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Abstract: Group testing has been used extensively to reduce screening costs in

epidemiological studies involving low-prevalence diseases. This testing strategy

involves combining specimens (e.g., blood, urine, swabs, etc.) from several in-

dividuals to form a pool and then testing the pooled specimen for infection.

When the endpoint of interest is a time-to-event outcome, for example, the time

until infection or disease, and pools are measured only once, the resulting data

are called group-tested current status data (Petito and Jewell, 2016). In this

paper, we propose a new type of regression analysis for these data using a semi-

parametric probit model, an alternative to the proportional hazards model in

survival analysis. A sieve maximum likelihood estimation approach is developed

that approximates the model’s nonparametric nuisance function by using loga-

rithmic monotone splines, and an efficient expectation-maximization algorithm

is proposed. Asymptotic properties of the resulting estimators are investigated

by using empirical process techniques and sieve estimation theory. Numerical re-
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sults from simulation studies suggest our estimation methods perform nominally,

even when pools are possibly misclassified due to assay error, and can outper-

form individual testing when the number of assays (tests) is fixed. We illustrate

our work by estimating a time-to-event regression model for chlamydial infection

using group testing data from a large public health laboratory in Iowa.

Key words and phrases: Current status data, EM algorithm, Maximum likelihood

estimation, Pooled testing, Sieve estimation.

1. Introduction

Group testing was originally proposed by Dorfman (1943) to screen mem-

bers of the United States military for syphilis during World War II. This

strategy works by collecting a biological specimen (e.g., blood, urine, swab,

etc.) from different individuals and pooling the specimens together. The

pooled specimen is then tested for infection or disease. If a pooled specimen

tests negatively, then all individuals in the pool are declared to be nega-

tive at the expense of a single test. If a pooled specimen tests positively,

individuals within it can be retested one at a time or in some other prede-

termined manner. When the disease of interest has low prevalence, group

testing can save time and money when compared to testing each individual

separately. The sexually transmitted disease literature is replete with ap-

plications of pooling biological specimens for bacterial and viral infections
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(Westreich et al., 2008; Lewis et al., 2012), and, more recently, group testing

garnered widespread attention in the early stages of the covid-19 pandemic

(Abdalhamid et al., 2020; Pilcher et al., 2020). Other applications of group

testing include DNA library screening (Berger et al., 2000), drug discovery

(Xie et al., 2001), environmental monitoring (Heffernan et al., 2014), food

pathogen testing (Mester et al., 2017), blood donor safety (Saá et al., 2018),

and veterinary medicine (Baruch et al., 2020).

Since Dorfman’s seminal work, statistical research in group testing has

flourished, and a large number of regression methods have been developed

for analyzing group testing data when individual covariate information is

available. The first regression approach came from Farrington (1992), who

estimated a specific generalized linear model under the assumption that in-

dividual covariates within pools were identical. Vansteelandt et al. (2000)

and Xie (2001) separately extended this work to include any generalized

linear model with pools having possibly different covariate values. Huang

and Tebbs (2009) and Chen et al. (2009) examined group testing regres-

sion in the presence of covariate measurement error and random effects,

respectively. Delaigle and Meister (2011) and Delaigle and Hall (2012) de-

veloped nonparametric approaches with a single continuous covariate and

offered rigorous asymptotic evaluations. Wang et al. (2014) proposed a
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general semiparametric framework that can incorporate multiple covariates

and disease misclassification. McMahan et al. (2017) provided a Bayesian

approach to estimate both a generalized linear model for disease status and

accuracy rates of the assays used.

All of the articles cited in the previous paragraph, and many others not

cited, propose regression techniques for group testing when the endpoint is

binary, that is, an individual is diseased or not. However, in some appli-

cations, the endpoint of interest is not the disease status itself, but rather

the time until the onset of disease. Estimating time-to-event characteristics

for individuals with group testing data is challenging because individuals

are tested in pools and the pools themselves are usually only tested at one

time−at the time when screening occurs. An additional complication arises

when pools are misclassified due to inherent assay error. Pools which are

truly positive may test negatively if there are dilution effects; on the other

hand, pools which are truly negative may test positively if there are syner-

gistic or additive effects among the negative specimens (Xie et al., 2001).

Therefore, the true individual disease onset times are not observed due to

the current status data structure and assessments of pools for disease status

at the time of testing are potentially error-laden.

Despite these complex challenges, some progress has been made in com-
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bining time-to-event analysis with group testing. Petito and Jewell (2016)

first studied the current status data problem with pools in the absence of

covariates and proposed a constrained expectation-maximization (EM) al-

gorithm to estimate the population-level survival function of the time until

disease onset. These authors performed an analysis for hepatitis C infec-

tion among American women of child-bearing age, showing that estimating

time-to-disease characteristics with individual current status data can pro-

vide results and conclusions similar to those with current status data from

group testing. More recently, when subject-specific covariates are available,

Li et al. (2024) developed an EM algorithm to estimate a proportional haz-

ards (PH) regression model (Cox, 1972) for the time until disease onset with

group testing data. These authors adopted a sieve estimation approach by

first approximating the cumulative baseline hazard function with a piece-

wise constant function and then proceeded to derive asymptotic properties

of the resulting maximum likelihood estimators. An interesting theoretical

finding was that, under certain conditions, large-sample properties of esti-

mators from group testing were identical to those from individual testing

with the same number of tests.

In this paper, we explore further the merger of time-to-event analysis

with current status data from studies which use group testing as a cost-
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saving strategy. Our work focuses on estimating a semiparametric probit

regression model with current status responses from group testing, thereby

extending previous work by authors who have considered this model with

data from individual testing (Shiboski, 1998; Lin and Wang, 2010; Huang

and Cai, 2016; Wu and Wang, 2019; Du et al., 2019; Fang et al., 2023).

To estimate the model, we first approximate the nonparametric nuisance

function with logarithmic monotone splines and propose an EM algorithm

to obtain sieve maximum likelihood estimators of all model parameters.

When compared to Li et al. (2024), a practical advantage of considering

probit regression is its highly efficient implementation. All conditional ex-

pectations in the E-step are in closed form, and the objective function in

the M-step has a tractable form making it easy to optimize. In particu-

lar, finite-dimensional spline coefficients can be quickly updated by using

a Newton-Raphson algorithm, and regression parameter estimators have

closed-form solutions. Adopting empirical process techniques and sieve es-

timation theory, maximum likelihood estimators of the regression parame-

ters are shown to be consistent, asymptotically normal, and asymptotically

efficient. Furthermore, unlike Li et al. (2024), which uses a time-consuming

resampling procedure to estimate the covariance matrix of the regression

parameter estimators, we obtain variance estimates using a profile likeli-
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hood method which is straightforward to implement and computationally

efficient.

Subsequent sections are organized as follows. In Section 2, we describe

the data observed from a study which uses group testing, the proposed pro-

bit model for a time-to-event analysis, and the observed data likelihood.

We also discuss the corresponding model assumptions and our use of mono-

tone splines for the nuisance function in the model. In Section 3, we provide

specific details on our EM algorithm, and, in Section 4, we summarize a rig-

orous asymptotic evaluation of the estimators. In Section 5, we present the

results of a simulation study to characterize finite-sample performance. In

Section 6, we illustrate our time-to-event methods using a chlamydia data

set from the State Hygienic Laboratory at University of Iowa. In Section 7,

we conclude with a summary discussion. Additional results and technical

details are given in the Supplementary Material.

2. Model, Data, and Likelihood

Consider a study involving N individuals whose disease statuses (e.g., HIV,

chlamydia, etc.) are mutually independent. We assume individual spec-

imens (e.g., blood, urine, swabs, etc.) are randomly assigned to n non-

overlapping pools which are then tested for disease. Denote by Ji the size
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of the ith pool, for i = 1, . . . , n, so that N =
∑n

i=1 Ji. Let Tij denote

the disease onset time and let Zij denote the p × 1 vector of covariates

for the jth individual in the ith pool. To relate Tij to the covariates Zij,

we consider a semiparametric probit model, which specifies the conditional

cumulative distribution function (cdf) of Tij given Zij is

F (t | Zij) = Φ{α(t) + β⊤Zij}, (2.1)

where Φ(·) is the cdf of a standard normal random variable, β is a p × 1

vector of covariate effects, and α(·) is an increasing function with α(0) =

−∞ and α(∞) = ∞. Note that the model in (2.1) arises from

α(Tij) = −β⊤Zij + εij,

where εij, i = 1, . . . , n, j = 1, . . . , Ji are mutually independent standard

normal random variables. We note in passing that if one lets α(t) = log(t)

in (2.1) and allows the distribution of εij to remain unspecified, the pro-

bit model above coincides with the popular accelerated failure time (AFT)

model (Jin et al., 2003; Zeng and Lin, 2007; Chiou et al., 2015). That

is, both the probit and AFT models directly relate a transformed disease

onset time Tij to the covariates. Our goal is to estimate (2.1) using possi-

bly misclassified current status responses from group testing. We assume

throughout the covariates in Zij are not time dependent.
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Let ϕij = I(Tij ≤ Xij) denote the true disease status of the jth individ-

ual in the ith pool at testing time Xij, where I(·) is the indicator function.

Note that ϕij is unobserved because individuals are pooled, and Xij can

be subject-specific, for example, an individual’s age at testing. The true

disease status of the ith pool is denoted by ∆i = max(ϕij; j = 1, . . . , Ji),

that is, ∆i = 1 if the ith pool contains at least one diseased individual and

∆i = 0 otherwise. To incorporate misclassification due to assay error, we

let Yi = 1 if the ith pool tests positively for disease, Yi = 0 otherwise, and

let ν = P (Yi = 1 | ∆i = 1) and ω = P (Yi = 0 | ∆i = 0) denote the sensi-

tivity and the specificity, respectively, of the assay used to provide the test

outcomes. We assume ν and ω are known constants (with ν + ω > 1) and

do not depend on Xij and Zij. In practice, excellent estimates of ν and ω

are usually available from assay validation experiments which are published

in the infectious disease or product literature, a topic we discuss further in

Section 6. We also demonstrate in Section 6 how different sets of ν and ω

can be used for different pools.

The observed data for analysis consist of the group testing outcomes Yi,

the observation (testing) times Xij, and the covariates Zij. The observed

data likelihood is
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L(β, α) =
n∏

i=1

(
ν − γ

Ji∏
j=1

[
1− Φ

{
α(Xij) + β⊤Zij

}])Yi

×

(
1− ν + γ

Ji∏
j=1

[
1− Φ

{
α(Xij) + β⊤Zij

}])1−Yi

,

where γ = ν + ω − 1. The likelihood function L(β, α) disregards multi-

plicative constants which are not relevant and is derived by making a non-

informative censoring assumption, that is, Tij and Xij are conditionally

independent given Zij. The expressions inside the largest parentheses are

P (Yi = 1 | Di) and P (Yi = 0 | Di), respectively, where Di = {Xij,Zij; j =

1, . . . , Ji}, for i = 1, . . . , n. Under our assumptions, it follows that

P (∆i = 0 | Di) = P (Ti1 > Xi1, . . . , TiJi > XiJi | Di)

=

Ji∏
j=1

[
1− Φ

{
α(Xij) + β⊤Zij

}]
and P (Yi = 1 | Di) = ν − γP (∆i = 0 | Di).

As noted in Li et al. (2024), there is no partial likelihood method avail-

able for current status data from group testing, so one must estimate β

and α(·) simultaneously. Because α(·) is infinite-dimensional, we invoke

an approximation for it as is common in the survival analysis literature; in

particular, we use a logarithmic monotone splines approximation

αn(t) = log

{
Ln∑
l=1

ξlbl(t)

}
,
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where the bl’s are integrated spline basis functions, each non-decreasing

over (0, 1), and the ξl’s are non-negative spline coefficients (Ramsay, 1988).

To construct the basis functions, it is necessary to specify a sequence of qn

increasing points as interior knots and to choose the order k for the splines.

One can use linear, quadratic, and cubic functions by setting k = 1, k = 2,

and k = 3, respectively. The Ln = qn + k basis functions are determined

when the interior knots and order have been specified. After approximation,

the observed data likelihood can be written as

L(β, ξ) =
n∏

i=1

(
ν − γ

Ji∏
j=1

[
1− Φ

{
αn(Xij) + β⊤Zij

}])Yi

×

(
1− ν + γ

Ji∏
j=1

[
1− Φ

{
αn(Xij) + β⊤Zij

}])1−Yi

, (2.2)

where ξ = (ξl, . . . , ξLn)
⊤ is regarded to be a vector of unknown spline coeffi-

cients. Maximizing L(β, ξ) or logL(β, ξ) directly is terribly difficult due to

its intractable form. We therefore develop an EM algorithm to determine

maximum likelihood estimators of β and ξ.

3. Estimation

Our estimation procedure uses three layers of data augmentation. In the

first and second layer, we introduce the true pool and individual statuses,

∆i and ϕij, respectively, as latent random variables yielding the augmented
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data likelihoods

L1(β, ξ) =
n∏

i=1


(
1−

Ji∏
j=1

[
1− Φ

{
αn(Xij) + β⊤Zij

}])∆i

×

(
Ji∏
j=1

[
1− Φ

{
αn(Xij) + β⊤Zij

}])1−∆i

P (Yi | ∆i)


and

L2(β, ξ) =

n∏
i=1

Ji∏
j=1

[
Φ
{
αn(Xij) + β⊤Zij

}]ϕij
[
1− Φ

{
αn(Xij) + β⊤Zij

}]1−ϕij
P (Yi | ∆i),

respectively, where P (Yi | ∆i) = {νYi (1 − ν)1−Yi}∆i {(1 − ω)Yi ω1−Yi}1−∆i

and ∆i = I(
∑Ji

j=1 ϕij > 0), for i = 1, . . . , n. In the third layer, we introduce

the set of latent variables {Gij; i = 1, . . . , n, j = 1, . . . , Ji}, where Gij =

αn(Xij) + β⊤Zij + εij and εij are mutually independent standard normal

random variables, so that P (ϕij = 1 | Di) = P (Gij ≥ 0 | Di) = Φ{αn(Xij)+

β⊤Zij}. Incorporating all three layers of augmentation, the complete data

likelihood function is

Lc(β, ξ) =
n∏

i=1

Ji∏
j=1

1√
2π

exp

[
−1

2

{
Gij − β⊤Zij − αn(Xij)

}2]
P (Yi | ∆i),

with the constraints Gij ≥ 0 if ϕij = 1 and Gij < 0 if ϕij = 0, for each i

and j. Removing constants that are not relevant, the complete data log-

likelihood function can be written as
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lc(β, ξ) =

−1

2

n∑
i=1

Ji∑
j=1

[
Gij − β⊤Zij − log

{
Ln∑
l=1

ξlbl(Xij)

}]2
{ϕij1(Gij≥0)+(1−ϕij)1(Gij<0)},

where 1A is an indicator function for the event A.

We now describe the expectation and maximization steps. In the E-

step, one takes the expectation of lc(β, ξ) with respect to all latent variables

(∆i, ϕij, and Gij), conditional on the observed data Oi = {(Yi, Xij,Zij); i =

1, . . . , n, j = 1, . . . , Ji} and current parameters β(m) and ξ(m). Omitting

unnecessary constants, this yields the objective function

Q(β, ξ;β(m), ξ(m)) =

− 1

2

n∑
i=1

Ji∑
j=1

E(ϕij)

[
µ+
ij − β⊤Zij − log

{
Ln∑
l=1

ξlbl(Xij)

}]2

+ {1− E(ϕij)}

[
µ−
ij − β⊤Zij − log

{
Ln∑
l=1

ξlbl(Xij)

}]2 ,

where µ+
ij and µ−

ij are the expectations of Gij under the constraints Gij ≥

0 and Gij < 0, respectively. Note that µ+
ij, µ−

ij, and E(ϕij) are really

conditional expectations given Oi, β(m), and ξ(m), but we do not emphasize

this in the notation for ease of exposition. Using properties of the truncated

normal distribution and Bayes’ Theorem, we obtain closed-form expressions
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for each expectation; these are

µ+
ij = Z⊤

ijβ
(m) + log

{
Ln∑
l=1

ξ
(m)
l bl(Xij)

}
+

φ[Z⊤
ijβ

(m) + log{
∑Ln

l=1 ξ
(m)
l bl(Xij)}]

Φ[Z⊤
ijβ

(m) + log{
∑Ln

l=1 ξ
(m)
l bl(Xij)}]

µ−
ij = Z⊤

ijβ
(m) + log

{
Ln∑
l=1

ξ
(m)
l bl(Xij)

}
−

φ[Z⊤
ijβ

(m) + log{
∑Ln

l=1 ξ
(m)
l bl(Xij)}]

1− Φ[Z⊤
ijβ

(m) + log{
∑Ln

l=1 ξ
(m)
l bl(Xij)}]

,

where φ(·) is the probability density function of a standard normal random

variable and

E(ϕij) =
νYi Φ[Z

⊤
ijβ

(m) + log{
∑Ln

l=1 ξ
(m)
l bl(Xij)}]

ν − γ
∏Ji

j=1

(
1− Φ[Z⊤

ijβ
(m) + log{

∑Ln

l=1 ξ
(m)
l bl(Xij)}]

)
+

(1− ν)(1− Yi) Φ[Z
⊤
ijβ

(m) + log{
∑Ln

l=1 ξ
(m)
l bl(Xij)}]

1− ν + γ
∏Ji

j=1

(
1− Φ[Z⊤

ijβ
(m) + log{

∑Ln

l=1 ξ
(m)
l bl(Xij)}]

) .
Additional details on the derivation of these conditional expectations are

given in the Supplementary Material. The M-step then updates β(m) and

ξ(m) by maximizing Q(β, ξ;β(m), ξ(m)) with respect to β and ξ. Solving

∂Q(β, ξ;β(m), ξ(m))/∂β = 0 renders a closed-form solution as a function of

ξ, that is,

β(m+1)(ξ) =

(
n∑

i=1

Ji∑
j=1

ZijZ
⊤
ij

)−1

×
n∑

i=1

Ji∑
j=1

Zij

[
E(ϕij)µ

+
ij + {1− E(ϕij)}µ−

ij − log

{
Ln∑
l=1

ξlbl(Xij)

}]
. (3.1)

Because the spline coefficients in ξ are non-negative, we reparameterize

to avoid constrained optimization. Substituting β(m+1) = β(m+1)(ξ) into
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Q(β, ξ;β(m), ξ(m)) and replacing each ξl with exp(ξ∗l ), the score equation

for ξ∗l is

n∑
i=1

Ji∑
j=1

[
E(ϕij)µ

+
ij + {1− E(ϕij)}µ−

ij −Z⊤
ijβ

(m+1)

− log

{
Ln∑
l=1

exp(ξ∗l )bl(Xij)

}]
exp(ξ∗l )bl(Xij)∑Ln

l=1 exp(ξ
∗
l )bl(Xij)

= 0. (3.2)

This equation has a tractable form, so we can readily obtain ξ
∗(m+1)
l by

using a simple Newton-Raphson algorithm and then calculate ξ
(m+1)
l =

exp(ξ
∗(m+1)
l ) for l = 1, . . . , Ln.

Summarizing, a step-by-step description of our EM algorithm to deter-

mine maximum likelihood estimates β̂ and ξ̂ is provided below.

Step 1. Set m = 0 and initialize β(0) and ξ(0).

Step 2. At the (m+1)st iteration, calculate the conditional expectations µ+
ij,

µ−
ij, and E(ϕij) at β(m) and ξ(m).

Step 3. Calculate β(m+1) = β(m+1)(ξ(m)) by using Equation (3.1).

Step 4. For each l = 1, . . . , Ln, calculate ξ
∗(m+1)
l by solving Equation (3.2)

where the other components in ξ∗ = (ξ∗1 , . . . , ξ
∗
Ln
)⊤ are set at their

mth updates. Set ξ
(m+1)
l = exp(ξ

∗(m+1)
l ).

Step 5. Increase m by 1 and repeat Steps 2-4 until convergence is achieved.

We have found that our algorithm’s performance is robust to the choice

of initialization. In practice, one can set the initial value of each component
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in β to be 0 and initial values of the spline coefficients to be Ln randomly

generated values from an exponential distribution with mean 1/7. Conver-

gence is declared when the maximum of all absolute differences between two

successive iterations is less than a small positive constant; e.g., ϵ = 10−4.

4. Asymptotic Properties

We now summarize the large-sample properties of the estimators in Section

3. Define Θ = {θ = (β, α) ∈ B ⊗ A}, where B is a compact set in Rp

and A contains all bounded and continuous non-decreasing functions over

[τ1, τ2], with 0 < τ1 < τ2 < ∞. Define Θn = {(β, αn) ∈ B ⊗ An}, where

An = {αn(t) = log{
∑Ln

l=1 ξlbl(t)} : ξl ≥ 0, 0 ≤ bl(t) ≤ 1, t ∈ [τ1, τ2]},

and let θ̂n = (β̂n, α̂n) denote the estimator from Section 3, where α̂n(t) =

log{
∑Ln

l=1 ξ̂lbl(t)}. Note that θ̂n is a sieve maximum likelihood estimator

of θ because it arises from maximization over the sieve space Θn (Shen

and Wong, 1994). In this section, we use empirical process techniques and

sieve estimation theory to establish asymptotic properties of θ̂n. Following

Delaigle and Meister (2011), Wang et al. (2014), and Li et al. (2024), we

assume the number of pools n → ∞ as the number of individuals N → ∞,

but where the pool sizes Ji are regarded as fixed.

Let ∥b∥ denote the Euclidean norm for the vector b, and define the
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distance between θ1 = (β1, α1) ∈ Θ and θ2 = (β2, α2) ∈ Θ as

d(θ1,θ2) =
(
∥β1 − β2∥2 + ∥α1 − α2∥22

)1/2
,

where ∥α1 − α2∥2 = [
∫ τ2
τ1
{α1(u) − α2(u)}2 dQ(u)]1/2 and Q(·) is the cdf of

the observation time. Let Tn = {tq, q = 1, . . . , qn + 2k} with

τ1 = t1 = · · · = tk < tk+1 < · · · < tqn+k < tqn+k+1 = · · · = tqn+2k = τ2

denote a collection of knots that partitions [τ1, τ2] into qn + 1 subintervals,

where qn = O(nκ) for 0 < κ < 1/2. To make our large-sample arguments,

we state the following regularity conditions:

(A1) The true value β0 is an interior point of B. The true value α0 ∈ A is

continuously differentiable, has a positive first derivative, and has a

bounded rth derivative over [τ1, τ2] for r ≥ 1.

(A2) The covariate vector Zj is bounded with probability 1.

(A3) The matrix E(ZjZ
⊤
j ) is positive definite.

(A4) If p(x)+β⊤Zj = 0 for all x ∈ [τ1, τ2] with probability 1, then p(x) = 0

for x ∈ [τ1, τ2] and β = 0.

(A5) Let ∆̃max = maxk+1≤q≤qn+k+1 |tq − tq−1| denote the maximum spacing

between two adjacent knots. Then ∆̃max = O(n−κ) for 0 < κ < 1/2,

and ∆̃max/∆̃min is bounded, where ∆̃min = mink+1≤q≤qn+k+1 |tq−tq−1|.
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(A6) If p(x,Z) +
∑J

j=1 η
⊤
j Zj = 0 for all x ∈ [τ1, τ2]

J with probability 1,

where Z = (Z⊤
1 , . . . ,Z

⊤
J )

⊤, then p(x,Z) = 0 for x ∈ [τ1, τ2]
J and

ηj = 0.

Note that conditions (A1)–(A3) are commonly assumed in the survival

analysis literature; see, for example, Huang and Rossini (1997) and Zhang

et al. (2010). Condition (A4) is used to ensure model identifiability (Zeng et

al., 2016, 2017) and holds if the matrix E[(1,Z⊤
j )

⊤(1,Z⊤
j )] is nonsingular.

Condition (A5) is required to establish asymptotic normality of θ̂n and to

derive the convergence rate (Lu et al., 2007). Condition (A6) is used to

prove invertibility of the efficient Fisher information matrix and holds if

E[(1,Z⊤
1 , . . . ,Z

⊤
J )

⊤(1,Z⊤
1 , . . . ,Z

⊤
J )] is nonsingular.

We now present three theorems which summarize the asymptotic be-

havior of the sieve estimator θ̂n. Proofs are given in the Supplementary Ma-

terial. In what follows, θ0 = (β0, α0) denotes the true value of θ = (β, α).

Theorem 1: Under conditions (A1)–(A4), the sieve estimator is strongly

consistent, that is, ∥β̂n−β0∥ → 0 and supt∈[τ1,τ2] |α̂n(t)−α0(t)| → 0 almost

surely as n → ∞.

Theorem 2: Under conditions (A1)–(A5),

d(θ̂n,θ0) = Op

(
n−min{rκ,(1−κ)/2}) .
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Theorem 3: Under conditions (A1)–(A6), if 1/2(1 + r) < κ < 1/2r,

then
√
n(β̂n − β0) → N(0, I−1(β0)) in distribution as n → ∞, where the

information matrix I(β0) is given in the Supplementary Material.

Readers familiar with Li et al. (2024) will recognize the homology be-

tween our theoretical results herein and those for sieve estimators under

the PH model. It is worth noting from Theorem 2 that the choice of

κ = 1/(1 + 2r) yields the optimal convergence rate, nr/(1+2r). In partic-

ular, the convergence rate of the sieve estimator θ̂n is n1/3 when r = 1

and increases to n2/5 when r = 2. Although Theorem 3 ensures asymptotic

normality of the regression estimator β̂n, the intractable form of the asymp-

totic covariance matrix I−1(β) renders it unhelpful for practical purposes,

for example, writing large-sample confidence intervals for the regression pa-

rameters. We therefore adopt a numerical profile method, which has been

used by Zeng et al. (2017) and others, to approximate the covariance matrix

by (nV̂n)
−1, where

V̂n = n−1

n∑
i=1

{ ∂

∂β
li(β, ξ̂β)

∣∣∣∣
β=β̂

}⊗2
 ,

where li(β, ξ) is the log-likelihood function for the ith pool only, ξ̂β =

argmaxξ logL(β, ξ), L(β, ξ) is the observed data likelihood in (2.2), and

b⊗2 = bb⊤ for the column vector b. Note that ξ̂β can be obtained by using
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the EM algorithm in Section 3 with β fixed, and, for each i, the gradient

∂/(∂β) li(β, ξ̂β)|β=β̂ can be approximated by using a first-order numerical

difference; i.e., the sth component of ∂/(∂β) li(β, ξ̂β)|β=β̂ is approximated

by {pℓi(β̂+hnes)−pℓi(β̂−hnes)}/(2hn), where es is a p-dimensional vector

with 1 as its sth entry and 0 elsewhere, hn is a perturbation constant with

the same order as n−1/2, and pℓi(β) = li(β, ξ̂β). Our simulation results in

Section 5 demonstrate this approximation works well in practice.

5. Simulation Evidence

We performed two simulation studies to assess the finite-sample perfor-

mance of our time-to-event estimation methods with group testing data.

Results from the first study are shown in this section, and those from the

second are in the Supplementary Material.

The first study considers N = 10000 individuals randomly assigned

to pools of size five, that is, Ji = 5 for each i = 1, ..., 2000. Individ-

ual disease onset times Tij are generated from the model in (2.1), where

α(t) = log(t), Zij = (Zij1, Zij2)
⊤, Zij1 ∼ Bernoulli(0.5), Zij2 ∼ Unif(0, 1),

and β = (β1, β2)
⊤ = (0.5,−0.5)⊤. Individual observation (testing) times

Xij are generated from a Unif(0, 0.5) distribution, and the true individual

disease statuses at the time of testing are recorded as ϕij = I(Tij ≤ Xij).
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These configurations provide an average right censoring rate of approxi-

mately 90%, which is consistent with our application in Section 6. The

true disease status of the ith pool is ∆i = I(
∑5

j=1 ϕij > 0), and the test-

ing outcome Yi is simulated as Yi ∼ Bernoulli{ν − γ(1 − ∆i)}, where

γ = ν + ω − 1. We consider five configurations of the assay sensitiv-

ity and specificity to allow for potentially misclassified testing outcomes,

(ν, ω) = (1, 1), (0.95, 0.95), (0.90, 0.95), (0.90, 0.90), and (0.85, 0.85), and

generate 500 independent data sets for each configuration.

[Table 1 about here.]

Table 1 shows the results when using order k = 3 for the splines and

qn = 5 interior knots equally spaced within [Xmin − 10−5, Xmax + 10−5],

where Xmin and Xmax are the minimum and maximum observation times,

respectively. We include the empirical bias and the sample standard devi-

ation (SSD) of the 500 sieve maximum likelihood estimates of β1 and β2,

along with the averaged estimated standard error (ESE) and the empir-

ical coverage probability of nominal 95% Wald confidence intervals. For

each data set, we chose initial values for the EM algorithm as described

in Section 3, and we estimated standard errors using the profile likelihood

method in Section 4 with hn = 5n−1/2, the perturbation constant used in

Zeng et al. (2017). Estimating both the model in (2.1) and the large-sample
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covariance matrix I−1(β) took approximately 2 minutes for each data set.

This average time is for a computer that has an Intel Xeon Platinum 8375C

CPU @ 2.90GHz and 128GB of RAM.

The results in Table 1 show our estimation methods work well for group

testing. At all configurations of ν and ω, the empirical bias in the regression

estimators is close to 0, and the ratio of SSD to ESE is consistently close to 1,

suggesting that our profile likelihood approach to estimate I−1(β) performs

adequately. For large-sample inference, estimated coverage probabilities of

confidence intervals are all within the margin of Monte Carlo error; at the

99% confidence level, the margin of error is approximately ±0.03.

Table 1 also includes results for individual testing, allowing one to com-

pare group testing and individual testing when the number of individuals

is fixed at N = 10000 (middle) and the number of tests is fixed at n = 2000

(right). In the former comparison, it is not surprising that individual test-

ing is more efficient. However, the efficiency gain is small and would come

at the cost of having to perform 8,000 more tests. For the latter, group

testing is slightly more efficient. This comparison would be sensible if the

cost of testing was the primary factor in choosing between group testing

with n = 2000 tests and individual testing with n = 2000 individuals.

[Figure 1 about here.]
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Finally, we show in Figure 1 estimates of the baseline survival function

S(t) = 1−Φ{α(t)} for group testing and individual testing. These estimates

are averaged over 500 data sets and are shown for no misclassification (ν =

ω = 1) and at the highest level of misclassification (ν = ω = 0.85). In

both cases, averaged estimates of S(t) under group testing are close to the

true baseline survival function and are practically indistinguishable from

the corresponding estimates under individual testing.

6. Application

The State Hygienic Laboratory (SHL) at the University of Iowa is the largest

public health lab in Iowa. Each year, the SHL tests thousands of residents

for chlamydia as part of national screening and surveillance efforts. Screen-

ing to detect positive cases is a public health imperative given the asymp-

tomatic nature of the disease (Low, 2007) and the possible complications

that could arise if the disease is left untreated (Land et al., 2010). At the

same time, surveillance is also critical to understand the epidemiology of

chlamydia, for example, understanding which risk factors are associated

with time to disease onset. This helps state and federal organizations es-

tablish screening recommendations for the general population and for those

at higher risk (LeFevre, 2014).
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The SHL receives specimens every day for chlamydia testing, and, as a

state-funded laboratory, it is important to be mindful of costs. The lab has

implemented group testing as a cost-savings strategy to test swab specimens

while urine specimens are tested individually. To illustrate our methods, we

analyze a data set with N = 13862 female subjects whose specimens were

collected during the 2014 calendar year. This data set consists of testing

outcomes for 2273 swab pools of size 4, 12 swab pools of size 3, 1 swab

pool of size 2, 416 individual swab specimens, and 4316 individual urine

specimens. Thus, there are n = 7018 pools in total, where ostensibly we

view an individual specimen to be a “pool” of size one. Our goal is to

estimate a probit model for Tij, the time to disease onset; i.e.,

F (t | Zij) = Φ{α(t) + β⊤Zij},

where Zij = (Zij1, Zij2)
⊤ and β = (β1, β2)

⊤. The covariates Zij1 and Zij2

are indicator variables for race; specifically, Zij1 = 1, if the jth subject in

the ith pool is African American (Zij1 = 0, otherwise) and Zij2 = 1, if

the jth subject in the ith pool is a race other than Caucasian or African

American (Zij2 = 0, otherwise). In other words, race in our analysis is

regarded as a categorical variable with three levels, and Caucasian subjects

form the baseline group for comparison. Our data set also includes the age

at testing for each subject which serves as the observation time Xij.
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Along with most other public health labs in the United States, the SHL

uses the Aptima Combo 2 Assay (AC2A, Hologic, San Diego) to test spec-

imens for chlamydia. The AC2A product insert and Gaydos et al. (2003)

summarize the results of a validation experiment and report ν = 0.942

(0.947) and ω = 0.976 (0.989) as the sensitivity and specificity, respec-

tively, for swab (urine) specimens. In our analysis, we ignore sampling

error associated with the validation experiment and treat these probabili-

ties as true values for the AC2A. Our estimation framework in Section 3

can be easily adapted to use different sets of ν and ω for different specimen

types.

To estimate the model, we consider k = 2 and k = 3 for the order of

the splines and vary the number of interior knots qn from 1 to 20 across the

minimum and maximum of the observation times. We then select the com-

bination of k and qn that minimizes Akaike’s information criterion (Akaike,

1974) and also the combination that minimizes the Bayesian information

criterion; see, e.g., Li et al. (2017). These criteria are given by

AIC = −2l(β̂, ξ̂) + 2(p+ Ln)

BIC = −2l(β̂, ξ̂) + (p+ Ln) log n,

where l(β̂, ξ̂) = log{L(β̂, ξ̂)}, L(β, ξ) is the likelihood in (2.2), and Ln =

qn+k. The optimal selections of k and qn identified under both criteria are
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shown in Table 2.

[Table 2 about here.]

Table 2 gives the regression estimates of β1 and β2, their estimated

asymptotic standard errors, and Wald probability values for testing H0 :

β1 = 0 and H0 : β2 = 0, respectively. We used the numerical profile

method in Section 4 to estimate standard errors with both hn = n−1/2 and

hn = 5n−1/2 as perturbation constants in approximating the gradient. Esti-

mates shown in Table 2 are nearly identical for both constants, suggesting

our method is not overly sensitive to its selection. Furthermore, overall con-

clusions from the estimated models using (k, qn) = (3, 4) and (k, qn) = (3, 3)

are the same. That is, the time to chlamydial disease onset is stochasti-

cally smaller for African American subjects when compared to Caucasian

subjects. When making the same comparison with subjects of other races

(e.g., Asian, American Indian, Pacific-Islander, etc.), the difference is not

statistically significant.

Finally, for comparison purposes, we also estimated a PH regression

model with the same covariates using the approach in Li et al. (2024). This

analysis revealed the same findings and is shown in the Supplementary

Material. Note that it took approximately two hours to estimate the PH

model and the large-sample covariance matrix of the regression estimators.
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Doing the same for our probit analysis took about three minutes.

7. Discussion

Because the merger of time-to-event analysis with group testing is relatively

new, it is easy to envision future research in this area−research that is both

methodologically challenging and motivated by real biostatistical practice.

First, although one can specify different values of the assay sensitivity ν

for different pools in Section 2, one could extend this notion by positing

a formal submodel which characterizes how the sensitivity depends on the

pool size J and the (unknown) number of positive specimens in a pool.

This idea, which acknowledges a possible dilution effect in group testing,

has been implemented successfully in binary regression (McMahan et al.,

2013; Delaigle and Hall, 2015). Estimating time-to-event characteristics

could benefit from this extension too if dilution is suspected.

Second, to establish asymptotic properties of the sieve estimators in

Section 4, we have assumed pool sizes are best regarded as fixed. This

assumption is congruous with Li et al. (2024) and existing work in binary

regression for group testing (Delaigle and Meister, 2011; Delaigle and Hall,

2012; Delaigle et al., 2014; Wang et al., 2014; Delaigle and Hall, 2015; Chat-

terjee et al., 2020). However, it might be of interest to relax this assumption
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if pool sizes are allowed to change throughout the course of data collection,

similar to what Hughes-Oliver and Swallow (1994) proposed when estimat-

ing a population prevalence. We are unsure how this generalization would

affect arguments needed to establish our asymptotic properties in Section

4; however, they could become markedly more difficult. For example, Tay-

lor series expansions under the fixed pool size assumption, shown in the

Supplementary Material, might have non-ignorable remainder terms if pool

sizes were viewed to be random.

Finally, many laboratories are now using multiplex assays to test for

multiple diseases at once. In fact, such assays are currently available for

chlamydia and gonorrhea (Hou et al., 2017), SARS‑CoV‑2 and influenza

A/B (Neopane et al., 2022), HIV, HBV, and HCV (Stramer et al., 2013),

and other disease combinations. Multiplex technology naturally motivates

the development of multivariate current status regression methods which

allow for group testing. In terms of estimation efficiency, one would ex-

pect these methods to be preferred to marginal modeling when unobserved

disease onset times on the same individual are correlated.
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Supplementary Material

The online Supplementary Material contains conditional expectation deriva-

tions, detailed proofs for Theorems 1-3, a second simulation study, and an

analysis of the Iowa SHL data under the PH model. R code for data analysis

is available at https://github.com/lishuwstat/GTEMProbit.
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