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Abstract: We propose a new method of statistical inference, called the method of limits

(MoL), which may be viewed as an extension of the method of moments. This method is

motivated by the need to analyze count data for genome wide association studies (GWAS),

where the existing methods are hindered in statistical inference due to computational chal-

lenges. We establish consistency and asymptotic normality of the MoL estimator of heri-

tability from GWAS data, which is seen as an advantage over the existing PQLseq method.

Furthermore, we derived a consistent estimator of the proportion of causal SNPs. MoL

also showed an advantage of both statistical and computational efficiency measured by av-

erage statistical efficiency (ASE) in our simulation studies compared to PQLseq. We also

illustrate the usefulness of MoL through its application to the UK Biobank data to infer the

heritability of weekly champagne consumption and weekly red wine consumption using

the count data.
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tion, MoL, proportion of causal SNPs, relative average statistical efficiency

1. Introduction

The method of moments (MoM) is a classical statistical method known to pro-

duce consistent estimators of model parameters. Although the method is known

to be less efficient compared to the maximum likelihood (ML), MoM often has

a computational advantage over the ML (e.g., Jiang and Nguyen (2021)). The

latter is an attractive feature, especially in the modern era of Big Data. In fact,

in large samples, the difference between ML and MoM estimators may be ignor-

able from a practical standpoint.

Despite its popularity, difficulties are encountered in executing the MoM

idea. To see this, note that an MoM equation can often be expressed as

S = Eθ(S), (1.1)

where S is a vector of statistics, and Eθ(S) is the vector of expected values,

or moments, of S under the parameter vector θ. Sometimes, the expression of

Eθ(S) is not simple. A consequence of this is that equation (1.1) may not have an

analytical solution, or even a unique solution. Furthermore, numerically solving

the equation may encounter convergence issues, and this is especially likely to

happen when the dimension of θ is relatively high.
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Moreover, the right side of (1.1) may not even exist. For example, suppose

that observations X1, . . . , Xn are independent with the pdf

fn(x|θ) =


(n2 − 1)/2n2, if x ∈ [θ − 1, θ + 1],

[2n2cπ{1 + (x− θ)2}]−1
, otherwise,

(1.2)

that is, Xi has a uniform distribution between θ − 1 and θ + 1, with weight

1−n−2, and a Cauchy distribution elsewhere, with weight n−2. Here, c = 1/2−

arctan(1)/π is a normalizing constant. Clearly, E(Xi) does not exist for any 1 ≤

i ≤ n; thus, Eθ(X̄) does not exist for X̄ = n−1
∑n

i=1Xi. On the other hand, it

can be shown that X̄ P−→ θ. To see this, note that Pθ(max1≤i≤n |Xi− θ| > 1) ≤∑n
i=1 Pθ(|Xi − θ| > 1) = n/n2 = 1/n → 0. Thus, with probability tending to

one X̄ = n−1
∑n

i=1Xi1(|Xi−θ|≤1), which can then be shown to converge to θ in

probability.

In fact, the consistency of the MoM estimator involves showing that the left

side of (1.1) converges in probability to a limit, which is a function of θ. When

the right side of (1.1) exists, the limit is typically the same as Eθ(S), or the limit

of Eθ(S). However, as the last example shows, it is possible that Eθ(S) does

not exist; and yet, S still has a limit as the sample size increases. Given that,

it would seem necessary, anyway, to obtain the limit of the left side of (1.1) as

a function of θ, regardless of whether the limit is equal to that of the right side

[of (1.1)]. This motivates the following method: (i) Obtain the limit of the left
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side of (1.1), say, in the sense of convergence in probability. (ii) Suppose that

the limit in (i) is a known function of θ, say, L(θ). Then, an estimator of θ is

obtained by solving

S = L(θ). (1.3)

We call the method described above the method of limits (MoL). A main ad-

vantage of MoL over MoM is that, the limiting function on the right side of

(1.3) is often (much) simpler than the right side of (1.1), because certain lower-

order terms disappear in the limit, leading to simpler, sometimes closed-form,

solutions.

In the statistical literature, there are plenty examples of using limits as a

(powerful) tool to obtain simplified solutions to difficult, sometime intractable

problems (Jiang (2022)). A good example is the central limit theorem, which is

often used to establish asymptotic normality of an estimator or test. Under such a

simplification, a centralized estimator is asymptotically normal with mean zero

and an asymptotic variance. While in many cases the asymptotic variance is

fairly simple, there are situations in which the asymptotic variance is compli-

cated. For example, in genome-wide association studies (GWAS), linear mixed

models (LMM; e.g., Jiang and Nguyen (2021)) have been widely used since

the seminal paper of Yang et al. (2010). As noted by Jiang et al. (2016), the

LMM used in the GWAS context may be viewed as misspecified in the sense
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that a large portion of the random effects associated with the single nucleotide

polymorphisms (SNPs), which are assumed normal, are zero. Nevertheless, the

latter authors were able to establish consistency and asymptotic normality of

the restricted maximum likelihood (REML) estimators of genetic parameters of

interest, such as the heritability, under the misspecified LMM. However, the

variance of the limiting normal distribution is too complicated to be useful for

inference. Due to such a concern, Dao et al. (2021) considered MoM estimators

of the genetic parameters, which have much simpler asymptotic variances that

can be used for inference.

The main motivation of the current paper is also GWAS. However, we are

interested in situations where the phenotype data are counts. There have been

extensions of the LMM to discrete responses in genetic studies such as binary

observations in case-control studies (Golan et al. (2014) and counts (Sun et

al. (2019)). In particular, the latter authors proposed inference based penalized

quasi-likelihood (PQL; Breslow and Clayton (1993)) under a generalized linear

mixed model (GLMM; e.g., Jiang and Nguyen (2021)). While PQL is compu-

tationally attractive, it is known to produce inconsistent estimators of the model

parameters (Jiang (1998), Booth and Hobert (1999)), including variance com-

ponents of genetic interest. On the other hand, ML estimation is known to be

computationally infeasible under such a GLMM (e.g., Sun et al. (2019), Jiang
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and Nguyen (2021)). It remains a challenging task to produce estimators that

are computationally attractive as well as have good asymptotic behaviors.

The last sentence highlights the main contribution of our current paper. We

demonstrate both theoretically and empirically the validity of statistical infer-

ence using MoL, especially in situations of big data. Specifically, we establish

consistency and asymptotic normality of the MoL estimators of parameters of

genetic interests, including variances associated with the genetic and environ-

mental factors, as well as the heritability, under Big GWAS count data. Here,

the term Big data refers to a data set whose sample size is beyond the computa-

tional capability of PQLseq (Sun et al. (2019)).

Furthermore, we obtain a consistent estimator of the proportion of causal

SNPs, that is, the proportion of nonzero random effects associated with the

SNPs. This proportion is involved in the asymptotic distribution of some genetic

parameters of interest. It therefore plays an important role in deriving inferential

methods, such as confidence intervals, based on the asymptotic distribution. To

our knowledge, consistency of an estimator of such a proportion has not been

rigorously established in the literature.

Finally, computational efficiency has become increasingly important in the

era of Big data. It is desirable to consider performance of an estimator in terms of

both statistical and computational efficiency. We introduce a notion, called aver-

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0092



7

age statistical efficiency (ASE), which combines the two types of efficiency into

a single measure. In classical statistical inference, the reciprocal of the variance

of the asymptotic distribution is viewed as a measure of statistical efficiency.

The statistical efficiency is based purely on statistical considerations, which, in

particular, has not taken into consideration the views of other professions in to-

day’s data science, such as those of computer scientists. When computing time

is taken into consideration, it is reasonable to divide the statistical efficiency over

the computing time. This leads to

ASE =
1/σ2

c
=

1

σ2c
, (1.4)

where σ2 is the asymptotic variance, and c is the computing time needed in order

to compute an estimator with the statistical efficiency, 1/σ2. Of course, c de-

pends on the time unit and, more importantly, the computing facility. Therefore,

the ASE is more useful when comparing two estimation methods under the same

time unit and computing facility. This leads to the relative ASE, or RASE. Let

σ2
1 , σ2

2 denote the asymptotic variances of two estimation methods, say, Method

1 and Method 2, respectively, and c1, c2 be their corresponding computing times

under the same unit and computing facility. Then, the RASE of Method 1 over

Method 2 is defined as

RASE =
1/(σ2

1c1)

1/(σ2
2c2)

=
σ2
2c2
σ2
1c1

. (1.5)
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In empirical studies, the asymptotic variance is typically replaced by the em-

pirical (or simulated) variance of the estimator. This allows an investigator to

compare performance of different methods under RASE. We show via extensive

simulation that MoL has significant advantage over PQLseq in terms of RASE.

The asymptotic theory for MoL is established in Section 2, which also in-

cludes a consistent estimator of the proportion of causal SNPs. In Section 3, we

present results of simulation studies, in which we compare MoL and PQLseq

in terms of finite-sample performance. A real-life example of Big GWAS count

data is discussed in Section 4. Technical proofs are deferred to Supplementary

Material.

2. Asymptotic theory

We begin by first using a simple example to illustrate the idea of MoL for GWAS

with count data. We then consider a general setting with continuous (normal)

covariates. Finally, we consider a more general situation with both continuous

and categorical covariates.

2.1 A simple-case demonstration

Similar to the setting of Sun et al. (2019), we assume that, given an n × p

genotype matrix, Z, a p × 1 vector of SNP-specific random effects, α, and an
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2.1 A simple-case demonstration9

n × 1 vector of errors, ϵ, phenotype counts, y1, . . . , yn are conditionally inde-

pendent such that yi|W ∼ Poisson(Neηi). Here, W = (Z, α, ϵ) and N is a

known positive integer; furthermore, eηi is an unknown fraction that is assumed

to satisfy

ηi = γi + ϵi = z̃′iα + ϵi, (2.1)

where z̃i = zi/
√
p, z′i is the ith row of Z, and ϵi is the ith component of ϵ. It is

furthermore assumed that Z, α, ϵ are independent, the entries of Z are indepen-

dent and standard normal, α ∼ N(0, σ2
1Ip), and ϵ ∼ N(0, σ2

0In), where σ2
0, σ

2
1

are unknown variances. See, for example, Yang et al. (2010) for the model

setting in the linear case; the current model can be interpreted similarly.

Our immediate goal is to estimate σ2
0 and σ2

1 . For that we need to construct

two statistics, S0 and S1, and find their limits. The first seems to be obvious:

S0 = ȳ = n−1y· with y· =
∑n

i=1 yi, and we have the following result.

Lemma 1. As, n, p→ ∞, we have ȳ = n−1
∑n

i=1 yi
P−→ Ne(σ

2
0+σ2

1)/2.

As for the next candidate, it is less obvious. However, it is seen in Lemma 1

that the limit of ȳ is a function of σ2
0+σ

2
1; therefore, one needs something whose

limit is not another function of σ2
0 + σ2

1 (otherwise, one cannot separate the two

variances). The following lemma shows what may be a right candidate.
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doi:10.5705/ss.202024.0092



2.1 A simple-case demonstration10

Lemma 2. Suppose that n, p→ ∞ such that

p

n2
→ 0. (2.2)

Then, we have T1 = n−2
∑

i1 ̸=i2
z′i1zi2yi1yi2

P−→ N2σ2
1e

σ2
0+σ2

1 .

Note. Condition (2.2) requires that p << n2. This is typically reasonable

in GWAS applications. For example, in 2017, the UK Biobank database already

involved approximately half a million individuals genotyped at nearly one mil-

lion SNPs (Bycroft et al. (2018). This means n is approximately 500,000 and

p is about 1,000,000; therefore, p/n2 ≈ 4 × 10−6. From a theoretical stand-

point, a standard assumption in random matrix theory is that n, p → ∞ such

that p/n → γ ∈ (0,∞). See, for example, Jiang (2022) [ch. 16, in particular,

(16.13)]. Clearly, assumption (2.2) is weaker than the standard assumption.

In view of these lemmas, it is natural to consider S1 = T1/ȳ
2, whose limit

is precisely σ2
1 . This leads to the following MoL equations:

S0 = e(σ
2
0+σ2

1)/2, (2.3)

S1 = σ2
1. (2.4)

(2.3) and (2.4) lead to closed-form solutions, which are the MoL estimators:

σ̂2
1 =

1

y2·

∑
i1 ̸=i2

z′i1zi2yi1yi2 , σ̂2
0 = 2(log ȳ − logN)− σ̂2

1. (2.5)

Note. One advantage of MoL over MoM is that it is not always possible to

obtain analytical expressions for the moments, or that the analytical expressions
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are too complicated that a closed-form expression of the estimator is not possi-

ble. For example, one can derive an analytical expression for E(S0); however,

an analytical expression of E(S1) is not available. If, instead, one consider the

MoM equations ȳ = E(ȳ) and T1 = E(T1), the expectations have analytical

forms, but they are too complex that the MoM equations do not have a closed-

form solution. Although, for data of moderate size, a closed-form expression of

the estimator may not make much difference, so far as computation is concerned,

for Big data there can be a major difference, as we shall show below.

The asymptotic theory, to be established in the sequel, implies that (2.5)

are consistent estimators of σ2
1, σ

2
0 , respectively (the results follow by applying

similar arguments to parts of the proof of Theorem 1, given in the supplementary

material). To have some idea about how these estimators perform empirically,

a small-scale simulation study was run. We consider two scenarios: (I) σ2
0 =

0.7, σ2
1 = 0.3; (II) σ2

0 = 0.4, σ2
1 = 0.6. N = 10 in both cases. The results, based

on 100 simulation runs, are presented in Table 1. The good performance of MoL

can be seen in this table.

2.2 Continuous covariates

We now make several extensions of the simple model described above in (2.1).

First, we allow the total count, N , to vary among the individuals; in other words,

Statistica Sinica: Preprint 
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Table 1: Empirical Performance of MoL Estimators

(I) (II)

True Parameter σ2
0 = 0.7 σ2

1 = 0.3 σ2
0 = 0.4 σ2

1 = 0.6

Performance Measure Mean s.d. Mean s.d. Mean s.d. Mean s.d.

n = 200, p = 500 0.726 0.458 0.253 0.443 0.450 0.439 0.589 0.492

n = 200, p = 1000 0.744 0.644 0.265 0.649 0.376 0.581 0.585 0.582

n = 500, p = 500 0.703 0.195 0.296 0.219 0.447 0.149 0.532 0.186

n = 500, p = 1000 0.686 0.253 0.307 0.244 0.448 0.270 0.545 0.298

n = 1000, p = 1000 0.700 0.158 0.286 0.154 0.399 0.165 0.591 0.177

n = 1000, p = 2000 0.693 0.218 0.310 0.216 0.401 0.202 0.606 0.229

N is replaced by Ni for yi, where Ni is a known positive integer, 1 ≤ i ≤ n.

Second, we allow some random effects to be (exactly) zero; the nonzero random

effects thus correspond to the causal SNPs. To do so, let α = b◦ξ = (bjξj)1≤j≤p,

where b = (bj)1≤j≤p, ξ = (ξj)1≤j≤p so that bj ∼ Bernoulli(ω), where ω ∈

(0, 1] is an unknown probability known as the proportion of causal SNPs, and

ξj ∼ N(0, σ2
1). We further assume that bj, ξj, j = 1, . . . , p are independent, and

Z, α, ϵ are independent. Finally, the entries of Z are assumed to be independent

sub-Gaussian (but remain standardized, that is, with mean 0 and variance 1), as

in Jiang et al. (2016). As noted by the latter authors, the asymptotic results can

be extended to the case where the Z matrix is standardized.
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A further extension is made by replacing the ηi in (2.1) by

η̃i = β0 + x′iβ + z̃′iα + ϵi = β0 + x′iβ + ηi, i = 1, . . . , n, (2.6)

where β0 is an unknown intercept, β is a vector of unknown parameters, xi is a

vector of observed covariates. It is assumed that, conditional on X = (x′i)1≤i≤n

and N = (Ni)1≤i≤n, we have yi|W ∼ Poisson(eη̃iNi), where W = (Z, α, ϵ),

and the distribution of Z does not depend on X and N .

As for X and N , it is assume that x1, . . . , xn are independent following a q-

dimensional multivariate normal distribution with mean vector b and covariance

matrix B, where b, B are unknown and B is positive definite. Some extension

beyond the normality is possible, although normality simplifies the results con-

siderably. Furthermore, we assume that N1, . . . , Nn are i.i.d. with a finite 4th

moment, and X,N are independent. Note that we can write xi = b + B1/2x̃i,

where B1/2 is the symmetric square root of B, and x̃i = B−1/2(xi − b) ∼

N(0, Iq). Then, (2.6) can be written as

η̃i = β0 + b′β + x̃′iB
1/2β + ηi = µ+ x̃′iβ̃ + ηi, (2.7)

where µ = β0 + b′β and β̃ = B1/2β. Let σ2
α = ωσ2

1 and τ 2 = β′Bβ. Similar to

Lemma 1 and Lemma 2, we have the following results.
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Lemma 3. Under the assumed model, the following limits can be obtained:

ȳ
P−→ eµ+(σ2

0+σ2
α+τ2)/2E(N1), (2.8)

T1
P−→ σ2

αe
2µ+σ2

0+σ2
α+τ2{E(N1)}2, (2.9)

1

n

n∑
i=1

yi(yi − 1)
P−→ e2(µ+σ2

0+σ2
α+τ2)E(N2

1 ), (2.10)

1

n2

∑
i1 ̸=i2

x̂′i1x̂i2yi1yi2
P−→ τ 2e2µ+σ2

0+σ2
α+τ2{E(N1)}2, (2.11)

provided that n, p → ∞ such that (2.2) holds, where x̂i is x̃i with b and B

replaced by x̄ = n−1
∑n

i=1 xi and Sx = (n − 1)−1
∑n

i=1(xi − x̄)(xi − x̄)′,

respectively.

(2.8)–(2.11) lead to the following MoL estimators of σ2
α, τ

2, σ2
0 and µ:

σ̂2
α =

1

y2·

∑
i1 ̸=i2

z′i1zi2yi1yi2 , (2.12)

τ̂ 2 =
1

y2·

∑
i1 ̸=i2

x̂′i1x̂i2yi1yi2 , (2.13)

σ̂2
0 = log{y(y − 1)}· − 2 log y· + 2 logN· − log(N2)·

−σ̂2
α − τ̂ 2, (2.14)

µ̂ = log y· − logN· −
1

2
(σ̂2

0 + σ̂2
α + τ̂ 2), (2.15)

where {y(y − 1)}· =
∑n

i=1 yi(yi − 1), N· =
∑n

i=1Ni and (N2)· =
∑n

i=1N
2
i .

Note that all these estimators have closed-form expressions. Not only that, the

theorem below guarantees that they are consistent estimators.

Theorem 1. Under the assumed model, (2.12)–(2.15) are consistent estima-
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tors of σ2
α, τ 2, σ2

0 and µ, respectively, provided that n, p→ ∞ and (2.2) holds.

Among the parameters involved in Theorem 1, two are of genetic interest,

namely, σ2
α and σ2

0 . The rest of this subsection is devoted to deriving asymptotic

distribution of σ̂2
α and σ̂2

0 . Such a result can be used for inference about these

parameters. Define ψ = ω−1, σ2 = σ2
0 + σ2

α + τ 2. Denote the right sides of

(2.8)–(2.11) by br, r = 1, 2, 3, 4, respectively. For any random variable u with

nonzero mean, u∗ is defined as u/E(u).

Theorem 2. Under the conditions of Theorem 1, with (2.2) strengthened to

n

p
→ γ ∈ (0,∞), (2.16)

we have (I)
√
n(σ̂2

α − σ2
α)

d−→ N(0, v21), where

v21 = σ4
α

[
γ(3ψ − 1) + 4

{
eσ

2

E(N1)
2
∗ +

b1 + b3
b2

}]
; (2.17)

and (II)
√
n(σ̂2

0 − σ2
0)

d−→ N(0, v20), where

v20 = 4
[
{(σ2

α + τ 2 + 1)2 + σ2
α + τ 2}eσ2 − 1

]
E{(N1)

2
∗}

−4{(2σ2
α + 2τ 2 + 1)e2σ

2 − 1}E{(N1)∗(N
2
1 )∗}

+(e4σ
2 − 1)E{(N2

1 )
2
∗}

+
4

b1

[
eσ

2E(N1)E(N
3
1 )

{E(N2
1 )}2

− (σ2
α + τ 2 + 1)

]
+

2

b3
. (2.18)

Note 1. To see the right side of (2.18) is nonnegative, define random vari-

ables Yr, r = 1, 2, 3 as independent, and independent with N1, such that Y1 ∼

Statistica Sinica: Preprint 
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N(0, σ2
0), Y2 ∼ N(0, σ2

α), Y3 ∼ N(0, τ 2), and that, conditional on N1, Yr, r =

1, 2, 3, Y ∼ Poisson(N1e
η) with η = µ + Y1 + Y2 + Y3. Then, it can be shown

that the right side of (2.18) is equal to

E

{
2

b1
(σ2

α + τ 2 − 1− Y2 − Y3)Y +
Y (Y − 1)

b3
+ 2(N1)∗ − (N2

1 )∗

}2

. (2.19)

Note 2. Unlike v21 , v20 does not depend on either ω or γ (note that ψ = ω−1).

So far, all of the unknown parameters involved in v2s , s = 0, 1, except

ψ = ω−1, have their consistent estimators. Namely, µ, σ2
0 , σ2

α, τ 2, γ, and

E(Nk
1 ), k = 1, 2, 3, 4 can be consistently estimated by µ̂, σ̂2

0 , σ̂2
α, τ̂ 2, n/p, and

Nk = n−1
∑n

i=1N
k
i , k = 1, 2, 3, 4, respectively. A consistent estimator of ψ is

given below.

Lemma 4. We have T2
P−→ 3ψb22, where

T2 =
p

n(n− 1)(n− 2)(n− 3)

p∑
j=1

∑
i1,i2,i3,i4 distinct

zi1jzi2jzi3jzi4jyi1yi2yi3yi4

under the conditions of Theorem 2.

Combining Lemma 4 and (2.9), the following result immediately follows.

Theorem 3. ψ̂ = T2/3T
2
1

P−→ ψ under the conditions of Theorem 2.

Now all of the parameters involved in (2.17) and (2.18) have their consistent

estimators. Thus, by replacing the asymptotic variance by its consistent esti-

mator, inference about σ2
α or σ2

0 , such as confidence intervals and tests, can be

made. Note that such inferential methods are not available for PQLseq (see Sun
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et al. (2019)).

Theorem 2 gives the asymptotic distribution of σ̂2
α and σ̂2

0 separately. In fact,

a joint asymptotic distribution of these two estimators can be obtained. This is

considered under a more general setting in the final subsection of this section

regarding heritability estimation.

2.3 Continuous and categorical covariates

In practice, the covariatesX may not be all normally distributed or, at least, con-

tinuous. For example, some of the covariates may be binary indicators. Thus,

in still another extension, we assume that the covariates are divided into two

groups; the first group are continuous; the second group are discrete or categor-

ical. The continuous covariates are assumed to be jointly multivariate normal

as above, and the discrete/categorical covariates are assumed to be multinomial.

Such a setting has been proposed in the literature, when the distribution of the

covariates is considered. See, for example, Little and Rubin (2002).

Specifically, for the discrete/categorical covariates, there is a set of differ-

ent combinations of the their values that are present in the data, denoted by

c1, . . . , cK . Let yik, xik denote the phenotype count and vector of continuous co-

variates of the ith individual in the kth group corresponding to ck, i = 1, . . . , nk,

where nk is the total number of individuals in the kth group. The ck’s are con-
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2.3 Continuous and categorical covariates18

sidered fixed and known. The continuous covariates are X = (Xk)1≤k≤K with

Xk = (x′ik)1≤i≤nk
. Similarly, we have Z = (Zk)1≤k≤K with Zk = (z′ik)1≤i≤nk

,

where zik = (zijk)1≤j≤p. Let α be defined as at the beginning of this section,

and ϵ = (ϵk)1≤k≤K with ϵk = (ϵik)1≤i≤nk
. Also let N = (Nk)1≤k≤K , where

Nk = (Nik)1≤i≤nk
and Nik are known positive integers. We assumed that, con-

ditional on X , N and W = (Z, α, ϵ), yik, i = 1, . . . , nk, k = 1, . . . , K are

conditionally independent such that yik|X,N,W ∼ Poisson(Nike
ηik), where

ηik = ck + x′ikβ + z̃′ikα + ϵik, (2.20)

z̃ik = zik/
√
p, and β is a vector of unknown fixed effects. Furthermore, assume

that, conditional on (X,N), Z, α, ϵ are independent; the entries of Z are i.i.d.

sub-Gaussian; and the entries of ϵ are independent N(0, σ2
0). Finally, assume

that xik, Nik, i = 1, . . . , nk, k = 1, . . . , K are independent such that xik ∼

N(bk, Bk), where bk is an unknown mean vector andBk an unknown nonsingular

covariance matrix, and Nik, i = 1, . . . , nk are i.i.d. with a finite fourth moment.

An observation is that, within each group k, we are in the same situation as

the one considered previously, that is, the right side of (2.7), with µ replaced by

µk = ck + b′kβ and β̃ replaced by β̃k = B
1/2
k β. Thus, according to the earlier

results, we have the MoL estimators of σ2
α, τ 2k = β′Bkβ, σ2

0 , and µk from the kth
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group. To repeat these expressions, the MoL estimators are given by

σ̂2
α,k =

1

y2·k

∑
i1 ̸=i2

z′i1kzi2kyi1kyi2k, (2.21)

τ̂ 2k =
1

y2·k

∑
i1 ̸=i2

x̂′i1kx̂i2kyi1kyi2k, (2.22)

σ̂2
0,k = log{yk(yk − 1)}· − 2 log y·k + 2 logN·k − log(N2

k )·

−σ̂2
α,k − τ̂ 2k , (2.23)

µ̂k = log y·k − logN·k −
1

2
(σ̂2

0,k + σ̂2
α,k + τ̂ 2k ), (2.24)

where y·k =
∑nk

i=1 yik, N·k =
∑nk

i=1Nik, {yk(yk − 1)}· =
∑nk

i=1 yik(yik − 1),

(N2
k )· =

∑nk

i=1N
2
ik, and x̂ik = B̂

−1/2
k (xik − xk) with xk = n−1

k

∑nk

i=1 xik and

B̂k =
1

nk − 1

nk∑
i=1

(xik − xk)(xik − xk)
′.

Let n =
∑K

k=1 nk be the total sample size. As our main interest is σ2
α and σ2

0 , we

take weighted averages of (2.21) and (2.23) over 1 ≤ k ≤ K to get

σ̂2
α =

1

n

K∑
k=1

nkσ̂
2
α,k, σ̂2

0 =
1

n

K∑
k=1

nkσ̂
2
0,k. (2.25)

By Theorem 1, the following result immediately follows.

Theorem 4. Suppose that K is fixed, and the assumptions of Theorem 1

hold for every group k, 1 ≤ k ≤ K. Then, the estimators (2.25) are consistent.

Note. Typically in GWAS, the mixed effects model is applied to the “resid-

uals” after the fixed effects have been “subtracted”, so that one can focus on
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estimating the genetic and environmental variance components, that is, σ2
α and

σ2
ϵ via the mixed effects model. This means that the ck and xik on the right

side of (2.20) are actually zeros. We allowed our method to be more general to

involve continuous and discrete covariates, but, at least in real-life GWAS, we

have not encountered a case with large K.

The next result is an extension of Theorem 2 under the more general setting.

Theorem 5. Suppose that (2.16) holds with n, γ replaced by nk, γk, respec-

tively, for 1 ≤ k ≤ K. Then, we have (I)
√
n(σ̂2

α − σ2
α)

d−→ N(0, v21), where

v21 = σ4
α

[
γ·

(
3

ω
− 1

)
+

4

γ·

K∑
k=1

γk

{
eσ

2
kE(N11)

2
∗ +

b1k + b3k
b2k

}]
, (2.26)

γ· =
∑K

k=1 γk, σ2
k, brk, r = 1, 2, 3 are, respectively, σ2, b2r, r = 1, 2, 3 with τ 2

replaced by τ 2k . Furthermore, we have (II)
√
n(σ̂2

0 − σ2
0)

d−→ N(0, v20), where

v20 = γ−1
·

∑K
k=1 γkv

2
0k, v20k being the v20 of (2.18) with N1 replaced by N11, and

τ 2, σ2, b1, b3 replaced by τ 2k , σ
2
k = σ2

0+σ
2
α+τ

2
k , b1k, b3k, respectively, 1 ≤ k ≤ K.

Notes. Similar to Note 1 following Theorem 2, the positivity of v20k can be

shown in a similar way [see (2.19)], with τ 2, Y3, η, Y, b1, b3 replaced by τ 2k , Y3k,

ηk, Yk, b1k, b3k, respectively, 1 ≤ k ≤ K, and N1 ∼ N11. Also note that, unlike

v21 , v20 does not depend on ω, but it does depend on the γs (this is different from

the v20 of Theorem 2, unless K = 1).
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2.4 Heritability estimation21

For estimating ψ, let zijk be the jth component of zik. Define

T1k =
1

n2
k

∑
1≤i1 ̸=i2≤nk

z′i1kzi2kyi1kyi2k,

T2k =
p
∑p

j=1

∑
1≤i1,i2,i3,i4≤nk, distinct

zi1jkzi2jkzi3jkzi4jkyi1kyi2kyi3kyi4k

nk(nk − 1)(nk − 2)(nk − 3)
.

Also define T 2
1 = n−1

∑K
k=1 nkT

2
1k and T2 = n−1

∑K
k=1 nkT2k. By Lemma 4 and

(2.9), a consistent estimator of ψ can be obtained. We state the result formally.

Theorem 6. ψ̂ = T2/3T
2
1

P−→ ψ under the conditions of Theorem 5.

As noted, the results of Theorem 5 and Theorem 6 can be used for inferential

purposes. In this regard, the following computational note may be useful.

Computational note. To compute the inner summation over four distinct

indexes involved in the T2 in Lemma 4, or the T2k above, note that, for example,

by letting λi = zijyi for fixed j, the inner summation is in the form of

∑
1≤i1,i2,i3,i4≤n,i1,i2,i3,i4 distinct

λi1λi2λi3λi3

= s4λ,1 − 6s2λ,1sλ,2 + 8sλ,1sλ,3 + 3s2λ,2 − 6sλ,4, (2.27)

where sλ,r =
∑n

i=1 λ
r
i , r = 1, 2, 3, 4. The right side of (2.27) is much easier to

compute.

2.4 Heritability estimation

Sun et al. (2019)) defines the heritability as the ratio of genetic variation over

total variation in the scale of the linear predictor under the GLMM, conditional
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2.4 Heritability estimation22

onX . Under this definition, the heritability is simply h2 = σ2
α/(σ

2
α+σ

2
0). Define

ĥ2 = σ̂2
α/(σ̂

2
α+ σ̂

2
0), where σ̂2

α, σ̂
2
0 are the MoL estimators of σ2

α, σ
2
0 , respectively.

First consider the setting of Section 2.2. Theorem 1 immediately implies the

following.

Corollary 1. Under the assumptions of Theorem 1, we have ĥ2 P−→ h2.

To obtain the asymptotic distribution of ĥ, we need to first strengthen The-

orem 2 to obtain the joint asymptotic distribution of σ̂2
α and σ̂2

0 . We have the

following result.

Theorem 7. Under the assumptions of Theorem 2, we have

√
n

 σ̂2
α − σ2

α

σ̂2
0 − σ2

0

 d−→ N


 0

0

 ,

 v21 v10

v10 v20


 , (2.28)

where v21, v
2
0 are given in Theorem 2, and

v10 = 4eσ
2
[
σ2
αe

σ2

E{(N1)∗(N
2
1 )∗} − (2σ4

α + τ 2 + 1)E{(N1)
2
∗}
]
.

By Theorem 7 and the delta method (e.g., Jiang 2022, p. 94), the following

result immediately follows.

Corollary 2. Under the assumptions of Theorem 2, we have

√
n(ĥ2 − h2)

d−→ N(0, ν2),

where ν2 = (σ2
α + σ2

0)
−4(v20σ

4
α − 2v10σ

2
ασ

2
0 + v21σ

4
0).
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Corollary 2 and Theorem 3 can be utilized to make inference about h2. Fi-

nally, under the more general setting of Section 2.3. The following result can be

established.

Theorem 8. Under the assumptions of Theorem 5, we have (2.28), where

σ̂2
α, σ̂2

0 , v21 , v20 are the same as in Theorem 5, and v01 = γ−1
·

∑K
k=1 γkv10,k, v10,k

being the v10 in Theorem 7 with τ 2, σ2, and N1 replaced by τ 2k , σ2
k, and N11,

respectively, 1 ≤ k ≤ K.

Under the more general setting, ĥ2 is defined in the same way with newly

defined σ̂2
α and σ̂2

0 . Thus, by the same arguments, Corollary 2 holds under this

setting with v20, v
2
1, v10 given by Theorem 8. Theorem 6 can then be utilized to

make inference about h2.

3. Simulation studies

We performed comprehensive simulation studies to validate the theoretical prop-

erties of our proposed MoL method, including the consistency and asymptotic

normality of the variance estimators, as well as the consistency of the estima-

tor of the proportion of causal SNPs. The heritability estimation results derived

from our MoL approach were compared with those from the PQLseq method in

these experiments.

The genotype matrix Z was initial generated from a Binomial(2, 0.5 ∗ p)
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distribution, where p follows a Beta distribution, Beta(0.5, 0.5). Then, each

entry in the matrix was standardized to have a mean of 0 and a variance of 1.

Recall that we use ω to represent the probability of each SNP being causal; thus,

we have σ2
α = ω·σ2

1, h
2 = σ2

α/(σ
2
α+σ

2
0). For this study, we considered σ2

0 = 0.6,

σ2
1 = 0.4, ω = 0.5, σ2

α = 0.2, h2 = 0.25, and µ = 0.2. The total count Ni for

each individual i, 1 ≤ i ≤ n was assumed to follow a Poisson(N) distribution

with N = 10.

For the number of SNPs, p, we considered p = 500, 1000, 2000, 5000. As for

the number of individuals, n, it is different due to the computational limitation

of PQLseq, which we compared. For PQLseq, we fixed n/p to be 1 (so for

PQLseq, n = 500, 1000, 2000, 5000). For MoL, we considered n/p to be 1,10,

and 100 (so for MoL, n = 500, 1000, 2000, 5000; or 5000, 10000, 20000, 50000;

or 50000, 100000, 200000, 500000). Note that the sample size for PQLseq was

not as large as that for the MoL due to the computational limitation of the former.

Also, the PQLseq algorithm may not converge, even if the entries of the genetic

matrix are i.i.d.. Thus, we ran 200 simulations and pick the first 100 simulation

results that PQLseq algorithm did converge. For the MoL method, to ensure a

fair comparison, we chose either the corresponding 100 results, or the initial 100

results if the PQLseq results were not available.
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3.1 Unbiasedness of MoL estimators25

3.1 Unbiasedness of MoL estimators

Table 2 summarizes the MoL estimation results for σ0, σα, ω. The empirical

standard deviation (emp.s.d.), computed from all simulations, and the estimated

standard error (est.s.d.), derived from the asymptotic theory, are also presented,

along with the percentage of simulation runs where the true value of the pa-

rameter fell within the 95% confidence interval (CI) from the MoL method. By

comparing the mean from the 100 simulations to the true value, we can conclude

that the estimations for σ0, σα, ω are approximately unbiased. Furthermore, the

accuracy of the estimation results improved when n/p increased, or when n/p

was held constant while n and p increased. Additionally, by fixing p = 500, the

effect of increasing n (with values n = 500, 5000, 50000) shows that larger n im-

proves parameter estimation for the same p. Similarly, by fixing n = 5000 and

varying p (with values p = 500, 5000), it is evident that increasing p makes the

estimation more challenging for the same n. These conclusions are consistent

across different values of p and n.

3.2 Asymptotic normality of MoL estimators

The MoL estimators for σ2
0, σ

2
α were then standardized by subtracting the

true variances and dividing the differences by the corresponding estimated stan-

dard deviations obtained from the asymptotic theory. This standardized value
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3.2 Asymptotic normality of MoL estimators26

Table 2: MoL Estimation (Mean, S.D. and C.I.) for σ0, σα, ω

True Parameter sigma02 = 0.6 sigmaa2 = 0.2 omega = 0.5

Performance Measure Mean emp.s.d. est.s.d. 95% CI Mean emp.s.d. est.s.d 95% CI Mean emp.s.d.

n/p = 1

p=500, n=500 0.603 0.178 0.180 0.950 0.183 0.163 0.072 0.590 0.138 0.271

p=1000, n=1000 0.596 0.170 0.127 0.890 0.193 0.128 0.051 0.490 0.175 0.315

p=2000, n=2000 0.586 0.102 0.090 0.940 0.199 0.094 0.036 0.550 0.150 0.290

p=5000, n=5000 0.591 0.066 0.057 0.890 0.202 0.058 0.023 0.520 0.309 0.325

n/p = 10

p=500, n=5000 0.598 0.058 0.057 0.980 0.200 0.033 0.030 0.910 0.523 0.170

p=1000, n=10000 0.601 0.045 0.040 0.920 0.200 0.023 0.021 0.920 0.504 0.102

p=2000, n=20000 0.596 0.028 0.028 0.930 0.199 0.018 0.015 0.850 0.511 0.074

p=5000, n=50000 0.599 0.017 0.018 0.970 0.201 0.012 0.009 0.870 0.509 0.045

n/p = 100

p=500, n=50000 0.602 0.016 0.018 0.990 0.198 0.019 0.021 0.960 0.511 0.050

p=1000, n=100000 0.599 0.012 0.013 0.970 0.198 0.013 0.015 0.940 0.504 0.040

p=2000, n=200000 0.598 0.008 0.009 0.960 0.200 0.010 0.011 0.950 0.505 0.030

p=5000, n=500000 0.600 0.005 0.006 0.980 0.200 0.006 0.007 0.950 0.501 0.020
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3.3 Heritability estimation: Comparing MoL and PQLseq27

was compared to the standard Gaussian distribution, as depicted in the QQ-Plot

(Figure 1). We can see that as n/p increased, or when n/p was maintained con-

stant while n and p increased, the distribution of the standardized MoL estima-

tor converged towards the standard normal distribution. Additionally, by fixing

p = 500, the effect of increasing n (with values n = 500, 5000, 50000) shows

that larger n leads the distribution of the standardized estimators to converge

more closely towards the standard normal distribution for the same p. Similarly,

by fixing n = 5000 and varying p (with values p = 500, 5000), it is evident

that increasing p makes the convergence towards the standard normal distribu-

tion more challenging for the same n. These conclusions are consistent across

different values of p and n.

3.3 Heritability estimation: Comparing MoL and PQLseq

The efficacy of the MoL and PQLseq methods were evaluated and compared

via three performance metrics: ‘var ratio’, which assesses the variability of the

MoL estimators relative to the PQL estimators; ‘time ratio’, which evaluates the

computational expense of the MoL estimators compared to the PQL estimators;

and RASE, defined via (1.5), which combines the statistical and computational

efficiencies into a single measure; see discussion about the RASE metric in the

introduction. If var ratio or time ratio fall below 1, MoL is considered outper-
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Figure 1: Asymptotic Distribution of MoL Estimators for σ2
0, σ

2
α
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3.3 Heritability estimation: Comparing MoL and PQLseq29

forming PQLseq under the corresponding metric; if RASE is above 1, MoL is

considered outperforming PQLseq overall. The results are shown in Table 3.

Table 3: Comparison with PQLseq: Variance/Time Ratios (MoL/PQLseq) and RASE

p PQL n (PQL n / p) MoL n (MoL n / p) var ratio time ratio RASE

500 500 (1) 500 (1) 5.272 0.013 14.488

1000 1000 (1) 1000 (1) 7.656 0.018 7.245

2000 2000 (1) 2000 (1) 7.832 0.012 10.262

5000 5000 (1) 5000 (1) 9.070 0.005 24.089

500 500 (1) 5000 (10) 0.194 0.103 50.008

1000 1000 (1) 10000 (10) 0.221 0.171 26.451

2000 2000 (1) 20000 (10) 0.248 0.119 33.978

5000 5000 (1) 50000 (10) 0.291 0.003 1131.952

500 500 (1) 50000 (100) 0.041 0.054 456.694

1000 1000 (1) 100000 (100) 0.044 0.104 217.962

2000 2000 (1) 200000 (100) 0.055 0.098 187.166

5000 5000 (1) 500000 (100) 0.066 0.047 322.916

As presented in Table 3, the variance of PQLseq is smaller than that of MoL

when the sample size are identical. However, when the sample size for MoL is

increased while maintaining PQLseq’s sample size due to the computational con-

straints, MoL exhibits a smaller variance than PQLseq. Moreover, MoL demon-

strates a significant computational advantage over PQLseq even when the sample
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size for MoL is 100 times of that for PQLseq. MoL also consistently displays

a higher RASE than PQLseq, suggesting that MoL integrates the statistical and

computational efficiencies more effectively than PQLseq. These findings high-

light the advantages of MoL under a notion of modern data science, in which

statistical performance and computational efficiency are considered jointly. The

computational superiority of MoL not only accelerates the estimation process

but also accommodates a larger sample size when (much) more data are avail-

able, thereby improving the estimation accuracy.

4. Real data analysis

In this study, we applied our proposed MoL method to the UK Biobank

dataset (Sudlow et al. (2015)), a large cohort study aimed at understanding the

causes of complex traits. We focus on estimating heritability using both MoL

and PQLseq. The traits of interest include weekly champagne and weekly red

wine consumption habits, with the unit of measure being glasses. After exclud-

ing individuals with null, negative and zero phenotype values and non-European

ancestries, there were 111,351 and 133,610 individuals with both genotypes and

phenotypes, respectively. Our initial step involved conducting a GWAS to de-

rive marginal association P-values for each SNP. SNPs were then filtered with

a threshold of 0.001 to obtain significant ones. After that, independent SNPs
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were randomly selected through a pruning process with a window size of 100kb,

resulting in 132 SNPs in weekly champagne and 165 SNPs in weekly red wine.

The column n SNPs in Table 4 represents the number of SNPs used for the her-

itability estimation. The MoL estimation results, obtained in a minute for each

trait, are presented in Table 4. These results suggest potential genetic influences

on the behavior of weekly champagne and red wine consumptions.

Table 4: MoL Real Data Results

trait n SNPs σ2
0 σ2

α var(σ2
0) var(σ2

α) h2 var(h2) ω

week champagne 132 0.700 0.017 9.56e-05 5.10e-05 0.023 1.01e-04 0.122

week red wine 165 0.558 0.012 2.97e-05 5.63e-06 0.021 2.33e-05 0.471

Heritability estimations for these two traits were also generated using the

PQLseq method. Due to the computational limitations, PQLseq could not uti-

lize the entire dataset for estimation. Consequently, subsets of 5,000 and 10,000

samples were randomly drawn from the whole dataset 100 times to estimate her-

itability for each sub-dataset, requiring an average of 5,240 and 37,253 seconds

respectively. The means and 1.96 times the standard errors for the 5,000 and

10,000 samples are plotted in Figure 2 based on all sub-dataset estimations from

PQLseq, and these were compared to the 95% confidence interval derived from

MoL, as depicted in Figure 2.
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Figure 2: Real Data Analysis for MoL and PQLseq
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As presented in Figure 2, the PQLseq and MoL estimation results are rel-

atively comparable, although MoL estimates of the heritability are higher than

those of PQLseq. The increase in the values of PQLseq estimates with rising

sample size might account for the observed discrepancy between the two meth-

ods. Namely, the observed trends seem to suggest that, if it were possible to

compute the PQLseq estimates using the full data, one would obtain something

even closer to the MoL estimates. Given that MoL utilizes a sample size 10 times

larger than that for PQLseq, it is plausible that the estimator based on averaging

the smaller sub-dataset results may be biased compared to the estimator based

on the entire dataset, if computation of the latter were possible.

5. Discussion

The increasing number of large datasets necessitates the development of compu-

tationally feasible statistical methods. In this study, we presented the method of

limits (MoL) as an appealing alternative to the traditional likelihood-based esti-

mation techniques, especially in the context of GWAS with count data. Unlike

the traditional approaches that often treat count data as continuous for heritabil-

ity estimation, we employ the Poisson model, ensuring a more accurate represen-

tation of count data structures and subsequently enhancing statistical efficiency.

Our primary theoretical contribution is the establishment of consistency and
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asymptotic normality for the MoL estimators when estimating the heritability

of count phenotypes. Unlike the commonly used PQLseq method which re-

quires extensive iterations for convergence, the MoL approach overcomes com-

putational challenges in large datasets by offering closed-form solutions. These

solutions not only simplify the estimation process but also pave the way for sta-

tistical inference regarding the heritability. Through extensive simulations, we

validated the theoretical properties of MoL in estimating the heritability. Based

on real data analysis, we conclude that computational efficiency not only accel-

erates the estimation process, but also facilitates the utilization of the entire large

genetic datasets during the estimation, thus enhancing statistical efficiency.

Furthermore, our work provides a consistent estimator for the proportion of

causal SNPs, an essential component in understanding the genetic structure that

has not been addressed in previous studies. Both simulation and empirical data

analysis validate the estimator. This finding extends the understanding of GWAS

and may foster further exploration in genetic modeling and estimation.

We have also introduced new evaluation metrics, namely the average sta-

tistical efficiency (ASE) and relative ASE (RASE). These metrics incorporate a

novel concept of combining two efficiency measures simultaneously, offering a

comprehensive evaluation, and comparison, of different methods.

However, our study has limitations. The method of limits assumes the in-

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0092



dependence of genetic variants, limiting the number of genetic variants that one

can utilize. Future studies are needed to extend the method by taking correlated

genetic variants into consideration. The method also requires analytic skills to

(correctly) derive the limits of certain base statistics, which in some cases could

be challenging to a practitioner.

In conclusion, our paper introduced the MoL, established its theoretical

properties and demonstrated its real data applications. Our findings highlight its

advantages in computational efficiency and how this can lead to improved statis-

tical efficiency in large datasets. Moreover, the introduction of ASE and RASE

evaluation metrics enables a unified approach to assess both computational and

statistical efficiency and compare different methods.

Supplementary Materials

The Supplementary Material contains proofs of the main theoretical results.

The code for simulations and real data analysis is available at https://

github.com/LeqiXu/MoL_analysis.
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