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Abstract: With the rapidly increasing availability of aggregate data in the public domain,

there has been a growing interest in synthesizing information from individual-level data and

aggregate data. This article studies the maximum full likelihood estimation method to in-

tegrate the auxiliary information in the estimation of the accelerated failure time model.

To overcome the computational challenges in maximizing full likelihood, we propose a novel

one-step estimator, where the maximum conditional likelihood estimator without combining

any auxiliary information is chosen as an initial estimator. We establish the consistency and

asymptotic normality of the proposed one-step estimator and show that it is more efficient

than the initial estimator. The asymptotic variance of the proposed one-step estimator has

a closed form and is easily estimated by the plug-in rule. Simulation studies show that the

proposed one-step estimator yields an efficiency gain over existing approaches. The proposed

methodology is illustrated with an analysis of a chemotherapy study for Stage III colon

cancer.

Key words and phrases: Accelerated failure time model; Empirical likelihood; Information

synthesis
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1. Introduction

The accelerated failure time (AFT) model is an important and attractive alternative

to the Cox proportional hazards model (Cox, 1972) in regression analysis of censored

data. It directly relates the log failure time to covariates and has a straightforward

physical interpretation. Sometimes it can provide a more accurate or more concise

summarization of data than the Cox model (Zeng and Lin, 2007). There has been a

vast literature on the semiparametric analysis of the accelerated failure time model.

Well-known methods include rank-based approaches (Prentice, 1978; Tsiatis, 1990;

Wei et al., 1990; Ying, 1993; Yang, 1997; Jin et al., 2003; Zhou, 2005), least squared

approaches (Buckley and James, 1979; Ritov, 1990; Lai and Ying, 1991; Jin et al.,

2006), and semiparametric efficient approaches (Zeng and Lin, 2007; Ding and Nan,

2011; Lin and Chen, 2013).

In medical research and precision medicine, comprehensive individual-level data

are recognized as the best source of evidence to produce desirable estimates of the

effect of a medicine or therapy. However, concerns such as privacy restrictions and

high costs usually make it challenging to collect as much individual-level data as

possible in practice. With the rapidly increasing availability of aggregate data in the

public domain, there is an urgent need to develop statistical methods with improved

efficiency by incorporating information from both individual-level and publicly avail-

able aggregate data (Huang et al., 2016; Qin et al., 2022). The problem of synthesiz-

ing censored survival data with auxiliary information has been studied under various

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0105



semiparametric models, including the Cox proportional hazards model (Huang et al.,

2016; Huang and Qin, 2020; Sheng et al., 2021; Gao and Chan, 2023; Su et al., 2023;

Shang, 2022), the additive hazard model (He et al., 2019; Ding et al., 2023; Shang

and Wu, 2023), the semiparametric transformation model (Cheng et al., 2023), the

additive–multiplicative hazard model(Shang and Wang, 2017), and the nonmixture

cure model (Han et al., 2022). For the accelerated failure time model, Sheng et al.

(2020) proposed an improved version of the generalized method of moments (Hansen,

1982, GMM) by combining auxiliary information with conventional weighted log-rank

estimating equations. In general, rank-based approaches may not be semiparametric

efficient, and the involved nonsmooth functions pose severe numerical challenges.

In this paper, we propose a maximum full likelihood estimation method to in-

tegrate the auxiliary information in the estimation of the accelerated failure time

model. The full likelihood is composed of the conditional likelihood for the survival

time given the covariate and the marginal likelihood of the covariate. The external

auxiliary information, which is allowed to come from a population different from the

target population, is incorporated into the marginal likelihood by using the classi-

cal empirical likelihood. Without auxiliary information, the proposed maximum full

likelihood estimator reduces to the maximum conditional likelihood estimator. To

bypass the calculation problem of the maximum full likelihood estimator, we con-

struct a novel one-step estimator after investigating the first-order approximations of

the aforementioned estimators with and without incorporating auxiliary information.
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The one-step estimator is easy to calculate and has the same limiting distribution as

the maximum full likelihood estimator.

This paper makes three contributions to the accelerated failure time model.

First, without incorporating auxiliary information, we introduce a completely non-

parametric conditional likelihood estimation method, together with an expectation-

maximization (EM) algorithm. A smoothing technique is adopted to overcome the

computational challenges posed by the discontinuity of step functions. The maximum

conditional likelihood estimators for the regression parameter and the distribution

of the error term are shown to be asymptotically joint normal. And the former

estimator achieves the semiparametric efficiency lower bound, which implies that

our method is no less efficient than the aforementioned rank-based approaches and

least squared approaches. Compared with the semiparametric efficient approaches of

Zeng and Lin (2007), Ding and Nan (2011) and Lin and Chen (2013), our method

has less computation burden, is less sensitive to tuning parameters, and automati-

cally produces an estimator for the error-term distribution. Second, when auxiliary

information is available, we propose a full likelihood estimation approach to combine

individual-level data with external auxiliary aggregate data, which are transformed

into a system of estimating equations. The maximum full likelihood estimator is

shown to be asymptotically normal and more efficient than the maximum condition-

al likelihood estimator, although its numerical calculation is challenging. Third, we

propose a novel one-step estimator that is easy to implement and its asymptotic
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variance has a closed form and can be estimated by the commonly-used plug-in rule.

There are notable differences between our method and existing approaches to

combining survival data with auxiliary information. As a pioneer work in this area,

Huang et al. (2016) transformed the likelihood and auxiliary survival information

that involve an infinite-dimensional parameter into a system of estimating equations

that involves a finite-dimensional parameter, and then used empirical likelihood to

incorporate auxiliary information. Their techniques were later extended to other

models; see, for example, He et al. (2019), Huang and Qin (2020), Sheng et al. (2020,

2021), Ding et al. (2023), and Su et al. (2023), among others. Unlike them, we handle

the finite-dimensional parameter and a nuisance nonparametric function simultane-

ously. Han et al. (2022) proposed a sieve method to estimate the infinite-dimensional

parameter, while we develop an empirical likelihood approach to estimate the non-

parametric error distribution function. Although Gao and Chan (2023) considered a

general semiparametric model framework, their methodology and one-step estimator

are not directly applicable to the AFT model. This is because the target parame-

ter and the nuisance function under the AFT model are bundled in the likelihood

function and the efficient influence function involves the derivative of the nuisance

function, which has to be estimated separately. In contrast, we study the semipara-

metric estimation theory for the bundled parameters and our proposed EM algorithm

can easily estimate the derivative of the nuisance function. Gao and Chan (2023)

required their criterion function to be smooth enough, however the profile empiri-
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cal likelihood function under the AFT model involves indicator functions, which are

not smooth. Also our reparameterization technique and initial parameter estimation

are different from Gao and Chan (2023). The bundle property not only poses se-

rious numerical and theoretical challenges, but further differentiates our estimation

framework from the existing ones.

2. Efficient estimation with auxiliary information

2.1 Model setup and full likelihood function

Let T , C and Z denote the failure time, censoring time and a p-dimensional vector

of covariates, respectively. We assume the following accelerated failure time model

log(T ) = Z>β + ε, (2.1)

where β is a p-dimensional vector of unknown parameters, and ε is a random er-

ror independent of Z. The random error ε has distribution function F (·), density

function f(·) and hazard function λ(t) = f(t)/{1 − F (t)}, which are all left com-

pletely unspecified. In the presence of right-censoring, we observe X = min(T,C)

and δ = I(T ≤ C), where I(·) is the indicator function. For a random sample of size

n, the observed individual-level data are summarized as (Xi, δi, Zi), i = 1, . . . , n.

We assume that T and C are independent given the covariate Z, and that the

distribution of C does not depend functionally on β, that is, the censoring is non-
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2.1 Model setup and full likelihood function

informative. Given β, let ei(β) = log(Xi)− Z>
i β. The full likelihood function based

on the observed individual-level data is proportional to

n∏
i=1

{
f(ei(β))

}δi{1− F (ei(β))
}1−δi{dFz(Zi)}, (2.2)

where Fz(·) is the distribution function of Z.

In addition to the individual-level data, suppose that certain aggregate infor-

mation from external resources is available. For generality, we allow the external

information to come from a population that is slightly different from the target pop-

ulation. Specifically, we assume that the external data follow an accelerated failure

time model with the same regression parameter β but the error term has a slightly

different hazard function

λ̄(t) = ρλ(t), (2.3)

where ρ > 0 is an unknown scale parameter. When ρ = 1, it reduces to the homo-

geneous case where the individual-level data and aggregate information are from the

same population.

Suppose that the aggregate external information is summarized by estimating

equations

E{Ψ(β, ρ, F ;Z)} = 0, (2.4)

where Ψ(β, ρ, F ;Z) = (Ψ1(β, ρ, F ;Z), . . . ,ΨJ(β, ρ, F ;Z))> consists of J estimating

functions. As one example, we assume the auxiliary subgroup survival probabilities
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2.2 Empirical likelihood approach for estimation

are available (Huang et al., 2016; Sheng et al., 2020). Let Ωj be the jth subgroup, and

ζj be the corresponding t∗j -year survival probability reported from external sources,

j = 1, . . . , J . Under model (2.3), for the target population, pr(T > t∗j | Z ∈ Ωj) =

ζ
1/ρ
j . To make use of such information, we can take Ψj(β, ρ, F ;Z) = I(Z ∈ Ωj){1−

F (log t∗j − Z>β)− ζ1/ρj }, where Ωj, t
∗
j and ζj are all known.

2.2 Empirical likelihood approach for estimation

The log-likelihood function, or the logarithm of (2.2), can be expressed as

`n(β, F ) +
n∑
i=1

log{dFz(Zi)}, (2.5)

where

`n(β, F ) =
n∑
i=1

[
δi log{f(ei(β))}+ (1− δi) log{1− F (ei(β))}

]
(2.6)

is the log conditional likelihood and
∑n

i=1 log{dFz(Zi)} is the log marginal likelihood.

In the principle of the empirical likelihood method (Owen, 1990; Qin and Lawless,

1994), we model Fz by a step function Fz(z) =
∑n

i=1 qiI(Zi ≤ z), where Zi ≤ z holds

elementwise and qi’s should satisfy

qi ≥ 0,
n∑
i=1

qi = 1,
n∑
i=1

qiΨ(β, ρ, F ;Zi) = 0. (2.7)

The last constraint follows from equation (2.4).

By the Lagrange multiplier method, the marginal likelihood
∑n

i=1 log{dFz (Zi)} =
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2.2 Empirical likelihood approach for estimation∑n
i=1 log(qi) subject to (2.7) is maximized at qi = n−1{1+ν>Ψ(β, ρ, F ; Zi)}−1, where

ν is the solution to

1

n

n∑
i=1

Ψ(β, ρ, F ;Zi)

1 + ν>Ψ(β, ρ, F ;Zi)
= 0. (2.8)

Accordingly, after profiling Fz out in (2.5), we have the profile empirical log-likelihood

(up to a constant),

Ln(β, ρ, ν, F ) = `n(β, F )−
n∑
i=1

log{1 + ν>Ψ(β, ρ, F ;Zi)}, (2.9)

where ν satisfies equation (2.8). It is natural to estimate (β, ρ, F ) by the maximum

full likelihood estimator (β̂au, ρ̂au, F̂au), which is the maximizer of (2.9) with respect

to (β, ρ, F ). However, as pointed out by Zeng and Lin (2007), after profiling out the

nonparametric function F in (2.9), the objective function cannot achieve its maxi-

mum for finite β. In other words, the calculation of β̂au is intractable, which makes

it impractically useful. To bypass this dilemma, in the next subsection we propose a

one-step estimator that is easy to calculate and has the same limiting distribution as

β̂au. We start with an initial estimator, which is the maximum likelihood estimator

without auxiliary information, and update it based on the first-order approxima-

tion of (β̂au, ρ̂au, F̂au). Any existing semiparametric efficient estimator without using

auxiliary information (e.g. Zeng and Lin, 2007; Ding and Nan, 2011; Lin and Chen,

2013) could serve as an initial estimator in the proposed one-step procedure. Howev-

er, they are more or less inconvenient in computation: they may either be unstable

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0105



2.2 Empirical likelihood approach for estimation

(Zeng and Lin, 2007), require selecting the number of splines and knots (Ding and

Nan, 2011) or already use a one-step procedure (Lin and Chen, 2013). We suggest a

computationally simple estimator that bears the same asymptotic efficiency.

In the absence of auxiliary information, the covariates Zi’s have no likelihood

contribution on F and β. The log-likelihood function of (β, F ) is `n(β, F ) in (2.6).

We propose a two-step profile procedure to maximize `n(β, F ). As demonstrated by

Vardi (1989), for fixed β, to maximize `n(β, F ) with respect to F , it is sufficient to

consider discrete distribution functions with support points ej(β)’s, namely, F (x |

β) =
∑n

j=1 pj(β)I(ej(β) ≤ x), where

pj(β) ≥ 0, j = 1, . . . , n,
n∑
j=1

pj(β) = 1. (2.10)

The complete-data log-likelihood is
∑n

j=1 log{dF (log(Tj)−Z>
j β | β)} =

∑n
j=1[δj log{

pj(β)}+(1−δj)
∑n

i=1 I{log(Tj)−Z>
j β = ei(β)} log{pi(β)}]. We show in the Appendix

that, in the E-step of the (u+1)th cycle, the conditional expectation of the complete-

data log-likelihood given all the observed data is

n∑
j=1

w
(u)
j (β) log(pj(β)), (2.11)

where

w
(u)
j (β) = δj +

n∑
i=1

{
(1− δi)

p
(u)
j (β)I(ej(β) > ei(β))∑n

v=1 p
(u)
v (β)I(ev(β) > ei(β))

}
(2.12)
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2.2 Empirical likelihood approach for estimation

and p
(u)
i (β)’s are the values of pi(β)’s in the uth cycle. The M-step is to maximize

(2.11) under the constraints in (2.10). The maximizer is

p
(u+1)
j (β) =

1

n
w

(u)
j (β), j = 1, . . . , n. (2.13)

Denote the final estimate of pj(β) by p̆j(β). Given β, the nonparametric maximum

likelihood estimator (MLE) of F is

F̆ (x | β) =
n∑
j=1

p̆j(β)I(ej(β) ≤ x). (2.14)

Having F̆ (x | β), we may obtain the MLE of β by maximizing `n(β, F̆ (x | β))

with respect to β. This is challenging as the objective function is nonsmooth. As

pointed out by Zeng and Lin (2007), because the objective function `n(β, F̆ (· | β))

depends only on the ranks of ei(β) and these ranks are stable as β becomes extreme,

it can not achieve its maximum for finite β. To bypass this dilemma, we propose to

replace F̆ (x | β) in `n(β, F̆ (x | β)) by a smoothed version of it (Horowitz, 1992), i.e.

F̃ (x | β) =
n∑
j=1

p̃j(β)K((x− ej(β))/σ), (2.15)

where p̃j(β) is the p̆j(β) with the indicator function I(s < t) in (2.12) replaced by

K((t− s)/σ). Here K(·) is a smooth distribution function, e.g. the standard normal

distribution function, and σ > 0 is a smoothing parameter. Following Zeng and Lin
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2.2 Empirical likelihood approach for estimation

Algorithm 1 Calculation of the estimator (β̃, F̃ )

Input: p
(0)
j (β) = 1/n for any given β, j = 1, . . . , n.

Step 1 Given β, do the following.
Step 1(a) Set p

(0)
j (β) = 1/n, j = 1, . . . , n and calculate w

(0)
j (β) through

(2.12).

Step 1(b) For u ≥ 0, calculate w
(u+1)
j (β) and p

(u+1)
j (β) through (2.12) and

(2.13), respectively. Repeat this process until p
(u+1)
j (β) converges, and write the

final quantity as p̆j(β).
Step 1(c) Calculate F̃ (x | β) in (2.15) and return F̃ (x | β).

Step 2 Calculate β̃ = argmaxβ`n(β, F̃ (· | β)) and F̃ (·) = F̃ (· | β̃).

Output: Return (β̃, F̃ ).

(2007), we recommend the use of σ = csn−1/3, where c > 0 is a constant and s is the

sample standard deviation of log(X)−Z>β (with β replaced by an initial parameter

value) among all subjects. Let β̃ = arg maxβ `n(β, F̃ (· | β)) and F̃ (·) = F̃ (· | β̃). Our

procedure of calculating (β̃, F̃ ) can be summarized as Algorithm 1.

As only Step 1(b) involves iteration and Steps 1 and 2 need not be repeat-

ed, Algorithm 1 is computationally efficient. Once F̃ (· | β) and β̃ are obtained,

it is convenient to obtain estimates for other parameters. For example, given β,

smoothed estimators of the density function f(t) and its derivative ḟ(t) are f̃(t |

β) =
∑n

j=1 p̃j(β)K̇((t− ej(β))/σ)/σ and ˜̇f(t | β) =
∑n

j=1 p̃j(β)K̈((t− ej(β))/σ)/σ2,

where K̇(·) and K̈(·) are the first two derivatives of K(·). Accordingly, given β,

smoothed maximum conditional likelihood estimators of the hazard function λ(t)

and its derivative λ̇(t) are λ̃(t | β) = f̃(t | β)/{1 − F̃ (t | β)} and ˜̇λ(t | β) =

˜̇f(t | β)/{1− F̃ (t | β)}+ {f̃(t | β)}2/{1− F̃ (t | β)}2, respectively. These estimators

have closed forms and are readily used for various purposes including variance es-
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2.3 One-step estimator

timation later on. For example, an efficient estimator and its variance depend on

λ(t) and λ̇(t) (Lin and Chen, 2013), which can be estimated by λ̃(t | β̃) and ˜̇λ(t | β̃),

respectively.

Our simulation results demonstrate that the proposed estimator in the absence

of auxiliary aggregate information is insensitive to the tuning parameter σ, and

has negligible biases and smaller standard deviations than Zeng and Lin (2007)’s

estimator and Lin and Chen (2013)’s estimator. In terms of computational efficiency,

Lin and Chen (2013)’s estimator is the best, our estimator is slightly inferior and both

of them are more efficient than Zeng and Lin (2007)’s estimator. See Section S6.2

of the Supplementary Material. When the sample size is large, the computational

efficiency of Lin and Chen (2013) is evident, and we recommend taking it as an initial

estimator in the proposed method the presence of auxiliary information.

2.3 One-step estimator

The proposed one-step estimator relies on the first-order approximation of (β̂au, ρ̂au).

We use g(t) = log{λ(t)} = log[{dF (t)/dt}/{1 − F (t)}] to represent a distribution

F (t). For convenience, we shall exchangeably use g and F as an argument and denote

Oi = (Xi, δi, Zi). For theoretical development, following Ding and Nan (2011), we

express the log-likelihood in terms of g. The log conditional likelihood is written as

`n(β, g) =
∑n

i=1 l(β, g;Oi), where l(β, g;Oi) =
∫
g(t)dNi(t, β)−

∫
Yi(t, β) exp{g(t)}dt

with Ni(t, β) = δiI(log(Xi) − Z>
i β ≤ t) and Yi(t, β) = I(log(Xi) − Z>

i β ≥ t).
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2.3 One-step estimator

The log-likelihood function (2.9) becomes Ln(β, ρ, ν, g) = `n(β, g) −
∑n

i=1 log(1 +

ν>Ψ(β, ρ, g;Zi)). The maximum likelihood estimator is (β̂au, ρ̂au, ĝau) = argmaxβ,ρ,g

minν Ln(β, ρ, ν, g).

Write the derivative of l(β, g;O) with respect to β as l̇β(β, g;O). The func-

tional derivative of l(β, g;O) with respect to g along the direction h is denoted as

l̇g(β, g;O)[h]. We show in the Supplementary Material that

l̇β(β, g;O) =− Z
{∫

ġ(t)dN(t, β)−
∫
Y (t, β) exp{g(t)}ġ(t)dt

}
,

l̇g(β, g;O)[h] =

∫
h(t)dN(t, β)−

∫
Y (t, β) exp{g(t)}h(t)dt,

where ġ(·) is the first derivative of g(·). Similarly, Ψj(β, ρ, F ;Z) summarizing aux-

iliary information can be rewritten as Ψj(β, ρ, g;Z) = I(Z ∈ Ωj)
[

exp
{
−
∫
I(s ≤

log t∗j − Z>β)eg(s)ds
}
− ζ1/ρj

]
, j = 1, . . . , J . The first order ordinary and functional

derivatives of Ψ(β, ρ, g;Z) = (Ψ1(β, ρ, g;Z), . . . ,ΨJ(β, ρ, g;Z))> are written as

Ψ̇β(β, ρ, g;Z) = (Ψ̇1,β(β, ρ, g;Z), . . . , Ψ̇J,β(β, ρ, g;Z)),

Ψ̇ρ(β, ρ, g;Z) = (Ψ̇1,ρ(β, ρ, g;Z), . . . , Ψ̇J,ρ(β, ρ, g;Z))>,

Ψ̇g(β, ρ, g;Z)[h] = (Ψ̇1,g(β, ρ, g;Z)[h], . . . , Ψ̇J,g(β, ρ, g;Z)[h])>,

where Ψ̇j,β(β, ρ, g;Z) = I(Z ∈ Ωj)ZS(log t∗j−Z>β) exp{g(log t∗j−Z>β)}, Ψ̇j,ρ(β, ρ, g;Z) =

I(Z ∈ Ωj)ρ
−2ζ

1/ρ
j ln(ζj), and Ψ̇j,g(β, ρ, g;Z)[h] = −I(Z ∈ Ωj)S(log t∗j −Z>β)

∫
I(s ≤
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2.3 One-step estimator

log t∗j −Z>β)eg(s)h(s)ds with S(·) = 1−F (·) and j = 1, . . . , J. More detailed deriva-

tions are given in the Supplementary Material, where we also adapt the current

data setting to notations in empirical process and develop theoretical results. Define

h∗1(t, β0) = −ġ0(t)E{ZY (t, β0)}/E{Y (t, β0)}, where ġ(·) is the first order derivative

of g(·), and h∗2(t, β) = (h∗21(t, β), . . . , h∗2J(t, β))> with

h∗2j(t, β0) =
E[I(Z ∈ Ωj)I(t ≤ log t∗j − Z>β0){1− F (log t∗j − Z>β0)}]

E{Y (t, β0)}
, j = 1, . . . , J.

The two vector-valued functions are the so-called least favorable directions in semi-

parametric likelihood theory. DefineA = −E
{

Ψ̇ρ(β0, ρ0, g0;Z)
}

, B = E
{

Ψ̇β(β0, ρ0, g0;Z)−

{Ψ̇g(β0, ρ0, g0;Z)[h∗1]}>
}

, χ(β0, ρ0, g0;O) = Ψ(β0, ρ0, g0;Z)−l̇g(β0, g0;O)[h∗2], ι(β0, g0;O) =

l̇β(β0, g0;O)− l̇g(β0, g0;O)[h∗1],

Σ = E
{
ι(β0, g0;O)⊗2

}
, (2.16)

and Q = E
{
χ(β0, ρ0, g0;O)⊗2

}
, where U⊗2 = UU> for any vector U .

Let (β̃, F̃ ) = argmaxβ,F `n(β, F ) and ρ̃ be the solution of
∑n

i=1

∑J
j=1 Ψj(β̃, ρ, F̃ ;Zi) =

0. Our one-step estimator of β is constructed based on (β̃, ρ̃) and first-order linear

approximations of (β̂au, ρ̂au) and (β̃, ρ̃). It can be verified (See Section S4 in the
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2.3 One-step estimator

Supplementary Material) that

β̂au − β0
ρ̂au − ρ0

 =

Ip×p 0p×J 0p×1

01×p 01×J 1



×


Σ B 0

−B> Q A

0 −A> 0



−1
n−1

∑n
i=1 ι(β0, g0;Oi)

n−1
∑n

i=1 χ(β0, ρ0, g0;Oi)

0

+ op(n
−1/2),

(2.17)

and

β̃ − β0
ρ̃− ρ0

 =

Ip×p Σ−1B 0p×1

01×p (11×JA)−111×J(B>Σ−1B +Q) 1



×


Σ B 0

−B> Q A

0 −A> 0



−1
n−1

∑n
i=1 ι(β0, g0;Oi)

n−1
∑n

i=1 χ(β0, ρ0, g0;Oi)

0

+ op(n
−1/2),

(2.18)

where Ip×p is the identity matrix of size p, 0m×n is a m× n dimensional matrix with

zeros, and 1m×n is a m× n dimensional matrix with ones.

The approximations in (2.17) and (2.18) motivate us to construct a one-step
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2.3 One-step estimator

estimator of (β, ρ) as

β̂os
ρ̂os

 =

β̃
ρ̃

+

0p×p −Σ̂−1B̂ 0p×1

01×p −(11×JÂ)−111×J(B̂>Σ̂−1B̂ + Q̂) 0



×


Σ̂ B̂ 0

−B̂> Q̂ Â

0 −Â> 0



−1
n−1

∑n
i=1 ι(β̃, g̃;Oi)

n−1
∑n

i=1 χ(β̃, ρ̃, g̃;Oi)

0

 , (2.19)

where

Σ̂ =
1

n

n∑
i=1

{
l̇β(β̃, g̃;Oi)− l̇g(β̃, g̃;Oi)[h̃

∗
1]
}⊗2

, Q̂ =
1

n

n∑
i=1

{
Ψ(β̃, ρ̃, g̃;Zi)− l̇g(β̃, g̃;Oi)[h̃

∗
2]
}⊗2

,

B̂ =
1

n

n∑
i=1

{
Ψ̇β(β̃, ρ̃, g̃;Oi)− {Ψ̇g(β̃, ρ̃, g̃;Oi)[h̃

∗
1]}>

}
, Ã = − 1

n

n∑
i=1

Ψρ(β̃, ρ̃, g̃;Zi),

with g̃(·) = log{λ̃(·)},

h̃∗1(t, β̃) = −
˙̃λ(t)

λ̃(t)

∑n
i=1 ZiI(log(Xi)− Z>

i β̃ ≥ t)∑n
i=1 I(log(Xi)− Z>

i β̃ ≥ t)
, h̃∗2(t, β̃) = (h̃∗21(t, β̃), . . . , h̃∗2J(t, β̃))>,

h̃∗2j(t, β̃) =

∑n
i=1 I(Zi ∈ Ωj)I(t ≤ log t∗j − Z>

i β̃){1− F̃ (log t∗j − Z>
i β̃)}∑n

i=1 I(log(Xi)− Z>
i β̃ ≥ t)

, j = 1, . . . , J.

An important case is the homogeneous case where ρ0 = 1. In this situation, we omit

ρ in the previous notations. For example, we write Ψ(β, ρ, g;Z) and χ(β, ρ, g;O)

as Ψ(β, g;Z) and χ(β, g;O), respectively. The proposed one-step estimator of β
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becomes

β̂os = β̃ +

(
0p×p −Σ̂−1B̂

) Σ̂ B̂

−B̂> Q̂


−1n−1

∑n
i=1 ι(β̃, g̃;Oi)

n−1
∑n

i=1 χ(β̃, g̃;Oi)

 ,

where B̂ = n−1
∑n

i=1

{
Ψ̇β(β̃, g̃;Oi)−{Ψ̇g(β̃, g̃;Oi)[h̃

∗
1]}>

}
and Q̂ = n−1

∑n
i=1

{
Ψ(β̃, g̃;Zi)−

l̇g(β̃, g̃;Oi)[h̃
∗
2]
}⊗2

. The β̃, ρ̃, and the plug-in estimators are easy to calculate. The

one-step estimator is also easy to calculate as it has a closed form.

3. Asymptotic results

3.1 Asymptotic properties of (β̃, F̃ )

A desirable theoretical property of the maximum conditional likelihood estimators β̃

and F̃ (·) is that they are jointly asymptotically normal. Let λ0(t), f0(t), and S0(t)

denote the true hazard, density, and survival functions, respectively, of ε and β0 is the

true value of β. Our asymptotic normality results are established under the following

regularity conditions:

(C1) The range Z ⊂ Rp of Z is compact.

(C2) (a) The support of C contains that of T , and (b) there exists two positive

constants τl < τu such that pr(log(X)−Z>β0 ≥ τl) = 1 and pr(log(T )−Z>β0 >

τu) > 0.

(C3) β0 is an interior point of a compact set B ⊂ Rp.
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3.1 Asymptotic properties of (β̃, F̃ )

(C4) The conditional density function of C given Z is uniformly bounded away from

zero and infinity.

(C5) If their exists a constant vector υ and a deterministic function %(·) such that

Z>υ = %(ε) with probability 1, then υ = 0 and % = 0.

(C6) The information matrices−∂2E{`n(β, F̃ (· | β))}/∂β∂β>|β=β0 and J0 = E[ZZ>
∫ τu
τl
Y (t, β0)

exp{g0(t)}{ġ0(t)}2dt] are positive definite, where Y (t, β) = I(log(X)− Z>β ≥

t), g0(t) = log λ0(t) and ġ0(t) is its derivative.

(C7) Let G denote the collection of twice differentiable functions on [τl, τu], and for

every g ∈ G, g, its first derivative ġ and second derivative g̈ have bounded

variations. The true log hazard function g0(·) = log{λ0(·)} belongs to G.

(C8) (a)K(x) is a thrice-continuously differentiable distribution function, andK(r)(·),

the r-th derivative of K(·), has bounded variations on (−∞,∞) for r = 1, 2, 3.

(b) the smoothing parameter σ = σn satisfies |K(t/σn)− I(t > 0)| = o(n−1/2).

Conditions (C1), (C3) and (C4) are commonly imposed regularity conditions in

the literature of censored linear regressions. We adopt Condition (C2)(a) to avoid

a lengthy technical discussion on the tail behavior of the failure time. Condition

(C2)(b) implies that F0 belongs to F = {F : [τl, τu] 7→ [0, 1], F is non-decreasing, F (τl)

= 0, F (τu) < 1}. Condition (C5), also adopted by Zeng and Lin (2007), guaran-

tees the identifiability of β. When Condition (C6) is satisfied, the objective function

E{`n(β, F̃ (· | β))} is strictly concave in a neighborhood of β0, which implies that
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3.1 Asymptotic properties of (β̃, F̃ )

the maximum conditional likelihood estimator β̃ is unique with probability tending

to one; Qin et al. (2011) and Huang et al. (2015) made similar assumptions. Under

Condition (C7), λ0(t) and f0(t) are differentiable. Let λ̇0(t) and ḟ0(t) be first deriva-

tives of λ0(t) and f0(t), respectively. Condition (C7) implies that λ̇0(t) and ḟ0(t)

are bounded, and that
∫ τu
τl
{ḟ0(t)/f0(t)}2f0(t)dt < ∞, which are commonly-imposed

conditions in censored linear regressions. The function K(·) in Condition (C8) is sim-

ilar to the primitive functions of the kernel functions used in Zeng and Lin (2007).

Condition (C8)(b) guarantees that the difference between F̆ (x | β) and F̃ (x | β) is

op(n
−1/2), so that they have the same limiting distribution.

Theorem 1. Under conditions (C1)–(C8), the following results hold as n → ∞:

(i) ‖β̃ − β0‖ + supt∈[τl,τu] |F̃ (t) − F0(t)| = op(1), which implies (β̃, F̃ ) is consistent.

(ii)
√
n(β̃ − β0, F̃ − F0) converges weakly to a tight mean zero Gaussian process

ψ′0{−U̇−10 (W)}, where ψ′0, U̇
−1
0 , and W are defined in the Supplementary Material;

(iii)
√
n(β̃ − β0) converges in distribution to a p-variate normal distribution with

mean 0 and variance Σ−1, where Σ is defined in (2.16), provided Σ is non-singular.

Theorem 1 indicates that (β̃, F̃ ) is consistent and asymptotically normal. In

particular, we find that the asymptotic variance of β̃ is equal to the semiparametric

efficiency lower bound of β when no auxiliary information is available. See Ritov and

Wellner (1988) and Bickel et al. (1989). In other words, the maximum conditional

likelihood estimator β̃ is asymptotically semiparametric efficient.
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3.2 Asymptotic properties of β̂os

3.2 Asymptotic properties of β̂os

To investigate the consistency and asymptotic normality of β̂os, we make the following

additional assumptions.

(D1) Model (2.3) is correctly specified with ρ0 > 0 being the true value of ρ.

(D2) (i) Ψ(β, ρ, F ;Z) is smooth enough with respect to (β, ρ, F ). (ii)There exists a

function K(Z) such that ‖Ψ(β, ρ, F ;Z)‖ ≤ K(Z) and E{K3(Z)} < ∞ for all

β ∈ B, ρ > 0 and F ∈ F . (iii) The matrix E{Ψ(β0, ρ0, F0;Z)⊗2} is positive

definite.

Theorem 2. Suppose that conditions (C1)–(C8) and (D1)–(D2) are satisfied. As

n→∞, (i) β̂os is consistent to β0, and (ii) n1/2(β̂os−β0) converges to a normal distri-

bution with mean zero and covariance {Σ+BQ−1B>−BQ−1A(A>Q−1A)−1A>Q−1B>}−1,

provided the matrices Σ and A>Q−1A are nonsingular. (iii) β̂os is asymptotically

more efficient than β̃.

Theorem 2 discloses that the one-step estimator β̂os is asymptotically more effi-

cient than the maximum conditional likelihood β̃. In the homogeneous case where

ρ0 = 1 is known, the asymptotic covariance of β̂os is (Σ + BQ−1B>)−1, which is

no greater than that in the heterogeneous case. A possible interpretation for this

finding is that in the homogeneous case, ρ = 1 is known and is automatically taken

as auxiliary information in the estimation of β. However in the heterogeneous case,

ρ is unknown and has to be estimated from data, which brings additional variability.
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3.2 Asymptotic properties of β̂os

The proposed maximum likelihood estimator and one-step estimator still work

when there exists heterogeneity in the covariate distributions or uncertainty in the

auxiliary information. Similar to Theorems 1 and 2, the general theoretical results

of our methods still hold when the variability in the aggregated information and

heterogeneity in the covariate distributions are taken into consideration. See Section

S7 of the Supplementary Material.

According to Huang et al. (2016), when the subgroup survival information is

determined only by a subset of covariates, the efficiency gain of the estimated coef-

ficients for other covariates is minimal. Consider a simple case where Z = (Z1, Z2)

and the subgroups are determined only by Z1. Auxiliary survival information for the

jth subgroup can be expressed as

E{Ψj(β, ρ, g;Z)}

=

∫∫
I(z1 ∈ Ωj)

[
exp

{
−
∫
I(s ≤ log(t∗j)− z1β1 − z2β2)eg(s)ds

}
− ζ1/ρj

]
dFz(z1, z2)

=

∫∫
I(z1 ∈ Ωj)

[
exp

{
−
∫
I(s ≤ log(t∗j)− z1β1 − z2)eg(s)ds

}
− ζ1/ρj

]
dFz(z1, z2/β2).

Note that the proposed estimation procedure incorporates the auxiliary information

in the marginal likelihood and allows for an arbitrary distribution function Fz of

(Z1, Z2). After parameterization, our method is equivalent to maximizing the log
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marginal likelihood
∑n

i=1 log(p∗i ) subject to the constraints p∗i ≥ 0,
∑n

i=1 p
∗
i = 1, and

n∑
i=1

p∗i I(Zi1 ∈ Ωj)
[

exp
{
−
∫
I(s ≤ log(t∗j)− Zi1β1 − Zi2)eg(s)ds

}
− ζ1/ρj

]
= 0,

where p∗i is the jump of Fz at (Zi1, Zi2/β2). When we profile out p∗i , the marginal

likelihood becomes −
∑n

i=1 log[1 + ν>{exp[−
∫
I{s ≤ log(t∗j)−Zi1β1−Zi2}eg(s)ds]−

ζ
1/ρ
j }], which does not involve β2. Therefore, our estimator for β2 has limited efficacy

gain by incorporating the subgroup survival information.

4. Simulation Studies

In this section, we conduct simulations to investigate the finite sample performance

of the proposed estimators. The survival time T in the target population is gener-

ated from the accelerated failure time model log(T ) = Z1β10 + Z2β20 + Z1Z2β30 + ε,

where Z1 is generated from N(0, 1.52), the normal distribution with mean 0 and

standard deviation 1.5, and Z2 is generated from Bernoulli(0.5), the Bernoulli distri-

bution with success probability 0.5. Five distributions are considered for the error

term ε, a normal distribution, a generalized extreme value distribution, a Weibull

distribution, a log-normal distribution, and a chi-squared distribution. The censor-

ing time C is generated from an exponential distribution so that the censoring rate

is approximately 20%. We consider both the heterogeneous scenario (ρ0 = 0.9 and

unknown) and the homogeneous scenario (ρ0 = 1 and known). Suppose that the

t∗–year survival probabilities for the two subgroups Ω1 = {(Z1, Z2) : Z1 ≤ 0, Z2 = 0}
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and Ω2 = {(Z1, Z2) : Z1 > 0, Z2 = 1}, denoted by ζ1 and ζ2, are known. We set

β10 = −1 and β20 = 1.5. Our specific simulation settings are as follows.

Case I: ε ∼ N(0, 0.52). We set t∗ = 2, β30 = 0.75, ζ1 = 0.671 and ζ2 = 0.838 when

ρ0 = 0.9, and ζ1 = 0.380 and ζ2 = 0.371 when ρ0 = 1.

Case II: ε ∼ the generalized extreme value distribution with location 0, scale 0.5,

and shape 0.1. We set t∗ = 4, β30 = 0.75. ζ1 = 0.515 and ζ2 = 0.548 when

ρ0 = 0.9, and ζ1 = 0.491, ζ2 = 0.514 when ρ0 = 1.

Case III: ε ∼ the Weibull distribution with shape 1.3 and scale 0.8. We set t∗ = 4,

β30 = 0.5. ζ1 = 0.668 and ζ2 = 0.660 when ρ0 = 0.9, and ζ1 = 0.649 and

ζ2 = 0.638 when ρ0 = 1.

Case IV: ε ∼ the log-normal distribution with mean −0.5 and standard deviation

0.9 in the log scale. We set t∗ = 4, β30 = 0.25. ζ1 = 0.684 and ζ2 = 0.548 when

ρ0 = 0.9, and ζ1 = 0.665 and ζ2 = 0.523 when ρ0 = 1.

Case V: ε ∼ the chi-squared distribution with 1 degree of freedom. We set t∗ = 4,

β30 = 0.75. ζ1 = 0.654 and ζ2 = 0.752 when ρ0 = 0.9, and ζ1 = 0.632 and

ζ2 = 0.731 when ρ0 = 1.

In each case, we generate 1000 random samples of sample size n = 100. Based

on each random sample, we calculate the proposed maximum conditional likelihood

estimator β̃ without incorporating auxiliary information and the proposed one-step
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estimator β̂os, which incorporates auxiliary information. We use β̂os,homo and β̂os,hete

to denote β̂os in the homogeneous and heterogeneous scenarios, respectively. In our

method, the kernel function K is chosen to be the standard normal distribution

function, and the smoothing parameter σ is set to csn−1/3, where c is a constant, s is

the sample standard deviation of log(X)−Z>β̃ among all subjects. For comparison,

we also take into consideration the weighted log-rank estimator (β̂L) with unit weight

and the generalized method of moments estimators in the presence (β̂G1) and absence

(β̂G0) of auxiliary information (Sheng et al., 2020). The estimator β̂L is calculated

using the function aftsrr() in the R package aftgee.

For a generic point estimator of β, we calculate its empirical bias (Bias), empirical

standard deviation (SD), and the average of its standard error (SE) estimates. Table

1 presents 1000 times the Bias, SD and SE of the six estimators under comparison in

the heterogeneous scenario, and the corresponding coverage probability (CP) of the

corresponding Wald-type confidence region.

First of all, the proposed estimators (β̂os and β̃) and β̂L have negligible biases,

whereas Sheng et al. (2020)’s estimators (β̂G1 and β̂G0) usually have much larger

biases. The one-step estimators β̂os,homo and β̂os,hete exhibit nearly the same good

finite-sample performance. This is probably because the scenario ρ = 0.9 here is close

to the homogeneous setting. Second, compared with Sheng et al. (2020)’s estimators,

our estimators usually have much smaller SDs in Cases III, IV, and V, although

their SDs are comparable in Cases I and II. The estimator β̂L often has too much
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fluctuation, as its SDs corresponding to β2 and β3 are much larger than the other

four estimators in all cases except Case I. Third, the SDs and SEs of our estimators

usually match well and their CPs are close to the nominal level 95% in most cases.

However, those of Sheng et al. (2020)’s estimators do not match well. This together

with their big biases makes their CPs much less than 95%. For example, in Case I,

the CPs corresponding to β̂os and β̃ are around 95%, however those corresponding

to β̂G1 and β̂G0 are only 81% or 82%, which are far from the nominal level. It is

worth mentioning that in the implementation of Sheng et al. (2020)’s method in our

simulation study, nonsingular matrices arise quite a few times.

Regarding the proposed estimators, they all have negligible biases, and β̂os has

smaller SDs than β̃ in most cases. In particular, in Cases I and II, the SD reductions

of β̂os against β̃ corresponding to β2 can be as large as 14%. This can be regarded

as the efficiency gain of incorporating auxiliary information.

Table 2 displays the simulation results of the proposed one-step estimator and

the extended generalized method of moments (GMM) estimator (Sheng et al., 2020)

for ρ. Compared with the GMM estimator, the proposed estimator has clearly more

favorable performance: it still has negligible biases and smaller SDs in all cases,

and its SEs are generally very close to its empirical SDs, making the corresponding

Wald-type interval often have close-to-nominal CPs. However, the GMM estimator

has big biases and much larger SDs, and its empirical SDs and SEs do not match

well, leading to under-coverages of the corresponding Wald-type interval.
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The simulation results under the homogeneous scenario are shown in Table S1

in the Supplementary Material. Our general findings are the same as those from

Table 1. Comparing the results of the proposed estimators in these two tables, we

find that the estimated standard errors in the heterogeneous case are generally a

little bit larger than those in the homogeneous case. This is in accordance with

our theoretical findings. We have also conducted additional simulations to study

the proposed estimators in terms of computational efficiency, estimation efficiency,

bias and variance trade-off and robustness to the nonconstancy of ρ. The simulation

results are generally favorable to our methods. See Section S6 in the Supplementary

Material.

In summary, the proposed estimators are nearly unbiased and are often more

reliable than popular competitors such as β̂L and Sheng et al. (2020)’s estimators

(β̂G1 and β̂G0). The corresponding Wald-type confidence intervals are often more

accurate than their competitors. More importantly, the performance of our method

can indeed be improved by incorporating auxiliary information.

5. A Real Data Example

In this section, we apply the proposed estimation methods to analyze real data from

a chemotherapy study for Stage III colon cancer. The data set is available in the

R package survival. In the study, patients diagnosed with stage III colon cancer

were enrolled between March 1984 and October 1987. There were 929 subjects in the
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study, and the subjects were randomized such that 315, 310, and 304 patients received

observation (Obs), levamisole alone (Lev), and levamisole combined with fluorouracil

(Lev+5FU) treatments, respectively. The patients were followed for up to 9 years

for the outcomes of cancer recurrence and death. For the purpose of illustration,

following Gao and Chan (2023), we modeled death using the accelerated failure time

model and associated the survival time with the treatments, gender, and diagnosis

age. The model is log(T ) = Z1β1 + Z2β2 + Z3β3 + Z4β4 + ε, where Z1 = 1 for male

and Z1 = 0 for female, Z2 is diagnosis age, Z3 is 1 for treatment levamisole alone and

0 otherwise, and Z4 = 1 for treatment levamisole combined with fluorouracil and 0

otherwise. The observed survival time ranged from 0.06 to 9.12 years with mean 4.58

and median 5.41. There were 484 males and 445 females, and the minimum, median,

and maximum diagnosis ages were 18, 61, and 85, respectively. The censoring rate

was approximately 51.3%.

The Surveillance, Epidemiology, and End Results (SEER) Program of the Na-

tional Cancer Institute collects and publishes cancer incidence and survival data from

population-based cancer registries covering approximately 34.6% of the U.S. popula-

tion. The SEER Cancer Statistics Review reports the most recent cancer incidence,

mortality, survival, prevalence, and lifetime risk statistics annually.

We analyze the data from the chemotherapy study combined with the 5-year

gender-specific survival information reported in SEER. Based on the SEER Cancer

Statistics Review, 1973-1993 (National Cancer Institute, 1997), the 5-year survival
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rates among regional colon cancer patients who were diagnosed from 1986 to 1992

are 66.7% for males and 66.6% for females (Gao and Chan, 2023). The populations

in the chemotherapy study and the SEER Program may be different, however, the

conditional effect of the covariates may be more generalizable.

We analyze the data using the six estimators considered in the simulation sec-

tion, where the proposed one-step estimators for the heterogeneous case and the

homogeneous case are both implemented. We choose the smooth parameter σ to

be 0.287sn−1/3, where s is the standard deviation of log(X)− Z>β̂L among all sub-

jects. The analysis results are given in Table 3. The estimates of ρ based on the

proposed approach and the generalized method of moments approach are almost

the same. Their values together with the accompanying standard errors imply that

ρ 6= 0 at the 5% significance level, or equivalently, the individual-level data and the

auxiliary aggregate data come from different populations. As the standard error of

the proposed estimator for ρ is smaller, the Wald-type test based on our estimator

produces a smaller p-value than that based on β̂G1, namely, our method provides

stronger evidence for ρ 6= 0. For the estimation of β, the standard errors of the pro-

posed three estimators and the two generalized methods of moments estimators from

Sheng et al. (2020) are all smaller than that of the log-rank estimator, indicating ef-

ficiency improvements over the latter. Compared with the proposed estimators with

and without auxiliary information, the coefficient estimate of gender has accuracy

improvement when auxiliary information is incorporated. For the estimation of β4, in
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line with the log-rank estimator, the proposed three estimators show that the treat-

ment effect of levamisole combined with fluorouracil has a significantly positive effect

on the survival time. The smaller p-values of the proposed estimators reflect obvious

efficiency gain in this case. The estimation results of the proposed estimators for the

heterogeneous and homogeneous cases are very close to each other, which suggests

the robustness of the proposed framework. The proposed estimators for β1, β2, β3, β4

have smaller standard errors than the generalized method of moments estimators.

6. Discussion

Our method allows the individual-level data and the external auxiliary information

to be incompatible and accommodate the incompatibility by (2.3). We assume that

the sample size m used to derive the external information is much larger than that

n of the individual-level data and thus variability in the auxiliary information is

ignorable. In Section S7 of the Supplementary Material, we extend the current

framework to account for heterogeneity in covariate distributions and uncertainty

in external aggregate information. We assume the covariate distributions of the

two populations satisfy a density ratio model, and take the variability of external

information into consideration when m and n are comparable.

For ease of discussion, we assume that all covariates are time-independent al-

though time-dependent covariates are also commonly seen. In the case of no auxil-

iary information, the proposed expectation-maximization algorithm readily accom-
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modates time-dependent covariates. Specifically, following Zeng and Lin (2007), we

consider an extension of model (2.1) with ε = ln
∫ T
0

exp{−β>Z(t)}dt, where Z(·)

is a vector of time-dependent covariates. Our expectation-maximization algorithm

proceeds by re-defining ei(β) = log{
∫ Xi

0
exp{−β>Zi(t)}dt} for fixed β.

In the construction of our one-step estimator of β, we take the proposed maxi-

mum conditional likelihood estimator β̃ as an initial estimator of β. An advantage of

the expectation-maximization algorithm is that we can simultaneously obtain (β̃, F̃ )

(or (β̃, g̃)). The consistency of F̃ depends on the assumption that the support of C

contains that of T . If this assumption is violated, F̃ is no longer a valid distribution

function estimate for ε. For example, if the maximum point of the support of C, say

τ1, is smaller than that of T , τ , then the proposed method estimates the conditional

distribution function of T given T ≤ τ1, namely, F (t)/F (τ1). In this case, we recom-

mend using a different initial estimator such as the sieve estimator of Ding and Nan

(2011), or we may estimate g by using the kernel smoothing techniques of Lin and

Chen (2013). We leave this problem for future research.
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simulation studies, as well as the heterogeneous case with heterogeneity in covariate

distributions and uncertainty in external information.

Appendix

Expectation-Maximization algorithm on the conditional likelihood

Instead of observing e1i(β) = log(Ti)− Z>
i β, we observe ei(β) = min{e1i(β), e2i(β)},

where e2i(β) = log(Ci)−Z>
i β. Write the observed e1i(β) as εi(β) and the censored and

thus unobserved e1i(β) as ε∗i (β). The complete data are represented by (εi(β), δi =

1) and (ε∗i (β), δi = 0), i = 1, . . . , n. Recall that F (x | β) =
∑n

i=1 pi(β)I(ei(β) ≤ x).

The complete-data log conditional likelihood is

`c(β, F ) =
n∑
i=1

[
δi log pi(β) + (1− δi)

n∑
j=1

I(ε∗i (β) = ej(β)) log pj(β)
]
.
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Let D(β) = {ei(β), i = 1, . . . , n}. It can be seen that

E{I(ε∗i (β) = ej(β)) | D(β), δi = 0} = pr{ε∗i (β) = ej(β) | D(β), δi = 0}

= pr{e1i(β) = ej(β) | D(β), e1i(β) > ei(β)}

=
pr(e1i(β) = ej(β) | D(β))I(e1i(β) > ei(β))

pr(e1i(β) > ei(β) | D(β))

=
pj(β)I(ej(β) > ei(β))∑n
v=1 pv(β)I(ev(β) > ei(β))

.

Given p
(u)
j (β)’s in the u-iteration, in the E-step of the (u+1)th cycle, the expectation

of complete data log conditional likelihood given observed data is

E{`c(β, F ) | D(β), p
(u)
1 (β) . . . , p(u)n (β)} =

n∑
j=1

w
(u)
j (β) log pj(β),

where

w
(u)
j (β) = δj +

n∑
i=1

(1− δi)
p
(u)
j (β)I(ej(β) > ei(β))∑n

v=1 p
(u)
v (β)I(ev(β) > ei(β))

.

The M-step is to maximize E{`c(β, F ) | D(β), p
(u)
1 (β) . . . , p

(u)
n (β)} under the con-

straints (2.10), which gives

p
(u+1)
j (β) =

w
(u)
j (β)∑n

l=1w
(u)
l (β)

=
1

n
w

(u)
j (β), j = 1, . . . , n.
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Table 1: Simulation results for β under the heterogeneous scenario

β1 β2 β3
Case Est Bias SD SE CP Bias SD SE CP Bias SD SE CP

I β̂os,homo -1 62 65 93.7 0 112 109 94.6 -1 83 94 95.9

β̂os,hete 0 62 65 94.1 3 111 109 94.4 -1 83 94 96.1

β̃ 0 63 67 94.5 2 125 129 95.3 -1 84 97 96.4

β̂L -4 63 52 89.0 2 120 110 92.3 2 84 74 91.6

β̂G1 -16 67 48 85.8 9 105 87 88.3 26 91 61 81.1

β̂G0 -11 67 51 86.7 13 120 106 90.8 20 96 67 82.0

II β̂os,homo -4 63 68 93.6 5 115 117 94.7 4 90 102 95.9

β̂os,hete -4 63 68 93.4 7 115 116 94.2 4 90 102 95.7

β̃ -4 64 72 93.5 4 131 139 94.9 4 90 103 95.9

β̂L -1 86 74 90.2 -7 175 158 92.1 3 122 106 90.4

β̂G1 -12 66 53 88.5 11 106 90 88.1 23 90 68 84.7

β̂G0 -7 71 56 89.5 2 130 115 91.6 16 102 77 87.5

III β̂os,homo -3 47 51 93.6 6 83 91 96.0 1 67 77 96.0

β̂os,hete -3 47 51 93.5 6 83 90 95.6 1 67 77 95.8

β̃ -3 48 52 93.6 4 86 100 96.3 1 67 78 95.4

β̂L -1 71 61 90.2 -1 145 130 93.0 3 100 89 91.0

β̂G1 -7 55 43 90.0 8 103 72 84.1 10 83 56 82.5

β̂G0 -4 54 45 92.5 2 104 91 92.1 10 83 62 86.8

IV β̂os,homo -2 41 46 92.3 5 76 91 96.4 -1 63 74 95.2

β̂os,hete -2 41 46 92.3 3 76 90 96.0 -1 63 74 95.2

β̃ -1 41 47 92.6 5 77 98 96.7 0 62 75 95.4

β̂L -3 89 80 93.5 -2 174 170 95.0 -2 130 119 93.3

β̂G1 -9 61 43 87.3 22 122 74 82.0 5 103 62 82.0

β̂G0 -10 68 46 88.5 8 109 92 92.2 16 93 67 85.9

V β̂os,homo -2 38 38 93.7 16 100 70 94.8 4 54 57 95.9

β̂os,hete -2 38 38 93.7 16 101 70 94.7 4 54 57 95.8

β̃ -2 38 38 94.1 10 112 82 94.5 4 54 59 95.8

β̂L 3 116 123 97.4 -9 228 242 97.3 1 161 171 97.5

β̂G1 -15 124 48 90.8 13 528 81 90.2 33 437 66 85.7

β̂G0 -16 124 49 92.3 -5 131 94 93.1 29 175 71 88.5
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Table 2: Simulation results for ρ under the heterogeneous scenario

Case I Case II Case III Case IV Case V

Proposed Bias 0.002 0.013 0.024 0.006 0.017

SD 0.258 0.202 0.276 0.253 0.249

SE 0.265 0.203 0.275 0.260 0.240

CP 92.0 93.5 93.1 92.1 95.2

GMM Bias 0.101 0.054 0.096 0.085 0.098

SD 0.334 0.235 0.385 0.356 0.563

SE 0.261 0.197 0.218 0.187 0.239

CP 93.4 95.2 86.0 81.2 93.2

Proposed, the proposed one-step estimator that incorporates the auxiliary informa-
tion; GMM, the generalized method of moments estimator incorporating the auxil-
iary information (Sheng et al., 2020). Bias, empirical bias (×1000); SD, empirical
standard deviation (×1000); SE, estimated standard error (×1000); CP, empirical
coverage probability.
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Table 3: Real data analysis of colon cancer study

β̂os,hete β̂os,homo β̃ β̂L β̂G1 β̂G0

Gender(β1) Est 0.0159 0.0073 0.0043 0.0082 0.0148 0.1129

SE 0.0082 0.0091 0.0097 0.1818 0.0328 0.1111

p-value 0.051 0.424 0.661 0.964 0.652 0.309

Diagnosis age(β2) Est -0.0027 -0.0027 -0.0027 -0.0028 0.0012 -0.0017

SE 0.0004 0.0004 0.0004 0.0095 0.0045 0.0046

p-value < 0.001 < 0.001 < 0.001 0.772 0.788 0.704

Lev(β3) Est 0.0411 0.0403 0.04 0.0286 0.0807 -0.0199

SE 0.0114 0.0114 0.0114 0.2394 0.1387 0.129

p-value < 0.001 < 0.001 < 0.001 0.905 0.561 0.878

Lev+5FU(β4) Est 0.5626 0.5623 0.5622 0.5367 0.5051 0.2599

SE 0.0128 0.0128 0.0128 0.184 0.1285 0.1357

p-value < 0.001 < 0.001 < 0.001 0.004 < 0.001 0.055

ρ Est 0.7258 - - - 0.7028 -

SE 0.0433 - - - 0.0506 -

p-value < 0.001 - - - < 0.001 -

Lev, levamisole; Lev+5FU, levamisole combined with fluorouracil. Est, the esti-
mator; SE, the estimated standard error. β̂os,hete, the proposed one-step estimator

incorporating auxiliary information under the heterogeneous case; β̂os,homo, the pro-
posed one-step estimator incorporating auxiliary information under the homogeneous
case; β̃, the maximum conditional likelihood estimator without auxiliary information;
β̂L, the weighted log-rank estimator with unit weight; β̂G1, the extended generalized
method of moments estimator incorporating the auxiliary information (Sheng et al.,
2020); β̂G0, the generalized method of moments estimator without the auxiliary in-
formation (Sheng et al., 2020).
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