacing ϑ(0), µ(3) and µ(4) in

G(S) by ϑ̂, the third and fourth-order empirical moments, respectively; see also

supplementary material S1 for details on this.

3. Estimation Procedure

We develop an iterative estimation procedure to compute the joint estimator of

β and ρ based on the two sets of estimating equations in Section 2.1, while

allowing for the estimation of (potentially unknown) dispersion parameters and

ensuring the estimators of α (and ρ) are in the required parameter space.

The estimation procedure consists of iterating between the following two

steps. Given α, we employ a Fisher scoring method, with a tuning parame-
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ter γ > 0 to adjust the step size if appropriate, to solve ψβ(β,α) = 0pd. This

leads to an update of the form β ⇐ β−γJ−1(β,α)ψβ(β,α) where J(β,α) =

E{∂ψβ(β,α)/∂β
⊤} = −D⊤(β)A−1/2(β)Σ̃−1(α)A−1/2(β)D(β). Next, given

β, directly solving ψα(β,α) = 0K+1 leads to the closed-form solution α =

(tr(W̃k1W̃k2))
−1
(K+1)×(K+1)((ϵ

⊤(β)W̃kϵ(β))(K+1)×1. This is equivalent to the

solution of the unconstrained least squares optimization problem minαQ(β,α)

defined below equation (2.5). However, while simple to compute, this uncon-

strained estimator is not guaranteed to be in the required parameter space A +

in finite samples as Corollary 1 is an asymptotic result. As such, given β, we

instead consider solving the constrained least squares optimization problem

min
α∈A +

Q(β,α), (3.1)

which ensures the resulting estimator of α is in the parameter space A +. This

constrained optimization can be solved, for instance, using the alternating direc-

tion method of multipliers (ADMM) algorithm, which essentially converts (3.1)

into an equivalent optimization problem minα,∆{Q(β, α) : Σ(α) = ∆,∆ −

νIp is positive definite} by introducing a p× p augmented parameter matrix ∆,

where ν is an arbitrarily small positive constant to guarantee positive definite-

ness. The solution of (3.1) is then obtained by minimizing the augmented La-
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grangian function of the latter optimization problem through an iterative way;

see supplementary material S2 for details of the iterative steps in the ADMM al-

gorithm, as well as Xue et al. (2012) and Zou et al. (2017) for more general dis-

cussion of the algorithm. If the unconstrained estimator is in A +, the ADMM al-

gorithm will end up producing the same estimator as the unconstrained estimator.

Therefore, in practice it is computationally efficient to first compute the uncon-

strained estimator and check if it is in A +. Only when this is not satisfied do we

proceed to solve (3.1). Finally, if required we can estimate each element ϕj of the

dispersion parameter vector ϕ = (ϕ1, · · · , ϕp)
⊤ by solving the estimating equa-

tion based on the moment condition E[{Yij − µij(βj)}2/h{µij(βj);ϕj}] = 1,

where the means µij are evaluated at the true mean regression coefficients.

A formal algorithm detailing the estimation procedure is provided in supple-

mentary material S2. To summarize, it begins by estimating β using the above

Fisher scoring method given some initial values of β and α, before computing

the unconstrained estimator of α by solving minαQ(β,α) given the updated

β. If the unconstrained estimator is not in the parameter space A +, then the

ADMM algorithm is used to solve the constrained optimization problem (3.1).

Afterward, the estimated α is transformed into ρ by following Proposition 1,

and the iterative updates of β and ρ proceed until convergence.
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4. Simulation Study

To assess the finite sample performance of the proposed estimator, we con-

ducted a simulation study by generating correlated multi-response data from

Bernoulli, Poisson, negative binomial, and Gaussian distributions, and consid-

ering different sample sizes n ∈ {50, 100, 200, 400} and number of responses

p ∈ {10, 25, 50} with d = 4 covariates and K = 5 similarity matrices. A total

of 1000 datasets are simulated for each combination of responses distribution, n

and p. Full details of the simulation setup are provided in supplementary material

S7.1. To assess performance, we computed the mean square error (MSE) of the

mean regression coefficient estimators MSE(β) =
∑p

j=1

∑d
l=1(β̂jl − β

(0)
jl )

2/pd,

and the correlation regression parameter estimators MSE(ρ) =
∑K

k=1(ρ̂k −

ρ
(0)
k )2/K, noting the MSE was scaled by number of associated parameters, where

β̂jl and ρ̂k denote the corresponding elements of β̂ and ρ̂, respectively, from the

estimation procedure in Section 3, while β
(0)
jl and ρ

(0)
jl denote the true values.

For brevity, we present results for the case of Bernoulli and Poisson re-

sponses here; the results for negative binomial and Gaussian responses are pro-

vided in supplementary material S7.2 and present very similar conclusions. Fig-

ure 1 shows the averaged MSE (over 1000 replications) for both β and ρ de-

creased when n increased. Furthermore, the averaged MSE of ρ decreased

when p increased, but the averaged MSE of β was relatively unaffected by p.
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Figure 1: Averaged MSE of the mean regression coefficient estimators (top row)
and correlation regression parameter estimators (bottom row) for Bernoulli (left
column) and Poisson (right column) responses.

This is not surprising given βj’s were heterogeneous across responses in the

proposed model. By contrast, additional responses provided more information

about the correlation structure, leading to improved estimation of ρ. The differ-

ing behaviour of the averaged MSE for β and ρ supports our theoretical findings

in Theorem 2 that the mean regression coefficient estimators and correlation

regression parameter estimators have different convergence rates i.e.,
√
n and

√
np, respectively. Finally, one interesting finding from our simulation study is

that across all 1000 replications for various settings of responses distribution,

n and p, the unconstrained estimator discussed in Section 3 was always in the

parameter space A +. This aligns with Corollary 1 and reinforces the idea of
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first computing the unconstrained estimator and checking whether it produces a

positive definite covariance matrix. Turning to computational efficiency, Table

S4 in supplementary material S7.2 provides details of the mean runtime for our

proposed estimation algorithm, from which we see convergence was exception-

ally quick (taking less than three seconds on average) using an AMD Ryzen 7

CPU @ 3.60 GHz machine.

Next, we studied the inferential performance of the joint estimator. Recall

the definition of G(S) given below Theorem 2, which we further represent as a

block matrix below,

G(S) =

 VβS VβSρ

VρβS Vρ

 .

Denoting β̂S = (β̂⊤
s1
, · · · , β̂⊤

sq)
⊤ and β(0)

S = (β
(0)⊤
s1 , · · · ,β(0)⊤

sq )⊤, Theorem 2

implies the quantities (β̂S − β(0)
S )⊤V −1

βS
(β̂S − β(0)

S ) and (ρ̂ − ρ(0))⊤V −1
ρ (ρ̂ −

ρ(0)) asymptotically follow χ2 distributions with degrees of freedom qd and

K, respectively, as n → ∞ and p = o(n1/2). Based on this, we investigated

the empirical coverage probability of 95% confidence regions for β(0)
S and ρ(0)

by considering the mean regression coefficients for the first five responses i.e.,

S = {1, · · · , 5}, and computing the proportion of simulated datasets in which

(β̂S−β(0)
S )⊤V̂ −1

βS
(β̂S−β(0)

S ) ≤ χ2
qd,0.95 and (ρ̂−ρ(0))⊤V̂ −1

ρ (ρ̂−ρ(0)) ≤ χ2
K,0.95.

Here, χ2
l,0.95 denotes the 95% quantile of the χ2 distribution with degrees of free-
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Table 1: Empirical coverage probability for 95% confidence regions of β(0)
S and

ρ(0) for Bernoulli and Poisson responses, where S = {1, · · · , 5}.
Bernoulli Poisson

p = 10 p = 25 p = 50 p = 10 p = 25 p = 50

β
(0)
S

n = 50 0.957 0.955 0.958 0.851 0.856 0.857
n = 100 0.966 0.968 0.967 0.927 0.929 0.928
n = 200 0.969 0.969 0.970 0.933 0.936 0.934
n = 400 0.968 0.968 0.968 0.941 0.943 0.943

ρ(0)

n = 50 0.852 0.874 0.886 0.857 0.858 0.880
n = 100 0.901 0.920 0.918 0.917 0.909 0.912
n = 200 0.932 0.930 0.933 0.924 0.925 0.940
n = 400 0.930 0.945 0.933 0.924 0.941 0.950

dom l, and V̂βS and V̂ρ are the estimators of VβS and Vρ, respectively, obtained

from the corresponding blocks of the consistent estimator Ĝ(S) ofG(S); see sup-

plementary material S1 for further details on computing Ĝ(S). Table 1 demon-

strates that the resulting coverage of 95% confidence regions for β(0)
S tended to

the nominal level of 95% as n increased, but was relatively unaffected by p.

There was slight overcoverage for the case of Bernoulli responses. The cover-

age of 95% confidence regions for ρ(0) tended to 95% as n and/or p increased.

In supplementary material S7.2, we present additional results for the empirical

coverage probability of 95% confidence intervals for the mean regression co-

efficients and correlation regression parameters individually, and obtain similar

conclusions.

In supplementary material S7.3, we present results comparing our proposed

estimator to existing GEE methods assuming either an independence working

correlation matrix, or an unstructured working correlation matrix. Overall, the
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proposed estimator was shown to have comparable performance to these existing

methods in terms of estimating β (this is not surprising given the robustness of

the mean regression coefficient estimators to the specification of working cor-

relation structure), but clearly outperformed GEE with unstructured working

correlation matrix in recovering the true correlation matrix given it leverages

the additional information available from the similarity measures. Finally, we

carried out numerical studies in supplementary material S7.4 to investigate the

impact of misspecifying similarity measures on the estimation performance of

the proposed estimator. Results show the estimation of β was again largely un-

affected by this misspecification, while the estimation performance for ρ and

hence recovery of the true correlation matrix exhibited a small deterioration in

performance.

5. Application to Scotland Carabidae Ground Beetle Dataset

We applied the proposed joint mean and correlation regression model to a mul-

tivariate abundance dataset from ecology comprising overdispersed counts of

Carabidae ground beetle species in Scotland. The data was sampled from a total

of n = 87 sites spread across nine main areas in Scotland using pitfall traps (Rib-

era et al., 2001), with the aim of the study being to jointly quantify the effects of

environmental processes and trait mediation on the ground beetle assemblages;
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see Ribera et al. (2001) for more details of the study. For illustrative purposes, we

considered a subset of p = 38 carabid ground beetle species that were detected

in at least 15 sites. Along with species abundance observations, we considered

three environmental covariates in soil pH, elevation above sea level, and land

management intensity score (Downie et al., 1999), all of which were centered

and scaled to have zero mean and unit variance prior to analysis. Together with

the intercept, this leads to d = 4 predictors in xi. For each species, we also have

records for K = 5 trait predictors, with one being quantitative (total length)

and four being qualitative (color of the legs, wing development, overwintering

and breeding season). We converted each of the trait predictors into a similar-

ity matrix based on the procedure discussed above equation (2.1), depending on

whether it is a quantitative or qualitative trait.

From an exploratory analysis (see Figure S11 in supplementary material S8),

we observed evidence of overdispersion and a quadratic mean-variance relation-

ship for the p = 38 species. Along with the fact that different carabid beetle

species are known to exhibit diverse responses to the environment, we thus pro-

ceeded to fit the joint mean and correlation regression model assuming a log link

function for the mean, and a quadratic variance function h(µ;ϕ) = µ + ϕµ2

where the species-specific overdispersion parameters ϕj > 0 were estimated

using the estimation procedure in Section 3. Based on Theorem 2, we also con-
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Table 2: Point estimates and 95% confidence intervals (in parentheses) for mean
regression coefficients of the first ten species, and correlation regression param-
eters for all five trait variables, based on analysis of the Carabidae ground beetle
dataset. Estimates whose confidence interval excludes zero are bolded.

Estimation of βj

Species Intercept Soil pH Elevation Land Management

A.Muelleri
2.444 1.382 -0.730 -0.022

(2.015, 2.872) (0.631, 2.132) (-1.396, -0.064) (-0.725, 0.682)

A.Apricaria
-0.697 -0.151 -1.649 1.615

(-1.528, 0.135) (-1.186, 0.883) (-2.904, -0.393) (0.692, 2.538)

A.Bifrons
-1.349 1.415 -2.145 0.314

(-2.462, -0.236) (0.134, 2.696) (-3.720, -0.570) (-0.775, 1.404)

A.Communis
0.604 -0.080 -0.439 -0.970

(0.145, 1.062) (-0.876, 0.715) (-1.058, 0.181) (-1.741, -0.198)

A.Familiaris
0.221 0.454 -0.371 0.474

(-0.382, 0.823) (-0.593, 1.500) (-1.287, 0.544) (-0.509, 1.458)

A.Lunicollis
-0.016 -0.714 -0.841 -0.542

(-0.533, 0.502) (-1.644, 0.217) (-1.600, -0.082) (-1.401, 0.317)

A.Plebeja
3.074 1.576 -0.933 -0.390

(2.667, 3.480) (0.860, 2.291) (-1.567, -0.298) (-1.063, 0.283)

A.Dorsalis
0.106 0.305 -0.144 2.557

(-0.513, 0.725) (-0.544, 1.153) (-1.064, 0.776) (1.720, 3.394)

B.Aeneum
2.010 1.467 -2.993 -0.236

(1.265, 2.756) (0.262, 2.673) (-4.314, -1.672) (-1.345, 0.873)

B.Guttula
1.948 0.921 -1.024 0.448

(1.560, 2.336) (0.264, 1.577) (-1.672, -0.376) (-0.159, 1.055)
Estimation of ρk

Total Length Leg Color Wing Development Overwintering Breeding Season
0.061 -0.002 0.021 0.004 0.036

(0.023, 0.098) (-0.022, 0.018) (-0.001, 0.044) (-0.018, 0.026) (0.008, 0.064)

structed 95% confidence intervals for each of the mean regression coefficients

and correlation regression parameters; see supplementary material S1 for further

details on this construction.

Table 2 reports the estimated mean regression coefficients for the first ten

carabid ground beetle species, along with the estimated correlation regression

parameters for all five trait variables; see supplementary material S8 for full es-

timation results of all p = 38 species. As expected, carabid ground beetle species

possessed considerable heterogeneity in their responses to the environment. For
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instance, in comparing A.Muelleri and A.Communis, results show the former

preferred higher levels of soil pH, while the latter presented no clear evidence

of being influenced by this habitat factor. Although elevation was negatively as-

sociated with both species i.e., both tended to be recorded at lower altitude, it

was only statistically significant for A.Muelleri. Conversely, only A.Communis

exhibited statistically clear evidence of being negatively impacted by increased

land management intensity. Elevation was negatively associated with all the

abundances of the first ten carabid species in Table 2, although we note that 11

other carabid species exhibited positive estimated mean regression coefficients

for the elevation covariate (see Table S7 in supplementary material S8).

Turning to the estimated correlation regression parameters, all trait variables

except leg color exhibited a positive association with the correlation between the

abundances of different carabid species. The correlation regression parameter

estimate related to total length displayed the strongest magnitude, and its confi-

dence interval excluded zero. This suggested conditional on other trait values,

the abundances of carabid species with similar total lengths were more positively

associated after accounting for differences in their mean abundances due to en-

vironmental filtering. There was also statistically clear evidence that breeding

season was important in driving residual covariations between carabid species.

In supplementary material S8, we performed some additional analyses to
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investigate the sensitivity of the proposed model to alternative specifications of

the similarity measures. Results show the estimated mean regression coefficients

of all beetle species, the correlation regression parameters of the trait similarity

matrices, and the between-species correlation matrix remained similar across

different specifications of similarity measures in this application. This consis-

tency in conclusions further substantiates the inferences drawn from Table 2.

6. Conclusion

We have introduced a joint mean and correlation regression model for correlated

multi-response data, which allows simultaneous analysis of the relationship be-

tween the mean components with observed covariates, and the association be-

tween the correlation components with similarity measures of additional predic-

tor information. The proposed model can be applied to a wide variety of discrete

and (semi-)continuous responses. We developed a joint estimator for the mean

regression coefficients and correlation regression parameters, which is demon-

strated to be consistent and asymptotically normal as the sample size n → ∞

and the number of responses p grows with increasing n. Similar to standard

GEEs, the consistency of the proposed mean regression coefficient estimators is

robust to misspecification of the correlation regression component of the joint

model. Simulation studies demonstrate the strong empirical performance of the
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proposed joint estimator, especially compared with existing methods such as

GEE assuming an unstructured working correlation matrix in estimating the true

correlation matrix. The application of our proposed model to the ground bee-

tle dataset revealed heterogeneous relationships between environmental factors

and carabid beetle abundances, while also identifying important functional traits

which drive the (residual) correlation between species. A sensitivity analysis

also yielded similar conclusions for the same dataset under alternative specifica-

tions of similarity measures.

Note the findings from fitting our proposed model to the ground beetle

dataset are novel and differ from those obtained from the fourth corner analysis

by Ribera et al. (2001), and indeed more generally fourth corner analyses in com-

munity ecology (e.g., Niku et al., 2021). In particular, while fourth corner mod-

els aim at identifying where traits mediate species responses to the environment,

our approach quantifies how different traits influence the residual correlation be-

tween species after accounting for species-environmental responses. These are

fundamentally different scientific questions, and while statistical methods have

been developed for the former, our method is one of the first which specifically

addresses the latter in statistical ecology.

A logical next step would be to extend the proposed model to handle mixed

response types. This could be achieved by considering link functions gj(·) and
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variance functions hj(·) that are allowed to differ based on the j-th response

type, and Condition 4 would be altered so that its requirements apply to all link

and variance functions. This could be useful in ecology, say, when we observe

count records for some species and presence-absence records for other species,

in which case gj(µ) = log(µ) and hj(µ;ϕ) = ϕµ for the count responses while

gj(µ) = log{µ/(1 − µ)} and hj(µ;ϕ) = ϕµ(1 − µ) for the binary responses,

noting that there might be complications in the interpretation of the response-

specific mean regression coefficients because of the use of different link func-

tions resulting in differing effect sizes (see also Section 6 of Hui et al., 2024).

It would also be interesting to consider similarity matricesW (i)
k that are hetero-

geneous across i = 1, · · · , n; this would give rise to heterogeneous correlation

matrices R(i) for different response vectors Yi (e.g., Zou et al., 2022). Addi-

tionally, while this article focuses on a balanced setting by assuming each of the

i-th cluster consists of p number of responses, the proposed method could be

generalized to accommodate unbalanced data where we observe pi rather than

p responses at the i-th cluster (analogous to the study of clustered data with un-

equal cluster sizes e.g., Section 3.5 of Xue et al., 2010). In this instance, similar

idea of correlation regression could be employed to model the i-th cluster corre-

lation matrix asR(i)(ρ) = Ipi +
∑K

k=1 ρkW
(i)
k involving pi×pi matrices, which

could be considered as one special case of the heterogeneous similarity matrices
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discussed above. The proposed method could then be adapted by appropriately

adjusting the dimensions of the matrices involved in the estimation procedures

to reflect the varying cluster sizes e.g., W̃k would be changed from In ⊗Wk

under the balanced data setting to diag(W
(1)
k , · · · ,W (n)

k ).

Finally, the proposed model can be extended to allow for the clusters to

be spatially and/or temporally correlated across i = 1, · · · , n e.g., by consider-

ing the generalized Kronecker product structure of Bonat and Jørgensen (2016)

that involves separate modeling of the between-response and between-cluster

dependence structures. In this case, the correlation regression model would still

be used to model the between-response dependence structure, while similar idea

could be employed to model the between-cluster dependence structure as a linear

combination of similarity matrices constructed from spatio-temporal distances

between different clusters (see also Hui, 2022, for a similar idea). In such cases,

it may be particularly useful to consider joint variable selection on the mean

regression coefficients and correlation regression parameters as the number of

covariates d and similarity matrices K could be large in real practice. This could

be accomplished by leveraging existing work on penalized GEEs or fast infor-

mation criterion (Wang et al., 2012; Hui et al., 2023); see also the recent work

of Tho et al. (2024) who considered variable selection to identify the subset of

relevant similarity matrices in the context of Ising models.
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Appendix

We introduce five regularity conditions under which all theoretical results are

established. Let ∥ · ∥t denote the vector t-norm or matrix t-norm for 1 ≤ t ≤ ∞,

|H|∞ = ∥vec(H)∥∞ denote the element-wise ℓ∞ norm for a generic matrix

H with vec(H) being the vectorization of matrix H , and λmin(H) denote the

smallest eigenvalue of a generic square matrix H . The discussions of the fol-

lowing conditions are presented in supplementary material S3.

Condition 1. The elements εℓ of the np-dimensional random vector ε(ϑ(0)) =

L̃−1
0 A

−1/2(β(0)){Y −µ(β(0))} are independent and identically distributed with

mean zero, variance one, third-order moment µ(3), and fourth-order moment

µ(4), where L̃0 = In ⊗ L0, and L0 is obtained through the Cholesky decom-

position of Σ(α(0)) = L0L
⊤
0 . Furthermore, there exists some η > 0 such that

E(|εℓ|4+η) < ∞ for ℓ = 1, · · · , np.

Condition 2. There exist finite positive constants CL, CX and CW such that

max{∥L0∥1, ∥L−1
0 ∥1, ∥L0∥∞, ∥L−1

0 ∥∞} ≤ CL, |X|∞ ≤ CX , and ∥Wk∥1 ≤

CW for any n ≥ 1, p ≥ 1 and k = 1, · · · , K, whereX = (x1, · · · ,xn)
⊤.

Condition 3. There exists some finite positive constant Cβ such that ∥β(0)∥∞ ≤

Cβ for any p ≥ 1.

Condition 4. The inverse link function g−1(·) is twice continuously differen-
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tiable, the variance function h(·) is continuously differentiable, and the compo-

sition function (h ◦ g−1)(·) ≥ Ch for some finite positive constant Ch.

Condition 5. There exist finite positive constants CB and CΩ such that

max{∥B−1∥1, ∥B−1∥∞} ≤ CB and λmin(Ω) ≥ CΩ for any n ≥ 1 and p ≥ 1,

where Ω = B−1UB−1⊤.

Supplementary Material

The Supplementary Material includes all proofs and algorithms, as well as addi-

tional results for the simulation study and real data application.
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