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Abstract: In the present paper, we tackle the problem of detecting serial corre-

lation in directional data. We introduce a concept of runs properly adapted to

the directional context. We then show that tests based on the latter runs enjoy

some local and asymptotic optimality properties against local alternatives with

serial dependence. We evaluate the finite-sample performances of our tests using

Monte Carlo simulations and show their usefulness on a real data illustration

that involves the analysis of sunspots locations for various solar cycles.
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1. Introduction

The problem of testing randomness of a series of observations is one of the

most important problems in time series analysis. To tackle the problem,
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runs tests are nowadays very classical tools in statistics. In particular the

runs tests for randomness of Wald and Wolfowitz (1940) is very popular.

More recently, runs have been used for instance in Henze and Penrose (1999)

and Biswas et al. (2014) to compare samples, in McWilliams (1990), Corzo

and Babativa (2013) and Dyckerhoff et al. (2015) to test for symmetry, in

Dufour et al. (1998) to test for nonhomogeneous white noise and in Pain-

daveine (2009), Cho and White (2011) and Hentati-Kaffel and De Peretti

(2015) to test for randomness.

Classical runs tests typically reject the null hypothesis of randomness

when the number of runs in the sequence is too large or too small. In a

sequence of observations, a run is defined as a consecutive series of observa-

tions with the same sign. From a univariate sample X1, . . . , Xn, the num-

ber of runs can be computed from the quantity
∑n

t=2 Ut(θ)Ut−1(θ), where

Ut(θ) := sign(Xt−θ) is the sign of a centered version of Xt; θ plays the role

of a location parameter here. More precisely if X1, . . . , Xn are mutually

independent random variables with median θ, we have that

1√
n− 1

n∑
t=2

Ut(θ)Ut−1(θ) =
Nn(θ)− E[Nn(θ)]√

n− 1
, (1.1)

where Nn(θ) := 1+
∑n

t=2 I[Ut(θ) 6= Ut−1(θ)] is the number of runs associated

with X1, . . . , Xn. Based on a sample X1, . . . ,Xn of p-dimensional random

vectors, a multivariate extension of the notion of runs has been provided
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in Marden (1999) who proposed to replace the univariate signs in (1.1)

by spatial signs Uθθθ(X1), . . . ,Uθθθ(Xn), where Uθθθ(X) := X− θθθ/‖X− θθθ‖ to

consider a test statistic of the form

R
(n)
1m(θθθ) :=

1√
n− 1

n∑
t=2

U′θθθ(Xt)Uθθθ(Xt−1), (1.2)

that is a measure of closeness of the successive spatial signs of the obser-

vations. Elliptical extensions of the Marden (1999) runs have been studied

more recently by Paindaveine (2009), where signs of sphericized observa-

tions are used.

Directional data consist in observations that are directions/unit vectors.

In most cases, these observations therefore lie on the circumference of the

unit circle of R2 (one then speaks of circular data) or on the surface of the

unit hypersphere Sp−1 := {s ∈ Rp, s′s = 1} of Rp. Although we will focus in

this work on data on hyperspheres (such as the sunspots data analyzed be-

low), directional data also include data on the torus (product of two circles

or spheres) and the cylinder (product of Rp with a circle or sphere), but

also on other manifolds such as the Stiefel or the Grassmann manifolds.

Directional datasets are encountered in various fields, such as meteorol-

ogy (wind direction), biology (animal migration patterns) and many more.

Analyzing and interpreting directional data requires specialized techniques

that account for the curved nature of the observation space.
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Nonparametric methods recently designed specifically for directional

data include the independence tests of Garćıa-Portugués et al. (2024), opti-

mal transport-based methods in Hallin et al. (2024) and methods for regres-

sion in Garćıa-Portugués et al. (2016); Di Marzio et al. (2017); Meilán-Vila

et al. (2020); Alonso-Pena et al. (2021) and Alonso-Pena et al. (2024) to

cite only a few. For a general overview of the topic, we refer the reader to

Mardia and Jupp (1999), Rao and SenGupta (2001) and Ley and Verde-

bout (2017). To the best of our knowledge, runs for directional data have

never been considered before. In the present work, we define a concept

of directional runs. We show that tests based on our concept of direc-

tional runs enjoy some local and asymptotic optimality properties to test

for iidness (the observations X1, . . . ,Xt are i.i.d.) against alternatives under

which some serial dependence is introduced. More precisely, we show that

our runs provide tests that are locally and asymptotically optimal against

alternatives called Tangent Markov local alternatives.

The paper is organized as follows: in Section 2, we define precisely

our runs tests. In Section 3, we provide some asymptotic properties of tests

based on runs; in particular we show that they enjoy some local and asymp-

totic optimality properties against Tangent Markov alternatives we define.

Generalized versions of our tests are presented in Section 4. Some numeri-
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cal illustrations of the performances of our tests are proposed in Section 5.

Finally, we close the paper with some conclusions we can draw on sunspots

data for various solar cycles in Section 6. A supplementary material col-

lects the proofs of the various results and complementary informations on

the real data analysis of sunspot locations.

2. Directional runs tests

Assume that we have a sample X1, . . . ,Xn of directions taking values on

the unit hypersphere Sp−1 of Rp. For some θθθ ∈ Sp−1, the classical tangent-

normal decomposition of Xt around θθθ reads (below ‖v‖ is the Euclidean

norm of v)

Xt = (X′tθθθ)θθθ + (Ip − θθθθθθ′)Xt

= (X′tθθθ)θθθ + ‖(Ip − θθθθθθ′)Xt‖
(Ip − θθθθθθ′)Xt

‖(Ip − θθθθθθ′)Xt‖
, (2.1)

where letting ΓΓΓθθθ be a p× (p− 1) semi-orthogonal matrix such that ΓΓΓθθθΓΓΓ
′
θθθ =

Ip−θθθθθθ′ and ΓΓΓ′θθθΓΓΓθθθ = Ip−1, a notion of multivariate sign Sθθθ(Xt) for directions

can be naturally defined via

(Ip − θθθθθθ′)Xt

‖(Ip − θθθθθθ′)Xt‖
= ΓΓΓθθθ

ΓΓΓ′θθθXt

‖ΓΓΓ′θθθXt‖
=: ΓΓΓθθθSθθθ(Xt); (2.2)

see Figure 1 for an illustration. Note that ΓΓΓθθθSθθθ(Xt) is a random vector

taking values on a unit sphere which is orthogonal to θθθ. We tacitly assume
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throughout that the distribution of the Xt’s does not charge θθθ so that the

Sθθθ(Xt)’s are well-defined almost surely. In the circular case p = 2 with

Xt = (cos(Ut), sin(Ut)) for some random angle Ut, Sθθθ(Xt) is the (univari-

ate) sign of sin(Ut − θ), where θθθ = (cos(θ), sin(θ))′ for some angle θ. Tests

for location precisely based on this concept of signs have been proposed in

Schach (1969) for the circular case while tests based on the signs in (2.2)

for the (hyper)spherical case have been studied for instance in Paindaveine

and Verdebout (2016) and Garćıa-Portugués et al. (2020). Using such di-

rectional signs, it is very natural (following (1.2)) to consider a runs test

statistic of the form

R
(n)
1d (θθθ) :=

1√
n− 1

n∑
t=2

S′θθθ(Xt)Sθθθ(Xt−1). (2.3)

It follows from the discussion above that this concept of runs reduces to

classical univariate concept of runs for random angles in the (p = 2) circular

case (see (1.1)). Under the hypothesis of iidness of Sθθθ(X1), . . . ,Sθθθ(Xn)

with E[Sθθθ(X1)] = 0 (θθθ can be seen as a directional median), the central

limit theorem for 2-dependent stationary processes directly entails that the

standardized version s
−1/2
n R

(n)
1d (θθθ) of R

(n)
1d (θθθ) in (2.3), where

sn(θθθ) := tr

(n−1

n∑
t=1

Sθθθ(Xt)Sθθθ(Xt)
′

)2
 , (2.4)
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converges weakly to a standard Gaussian variable. As a result, nonpara-

metric tests can be obtained using s
−1/2
n (θθθ)R

(n)
1d (θθθ). For instance the test

φ
(n)
1 that rejects the null hypothesis of iidness at the asymptotic level α

when

s−1
n (θθθ)(R

(n)
1d (θθθ))2 > χ2

1,1−α,

where χ2
ν,β is the quantile of order β of the chi-square distribution with ν

degrees of freedom, is an asymptotically valid test for the problem. Obvi-

ously tests based on s
−1/2
n (θθθ)R

(n)
1d (θθθ) will be able to detect serial correlation

of order 1 only; generalized runs tests that can detect serial correlation of

larger order are discussed in Section 4. In the next Section, we study some

asymptotic properties of tests based on R
(n)
1d (θθθ).

3. Theoretical guarantees

In the present section, our objective is to show that tests based s
−1/2
n (θθθ)R

(n)
1d (θθθ)

enjoy nice asymptotic properties. We show below that this is particularly

the case in the vicinity of rotational symmetry. We say that Xt is rotation-

ally symmetric around θθθ if for any rotation O such that Oθθθ = θθθ, OXt has

the same distribution as Xt. If Xt is absolutely continuous with respect to
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θθθ

XtX′tθθθ

ΓΓΓθθθSθθθ(Xt)

Figure 1: The tangent-normal decomposition of Xt with respect to θθθ. The

3-dimensional unit vector ΓΓΓθθθSθθθ(Xt) belongs to the orthogonal complement

to span(θθθ) (Sθθθ(Xt) is bivariate).

the surface area measure on Sp−1, then its density is of the form

x 7→ fθθθ,g(x) = cp,g g(x′θθθ), (3.1)

where cp,g(> 0) is a normalizing constant and g : [−1, 1] −→ [0,∞) is

referred to as an angular function; below we write P
(n)
θθθ,g for the joint distri-

bution of the Xt’s. Note that the very classical von Mises distribution is ob-

tained by taking g(u) = exp(κu) for some positive concentration parameter

κ. We also have that if X1, . . . ,Xn are i.i.d. with a rotationally symmetric

distribution with parameters g and θθθ, vθθθ(X1) := X′1θθθ, . . . , vθθθ(Xn) := X′nθθθ

are i.i.d. with density

v → g̃p(v) := ωp−1cp,g(1− v2)(p−3)/2g(v), (3.2)
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where ωp−1 := 2π
p−1
2 /Γ(p−1

2
) is the surface area of Sp−2. They are moreover

independent of the signs Sθθθ(X1), . . . ,Sθθθ(Xn) defined above. Finally, the

signs Sθθθ(X1), . . . ,Sθθθ(Xn) are i.i.d. uniformly distributed over Sp−2 under

P
(n)
θθθ,g . The following result confirms the comment just below (2.4) under

rotational symmetry around θθθ.

Proposition 1. Under P
(n)
θθθ,g , s

−1/2
n (θθθ)R

(n)
1d (θθθ) = (p − 1)1/2R

(n)
1d (θθθ) + oP(1)

converges weakly to a standard normal random variable.

See the supplement for a proof. As we will see below, tests based on

s
−1/2
n (θθθ)R

(n)
1d (θθθ) enjoy some local and asymptotic optimality properties against

alternatives under which the signs Sθθθ(X1), . . . ,Sθθθ(Xn) are serially corre-

lated. We also show that the location parameter θθθ in s
−1/2
n (θθθ)R

(n)
1d (θθθ) can

be replaced by root-n consistent estimators without any asymptotic cost

under P
(n)
θθθ,g (and therefore under contiguous alternatives). Consider as in

(2.1) the tangent normal decomposition

Xt = vθθθ(Xt)θθθ +
√

1− v2
θθθ(Xt)ΓΓΓθθθSθθθ(Xt),

t = 1, . . . , n. As mentioned already, under rotational symmetry (with pa-

rameters g and θθθ), the vθθθ(Xt)’s are i.i.d. with density (3.2) over [−1, 1]

and are independent of the Sθθθ(Xt)’s. In the sequel we need to assume

some regularity conditions on angular functions g. More precisely, we will
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restrict to the collection Ga of positive monotone nondecreasing angular

functions g : [−1, 1] −→ (0,∞) that are absolutely continuous (with almost

everywhere derivative ġ) and for which

Jp(g) :=

∫ 1

−1

ϕ2
g(t)(1− t2)g̃p(t) dt (3.3)

is finite, where ϕg := ġ/g. These regularity assumptions ensure a proper

identifiability of the parameter θθθ together with the fact that the corre-

sponding sequence of models is local and asymptotic normal (LAN) (see for

instance Ley et al. (2013) or Paindaveine and Verdebout (2017)).

Assume now that the joint distribution of Sθθθ(X1), . . . ,Sθθθ(Xn) is not a

product of uniform distributions over Sp−2 but is given by a density of the

form

(s1, . . . , sn)→ cnλexp(λ(
n∑
t=2

s′tst−1)) (3.4)

with respect to the surface area measure over (Sp−2)n for some normalizing

constant cnλ obtained through

c−1
λ :=

∫ 1

−1

exp(λu)(1− u2)(p−3)/3 du.

Following Accardi et al. (1987), the marginal distributions of Sθθθ(X1), . . . ,Sθθθ(Xn)

with density (3.4) are uniform over Sp−2 but the conditional density fSt|St−1=st−1

of St|St−1 = st−1 is von Mises with location parameter st−1 and concentra-

tion parameter λ. In the von Mises model, λ plays the role of a concen-
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tration parameter that drives the probability mass in the vicinity of the

location parameter while below it will influence the dependence between

observations; recall that a von Mises distribution is obtained by taking

g(u) = exp(κu) as an angular function in (3.1) for some positive concentra-

tion κ . In the following result we obtain the shape of the joint density of

random vectors X1, . . . ,Xn when their signs have a joint density (3.4).

Theorem 1. Assume that vθθθ(X1), . . . , vθθθ(Xn) are (i) i.i.d. with density

v → ωp−1cp,g(1− v2)(p−3)/2g(v)

with respect to the Lebesgue measure on [−1, 1] and (ii) independent of

Sθθθ(X1), . . . ,Sθθθ(Xn) jointly distributed with density (3.4). Then vec(X1, . . . ,Xn)

has density

vec(x1, . . . ,xn) 7→ cnp,gc
n
λexp(λ(

n∑
t=2

S′θθθ(xt)Sθθθ(xt−1)))
n∏
t=1

g(vθθθ(xt)) (3.5)

with respect to the surface area measure over Sp−1.

See the supplement for a proof. Note that when λ = 0, the joint distribution

of vec(X1, . . . ,Xn) is simply P
(n)
θθθ,g defined below (3.2). In the sequel we write

(X1, . . . ,Xn) ∼ P
(n)
θθθ,λ,g when vec(X1, . . . ,Xn) has density (3.5) and call the

corresponding distribution the Tangent Markov distribution with location
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θθθ, angular function g and dependence parameter λ ≥ 0. Obviously P
(n)
θθθ,0,g

and P
(n)
θθθ,g coincide and both notations are used in the rest of the paper. We

now show that the runs tests defined in Section 2 enjoy some local and

asymptotic optimality properties for testing H0 : λ = 0 against H1 : λ > 0.

Consider a local perturbation (n−1/2`n, θθθ + n−1/2τττn) of a null value of the

parameter (0, θθθ), where the sequence τττn in Rp converges to τττ ∈ Rp and `n is

a positive real bounded sequence. Of course, it is assumed that θθθ+n−1/2τττn

belongs to Sp−1 for any n, which imposes that

1 = (θθθ + n−1/2τττn)′(θθθ + n−1/2τττn) = 1 + 2n−1/2θθθ′τττn + n−1‖τττn‖2,

or equivalently that θθθ′τττn = −1
2
n−1/2‖τττn‖2. In the next result, we study the

local log-likelihood ratio

Λ(n) = log
dP

(n)

θθθ+n−1/2τττn,n−1/2`n,g

dP
(n)
θθθ,0,g

of a perturbed distribution P
(n)

θθθ+n−1/2τττn,n−1/2`n,g
with respect to a distribution

that belongs to the null hypothesis P
(n)
θθθ,0,g. We have the following result.

Theorem 2. Letting vn := (`n, τττ
′
n)′ as described above, we have that

Λ(n) = v′n∆∆∆
(n) − 1

2
v′nΓΓΓvn + oP(1)

as n→∞ under P
(n)
θθθ,0,g, where letting

∆∆∆
(n)
θθθ := n−1/2

n∑
t=1

ϕg(vθθθ(Xt))(1− v2
θθθ(Xt))

1/2Sθθθ(Xt),

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0106



and

∆
(n)
λ := n−1/2

n∑
t=2

S′θθθ(Xt)Sθθθ(Xt−1),

the central sequence ∆∆∆(n) := (∆
(n)
λ , (∆∆∆

(n)
θθθ )′)′ converges weakly (still under

P
(n)
θθθ,0,g) to a Gaussian vector with mean zero and covariance matrix (see

(3.3))

ΓΓΓ := diag

(
1

(p− 1)
,Jp(g)Ip−1

)
.

See the supplement for a proof. The Local Asymptotic Normality

(LAN) theorem above is very important. Indeed, we readily see that the

dependence (λ-)part of central sequence ∆
(n)
λ is proportional to R

(n)
1d (θθθ).

As described below, this has important consequences in terms of local and

asymptotic optimality for tests based on R
(n)
1d (θθθ). It directly follows from

Theorem 2 above (and in particular from the block-diagonal structure of

the Fisher information matrix of the LAN property) that

(i) R
(n)
1d (θ̂θθ) − R(n)

1d (θθθ) = oP(1) as n → ∞ provided that the estimator θ̂θθ

(with values in Sp−1) is part of a sequence that is: (i)root-n consistent

under any g ∈ G ′ for some G ′ ⊂ Ga, i.e.,
√
n(θ̂θθ − θθθ) = OP(1) under⋃

g∈G′
{

P
(n)
θθθ,g

}
; (ii) locally and asymptotically discrete, i.e., for all θθθ and

for all C > 0, there exists a positive integer M = M(C) such that

the number of possible values of θ̂θθ in {t ∈ Sp−1 :
√
n ‖t− θθθ‖ ≤ C} is

bounded by M , uniformly as n→∞.
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(ii) for testing H0 : λ = 0 against H1 : λ > 0, the locally and asymp-

totically most powerful test φ
(n)
opt rejects the null hypothesis at the

asymptotic level α when

(p− 1)1/2∆
(n)
λ > z1−α,

where zβ denotes the quantile of order β of the standard Gaussian

distribution.

Point (i) above directly follows from the block-diagonal structure of the

Fisher information matrix in Theorem 2. Indeed, the latter block-diagonal

structure implies that the non-specification of the location parameter does

not have any asymptotic cost when inference on λ is considered. Since, we

also have that sn(θ̂θθ) − sn(θθθ) is oP (1) under P
(n)
θθθ,0,g as n → ∞, the Slutzky

Lemma and Proposition 1 directly entail that

s−1/2
n (θ̂θθ)R

(n)
1d (θ̂θθ) = s−1/2

n (θθθ)R
(n)
1d (θθθ) +oP(1) = (p−1)1/2R

(n)
1d (θθθ) +oP(1) (3.6)

as n→∞ under P
(n)
θθθ,0,g. Note that the local discreteness property is a purely

technical requirement in point (i) with little practical implications since for

fixed n; any estimate can be considered part of a locally and asymptoti-

cally discrete sequence of estimators. Point (ii) above together with (3.6)

entail that the locally and asymptotically optimal test for testingH0 : λ = 0

againstH1 : λ > 0 is φ
(n)
opt and not φ

(n)
1 . The testing problem considered here
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is one-sided so that this is not really surprising. The test φ
(n)
1 is actually the

“two-sided version” of φ
(n)
opt. The Tangent Markov model defined above is

such that Sθθθ(Xt)|Sθθθ(Xt−1) = st−1 is von Mises with location parameter st−1

and concentration λ and therefore conditionally on Sθθθ(Xt−1), the unit vector

St belongs to the hemisphere {u ∈ Sp−2,u′Sθθθ(Xt−1) ≥ 0} with more prob-

ability than to the complementary hemisphere {u ∈ Sp−2,u′Sθθθ(Xt−1) < 0}

and can be seen as positively correlated with Sθθθ(Xt−1) in that sense. The

test φ
(n)
1 (two-sided test) will clearly perform better than φ

(n)
opt (one-sided

test) under alternatives allowing for both positive and negative dependence.

A Tangent Markov model with λ ∈ R rather than λ ∈ R+ is also perfectly

valid and would allow for both positive and negative dependence in the sense

described just above. In such a model, it is easy to show that φ
(n)
1 is locally

and asymptotically maximin for testing H0 : λ = 0 against H1 : λ 6= 0.

Note that a test φ∗ is called maximin in the class Cα of level-α tests for

some null hypothesis H0 against the alternative H1 if (i) φ∗ has level α and

(ii) the power of φ∗ is such that

inf
P∈H1

EP[φ∗] ≥ sup
φ∈Cα

inf
P∈H1

EP[φ].

For a definition of locally and asymptotically maximin tests, see for instance

Chapter 5 of Ley and Verdebout (2017).

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0106



4. Generalized directional runs tests

In the present section, we discuss extensions of the tests proposed in the

previous sections. Following Dufour et al. (1998), a generalized version of

the test φ
(n)
1 can be obtained by considering generalized runs of the form

R
(n)
hd (θθθ) :=

1√
n− h

n∑
t=h+1

Sθθθ(Xt)
′Sθθθ(Xt−h).

Such generalized runs are able to detect serial dependence of order h. Based

on R
(n)
hd (θθθ) above, a test that can detect serial dependence until lag H say

can be based on the test statistic

s−1
n (θθθ)

H∑
h=1

(R
(n)
hd (θθθ))2.

The following result summarizes some of its asymptotic properties.

Proposition 2. The test statistic s−1
n (θθθ)

∑H
h=1(R

(n)
hd (θθθ))2 converges weakly

to

(i) a chi-square random variable with H degrees of freedom under P
(n)
θθθ,0,g

and

(ii) a chi-square random variable with H degrees of freedom and non-

centrality parameter (p−1)−1`2 under P
θθθ,n−1/2`n,g

(n), where ` := limn→∞`
(n).
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See the supplement for a proof. Following Proposition 2 above, a natural

generalized runs test φ
(n)
H rejects the null hypothesis at the nominal level α

when

s−1
n (θθθ)

H∑
h=1

(R
(n)
hd (θθθ))2 > χ2

H,1−α.

Note that as in s
−1/2
n (θθθ)R

(n)
1d (θθθ), replacing θθθ in s

−1/2
n (θθθ)R

(n)
hd (θθθ) by an estima-

tor θ̂θθ satisfying the same assumptions as the ones described below Theorem

2 has no asymptotic cost under P
(n)
θθθ,0,g as well as under contiguous alterna-

tives. In the next Section, we compare the various tests proposed in this

work through Monte Carlo simulations.

5. Monte Carlo study

In this section, we investigate the finite-sample performances of the pro-

posed tests through two Monte Carlo exercises. In the first exercise, we

generated N = 2,500 mutually independent random samples of the form

Xi;`, i = 1, . . . , n, ` = 0, 0.5, 1, . . . , 5,

with values in S2. The Xi;`’s follow a Tangent Markov model (defined in

(3.5)) with location θθθ := (1, 0, 0)′, angular function t 7→ g1(t) := exp(5t),

and dependence parameter λ` := `/
√
n. The value ` = 0 corresponds to the

null hypothesis of iidness, whereas ` = 0.5, . . . , 5 provide increasingly severe
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alternatives with serial dependence. For each replication, we performed, at

asymptotic level α = .05, the tests φ
(n)
1 , φ

(n)
2 , φ

(n)
3 and φ

(n)
opt (respectively

based on R
(n)
1d (θθθ), R

(n)
2d (θθθ), R

(n)
3d (θθθ) and (p− 1)1/2∆

(n)
λ ) computed with (i)

the correctly specified θθθ and (ii) the classical spherical mean estimator (the

arithmetic mean of the observations divided by it’s norm) of θθθ. In Figure

2, we provide the rejection frequencies of the various tests for the different

values of the sample size n ∈ {250, 500, 750, 1000}. Inspection of Figure

2 reveals that, as expected, the larger `, the larger the empirical power.

We also observe that as n increases, the empirical rejection frequencies of

the tests with a fixed θθθ or with an estimated version of θθθ share the same

values. This could also have been expected since the estimation of θθθ has no

asymptotic cost here as discussed below Theorem 2. In Figure 3, we provide

the same rejection frequencies of the tests φ
(n)
1 , φ

(n)
2 , φ

(n)
3 and φ

(n)
opt computed

with the correctly specified θθθ together with the theoretical asymptotic pow-

ers of the tests obtained with Theorem 2. Inspection of Figure 3 clearly

reveals that the empirical rejection frequencies almost coincide with the

theoretical asymptotic power curves; our asymptotic results are therefore

corroborated.
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In a second simulation exercise, we generated N = 2500 mutually ran-

dom samples of random vectors

Xi;`, i = 1, . . . , n, ` = 0, 0.5, 1, . . . , 5,

with values in S2 where X1;` is uniformly distributed over S2 and for

i = 2, . . . , n, Xi;`|Xi−1;` ∼ vMF(Xi−1;`, `/
√
n) where vMF(µµµ, κ) denotes

the von Mises Fisher distribution with location parameter µµµ and concen-

tration parameter κ. At each replication, we performed at the nominal

level α = .05 the same tests as in the first simulation exercise; that is we

performed two versions of φ
(n)
1 , φ

(n)
2 , φ

(n)
3 and φ

(n)
opt (one with θθθ = (1, 0, 0)

and one with an estimated version of θθθ) at the nominal level α = .05. In

Figure 4, we provide the rejection frequencies of the various tests for the

different values of the sample size n ∈ {250, 500, 750, 1000}. Inspection of

Figure 4 reveals that our runs tests are clearly able to detect such type of

serially correlated observations. Using an estimated version of θθθ or a fixed

θθθ does not result in a significant gap between the empirical powers.

6. Real data illustration

Several phenomena can be observed on top of the sun underlying structure.

Sunspots are among the most important aspects of the global solar activity

whose effects, among others, may affect Earth’s long-term climate (see,
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Figure 2: Empirical rejection frequencies of several directional runs tests:

φ
(n)
1 , φ

(n)
2 , φ

(n)
3 and φ

(n)
opt. In dotted lines, the curves are the rejection fre-

quencies of the tests performed with θθθ = (1, 0, 0) while the curves in dashed

lines coincide with the tests performed with an estimated version of θθθ. All

the tests have been performed at the nominal level α = .05.

e.g., Haigh, 2007). Sunspots are dark regions on the photosphere (region

where visible photons are emitted) associated with strong magnetic field

structures. The number of sunspots visible on the sun is not constant;

it varies in each solar cycle (over about 11 years). During a solar cycle,
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Figure 3: Dotted lines are the empirical rejection frequencies of the direc-

tional runs tests φ
(n)
1 , φ

(n)
2 , φ

(n)
3 and φ

(n)
opt performed with θθθ = (1, 0, 0). All

the tests have been performed at the nominal level α = .05. Plain lines are

asymptotic theoretical powers obtained from Theorem 2.

sunspots are frequently found in groups and tend to appear in bands on

the sun situated just in the north and the south of the equator. Further

details on sunspots and their origin can be consulted in Babcock (1961)

and Solanki et al. (2006). The dataset displayed in Figure 5 is based on

the Debrecen Photoheliographic Data (DPD) sunspot catalogue (Baranyi
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Figure 4: Empirical rejection frequencies of several directional runs tests:

φ
(n)
1 , φ

(n)
2 , φ

(n)
3 and φ

(n)
opt. In dotted lines, the curves are the rejection fre-

quencies of the tests performed with θθθ = (1, 0, 0) while the curves in dashed

lines coincide with the tests performed with an estimated version of θθθ. All

the tests have been performed at the nominal level α = .05.

et al., 2016; Győri et al., 2016). It consists in n = 5,373 central positions of

groups of sunspots during the 23rd solar cycle, understood as the first-ever

observations of each group.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0106



Figure 5: Emerging locations of sunspot groups during the 23rd solar cy-

cle. The locations are colored with a red-yellow gradient according to the

relative position of the sunspot appearance date within the solar cycle in

order to visualize the Spörer’s law.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0106



Figure 5 strongly suggests that the distribution of the (p =)3-dimensional

random positions X1, . . . ,Xn of sunspots is symmetric around the north

pole θθθ = (0, 0, 1)′ in the sense that OXt has the same distribution as Xt,

t = 1, . . . , n for any rotation O such that Oθθθ = θθθ. An explanation for this

phenomenon is given by the Babcock (1961), see also Garćıa-Portugués

et al. (2020). It also strongly suggests that the sequence of (the absolute

values) of the latitudes |X′1θθθ|, . . . , |X′nθθθ| contains some serial correlation.

This is known as the Spörer’s law which is illustrated by the butterfly dia-

gram (available on https://solarscience.msfc.nasa.gov/SunspotCycle.shtml)

in Figure 6. The Spörer’s law mentions a drift of the average latitude of

sunspots towards the Sun’s equator during a solar cycle.

While serial correlation in the latitudes is well-known, little is known

about the potential serial correlation that may be present within the longi-

tudes ΓΓΓθθθSθθθ(X1), . . . ,ΓΓΓθθθSθθθ(Xn) of the sunspots locations. The objective here

is therefore to learn about a potential presence of serial correlation within

sunspots longitudes ΓΓΓθθθSθθθ(X1), . . . ,ΓΓΓθθθSθθθ(Xn) for various solar cycles: cycles

11 to 24. In Figure 5 we provide a plot of the dataset for the cycle 23 while

in Figure 10 of the supplementary material we provide plots of the datasets

for the cycles 16, 17, . . . , 24. The 11th solar cycle started in 1867 while the

24th solar cycle ended in 2019. We are currently in the 25th solar cycle.
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DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Figure 6: Top: butterfly diagram of the latitudes of sunspots (of various

sizes) through time (for several solar cycles). Bottom: the average daily

sunspot area through time.

As mentioned above, Figure 5 strongly suggests that the distribution of

sunspots central positions is rotationally symmetric distribution around the

north pole θθθ = (0, 0, 1)′. Since sunspots are usually clustered in groups that

evolve with time, serial correlation both in the latitude and in the longitude

may definitely be present in the data. For each solar cycle, we performed

various runs tests. Letting Xi1, . . . ,Xini stands for the observed locations

of cycle i (i = 11, . . . , 24), we performed

(i) classical Wald and Wolfowitz (1940) univariate runs tests of random-

ness on the absolute values |X′i1θθθ|, . . . , |X′iniθθθ| of the latitudes for each

solar cycle;
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(ii) classical Wald and Wolfowitz (1940) univariate runs tests of random-

ness on the latitudes X′i1θθθ, . . . ,X
′
ini
θθθ for each solar cycle and;

(iii) our runs tests that are able to detect a potential serial correlation on

the longitudes for each solar cycle.

In Figures 7, 8 and 9, we provide boxplots of (generalized) runs tests

p-values for various choices of H ∈ {1, . . . , 4} (number of lags in the runs

statistic) and for each solar cycle. Each boxplot is obtained as follows: we

built 200 different subsamples obtained by randomly keeping 75% of the

original observations in each sample (for each solar cycle). Note that the

conclusions drawn below are not strongly influenced by the percentage of

the original observations we decide to keep in the subsamples. Boxplots for

other choices are available on request. Then, on each such subsample, we

perfomed the three runs tests described above; for each runs test we there-

fore obtained boxplots computed from 200 p-values. Inspection of Figures

7, 8 and 9 clearly reveals that there is frequently some serial correlation

in the absolute values of the latitudes (as expected thanks to the Spörer’s

law) and in the longitudes. We cannot highlight the presence of autocorre-

lation in the absolute values of the latitudes in Cycle 11. We are not able

to explain why cycle 11 is different but we nevertheless mention here that

for cycle 11 we only have 251 measures of sunspots location (which is quite
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less than for the other cycles). The signs of the latitudes seem more often

random. The null hypothesis of iidness is often rejected in solar cylces 14,

15, 20 and 24 only. Therefore the fact that the location of a sunspot belongs

to the northern or southern hemisphere seems to be often random.

Figure 7: Boxplots of the various runs tests p-values for solar cycles 11 to

15.

To conclude, we provide in Figures 11 and 12 of the supplementary

material the partial autocorrelation functions of (i) the absolute values

|X′i1θθθ|, . . . , |X′iniθθθ| of the latitudes for various solar cycles; (ii) the latitudes
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Figure 8: Boxplots of the various runs tests p-values for solar cycles 16 to

20.
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Figure 9: Boxplots of the various runs tests p-values for solar cycles 21 to

24.
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X′i1θθθ, . . . ,X
′
ini
θθθ for various solar cycles and (iii) the angle associated with

the longitudes for various solar cycles (each longitude or meridian is a bivari-

ate unit vector and is therefore characterized by an angle). Figures 11 and

12 of the supplementary material essentially confirm the results obtained

with the runs tests.

7. Perspectives for future research

In the present paper, we introduce runs tests for directional data. We show

that our first-order runs tests φ
(n)
opt (or its two-sided versions) enjoy local

and asymptotic optimality properties to test for iidness against alternatives

under which some serial dependence is introduced. Monte-Carlo simulations

strongly support our results while we show through the use of our tests that

the longitudes of sunspots emerging locations are correlated. Optimality

properties under local alternatives are obtained for first-order runs tests

only. This is partly due to the fact that the Tangent Markov model involves

“first order dependencies” only. Higher-order runs tests involving larger

degrees of freedom are therefore less efficient against such Tangent Markov

alternatives. Models with “higher-order dependencies” can be obtained for

instance with observations such that

Sθθθ(Xt)|Sθθθ(Xt−1) = st−1, . . . ,Sθθθ(Xt−h) = st−h
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is a mixture of h von Mises distributions with location parameters st−1, . . . , st−h

respectively. The study of the corresponding experiments together with

the study of the asymptotic behavior of high-order runs tests or full-rank

matrix-valued runs tests as in Paindaveine (2009) against such alternatives

are left for future research.

Supplementary Material

The online supplementary material contains all the technical proofs and

complements to the real data illustration.
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Département de Mathématique and ECARES
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