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Abstract: We consider the complex data modeling problem motivated by the zero-

inflated and overdispersed data from microbiome studies. Analyzing how micro-

biome abundance is associated with human biological features, such as BMI, is

of great importance for host health. Methods based on parametric distributional

assumptions, such as zero-inflated Poisson and zero-inflated Negative Binomial

regression, have been widely used in modeling such data, yet the parametric as-

sumptions are restricted and hard to verify in real-world applications. We relax

the parametric assumptions and propose a semiparametric single-index quantile

regression model. It is flexible to include a wide range of possible association func-

tions and adaptable to the various zero proportions across subjects, which relaxes

the strong parametric distributional assumptions of most existing zero-inflated

data modeling approaches. We establish the asymptotic properties for the index
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coefficients estimator and quantile regression curve estimation. Through exten-

sive simulation studies, we demonstrate the superior performance of the proposed

method regarding model fitting.

Key words and phrases: Quantile regression; single-index model; zero-inflation;

microbiome count data; profile principle.

1. Introduction

The human microbiota consists of the microorganisms that reside in or on

the human body and contribute essential functions to human beings (Cani,

2018). Human microbiome research studies the dynamic interactions among

microbiomes, host, and environment (Xia and Sun, 2017). It is of great

importance to build more accurate predictive models of taxa and identify

the relationship between taxa and clinical parameters (Lloyd-Price et al.,

2016). The main challenges in modeling microbiome data are zero inflation

and overdispersion (Kaul et al., 2017). It is common that the proportion

of zeros in gut microbiota counts can reach 70%-80% (Yatsunenko et al.,

2012). Meanwhile, the non-zero counts of the microbiota counts could be

as large as thousands and cause overdispersion (McMurdie and Holmes,

2014). The inflated zeros in microbiome data are commonly caused by

two reasons: microbes are present in the environment but not detected
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due to low sequencing depth and sampling variation, or some microbes

may be incapable of living in the environment and truly never represented

(Zeng et al., 2022). While modeling microbiota counts and testing their

relationship with covariates of interest (e.g., lifestyle and disease status), one

needs to carefully address the zero inflation and overdispersion challenges

in statistical analysis (Zhang et al., 2017; Xia, 2020).

A common strategy to model zero-inflated data is two-part models,

which impose a point probability mass at zero and model the positive count

data by a parametric distribution, such as zero-inflated Poisson regression,

zero-inflated Negative Binomial regression, hurdle models, and many others

(Lambert, 1992; Chen and Li, 2016; Jiang et al., 2022). However, those ap-

proaches impose strong parametric assumptions, which may be violated in

real-world applications and cause problems in downstream analysis (Silver-

man et al., 2020). Further, most of the aforementioned approaches fail to

model the relationship between the proportion of zeros and covariates, and

thus, they only capture the effect of covariates partially on the distribution

of outcomes (Ling et al., 2022).

Contrary to parametric modeling, quantile regression (Koenker and

Bassett, 1978) is a powerful and robust tool to model heterogeneous asso-

ciations in complex data without any parametric distribution assumptions.
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Further, quantile regression enjoys the merits of flexibly linking covariates

to the distribution of response without parametric assumptions and allow-

ing different associations across quantile levels. However, classic quantile

regression cannot be directly applied in microbiome data as it assumes a

constant probability of observing a positive outcome for all individuals,

which is unlikely to hold when the degree of zero inflation varies across

subjects. To overcome this challenge, Ling et al. (2022) proposed a zero-

inflated linear quantile regression model (denoted as “ZIQ-linear”) to relax

the parametric distribution assumptions on positive outcomes and applied

this method in a carotid plaque data analysis. However, it does not con-

sider either the overdispersion issue or the non-linear relationship between

the quantile of microbiome data and the covariates of interest.

We present a motivating example from the gut microbiota count data

(De la Cuesta-Zuluaga et al., 2018), which is later analyzed in the real data

application. This dataset contains microbiome counts of over 6000 taxa for

411 adults and covariates related to diet, obesity, and cardiometabolic dis-

eases. For illustrative purposes, we present the model-fitting results for one

taxon Clostridiales with health-related covariates, such as anthropometric

measures, glucose metabolism, and blood pressure. A full list of covariates

is provided in Section 4. The library size, the sum of all the taxa counts per
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subject, is adjusted as a covariate in the models below. We compared the

observed and predicted count data generated by fitted models from ZIP,

ZINB, and ZIQ-linear, respectively. In Figure 1, we observe that ZIP and

ZINB fit the data poorly because the parametric assumptions could be vi-

olated, and the mass probability imposed on zero is a shared parameter for

all subjects in these two approaches rather than modeling different degrees

of zeros across subjects. ZIQ-linear models the zero and positive parts well

because these two parts are both linked to individual-specific covariates.

However, a small proportion of fitted values are negative, against the na-

ture of microbiome counts. The primary reason is that the linear quantile

regression model is not flexible enough for overdispersed data.
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Figure 1: Model fitting results for the taxon Clostridiales.

Motivated by the study of zero-inflated and overdispersed outcomes,

we consider quantile single-index models to overcome the limitations of the
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linear quantile regression model while maintaining its robustness and flexi-

bility. Single-index models have been widely used in literature for their mer-

its of handling high-dimensional data while providing interpretable results

(Radchenko, 2015; Neykov et al., 2016). Spline-based methods are often

preferred for their easy implementation and derivable asymptotic proper-

ties (Yu and Ruppert, 2002; Ma and Zhu, 2013). For quantile regression,

Ma and He (2016) developed statistical inference for single-index quantile

regression models based on the pseudo-profile likelihood approach, yet it

cannot be directly applied to the zero-inflated data. Without two-part

modeling, the direct quantile single-index models assume a constant chance

of observing a positive outcome and ignore the various degrees of zero in-

flation across subjects.

To this end, we propose a novel two-part modeling approach: the Zero-

Inflated Quantile Single-Index model (ZIQSI). The positive part Y > 0

is modeled by a quantile single-index model in a semiparametric fashion,

which is flexible and general, including a wide range of association func-

tions. Compared to a fully nonparametric model, the proposed method is

more interpretable through the index parameter. The probability of being

zero (i.e., P (Y = 0)) is also linked to covariates, making our approach more

adaptable to various zeros across subjects. Our contributions are three-fold.
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Methodologically, we provide a flexible modeling approach of zero-inflated

and overdispersed outcomes with less restricted model specifications. The

estimation is proceeded by the profile likelihood approach. Theoretically,

we derived asymptotic properties for the estimated quantile coefficients,

quantile curves, and average quantile effects. Application-wise, we pro-

vided a concrete analysis of microbiome data and evaluated the goodness

of fit for the proposed method from different perspectives, illustrating its su-

periority in both distribution-wise modeling and individual-wise coefficient

estimation, which could further contribute to personalized medicine.

2. Methods

2.1 Notations and model

Denote Y as a non-negative zero-inflated response variable and x = (x1, ..., xp)
⊤

be a set of covariates of our interest. Denote the τth quantile of Y as

QY (τ | x). To model the distribution of Y , we first decompose the con-

ditional distribution of the zero-inflated outcome Y into the zero part and

the positive part: F (Y | x) = P (Y = 0 | x)+P (Y > 0 | x)F (Y | x, Y > 0).

Then, following the common two-part modeling strategy, we model the two

parts, namely P (Y = 0 | x) and F (Y | x, Y > 0), separately. We first as-

sume that P (Y > 0 | x), the conditional probability of observing a positive
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2.1 Notations and model

Y , follows a logistic regression model,

logit {P (Y > 0 | x)} = x⊤γ, (2.1)

where γ is an unknown parameter. We consider the linear form for the

logistic regression model since no compelling evidence suggests that a com-

plicated semiparametric model is necessary for the classification, whereas

our motivating example indicates the crucial need to consider a more flex-

ible model for the positive response Y > 0. Thus, to ensure the generality

of our method, we adopt a semi-parametric approach for the non-zero part

F (Y | x, Y > 0). Given a nominal quantile level τs ∈ (0, 1), the conditional

quantile function of Y given Y > 0 can be described by a single-index

model:

QY (τs | x, Y > 0) = Gτs(x
⊤βτs), (2.2)

whereGτs(·) is an unknown function, and βτs is an unknown parameter. The

single-index model (eq (2.2)) is a popular dimensional reduction method for

high-dimensional covariates x with extra flexibility at each quantile level τs

through the unknown function Gτs(·), which is essential for modeling the

overdispersion in microbiome data. The method of Ling et al. (2022) can

be viewed as a special case of our method, in which Gτs(x
⊤βτs) is set as

x⊤βτs for all τs ∈ (0, 1). To ensure the continuity of this two-part model,
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2.1 Notations and model

we assume that for any x, limτs→0+ QY (τs | x, Y > 0) = 0. Thus, when

considering Models (2.1)-(2.2) together, the τth conditional quantile of Y

given x can be written as:

QY (τ | x) = I {τ > 1− π(x, γ)}Gτs

(
x⊤βτs

)
, (2.3)

where π(x, γ) = P (Y > 0 | x); I(·) is an indicator function; and τs =

Γ(τ ;x, γ) = max
(

τ−{1−π(γ,x)}
π(γ,x)

, 0
)
maps the target quantile level τ linearly

to the quantile level τs of Y | Y > 0 in Model (2.2). Due to the nonpara-

metric nature of Gτs , we posit the assumptions for model identifiability.

Assumption 1

(1.1) The covariates x satisfies that x ∈ C, where C is a compact set.

(1.2) βτs belongs to the parameter space Θ = {β : β ∈ Rp, ∥ β∥2 = 1, β1 ≥ 0}

for identifiability. We assume p is fixed and shall not increase with n.

(1.3) Support of the function Gτs is
[
inf(x⊤β), sup(x⊤β)

]
, ∀x ∈ C, β ∈ Θ.

These assumptions guarantee the identifiability of βτs for quantile single-

index models (Ma and He, 2016). Compared to Ling et al. (2022), our

proposed two-part Zero-Inflated Quantile Single-index model allows more

complex nonlinear associations between x and Y through the functions Gτs .

Compared to other parametric two-part models, such as ZIP and ZINB, it is
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2.2 Estimation

robust against non-gaussian errors because we do not assume any particular

error distributions.

2.2 Estimation

Suppose we have independent and identically distributed random samples

{(xi, yi); i = 1, 2, ..., n} generated by the conditional quantile regression

model (2.3). First, we estimate γ by logistic regression model (2.1):

γ̂n = argmax
γ

1

n

n∑
i=1

[
I(yi > 0) log

{
π(γ,xi)

1− π(γ,xi)

}
+ log{1− π(γ,xi)}

]
.

With the estimated coefficient γ̂n, given x, τ , we approximate τs by

τ̂s = Γ(τ ;x, γ̂n) = max

(
τ − (1− π(γ̂n,x))

π(γ̂n,x)
, 0

)
. (2.4)

For the quantile regression part, since Gτs(·) is unknown, we approxi-

mate it by a linear combination of B-spline basis functions as in Wei and

He (2006). We first introduce the B-spline basis for estimating the un-

known function Gτs . Denote the total number of positive responses as

n0 :=
∑n

i=1 I(yi > 0). We denote a = t0 < t1 < ... < tNn0
< b = tNn0+1

as a partition of [a, b], where the number of knots Nn0 increases with n0.

The partition satisfies max0≤j≤Nn0
|tj+1 − tj|/min0≤j≤Nn0

|tj+1 − tj| ≤ M

uniformly in the sample size of positive outcomes n0 and for some con-

stant 0 < M < ∞. With m denoted as the order of polynomial splines,
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2.2 Estimation

we denote the normalized B-spline basis of this space (De Boor, 2001), as

B(u) = {Bj(u) : 1 ≤ j ≤ Jn}⊤, where Jn = Nn0 + m. In our empirical

implementations, for each given β, we use the boundary points, namely

min1≤i≤n x
⊤
i β and max1≤i≤n x

⊤
i β, to generate the B-spline basis function

B(u). Further, by De Boor (2001), the single-index term Gτs(x
⊤βτs) can

be approximated by B-spline as Gτs

(
x⊤βτs

)
≈ B

(
x⊤βτs

)⊤
θ(τs) for some

θ(τs) ∈ RJn . Since the true value of τs is infeasible, we use its approxima-

tion τ̂s defined in eq (2.4) to obtain the estimators of the spline coefficients

θ(τs) and the parameter βτs by minimizing the pseudo-likelihood function:

Lτ̂s,n(θ, β) =
1

n0

n∑
i=1

ρτ̂s
{
yi −B(x⊤

i β)
⊤θ

}
I(yi > 0), (2.5)

where ρτ (u) = u (τ − I(u < 0)) is the quantile loss function.

Here, we adopt the profile approach proposed in Ma and He (2016)

to estimate βτs and θ(τs) owing to the stable performance showed in the

empirical studies of Liang et al. (2010) and Ma and He (2016). We define

the profile pseudo-likelihood function of β as

L∗
τ̂s,n(β) = min

θ∈RJn
Lτ̂s,n(β, θ) = Lτ̂s,n

(
β, θ̃n(β, τ̂s)

)
=

1

n0

n∑
i=1

ρτ̂s

{
yi −B(x⊤

i β)
⊤θ̃n(β, τ̂s)

}
I(yi > 0), (2.6)

where θ̃n(β, τ̂s) is the minimizer of Lτ̂s(θ, β) over θ ∈ RJn for given β ∈ Θ.

Thus, the proposed profile likelihood estimation of β ◦ Γ(τ ;x, γ̂n) is taken

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0104



2.3 Construction of Quantile Curve and Average Quantile Effect

to be:

β̂τ̂s = β̂ ◦ Γ(τ ;x, γ̂n) = argmin
β∈Θ

L∗
τ̂s,n(β).

Then, the spline estimator of Gτs(u) is Ĝτ̂s

(
u, β̂τ̂s

)
= B(u)⊤θ̃n

(
β̂τ̂s , τ̂s

)
,

where θ̃n

(
β̂τ̂s , τ̂s

)
minimizes L∗∗

τ̂s,n
(θ) over θ ∈ RJn , and L∗∗

τ̂s,n
(θ) = 1

n0

∑n
i=1

ρτ̂s

{
yi −B(x⊤

i β̂τ̂s)
⊤θ

}
I(yi > 0).

For a given β ∈ Θ and a specific τs, we denote:

˜̃θn(β, τs) = arg min
θ∈RJn

E{Lτs,n(θ, β) | X}, (2.7)

where Lτs,n(θ, β) is the score function eq (2.5) and X are given covari-

ates. We denote ˜̃Gτs(u, β) = B⊤(u)˜̃θn(β, τs), which bridges the estimated

Ĝτ̂s(x
⊤β̂τ̂s) and true Gτs(x

⊤βτs). We also define

E∗(x | x⊤βτs) =
E{fϵτs (0 | x)x | x⊤βτs}
E{fϵτs (0 | x) | x⊤βτs}

and x̃ = x− E∗(x | x⊤βτs),(2.8)

where fϵτs (ϵ | x) denotes the conditional density of ϵτs given x, and ϵτs =

Y −Gτs(x
⊤βτs) given Y > 0. E∗(x | x⊤βτs) and x̃ are necessary for deducing

the asymptotic distribution for the estimated coefficient β̂τ̂s .

2.3 Construction of Quantile Curve and Average Quantile Effect

Given the aforementioned estimators γ̂n, β̂τ̂s , and θ̃n(β̂τ̂s , τ̂s), we construct

the τth conditional quantile function Q̂Y (τ | x) in three regions: (1) R1,n =

{τ : 0 < τ < 1− π(γ̂n,x)}, (2)R2,n =
{
τ : 1− π(γ̂n,x) ≤ τ ≤ 1− π(γ̂n,x) + n−δ

}
,
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2.3 Construction of Quantile Curve and Average Quantile Effect

and (3) R3,n =
{
1− π(γ̂n,x) + n−δ ≤ τ ≤ 1

}
, where δ < 0.5 is a pre-

specified interpolation parameter, and π(γ̂n,x) = exp(x⊤γ̂n)/{1+exp(x⊤γ̂n)}

is the estimated probability of observing a positive Y given x. Specifically,

R1,n represents the region for a zero Y ; R3,n represents the region of the pos-

itive part, in which the quantile curve is estimated on the nominal quantile

level τ̂s = Γ(τ ;x, γ̂n). R2,n is an interpolation region based on the nom-

inal quantile level Γ
(
1− π(γ̂n,x) + n−δ;x, γ

)
. The conditional density of

Y given Y > 0 goes to zero when the quantile level approaches the change

point, which can lead to a large variance if we estimate the quantile directly

around the change point. The interpolation region is set for the stability

and continuity of the estimated quantile function Q̂Y (τ | x). Then, we

construct Q̂Y (τ | x) as below:

Q̂Y (τ | x) = 0 · I(τ ∈ R1,n) +B
{
x⊤β̂ ◦ Γ

(
1− π(γ̂n,x) + n−δ;x, γ̂n

)}⊤

θ̃n

{
β̂ ◦ Γ

(
1− π(γ̂n,x) + n−δ;x, γ̂n

)
,Γ

(
1− π(γ̂n,x) + n−δ;x, γ̂n

)}
·τ − {1− π(γ̂n,x)}

n−δ
· I(τ ∈ R2,n) +B

{
x⊤β̂ ◦ Γ(τ ;x, γ̂n)

}⊤

·θ̃n{β̂ ◦ Γ(τ ;x, γ̂n),Γ(τ ;x, γ̂n)} · I(τ ∈ R3,n). (2.9)

Based on Q̂Y (τ | x), it is obvious that the covariates x can be associated

with both the probability of observing a positive Y and also the quantile of

Y | Y > 0. As our main focus is predicting quantile curves, it is common
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2.3 Construction of Quantile Curve and Average Quantile Effect

that the predicted values are non-integral. One can round the estimation

to the nearest integer upon request. The same applies to the following data

simulation settings in Section 3.1.

To quantify the effect of the jth covariate (denoted as xj) on the re-

sponse Y , we define the model-based average quantile effect (AQE) for our

two-part model as below:

∆τ (xj;u, v) = Ex(−j)

{
QY (τ | xj = u,x(−j))−QY (τ | xj = v,x(−j))

}
,(2.10)

where x(−j) denotes the covariates excluding xj. AQE is served in an anal-

ogous fashion to the average treatment effect in linear models, and it has

also been used in Ling et al. (2022). Thus, at a fixed quantile level τ , the

importance of the covariate xj can be estimated by integrating the differ-

ence between the conditional quantile of Y , given fixed x(−j) and different

levels of xj. If xj represents a continuous variable (e.g., BMI, cholesterol),

we may select two levels according to clinical interest as u and v. For exam-

ple, to assess the quantile effect of BMI, one can set u ∈ [18.5, 24.9] for the

normal group and v ∈ [25, 29.9] for the overweight group (Weir and Jan,

2019). In particular, if xj is binary (e.g., sex, treatment), the AQE is the

average quantile treatment effect in the source population:

∆τ (xj; 1, 0) = Ex(−j)

{
QY

(
τ | xj = 1,x(−j)

)
−QY

(
τ | xj = 0,x(−j)

)}
.(2.11)
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2.4 Assumptions for asymptotic properties

A natural sample estimator of eq (2.11) is

∆̂τ (xj;u, v) =
1

n

n∑
i=1

Q̂Y (τ | xi,j = 1,x
(−j)
i )− Q̂Y (τ | xi,j = 0,x

(−j)
i ),(2.12)

where Q̂Y (·) is the estimated conditional quantile function defined in eq

(2.9) and (xi,j,x
(−j)
i ) denote the corresponding covariates of the ith sample.

We provide the convergence rate of the AQE in Supplement S1.2.

2.4 Assumptions for asymptotic properties

We introduce some common assumptions on the distribution of zero-inflated

data. We denote a0 and b0 to be the infimum and supremum of x⊤βτs over

x ∈ C, where C is the compact set defined in Assumption 1 above.

Assumption 2

(2.1) Observations {(xi, yi); i = 1, · · · , n} are i.i.d. from a joint distribution

P , where xi is a p-dimensional vector of covariates.

(2.2) The conditional density fY (Y | x, Y > 0) of Y given X = x and Y > 0

satisfies the Lipschitz condition of order 1 and supx,y fY (Y | x, Y > 0) < ∞.

(2.3) The conditional quantile function satisfies lim
τ→0+

QY (τ | x, Y > 0) = 0.

(2.4) The quantile coefficient βτs is a differentiable function of τs with bounded

first derivative, i.e., supτs∈(0,1) β̇τs = supτs∈(0,1)
dβt

dt

∣∣∣∣
t=τs

< ∞.
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2.4 Assumptions for asymptotic properties

(2.5) ∀x ∈ C, we have ∥E(xx⊤)∥∞ < ∞.

(2.6) The density function of x⊤β is bounded away from zero and infinity

on its support, for β in a neighborhood of βτs.

Assumption (2.2) is borrowed from Ma and He (2016) to help establish

the limiting distribution at the change point τ = 1 − π(γ,x). Assumption

(2.3) is the continuity assumption stated in Section 2.1. Assumptions (2.4)−

(2.5) and Assumption 3 below are necessary for establishing the asymptotic

distribution of estimated coefficient β̂τ̂s . With the asymptotic distribution

of estimated coefficient β̂τ̂s , Assumption (2.6) and Assumption 3, we can

provide the convergence rate of Q̂Y (τ | x) for any τ > 1 − π(γ,x). The

limiting distribution of Q̂Y (τ | x) at the change point τ = 1 − π(γ,x) is

then proved based on the assumptions above and the asymptotic properties

of Q̂Y (τ | x) when τ > 1− π(γ,x).

For Q̂Y (τ | x) given τ > 1− π(γ,x), since our proof concerns nonpara-

metric smoothing literature, we first give some definitions and notations.

Let Hr be the collection of all the functions on [a0, b0] such that the mth

order derivative satisfies the Hölder condition of order r −m, i.e. for each

function ϕ ∈ Hr, there exists a constant C0 s.t.
∣∣ϕ(m)(u1)− ϕ(m)(u2)

∣∣ ≤

C0|u1 − u2|r−m, for any u1, u2 ∈ [a0, b0]. This collection of functions is

essential for proving the convergence rate of the spline estimator of Gτs .
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2.4 Assumptions for asymptotic properties

For given β ∈ Θ and τ , we denote: ˜̃θn(β, τ) = argminθ∈RJn E{Lτ,n(θ, β) |

X}, where Lτ,n(θ, β) is the score function eq (2.5) and X are given covariates

whose corresponding Y > 0. We denote ˜̃Gτ,n(u, β) = B⊤(u)˜̃θn(β, τ), where

˜̃θn(β, τ) is from eq (2.7). Now we present assumptions for ˜̃θn and Gτs(·).

Assumption 3

(3.1) There exists r > 3
2
, such that for any τs ∈ (0, 1) we have Gτs ∈ Hr.

(3.2) There exists a constant c0 ∈ (0,+∞), such that

sup
X

∥∥∥∂ ˜̃Gτs,n(x
⊤
i β, β)/∂β − ∂ ˜̃Gτs,n(x

⊤
i βτs , βτs)/∂β

∥∥∥
2
≤ c0∥β − βτs∥2.

for any β in the neighborhood of βτs and τs ∈ (0, 1).

(3.3) For fixed x, assume Gτs(x
⊤βτs) has limited first order derivative with

respect to τs, i.e., supτs∈(0,1)

∣∣∣∂Gτs (x
⊤βτs )

∂τs

∣∣∣ < ∞.

(3.4) For any τs ∈ (0, 1), E∗(x | x⊤βτs = u), which is a function of u, has a

continuous and bounded first derivative.

Assumption (3.1) is commonly used in the nonparametric smoothing

literature (Ma and He, 2016). Assumption (3.2) is a typical assumption in

the regression literature, which can be easily satisfied when the dimension of

covariates is fixed. Assumption (3.3) is used in the proof of the convergence

rate for τ > 1−π(x; γ). Assumption (3.1)-(3.2) with Assumption 2 provides
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2.5 Asymptotic properties for estimation

the constraints of the asymptotic property of normal spline estimator pro-

vided in Ma and He (2016). Also, Assumption 3 together with Assumption

(2.4)-(2.5) ensures that the following matrices exist and positive definite:

Λ1,τs = E[π(γ,x)fϵτs{Gτs(x
⊤βτs) | x}{G(1)

τs (x
⊤βτs)x̃}⊗2],

Ωτs = E[{G(1)
τs (x

⊤βτs)x̃}⊗2], D1,γ = E[π(γ,x){1− π(γ,x)}xx⊤],

where x̃ = x − E∗(x | x⊤βτs), and A⊗2 = AA⊤, and G
(1)
τs (·) is the first

derivative of Gτs(·). Here the matrices Ωτs and Λ1,τs are constructed to

approximate the variance-covariance matrix for the parameter β̂τ̂s .

2.5 Asymptotic properties for estimation

First, we provide the asymptotic normality for the individual estimated

single-index coefficient β̂ ◦ Γ(τ ;x, γ̂n) using the property of B-spline esti-

mator in Ma and He (2016) and the property of logistic regression. Denote

the Moore-Penrose inverse of a matrix A as A+.

Theorem 1 Suppose n → ∞ and n0/n → b0 with 0 < b0 < 1. Under the

Assumptions 1-3, for all x ∈ C, when τ > 1− π(γ,x), we have:

√
n
{
β̂τ̂s − βτs

}
=

√
n
{
β̂ ◦ Γ(τ ;x, γ̂n)− β ◦ Γ(τ ;x, γ)

}
d→ N(0,Σ1 + Σ2),

where Σ1 = b
−1/2
0 Γ(τ ;x, γ) {1− Γ(τ ;x, γ)}Λ+

1,Γ(τ ;x,γ)ΩΓ(τ ;x,γ)Λ
+
1,Γ(τ ;x,γ), Σ2 =
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2.5 Asymptotic properties for estimation

{1− Γ(τ ;x)}2 {1− π(γ,x)}2 x⊤D−1
1,γxx

⊤β̇◦Γ(τ ;x, γ)β̇◦Γ(τ ;x, γ)⊤x, and β̇◦

Γ(τ ;x, γ) =
dβτ

dτ

∣∣∣∣
Γ(τ ;x,γ).

The covariance matrices, Σ1 and Σ2, are constructed using B-spline-

based single-index quantile regression and logistic regression, respectively,

and are then combined through the delta method. Both Λ1,τs and Ωτs

are evaluated conditional on Y > 0 and adjusted for the individual zero-

inflation rate, π(γ,x). That is, π(γ,x) can be viewed as the propensity

score to adjust for the covariance matrix since only the positive Y ’s are

considered to fit the quantile regression model. Then, we construct the

asymptotic consistency for Q̂Y (τ | x) in Theorem 2.

Theorem 2 Suppose n → ∞ and n0/n → b0 with 0 < b0 < 1. Under the

Assumptions 1-3, we have Q̂Y (τ | x) p→ QY (τ | x).

Next, we provide the asymptotic properties for the limiting distribution

of Q̂Y (τ | x) in Theorem 3. For τ < 1 − π(γ,x), Q̂Y (τ | x) converges to 0

super-efficiently due to the property of logistic regression. For the change

point τ = 1−π(γ,x), Q̂Y (τ | x) has different convergence conditions based

on the parameter δ. When τ > 1 − π(γ,x), the usage of the B-spline

basis function makes it infeasible to establish the asymptotic distribution

for Q̂Y (τ | Y > 0,x) as the number of knots Nn0 increases with n0. Thus,

we provide the global convergence rate for Q̂Y (τ | Y > 0,x).
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2.5 Asymptotic properties for estimation

Theorem 3 Under the conditions of Theorem 1-2, given x and τ , we have

the asymptotic convergence for the estimated quantile function as follows:

(i) when τ < 1− π(γ,x), we have
√
n
{
Q̂Y (τ | x)− 0

}
p→ 0;

(ii) when τ = 1−π(γ,x), we denote Q
′
Y (0 | x, Y > 0) as the right derivative

and Z0 ∼ N(0, 1), then we have:

(a) when δ = 0.25,

√
n
{
Q̂Y (τ | Y > 0,x)− 0

}
d→ {1−π(γ,x)}

√
x⊤D−1

1,γx Q
′

Y (0 | x, Y > 0)Z0I(Z0 > 0);

(b) when 0.25 < δ < 0.5, Q̂Y (τ | Y > 0,x)− 0 = OP

(
J

1
2
n n− 1

2 + J−r
n

)
;

(iii) when τ > 1− π(γ,x), we have the global optimal convergence rate as

Q̂Y (τ | Y > 0,x)−QY (τ | Y > 0,x) = OP

(
J

1
2
n n

− 1
2 + J−r

n

)
,

i.e., B
(
x⊤β̂τ̂s

)⊤
θ̃n

(
β̂τ̂s , τ̂s

)
−GΓ(τ ;x,γ)

{
x⊤β ◦ Γ(τ ;x, γ)

}
= OP

(
J

1
2
n n− 1

2 + J−r
n

)
,

where r is defined in Assumption (3.1).

The asymptotic property at the change point mainly depends on the

interpolation region R2,n with length n−δ, in which the threshold for δ is

determined based on the convergence condition at τ = 1 − π(γ,x). When

δ ≤ 0.25, the variance from quantile regression at the change point is con-

trolled by nδ, allowing
√
n convergence, but the slow convergence of the
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interpolation region leads to noticeable bias. For δ ∈ (0.25, 0.5), we achieve

faster convergence of the interpolation region while keeping variance within

a reasonable range. When δ ≥ 0.5, similar to the proof of Theorem 3 (ii)(b),

the convergence rate at the change point slows, and larger δ values result

in growing variance and unstable estimates. In numerical studies, we set

δ = 0.499 as in Ling et al. (2022) for a fair comparison. We also provide

results with δ = 0.250 in Supplement S2.5 and S3.1, which suggests that

the choice of δ does not affect the estimation results very much.

From Theorem 3 (iii), we have the following corollary directly.

Corollary 1 When τ > 1 − π(γ,x), under the conditions of Theorem 3,

we have 1
n

∑n
i=1 Q̂(τ | xi)−Q(τ | xi) = OP

(
J

1
2
n n− 1

2 + J−r
n

)
, i.e.,

1

n

n∑
i=1

B
(
x⊤
i β̂τ̂s

)⊤
θ̃n

(
β̂τ̂s , τ̂s

)
−GΓ(τ ;xi,γ)

{
x⊤
i β ◦ Γ(τ ;xi, γ)

}
= OP

(
J

1
2
n n

− 1
2 + J−r

n

)
.

The proofs for the theorems above are provided in Supplement S1.1.

2.6 Implementation Details

Here, we discuss how to select the nuisance parameters, i.e., the interpo-

lation parameter δ and the number of knots Nn0 , in the proposed ZIQSI

method. As shown in the proof of Theorem 3, a larger δ is preferred for a

faster convergence rate of the interpolation region, yet it may lead to a large
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variance at the change point. Note that our primary focus is constructing

entire quantile curves rather than predicting conditional quantiles at a sin-

gle τ . Estimating the entire curve is generally insensitive to the choice of δ,

and we recommend δ = 0.499 for simplicity. For prediction at a specific τ ,

cross-validation can optimize δ for better performance (Ling et al., 2022).

To estimate βτs , which is required for estimating the quantile curve, we

use equally spaced knots for the orderm B-spline withNn0 = ⌊Cn
1/(2m+1)
0 ⌋+

1, where ⌊a⌋ denotes the integer part of a number, C > 0 is a constant, and

n0 is the number of positive outcomes. The choice of C does not change the

estimation much in a reasonable range (Ma and He, 2016). In our numerical

studies, we set C = 1 and choose Nn0 by finding the first local minimum of

the following BIC criterion: BIC(Nn0) = log
{
L∗∗
τ̂s,n

(θ)
}
+ log(n0)

2n0
(Nn0 +m) .

3. Simulations

We present numerical experiments to assess the performance of the pro-

posed ZIQSI, the method of Ling et al. (2022) (denoted as “ZIQ-linear”),

and the method of Ma and He (2016) (denoted as “Quantile Single-index”).

We mainly focus on quantile-regression-based methods because Ling et al.

(2022) already showed the superiority of their method compared to methods

that require specific parametric assumptions (e.g., ZIP and ZINB), classic
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linear quantile regression without two-part modeling, and the Hurdle regres-

sion model. ZIQ-linear can be viewed as a special case of ZIQSI by setting

the function Gτs(·) as an identity link function. Quantile Single-index per-

forms similarly to the positive part of ZIQSI without adjusting τ by taking

into account logistic regression. The Quantile Single-index model assumes

the outcome to be continuous, and its estimation algorithm often fails to

converge when the data contains a probability mass at zero. To circumvent

this numerical difficulty, we added a small perturbation (N(0, 10−10)) to

the zero-valued outcomes and applied their method to the perturbed data.

For a fair comparison to ZIQ-linear, we use δ = 0.499 for ZIQSI. Additional

simulation results suggest that using a more minor δ, such as δ = 0.250,

does not cause a significant difference in estimation (see Supplement S2.5).

Though ZIQSI provides estimates for both linear index βτs and the

function Gτs(·), namely β̂τ̂s and Ĝτ̂s(·), they are subject-specific and not

comparable, as τ̂s = Γ(τ ;x, γ̂) is a function of x. Therefore, we estimate

quantile functions for 12 individuals, whose health-related covariates x are

representative in real data (Table S2.1 in Supplement S2.1).

To compare the performance of the three methods, we assess the esti-

mated quantile curves Q̂Y (τ | x) by the relatively integrated mean squared

error (RIMSE), the relatively integrated bias-squared (RIBIAS), and the

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0104
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relatively integrated variance (RIVAR) defined as follows:

(1)RIMSE =

∫
E
{
Q̂Y (τ | x)−QY (τ | x)

}2

dτ

/∫
QY (τ | x)2dτ,

(2)RIBIAS =

∫ {
EQ̂Y (τ | x)−QY (τ | x)

}2

dτ

/∫
QY (τ | x)2dτ,

(3)RIVAR =

∫
E
{
Q̂Y (τ | x)− EQ̂Y (τ | x)

}2

dτ

/∫
QY (τ | x)2dτ.

All three measurements are based on fixed x and standardized by the

squared scale of the quantile curve integrated through the entire process

τ ∈ (0, 1). The integrals in the three measurements are numerically ap-

proximated by the Riemann sums on τ = 0.01, 0.02, · · · , 0.99.

3.1 Simulation settings

The dataset is simulated to mimic the real microbiome count data, with

Y being the read counts and x = (x1, x2, x3, x4, x5)
⊤ being covariates,

according to the distribution from real data. For the covariates x, we

generate x1 ∼ Bernoulli(0.5) for medicament, x2 ∼ N(28, 22) for BMI,

x3 ∼ N(92.5, 132) for waist circumference, x4 ∼ N(80, 122) for diastolic

blood pressure, and x5 ∼ N(124, 18.52) for systolic blood pressure. For

each dataset, we generated (xi, yi) for i = 1, · · · , n with the sample size

n = 500, similar to the sample size of the real data application. For

the ith subject xi = (xi,1, · · · , xi,5)
⊤, we first randomly simulated a vari-
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3.1 Simulation settings

able τi ∼ Unif(0, 1) representing the quantile level of the ith individual

and Di from a Bernoulli distribution with a success probability defined

as P (Di = 1 | xi) = π(γ,xi) =
exp(γ0+

∑5
j=1 γjxi,j)

1+exp(γ0+
∑5

j=1 γjxi,j)
, where the parame-

ter γ = (−0.4,−0.480,−0.022, 0.021, 0.015,−0.009)⊤ were set to control

the proportion of zeros in outcomes. Then, we set yi = 0 if Di = 0. If

Di = 1, we generated the microbial count from the following quantile func-

tion: QY (τi | xi, Yi > 0) = Gτi

(
β0(τi) + x⊤

i β(τi)
)
, where the two sets of the

true coefficients β(τ) = (β1(τ), β2(τ), β3(τ), β4(τ), β5(τ))
⊤ and the quantile

functions Gτ (·) are simulated to mimic the distributions of a taxon in our

real data analysis (see Supplement S2.1): β0(τ) = −147.7τ − 50τ 2 − 20,

β1(τ) = 0.6
√
τ − 2τ , β2(τ) = 2.2τ 2, β3(τ) = 2

3
τ 2 − 1

3
τ + 0.4, β4(τ) =

−0.1 sin(2πτ), β5(τ) = −0.6τ 2 +2τ , and Gτ (x) =
1
6
τx4 × 10−5 + 1

15
τx2. We

provide the comparison between the distributions of the read count gener-

ated by our simulation setting and the read count of one real taxon count

in Supplement S2.1 (Figure S2.1). Simulation results are presented based

on 500 Monte Carlo replicates. Our method takes approximately 30 sec-

onds to estimate the quantile regression model on a grid of nominal levels

τ = 0.01, · · · , 0.99 on a macOS machine with an Apple M2 chip.
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3.2 Results for model fitting

3.2 Results for model fitting

We use the samples (xi, yi) for i = 1, · · · , 500 and the measurements above.

From Table 1, we observe that the proposed ZIQSI method has a signif-

icantly smaller bias (RIBIAS) compared to both ZIQ-linear and Quantile

Single-index. The RIVAR and RIMSE of ZIQSI and Quantile Single-index

are comparable, and ZIQ-linear could have surprisingly large RIMSE due

to large RIBIAS (e.g., subjects 1 and 2) as well as RIVAR (e.g., subjects 9

and 10). In general, ZIQ-linear performs worse than Quantile Single-index

because the linear assumption on the quantile function for the positive part

Y > 0 is violated. We also assess the simulation results where Gτ (x) = τx

is a simple linear function in Supplement S2.7, and the result is consistent

with our expectations.

We further report the average proportion of negative predicted counts

over the quantile process τ ∈ (0, 1) for three methods in Table S2.2 in

Supplement S2.2. Based on Table 1 and Table S2.2 in Supplement S2.2,

we observe that ZIQ-linear has a small portion of negative predictions but

severe bias; meanwhile, Quantile Single-index suffers from a large portion

of negative predictions, though the estimation bias is moderate. To elim-

inate the effect of results below zero, we present the results truncated at
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3.2 Results for model fitting

Table 1: Summary of RIMSE(%), RIBIAS(%), RIVAR(%) of the estimated
conditional quantile functions by ZIQSI, ZIQ-linear(ZIQ), and Quantile
Single-index(QSI).

RIBIAS RIVAR RIMSE
ID ZIQSI ZIQ QSI ZIQSI ZIQ QSI ZIQSI ZIQ QSI
1 0.19 21.18 1.14 3.20 5.25 2.81 3.39 26.43 3.95
2 0.07 21.29 0.44 3.96 6.19 3.94 4.03 27.48 4.38
3 0.24 4.07 1.10 1.54 1.63 1.49 1.78 5.70 2.59
4 0.04 4.17 0.13 1.67 1.66 1.82 1.71 5.83 1.95
5 0.10 2.53 0.76 3.31 1.01 3.62 3.41 3.54 4.38
6 0.04 2.34 0.13 3.80 1.20 3.80 3.84 3.54 3.93
7 0.34 1.23 0.84 3.09 2.00 2.95 3.43 3.23 3.79
8 0.12 1.27 0.65 3.54 2.27 3.55 3.66 3.54 4.20
9 0.13 19.12 1.01 1.57 4.30 2.36 2.70 23.42 3.37
10 0.02 18.88 0.15 3.01 4.83 3.14 3.03 23.71 3.29
11 0.02 9.04 0.99 1.98 2.22 1.53 2.00 11.26 2.54
12 6.26e−5 9.93 0.12 2.25 2.55 2.42 2.25 12.48 2.54

zero in Supplement S2.3 (see Table S2.3), where our method remains its

advantages. The proposed method ZIQSI shows its superiority regarding

the smallest integrated bias and a reasonably small portion of predictions

below zero.

For each subject, we also visualize the estimation performance of each

method across the quantile process τ ∈ (0, 1). We reported the average

estimated quantile curves and their 95% confidence intervals based on the

500 estimations above. The confidence interval is constructed based on the

percentile of the empirical distribution of Q̂Y (τ | x) at a given τ . We show

subject 11 in Figure 2 and present others in Supplement S2.4. We observe
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Figure 2: Quantile curves based on 500 times estimations (Subject 11).

that both Quantile Single-index and ZIQ-linear have an obvious bias, and a

larger estimation bias of ZIQ-linear is observed at upper quantiles. Similar

patterns are observed for other individuals (Supplement S2.4). The simu-

lation results for AQE indicate that ZIQSI provides the most accurate and

stable estimation compared to the other two methods (Supplement S2.6).

4. Application

In this section, we illustrate the performance of our ZIQSI method by the

study of Columbian’s Gut (De la Cuesta-Zuluaga et al., 2018; Gonzalez

et al., 2018), with the dataset publicly available at https://qiita.ucsd.

edu/. We compare the proposed method (ZIQSI) with the method of Ling

et al. (2022) (ZIQ-linear) and the method of Ma and He (2016) (Quantile

Single-index) by assessing model fitting from the population and individual
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4.1 Data description

perspectives. As in Section 3, we use δ = 0.499 for a fair comparison with

ZIQ-linear. The results of using a smaller δ are similar and are provided in

Supplement S3.1. We have also developed an R package implementing our

method, which is available at https://github.com/tianyingw/ZIQSI/.

4.1 Data description

The dataset contains microbiome counts of over 6000 taxa for 441 adults,

along with covariates related to diet, obesity, and cardiometabolic diseases.

We consider taxa with observed zero proportions less than 0.8, as a larger

percentage of zeros commonly leads to unreliable results (Wadsworth et al.,

2017; Jiang et al., 2021; Zhang and Yi, 2020). From Figure 3, we observe

that a large number of taxa are heavily zero-inflated, and the observed

counts are overdispersed.
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Figure 3: Histogram for microbiome counts.
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4.2 Goodness-of-fit

Following the study of De la Cuesta-Zuluaga et al. (2018), we ana-

lyzed taxa counts with health-related covariates as follows: anthropometric

measures (age, BMI, sex, waist circumstance), lipid profile (adiponectin,

total cholesterol, HDL, LDL, triglycerides), glucose metabolism (glucose,

glycosylated hemoglobin, insulin), blood pressure (diastolic blood pressure,

systolic blood pressure), city, medicament, and macronutrient consumption

(fiber, percentage of animal protein, carbohydrates, monounsaturated fat,

polyunsaturated fat, saturated fat, total fat, protein). Among them, cate-

gorical variables, such as sex, medicament, and city, are treated as dummy

variables. We further removed 3 subjects for missing values and 2 subjects

for extremely high values of triglycerides over 800 mg/dL, resulting in 436

samples in our analysis. We analyzed 535 taxa with observed zero propor-

tions in the range of 0.1-0.8. As a common practice in other microbiome

studies (Xia et al., 2018), we adjust for the library size, which is the sum

of all 535 taxa counts per person.

4.2 Goodness-of-fit

To provide a thorough analysis, we used a representative taxon, namely

Slackia, which has the third highest abundance out of 97 taxa in the

Coriobacteriaceae family from the co-abundance groups Prevotella based
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on hierarchical clustering with Ward’s linkage (Claesson et al., 2012). We

assessed model fitting and quantile curve estimation from different perspec-

tives. We also analyzed taxa with varying degrees of zeros and provided

results in Supplement S3.2.

To assess the goodness of fit for a model, we adopt the measurement

used in Ling et al. (2022) and Heyman et al. (1991) to compare the distri-

bution of the observed data and the predicted values from fitted models.

We first fit the model based on the aforementioned three methods. Then,

a quantile level τ is randomly drawn from Unif(0, 1), and Q̂Y (τ | X) is

reported as the fitted microbiome counts given observed covariates. The

computation time for estimating the quantile single-index models on the

nominal quantile levels τ = 0.01, · · · , 0.99 is around 32 seconds on a ma-

cOS machine with an Apple M2 chip.

From Figure 4, we observe that the proposed ZIQSI method better fits

the taxon Slackia compared to the other two methods, especially at two

tails. On the contrary, both ZIQ-linear and Quantile Single-index predicted

counts below zero, which is against the non-negativity of the number of

microorganisms. Model fitting results for other taxa also suggest a similar

pattern (see Supplement S3.2). Though ZIQ-linear commonly has a smaller
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Figure 4: Histogram plot of Slackia.

proportion of negative predicted counts compared to Quantile Single-index,

the values could be as small as −500 (Supplement S3.2 Figure S3.8). Quan-

tile Single-index often has many negative predicted counts, which is con-

sistent with the simulation results. To investigate the lack of goodness of

fit for ZIQ-linear and Quantile Single-index methods, we provide detailed

discussions from the population and individual perspectives below.

4.3 Estimated quantile curves

As the quantile effect is caused by the logistic and quantile single-index

components, visualizing it is more complicated than simply presenting β̂τ

or Ĝτ (x
⊤β̂τ ). It needs to be highlighted that the effect of covariates in the

logistic regression also plays a role through Γ(τ ;x, γ̂n) (i.e., τ̂s). That is,
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given a fixed τ and γ̂n estimated from logistic regression, β̂τ̂s = β̂Γ(τ ;x,γ̂n)

is a function of x. Thus, we visualize the quantile effects for covariates by

fixing τ while changing x, or vice versa.

First, we present how Q̂Y (τ ;x) changes with x at given τ . For il-

lustration, we consider the distinct variable systolic blood pressure (de-

noted as “systolic bp”) as the target covariate and take the other covariates

fixed, since systolic bp has a significant effect on the abundance of Slackia

(De la Cuesta-Zuluaga et al., 2018). Specifically, the continuous covariates

are fixed at their average levels, and we take binary/categorical covariates

“sex” as female, “medicament” as 1, and “city” as Cali. Using the mi-

crobiota Slackia as an example again, we present the estimated quantile

curves Ĝτ (x
⊤β(τ)) regarding different levels of systolic bp at the nominal

quantile levels τ = {0.5, 0.6, 0.7} in Figure 5. Of note, though the nominal

quantile level τ is fixed, τs, adjusted by the logistic regression, changes with

different levels of systolic bp. Thus, the points in Figure 5 do not align well,

and we provided B-spline fitted curves based on the estimated points. We

observe that ZIQ-linear has the quantile crossing issue when the systolic bp

is larger than 160. That is, the estimated counts at τ = 0.6 are lower than

the ones at τ = 0.5 and higher than the ones at τ = 0.7, which violates
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the monotonic nature of quantiles. Also, the predicted counts at τ = 0.6

with ZIQ-linear are negative with large systolic bp values, which explains

the negative predicted values we observed in the histogram (Figure 4).
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Figure 5: Predicted counts for taxon Slackia with the change of systolic

bp (other covariates are fixed).

From Figure 5, we observed that the predicted counts from ZIQ-linear

and ZIQSI have a similar decreasing pattern with the increase of systolic

bp, though ZIQ-linear has some unreasonable predictions. The estimated

quantile curves by the Quantile Single-index method, however, showed a

different trend as it does not adjust the quantile level τ and assumes the

probability of observing a zero outcome is the same for every subject. Thus,

we further illustrate the difference between the pre-fixed quantile level τ

and its adjusted version τ̂s. In Figure 6(a), the quantile curves estimated
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Figure 6: Compare the estimated quantile curve with original and adjusted

quantile levels. (a): Estimated quantile curves from ZIQSI with unadjusted

τ . (b): Mapping τ = 0.7 to τ̂s through Γ(τ,x, γ̂n) with the change of systolic

bp (x). (c): Estimated quantile curves from ZIQSI with adjusted τ̂s (purple

curve), while the quantile level is fixed at τ = 0.7.

by ZIQSI with the fixed quantile levels τ have similar trends as the curves

estimated by the Quantile Single-index method (Figure 5 (right)). Then,

when we consider a quantile level τ = 0.7, its mapped quantile level τ̂s

is decreasing with the increase of systolic bp owing to its negative effect

(Figure 6(b)), as systolic bp has a negative estimated coefficient in the

logistic regression, which means a higher systolic bp level can lead to a

lower nominal τ̂s. Naturally, the change of τ̂s results in the accelerated

decreasing curve Ĝτ̂s(x
⊤β̂τ̂s) (Figure 6(c)), which is consistent with the
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results presented in Figure 5 (left). For ZIQ-linear, the trend of its estimated

quantile curves is similar to ZIQSI, as the adjustment for τ through logistic

regression (i.e., γ̂n) remains the same.

Then, we show the estimated quantile curve Q̂Y (τ ;x) for a specific sub-

ject. Among the subjects whose predicted counts are negative, we randomly

select one sample and present the fitted quantile curves (Figure 7). The pro-

posed ZIQSI method reasonably estimates the entire quantile curve, while

ZIQ-linear showed a non-monotone curve with the increase of τ , which is

counter-intuitive and against the nature of quantiles. Further, ZIQ-linear

has negative predictions, which is counter-intuitive as the response is re-

quired to be non-negative. We also present the effect of a specific covariate

by comparing the AQE based on each method (see Supplement S3.3).
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Figure 7: Predicted quantile curve of subject X11993.MI385H.
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5. Discussion

In this paper, we focus on statistical modeling for zero-inflated and overdis-

persed microbiome data. To relax parametric assumptions in existing two-

part modeling approaches and provide more flexibility in handling complex

associations, we propose a novel semiparametric single-index quantile re-

gression model that first extends single-index quantile regression models to

zero-inflated and overdispersed outcomes. Both the theoretical and empiri-

cal works suggest that this method outperformed in modeling zero-inflated

and overdispersed outcomes.

Several interesting topics warrant further investigation. First, current

quantile regression methods for zero-inflated data, including our ZIQSI

method, do not enforce non-negativity, potentially leading to negative pre-

dictions due to numerical issues. Adding a non-negativity constraint to the

link function Gτ could address this; see (Cannon, 2018) for an example in

composite quantile regression. Next, while our method accommodates high-

dimensional covariates via single-index models, it may struggle with high-

dimensional data. Incorporating regularization (Li and Yin, 2008; Peng

and Huang, 2011) or using semiparametric dimension reduction (Ma and

Zhu, 2012) could improve performance, though this would require refining
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the asymptotic theory. Challenges also arise when the number of covari-

ates grows with sample size, complicating the nonparametric estimation of

Gτ (·) and the linear index. Lastly, our method focuses on normal quantile

levels, but estimating tail quantiles is particularly challenging, especially as

τn approaches 1 at the rate n(1− τn) → c > 0 (Xu et al., 2022). Extending

the tail single-index model (Xu et al., 2022) to zero-inflated data presents

a promising avenue, as zero inflation further complicates extreme quantile

estimation by reducing the effective sample size.

Supplementary Material:

The online Supplementary Material contains the proofs of the theorems and

the additional results for simulation and application.
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