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On runs tests for directional data

and their local and asymptotic optimality properties
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Kyushu University™, Université de Lille and CREST (Paris)*

and Université libre de Bruzelles (ULB)

Abstract: In the present paper, we tackle the problem of detecting serial corre-
lation in directional data. We introduce a concept of runs properly adapted to
the directional context. We then show that tests based on the latter runs enjoy
some local and asymptotic optimality properties against local alternatives with
serial dependence. We evaluate the finite-sample performances of our tests using
Monte Carlo simulations and show their usefulness on a real data illustration

that involves the analysis of sunspots locations for various solar cycles.
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1. Introduction

The problem of testing randomness of a series of observations is one of the

most important problems in time series analysis. To tackle the problem,



runs tests are nowadays very classical tools in statistics. In particular the

runs tests for randomness of Wald and Wolfowitz (1940) is very popular.

More recently, runs have been used for instance in [Henze and Penrose, (1999)

and Biswas et al.| (2014]) to compare samples, in McWilliams| (1990), Corzo|

and Babatival (2013) and |Dyckerhoff et al.| (2015) to test for symmetry, in

Dufour et al| (1998) to test for nonhomogeneous white noise and in

daveine| (2009)), [Cho and White (2011)) and Hentati-Kaffel and De Peretti

(2015) to test for randomness.

Classical runs tests typically reject the null hypothesis of randomness
when the number of runs in the sequence is too large or too small. In a
sequence of observations, a run is defined as a consecutive series of observa-
tions with the same sign. From a univariate sample X3,..., X, the num-
ber of runs can be computed from the quantity >, Uy(0)U;_1(6), where
Ui(0) := sign(X; —0) is the sign of a centered version of Xy; 6 plays the role
of a location parameter here. More precisely if Xi,...,X,, are mutually

independent random variables with median 6, we have that

Nn(‘g) B E[Nn(e)]
n—1

LS U0 (0) = | (1.1)

n—1<
where N, (0) :== 1+>"}" , I[U;(6) # U;—1(0)] is the number of runs associated
with Xi,..., X,,. Based on a sample X;,...,X,, of p-dimensional random

vectors, a multivariate extension of the notion of runs has been provided



in Marden (1999) who proposed to replace the univariate signs in (1.1)
by spatial signs Ug(X),. .., Ugs(X,,), where Up(X) := X —6/||X — 0] to

consider a test statistic of the form

n

1

Rip(6) = ——

Uj(X,)Ug(X,_1), (1.2)

t=2

that is a measure of closeness of the successive spatial signs of the obser-
vations. Elliptical extensions of the Marden| (1999) runs have been studied
more recently by [Paindaveine (2009), where signs of sphericized observa-
tions are used.

Directional data consist in observations that are directions/unit vectors.
In most cases, these observations therefore lie on the circumference of the
unit circle of R? (one then speaks of circular data) or on the surface of the
unit hypersphere SP~! := {s € R?,s's = 1} of RP. Although we will focus in
this work on data on hyperspheres (such as the sunspots data analyzed be-
low), directional data also include data on the torus (product of two circles
or spheres) and the cylinder (product of R” with a circle or sphere), but
also on other manifolds such as the Stiefel or the Grassmann manifolds.
Directional datasets are encountered in various fields, such as meteorol-
ogy (wind direction), biology (animal migration patterns) and many more.
Analyzing and interpreting directional data requires specialized techniques

that account for the curved nature of the observation space.



Nonparametric methods recently designed specifically for directional

data include the independence tests of |Garcia-Portugués et al.| (2024)), opti-

mal transport-based methods in |[Hallin et al.| (2024) and methods for regres-

sion in |Garcia-Portugués et al| (2016)); Di Marzio et al.| (2017); Meilan-Vila

et al.| (2020)); |Alonso-Pena et al,| (2021) and |Alonso-Pena et al.| (2024) to

cite only a few. For a general overview of the topic, we refer the reader to

Mardia and Jupp| (1999)), [Rao and SenGuptal (2001) and |Ley and Verde-

. To the best of our knowledge, runs for directional data have
never been considered before. In the present work, we define a concept
of directional runs. We show that tests based on our concept of direc-
tional runs enjoy some local and asymptotic optimality properties to test
for iidness (the observations Xy, ..., X; are i.i.d.) against alternatives under
which some serial dependence is introduced. More precisely, we show that
our runs provide tests that are locally and asymptotically optimal against
alternatives called Tangent Markov local alternatives.

The paper is organized as follows: in Section [2, we define precisely
our runs tests. In Section [3] we provide some asymptotic properties of tests
based on runs; in particular we show that they enjoy some local and asymp-
totic optimality properties against Tangent Markov alternatives we define.

Generalized versions of our tests are presented in Section [d Some numeri-



cal illustrations of the performances of our tests are proposed in Section [f
Finally, we close the paper with some conclusions we can draw on sunspots
data for various solar cycles in Section [6] A supplementary material col-
lects the proofs of the various results and complementary informations on

the real data analysis of sunspot locations.

2. Directional runs tests

Assume that we have a sample Xy, ..., X,, of directions taking values on
the unit hypersphere SP~! of RP. For some 8 € SP~ !, the classical tangent-
normal decomposition of X; around € reads (below ||v|| is the Euclidean
norm of v)

(I, — 660))X,
1T, — 00")X, ||’

= (Xi0)6 + [|(I, — 60)X,] (2.1)

where letting Ty be a p x (p — 1) semi-orthogonal matrix such that e[y =
I,—060" and TyI'y = I, ;, a notion of multivariate sign Sg(X;) for directions
can be naturally defined via

(I, — 660X, X,
(T, — 66')X| |ITeXe

: ToSe(Xy); (2.2)

see Figure [l| for an illustration. Note that I'gSe(X;) is a random vector

taking values on a unit sphere which is orthogonal to 8. We tacitly assume



throughout that the distribution of the X;’s does not charge 6 so that the
Se(X;)’s are well-defined almost surely. In the circular case p = 2 with
X; = (cos(Uy),sin(Uy)) for some random angle Uy, Sp(X;) is the (univari-
ate) sign of sin(U; — ), where § = (cos(f),sin(0))’ for some angle . Tests
for location precisely based on this concept of signs have been proposed in
Schach| (1969) for the circular case while tests based on the signs in ([2.2)
for the (hyper)spherical case have been studied for instance in Paindaveine
and Verdebout| (2016)) and |Garcia-Portugués et al.| (2020). Using such di-
rectional signs, it is very natural (following (1.2)) to consider a runs test

statistic of the form

RO 0) = ——— 3 85(X)S0(X01). (2.3)

n—lt:2

It follows from the discussion above that this concept of runs reduces to
classical univariate concept of runs for random angles in the (p = 2) circular
case (see (L.1)). Under the hypothesis of iidness of Sg(Xi),...,Se(X,)
with E[Sg(X1)] = 0 (€ can be seen as a directional median), the central

limit theorem for 2-dependent stationary processes directly entails that the

standardized version s, >R\ (8) of R (8) in (2.3)), where

$n(0) := tr (n_l i Sg(Xt)Sg(Xt)/) , (2.4)

t=1



converges weakly to a standard Gaussian variable. As a result, nonpara-
metric tests can be obtained using s,/ 2(0)R§Z) (@). For instance the test
¢§") that rejects the null hypothesis of iidness at the asymptotic level a

when
s, 0) (R (0))? > 2.,

where X?,ﬁ is the quantile of order  of the chi-square distribution with v
degrees of freedom, is an asymptotically valid test for the problem. Obvi-
ously tests based on s, "/ 2(0)R§Z) (@) will be able to detect serial correlation
of order 1 only; generalized runs tests that can detect serial correlation of

larger order are discussed in Section [l In the next Section, we study some

asymptotic properties of tests based on R&Z) 9).

3. Theoretical guarantees

In the present section, our objective is to show that tests based sy, /> (B)Rgz) (@)
enjoy nice asymptotic properties. We show below that this is particularly
the case in the vicinity of rotational symmetry. We say that X, is rotation-
ally symmetric around @ if for any rotation O such that Of = 0, OX; has

the same distribution as X;. If X; is absolutely continuous with respect to
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Figure 1: The tangent-normal decomposition of X; with respect to 8. The
3-dimensional unit vector I'ySg(X;) belongs to the orthogonal complement

to span(@) (Se(X;) is bivariate).
the surface area measure on SP~!, then its density is of the form

X = fo.4(X) = ¢y 9(x'0), (3.1)

where ¢, (> 0) is a normalizing constant and ¢ : [—1,1] — [0,00) is

(n)

0.0 for the joint distri-

referred to as an angular function; below we write P
bution of the X;’s. Note that the very classical von Mises distribution is ob-
tained by taking g(u) = exp(ku) for some positive concentration parameter
k. We also have that if Xy, ..., X,, are i.i.d. with a rotationally symmetric

distribution with parameters g and 0, vp(X;) := X0, ..., v9(X,) := X0

are i.i.d. with density

v = gp(v) = wp—lcp,g(l - Ug)(p_3)/29<v)? (3.2)



—1

where w,_; 1= on'T |/ F(p%l) is the surface area of SP~2. They are moreover
independent of the signs Sg(Xy), ...,Se(X,) defined above. Finally, the
signs Sp(X1), ...,Se(X,) are i.i.d. uniformly distributed over SP~2 under
ngg). The following result confirms the comment just below under

rotational symmetry around 6.

Proposition 1. Under Py, s,"*(0)R{}(6) = (p — 1)"/2R{} (8) + op(1)

converges weakly to a standard normal random variable.

See the supplement for a proof. As we will see below, tests based on
st Q(G)Rg}) (@) enjoy some local and asymptotic optimality properties against
alternatives under which the signs Sg(Xy), ...,Sp(X,,) are serially corre-

lated. We also show that the location parameter 8 in s, "/ Q(G)R(lz) (6) can

be replaced by root-n consistent estimators without any asymptotic cost

(n)

under P07 ;

(and therefore under contiguous alternatives). Consider as in

(2.1]) the tangent normal decomposition
Xt = 'Uo(Xt)a —+ 1-— Ug(Xt>P080<Xt>,

t =1,...,n. As mentioned already, under rotational symmetry (with pa-
rameters g and @), the vp(X;)’s are i.i.d. with density (3.2)) over [—1,1]
and are independent of the Sg(X;)’s. In the sequel we need to assume

some regularity conditions on angular functions g. More precisely, we will



restrict to the collection G, of positive monotone nondecreasing angular
functions g : [-1,1] — (0, c0) that are absolutely continuous (with almost

everywhere derivative ¢) and for which

)= [ - g0 33)

1

is finite, where ¢, := ¢/g. These regularity assumptions ensure a proper
identifiability of the parameter @ together with the fact that the corre-
sponding sequence of models is local and asymptotic normal (LAN) (see for
instance Ley et al. (2013) or [Paindaveine and Verdebout| (2017))).

Assume now that the joint distribution of Sg(Xj),...,Se(X,) is not a
product of uniform distributions over SP~2 but is given by a density of the

form
(S1,-..,8n) — crexp( Z S;St—1) (3.4)
with respect to the surface area measure over (SP~2)" for some normalizing

constant ¢} obtained through

1
> = / exp(Au)(1 — u?)®=3/3 gy,
-1

Following|Accardi et al.| (1987)), the marginal distributions of Sg(X;), ..., Se(X,,)
with density (3.4)) are uniform over S~ but the conditional density fs,s, ,=s,_,
of S;|S;_1 = s;_1 is von Mises with location parameter s;_; and concentra-

tion parameter \. In the von Mises model, A plays the role of a concen-



tration parameter that drives the probability mass in the vicinity of the
location parameter while below it will influence the dependence between
observations; recall that a von Mises distribution is obtained by taking
g(u) = exp(ku) as an angular function in for some positive concentra-
tion x . In the following result we obtain the shape of the joint density of

random vectors Xy, ..., X,, when their signs have a joint density (3.4)).

Theorem 1. Assume that ve(Xy),...,ve(X,,) are (i) i.i.d. with density
U= Wp-16pg(l — v?)P=H2g(v)

with respect to the Lebesque measure on [—1,1] and (ii) independent of
Se(X1),...,S¢(X,,) jointly distributed with density (3.4). Then vec(Xy,...,X,)

has density

n

vee(Xy, ..., Xp,) —> c;"gcf(exp()\(z Sp(x¢)Se(x:-1)))

t=2 t

—=

g9(ve(x:))  (3.5)

1

with respect to the surface area measure over SP~1.

See the supplement for a proof. Note that when A = 0, the joint distribution
of vec(Xy, ..., X,) is simply P((,Z]) defined below (3.2). In the sequel we write
(X1, Xp) ~ ng{g when vec(Xy,...,X,,) has density (3.5) and call the

corresponding distribution the Tangent Markov distribution with location



(n)

0, angular function g and dependence parameter A > 0. Obviously Poo. g

and ng; coincide and both notations are used in the rest of the paper. We

now show that the runs tests defined in Section [2| enjoy some local and

asymptotic optimality properties for testing Ho : A = 0 against H; : A > 0.

Consider a local perturbation (n=*/2(,,0 +n=27,) of a null value of the

parameter (0,0), where the sequence 7,, in R? converges to 7 € R and /,, is
2

a positive real bounded sequence. Of course, it is assumed that 8 +n~21,

belongs to SP~! for any n, which imposes that
1=0+n"27)0+n 1) =1+ 20201, + n7 ||,

or equivalently that 8’7, = —1n='/2||7,||%. In the next result, we study the

local log-likelihood ratio

(n)
A — log ot
dP0707g

(n)

0in—1/2r, n-1/20, g with respect to a distribution

of a perturbed distribution P

that belongs to the null hypothesis P((:& ;- We have the following result.

Theorem 2. Letting v, := ({,,T,) as described above, we have that

1
AW = v/ A §V;I‘Vn + op(1)

(n)

0.0.9° where letting

as n — oo under P

A =073 g (up(Xe)) (1 — 13 (X)) V?Se (X,

t=1



and

AW =02 T 8)(X,)S6(Xe ),

t=2

the central sequence A™ = (A()\n), (Aé"))’)’ converges weakly (still under

(n)
P0,0,g

(3-3))

) to a Gaussian vector with mean zero and covariance matriz (see

I := diag < Jp(g)Ip—l) -

1
-1

See the supplement for a proof. The Local Asymptotic Normality
(LAN) theorem above is very important. Indeed, we readily see that the
dependence (\-)part of central sequence AE\n) is proportional to Rgfl) 9).
As described below, this has important consequences in terms of local and
asymptotic optimality for tests based on Rﬁj;) (@). It directly follows from

Theorem [2| above (and in particular from the block-diagonal structure of

the Fisher information matrix of the LAN property) that

A

(i) Rgz) 6) — Rgz) (@) = op(1) as n — oo provided that the estimator
(with values in SP71) is part of a sequence that is: (i)root-n consistent
under any g € G for some G’ C G,, i.e., /n(@ —0) = Op(1) under
Ugeg' {Pé?g)}; (i) locally and asymptotically discrete, i.e., for all @ and
for all C' > 0, there exists a positive integer M = M (C) such that
the number of possible values of @ in {tesS1:\/n|t-0|| <C}is

bounded by M, uniformly as n — oo.



(ii) for testing Ho : A = 0 against H; : A > 0, the locally and asymp-
totically most powerful test qb(()g)t rejects the null hypothesis at the

asymptotic level o when
(p— 1)1/2A&n) > Zl—a;

where 25 denotes the quantile of order 3 of the standard Gaussian

distribution.

Point (i) above directly follows from the block-diagonal structure of the
Fisher information matrix in Theorem [2] Indeed, the latter block-diagonal
structure implies that the non-specification of the location parameter does
not have any asymptotic cost when inference on A is considered. Since, we

also have that s,(0) — s,(0) is op(1) under ngg’g as n — oo, the Slutzky

Lemma and Proposition (1| directly entail that

s 2(0)R) (0) = 5,2 (B) R () + 0p(1) = (p—1)/R{Y (8) + 0p(1) (3.6)

n

(n)
as n — oo under Po,o,g

. Note that the local discreteness property is a purely
technical requirement in point (i) with little practical implications since for
fixed n; any estimate can be considered part of a locally and asymptoti-
cally discrete sequence of estimators. Point (ii) above together with

entail that the locally and asymptotically optimal test for testing Hy : A =0

against H; : A > 01is (b(()gi and not ¢§"). The testing problem considered here



is one-sided so that this is not really surprising. The test ¢§”) is actually the

(n)

“two-sided version” of ¢,. The Tangent Markov model defined above is
such that Sg(X;)[Se(X;_1) = s¢_1 is von Mises with location parameter s; 1
and concentration A and therefore conditionally on Sg(X;_1), the unit vector
S; belongs to the hemisphere {u € §772,u'Sy(X;_;) > 0} with more prob-
ability than to the complementary hemisphere {u € 8772, u’'Sy(X;_1) < 0}
and can be seen as positively correlated with Sg(X;_;) in that sense. The
test ¢§”) (two-sided test) will clearly perform better than qsfj;i (one-sided
test) under alternatives allowing for both positive and negative dependence.
A Tangent Markov model with A € R rather than A € R* is also perfectly
valid and would allow for both positive and negative dependence in the sense
described just above. In such a model, it is easy to show that ¢§”) is locally
and asymptotically maximin for testing Hy : A = 0 against H; : A # 0.
Note that a test ¢* is called maximin in the class C, of level-a tests for

some null hypothesis H, against the alternative H; if (i) ¢* has level a and

(ii) the power of ¢* is such that

T,
o2, P2 s g Bele)

For a definition of locally and asymptotically maximin tests, see for instance

Chapter 5 of Ley and Verdebout| (2017)).



4. Generalized directional runs tests

In the present section, we discuss extensions of the tests proposed in the
previous sections. Following Dufour et al| (1998), a generalized version of

the test ¢§”) can be obtained by considering generalized runs of the form

! > Sp(Xy)'Se(Xi—n)-

R™(6) :=
na (0) — o

Such generalized runs are able to detect serial dependence of order h. Based
on R;Zl) (@) above, a test that can detect serial dependence until lag H say

can be based on the test statistic
H
521 (0) Y (R (0))

h=1

The following result summarizes some of its asymptotic properties.

Proposition 2. The test statistic s, '(0) ZhHZI(R%) (0))* converges weakly

to

(n)

(i) a chi-square random wvariable with H degrees of freedom under Poo.g

and

(i1) a chi-square random variable with H degrees of freedom and non-

centrality parameter (p—1)"10? under P,

=124, o™ where ¢ = lim,,_,, /™.



See the supplement for a proof. Following Proposition [2 above, a natural

generalized runs test ¢>§§“) rejects the null hypothesis at the nominal level «

when
H
521 (0) > (R (0)) > X311
h=1

Note that as in s, /*(8)R"™(8), replacing 6 in s, /*(8) R\ (8) by an estima-

tor 6 satisfying the same assumptions as the ones described below Theorem
has no asymptotic cost under Pé"o) , as well as under contiguous alterna-

tives. In the next Section, we compare the various tests proposed in this

work through Monte Carlo simulations.

5. Monte Carlo study

In this section, we investigate the finite-sample performances of the pro-
posed tests through two Monte Carlo exercises. In the first exercise, we

generated N = 2,500 mutually independent random samples of the form
Xy, t=1,...,n, £=0,0.5,1,...,5,

with values in S2. The X,.0's follow a Tangent Markov model (defined in
(3.5)) with location @ := (1,0,0)’, angular function ¢ — ¢;(t) := exp(5t),
and dependence parameter A, := £/y/n. The value £ = 0 corresponds to the

null hypothesis of iidness, whereas £ = 0.5, ..., 5 provide increasingly severe



alternatives with serial dependence. For each replication, we performed, at
asymptotic level o = .05, the tests ¢\, ¢, gbé") and qb(()?,)t (respectively
based on R\"(8), R\ (8), R(9) and (p — 1)/2A) computed with (i)
the correctly specified 8 and (ii) the classical spherical mean estimator (the
arithmetic mean of the observations divided by it’s norm) of §. In Figure
2, we provide the rejection frequencies of the various tests for the different
values of the sample size n € {250,500, 750,1000}. Inspection of Figure
reveals that, as expected, the larger ¢, the larger the empirical power.
We also observe that as n increases, the empirical rejection frequencies of
the tests with a fixed @ or with an estimated version of @ share the same
values. This could also have been expected since the estimation of # has no
asymptotic cost here as discussed below Theorem 2] In Figure 3, we provide

(n)

the same rejection frequencies of the tests ¢§n), ¢§”’, gzﬁé”) and ¢g; computed
with the correctly specified @ together with the theoretical asymptotic pow-
ers of the tests obtained with Theorem Inspection of Figure [3| clearly
reveals that the empirical rejection frequencies almost coincide with the

theoretical asymptotic power curves; our asymptotic results are therefore

corroborated.



In a second simulation exercise, we generated N = 2500 mutually ran-

dom samples of random vectors
X, i=1,....,n, £=0,051,....5,

with values in &% where Xy, is uniformly distributed over §* and for
i =2,...,n, X Xi—1p ~ vMF(X,_1.4,¢/y/n) where vVMF(u, k) denotes
the von Mises Fisher distribution with location parameter g and concen-
tration parameter x. At each replication, we performed at the nominal
level @ = .05 the same tests as in the first simulation exercise; that is we
performed two versions of ¢§”), gbén), QS:(,)") and qbgz))t (one with 8 = (1,0,0)
and one with an estimated version of @) at the nominal level & = .05. In
Figure [4] we provide the rejection frequencies of the various tests for the
different values of the sample size n € {250,500, 750, 1000}. Inspection of
Figure {] reveals that our runs tests are clearly able to detect such type of

serially correlated observations. Using an estimated version of 8 or a fixed

0 does not result in a significant gap between the empirical powers.

6. Real data illustration

Several phenomena can be observed on top of the sun underlying structure.
Sunspots are among the most important aspects of the global solar activity

whose effects, among others, may affect Earth’s long-term climate (see,



Figure 2: Empirical rejection frequencies of several directional runs tests:
o™ M, én) and gbgg)t. In dotted lines, the curves are the rejection fre-
quencies of the tests performed with § = (1,0, 0) while the curves in dashed

lines coincide with the tests performed with an estimated version of 8. All

the tests have been performed at the nominal level o = .05.

e.g., Haigh, 2007). Sunspots are dark regions on the photosphere (region
where visible photons are emitted) associated with strong magnetic field
structures. The number of sunspots visible on the sun is not constant;

it varies in each solar cycle (over about 11 years). During a solar cycle,



Figure 3: Dotted lines are the empirical rejection frequencies of the direc-
tional runs tests ¢\™, ¢\, ¢§n) and ¢g;1 performed with 8 = (1,0,0). All
the tests have been performed at the nominal level a = .05. Plain lines are

asymptotic theoretical powers obtained from Theorem .

sunspots are frequently found in groups and tend to appear in bands on
the sun situated just in the north and the south of the equator. Further
details on sunspots and their origin can be consulted in [Babcock (1961)
and Solanki et al. (2006). The dataset displayed in Figure |5 is based on

the Debrecen Photoheliographic Data (DPD) sunspot catalogue (Baranyi



it
— phi2
— i3
% | — phiop

Figure 4: Empirical rejection frequencies of several directional runs tests:
o™ M, én) and gbgg)t. In dotted lines, the curves are the rejection fre-
quencies of the tests performed with § = (1,0, 0) while the curves in dashed

lines coincide with the tests performed with an estimated version of 8. All

the tests have been performed at the nominal level o = .05.

et al., [2016; Gyori et al., 2016)). It consists in n = 5,373 central positions of
groups of sunspots during the 23rd solar cycle, understood as the first-ever

observations of each group.
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Figure 5: Emerging locations of sunspot groups during the 23rd solar cy-
cle. The locations are colored with a red-yellow gradient according to the
relative position of the sunspot appearance date within the solar cycle in

order to visualize the Sporer’s law.



Figure [5] strongly suggests that the distribution of the (p =)3-dimensional
random positions X4, ..., X, of sunspots is symmetric around the north
pole @ = (0,0,1)" in the sense that OX; has the same distribution as Xj,
t =1,...,n for any rotation O such that Of8 = 0. An explanation for this
phenomenon is given by the Babcock (1961), see also |Garcia-Portugués
et al.| (2020). It also strongly suggests that the sequence of (the absolute
values) of the latitudes |X76)|,...,|X! 8| contains some serial correlation.
This is known as the Sporer’s law which is illustrated by the butterfly dia-
gram (available on https://solarscience.msfc.nasa.gov/SunspotCycle.shtml)
in Figure [, The Sporer’s law mentions a drift of the average latitude of
sunspots towards the Sun’s equator during a solar cycle.

While serial correlation in the latitudes is well-known, little is known
about the potential serial correlation that may be present within the longi-
tudes T'gSp(X1), . .., TeSe(X,,) of the sunspots locations. The objective here
is therefore to learn about a potential presence of serial correlation within
sunspots longitudes I'gSg(X), . .., T'9Se(X,,) for various solar cycles: cycles
11 to 24. In Figure |5| we provide a plot of the dataset for the cycle 23 while
in Figure [10] of the supplementary material we provide plots of the datasets
for the cycles 16,17, ...,24. The 11th solar cycle started in 1867 while the

24th solar cycle ended in 2019. We are currently in the 25th solar cycle.



DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS
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Figure 6: Top: butterfly diagram of the latitudes of sunspots (of various
sizes) through time (for several solar cycles). Bottom: the average daily

sunspot area through time.

As mentioned above, Figure [5 strongly suggests that the distribution of
sunspots central positions is rotationally symmetric distribution around the
north pole @ = (0,0, 1)". Since sunspots are usually clustered in groups that
evolve with time, serial correlation both in the latitude and in the longitude
may definitely be present in the data. For each solar cycle, we performed
various runs tests. Letting Xi,...,X;,, stands for the observed locations

of cycle i (1 =11,...,24), we performed

(i) classical Wald and Wolfowitz| (1940) univariate runs tests of random-
ness on the absolute values |Xj,0],...,|X], 8] of the latitudes for each

solar cycle;



(ii) classical |Wald and Wolfowitz| (1940) univariate runs tests of random-

ness on the latitudes X760, ..., Xj, 8 for each solar cycle and;

(iii) our runs tests that are able to detect a potential serial correlation on

the longitudes for each solar cycle.

In Figures and @ we provide boxplots of (generalized) runs tests
p-values for various choices of H € {1,...,4} (number of lags in the runs
statistic) and for each solar cycle. Each boxplot is obtained as follows: we
built 200 different subsamples obtained by randomly keeping 75% of the
original observations in each sample (for each solar cycle). Note that the
conclusions drawn below are not strongly influenced by the percentage of
the original observations we decide to keep in the subsamples. Boxplots for
other choices are available on request. Then, on each such subsample, we
perfomed the three runs tests described above; for each runs test we there-
fore obtained boxplots computed from 200 p-values. Inspection of Figures
[7, B and [9 clearly reveals that there is frequently some serial correlation
in the absolute values of the latitudes (as expected thanks to the Sporer’s
law) and in the longitudes. We cannot highlight the presence of autocorre-
lation in the absolute values of the latitudes in Cycle 11. We are not able
to explain why cycle 11 is different but we nevertheless mention here that

for cycle 11 we only have 251 measures of sunspots location (which is quite



less than for the other cycles). The signs of the latitudes seem more often

random. The null hypothesis of iidness is often rejected in solar cylces 14,

15, 20 and 24 only. Therefore the fact that the location of a sunspot belongs

to the northern or southern hemisphere seems to be often random.
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Figure 7: Boxplots of the various runs tests p-values for solar cycles 11 to

To conclude, we provide in Figures and of the supplementary

material the partial autocorrelation functions of (i) the absolute values

X510, ..., |X,,0] of the latitudes for various solar cycles; (ii) the latitudes
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24.



X0, ..., X, 0 for various solar cycles and (iii) the angle associated with
the longitudes for various solar cycles (each longitude or meridian is a bivari-
ate unit vector and is therefore characterized by an angle). Figures (11| and
of the supplementary material essentially confirm the results obtained

with the runs tests.

7. Perspectives for future research

In the present paper, we introduce runs tests for directional data. We show

(n)

that our first-order runs tests ¢, (or its two-sided versions) enjoy local
and asymptotic optimality properties to test for iidness against alternatives
under which some serial dependence is introduced. Monte-Carlo simulations
strongly support our results while we show through the use of our tests that
the longitudes of sunspots emerging locations are correlated. Optimality
properties under local alternatives are obtained for first-order runs tests
only. This is partly due to the fact that the Tangent Markov model involves
“first order dependencies” only. Higher-order runs tests involving larger
degrees of freedom are therefore less efficient against such Tangent Markov

alternatives. Models with “higher-order dependencies” can be obtained for

instance with observations such that

So(X¢)[Se(Xi—1) = St—1, - -, S9(Xs—p) = S¢—p



is a mixture of h von Mises distributions with location parameterss;_q,...,s;_
respectively. The study of the corresponding experiments together with
the study of the asymptotic behavior of high-order runs tests or full-rank
matrix-valued runs tests as in |Paindaveine (2009)) against such alternatives

are left for future research.

Supplementary Material

The online supplementary material contains all the technical proofs and

complements to the real data illustration.
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