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EMPIRICAL BAYES ESTIMATION WITH
SIDE INFORMATION: A NONPARAMETRIC
INTEGRATIVE TWEEDIE APPROACH

Jiajun Luo!, Trambak Banerjee?, Gourab Mukherjee! and Wenguang Sun?

University of Southern California', University of Kansas® and Zhejiang University®

Abstract:

We investigate the problem of compound estimation of normal means while accounting for the presence
of side information. Leveraging the empirical Bayes framework, we develop a nonparametric integrative
Tweedie (NIT) approach that incorporates structural knowledge encoded in multivariate auxiliary data
to enhance the precision of compound estimation. Our approach employs convex optimization tools to
estimate the gradient of the log-density directly, enabling the incorporation of structural constraints.
We conduct theoretical analyses of the asymptotic risk of NIT and establish the rate at which NIT
converges to the oracle estimator. As the dimension of the auxiliary data increases, we accurately
quantify the improvements in estimation risk and the associated deterioration in convergence rate.
The numerical performance of NIT is illustrated through the analysis of both simulated and real data,
demonstrating its superiority over existing methods.

Key words and phrases: Compound Decision Problem, Convex Optimization, Kernelized Stein’s Dis-

crepancy, Side Information, Tweedie’s Formula.

1. Introduction

In data-intensive fields, such as genomics, neuroimaging, and signal processing, vast amounts
of data are collected, often accompanied by various types of side information. We consider a
compound estimation problem where Y = (Y; : 1 <i < n) is a vector of summary statistics

and serves as the primary data for analysis. In addition, we collect K auxiliary sequences



Sk = (S(k) :1<i<n),1<k<K, alongside the primary data. Suppose the elements in

i .

Y follow normal distributions
Y;=0;+¢e, ¢ ~N(0,0%), 1<i<n, (1.1)

where 0; = E(Y;) represents the true underlying effect size for the ith study unit. Following
Brown and Greenshtein (2009); Efron (2011); Ignatiadis et al. (2023) we assume that o2
is known or can be well estimated from the data. For instance, in practical applications
we often observe replicates for some of the observations using which o2 can be consistently
estimated. Moreover, if we are in a rapid trend changing environments where the variances

2

are stationary then o can be estimated from past data (see, for instance, Section 2.4 of

Banerjee et al. (2021)). Let S; = (S},---,S5)T denote the side information associated
with unit ¢ and S = (S}, -+, 8S,)" the auxiliary data matrix. Assume that S; follow
some unspecified multivariate distribution Fg. Our task is to estimate the high-dimensional
parameter @ = (6; : 1 <1i < n) given both primary and auxiliary data.

Conventional meta-analytical methods frequently encounter two limitations. Firstly,
these methods often assign equal importance to the primary and auxiliary data, relying on
weighting strategies to calculate an overall effect by integrating data from multiple sources.
Nevertheless, this approach may result in biased estimates of §; when the distributions of Y’
and S® differ. Secondly, conventional techniques, which are designed to handle a small num-
ber of parameters, can become highly inefficient for large-scale estimation problems. This
inefficiency is particularly pronounced when 6 is in high dimensions, where valuable struc-
tural knowledge of @ can be extracted from both primary and auxiliary data and exploited

to construct more efficient inference procedures.

This article presents an empirical Bayes approach to integrative compound estimation



1.1 Compound decisions, structural knowledge and side information

with side information. The framework provides a flexible and powerful tool that can effec-
tively integrate information from multiple sources. Our method capitalizes on the structural
knowledge present in auxiliary data, which can be highly informative and has the potential
to greatly enhance estimation accuracy when properly assimilated into the decision-making
process. In what follows, we begin by presenting an overview of the progress made in this
research direction and identify relevant issues. This will be followed by an exposition of our
methodology for addressing the challenges. Finally, we discuss related works and highlight

our contributions.

1.1 Compound decisions, structural knowledge and side information

Consider a compound decision problem where we make simultaneous inference of n param-
eters (0; : 1 < i < n) based on summary statistics (¥; : 1 < i < n) from n independent
experiments. Let § = (§; : 1 < i < n) be the decision rule, i.e., our estimate of ;. Several
classical ideas, such as the compound decision theory (Robbins, 1951), empirical Bayes (EB)
methods (Robbins, 1964), and James-Stein shrinkage estimator (Stein, 1956), alongside more
recent multiple testing methodologies (Efron et al., 2001; Sun and Cai, 2007), have demon-
strated that structural information of the data can be leveraged to construct more efficient
classification, estimation, and multiple testing procedures. For example, the subminimax
rule in Robbins (1951) has shown that the disparity in the proportions of positive and nega-
tive signals can be incorporated into inference to reduce the misclassification rate. Similarly,
the adaptive z-value procedure in Sun and Cai (2007) has demonstrated that the shape of
the alternative distribution can be utilized to construct more powerful false discovery rate

(FDR, Benjamini and Hochberg, 1995) procedures.
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When auxiliary data is taken into account, the inference units become heterogeneous.
This heterogeneity provides new structural knowledge that can be leveraged to further im-
prove the efficiency of existing methods. For instance, in genomics research, prior data and
domain knowledge can be used to define a prioritized subset of genes. Roeder and Wasser-
man (2009) proposed to up-weight the p-values in prioritized subsets where genes are more
likely to be associated with the disease. Structured multiple testing is a crucial area which
has garnered considerable attention. A partial list of references, including Lei and Fithian
(2018); Cai et al. (2019); Li and Barber (2019); Ignatiadis and Huber (2021); Ren and Candes
(2020), demonstrates that the power of existing FDR methods can be substantially improved
by utilizing auxiliary data to assign differential weights or to set varied thresholds to corre-
sponding test statistics. Similar ideas have been adopted by some recent works on shrinkage
estimation. For instance, Weinstein et al. (2018) and Banerjee et al. (2020) propose to incor-
porate side information into inference by first creating groups, then constructing group-wise

linear shrinkage or soft-thresholding estimators.

1.2 Nonparametric integrative Tweedie

Tweedie’s formula is an elegant and celebrated result that has received renewed interests
recently (Jiang and Zhang, 2009; Brown and Greenshtein, 2009; Efron, 2011; Koenker and
Mizera, 2014; Ignatiadis et al., 2023; Saha and Guntuboyina, 2020; Kim et al., 2022; Zhang
et al., 2022; Gu and Koenker, 2023). Under the nonparametric empirical Bayes framework,
the formula is particularly appealing for large-scale estimation problems for it is simple to
implement, removes selection bias (Efron, 2011) and enjoys frequentist optimality properties

(Xie et al., 2012).
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The EB implementation of Tweedie’s formula has been extensively studied in the lit-
erature. Zhang (1997) demonstrated that a truncated generalized empirical Bayes (GEB)
estimator asymptotically achieves both Bayes and minimax risks. Additionally, the non-
parametric maximum likelihood estimate (NPMLE, Kiefer and Wolfowitz, 1956) approach
and the broader class of g-modeling approaches (Efron, 2016; Shen and Wu, 2022) imple-
ment Tweedie’s formula by estimating the unknown prior distribution G through the Kiefer-
Wolfwitz estimator (Jiang and Zhang, 2009). The NPMLE approach enjoys desirable asymp-
totic optimality properties in a wide range of problems (Jana et al., 2023; Jiang and Zhang,
2010; Soloff et al., 2021; Polyanskiy and Wu, 2020). In contrast to the NPMLE, Brown
and Greenshtein (2009) proposed the f-modeling strategy, which implements Tweedie’s for-
mula directly by estimating the marginal density of observations using Gaussian kernels.
This nonparametric EB estimator achieves asymptotic optimality in both dense and sparse
regimes. Empirically, NPMLE outperforms the kernel method by Brown and Greenshtein
(2009). However, the algorithm for NPMLE by Jiang and Zhang (2009) cannot handle data-
intensive applications due to its computational complexity. The connection between com-
pound estimation and convex optimization was established by Koenker and Mizera (2014),
which casts NPMLE as a convex program, resulting in fast and stable algorithms that out-
perform competing methods; see Gu and Koenker (2017), Koenker and Gu (2017b) and
Saha and Guntuboyina (2020) for recent works in this direction. However, in the context of
the g-modeling strategy, direct non-parametric assimilation of covariates has not been thor-
oughly investigated, and these approaches can exhibit significant computational complexity,
particularly when dealing with covariates of moderate to high dimensions.

To effectively extract and incorporate useful structural information from both primary
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and auxiliary data, we propose a nonparametric integrative Tweedie (NIT) approach to
compound estimation of normal means. NIT utilizes the f-modeling strategy, which involves
directly estimating the log-gradient of the conditional distribution of Y given S, also known
as the score function, thereby eliminating the need for a deconvolution estimator for the
unknown mixing distribution. We recast compound estimation via NIT as a convex program
using a well-designed reproducing kernel Hilbert space (RKHS) representation of Stein’s dis-
crepancy. By searching for feasible score embeddings in the RKHS, we obtain the optimal
shrinkage factor, resulting in a computationally efficient and scalable algorithm that exhibits
superior empirical performance, even in high-dimensional covariate settings. The kernelized
optimization framework also provides a rigorous and powerful mathematical interface for
theoretical analysis. Leveraging the RKHS theory and concentration theories of V-statistics,
we derive the approximate order of the kernel bandwidth, establish the asymptotic opti-
mality of the data-driven NIT procedure, and explicitly characterize the impact of covariate
dimension on the rate of convergence.

In recent years, the theoretical foundations of score estimation approaches—particularly
in the context of diffusion models used in generative Al for image generation—have garnered
significant attention (see, for instance, Wibisono et al. (2024); Zhang et al. (2024); Dou et al.
(2024) and the references therein). While these methods are primarily designed for diffusion
models, their connections to our approach for estimating the score function are mainly
theoretical. In particular, we note that the theoretical convergence rates established in our
paper (Section 3) are weaker than those achieved for score estimation in Wibisono et al.
(2024); Zhang et al. (2024). However, like these works, we also capture the exponential

decay in convergence rates as the dimension K of the side information vector S; increases
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(see Theorem 1). Furthermore, both Wibisono et al. (2024) and Zhang et al. (2024) rely on
ratio estimators to learn the score function and are similar in spirit to the approach pursued
in Brown and Greenshtein (2009). The numerical experiments in Section 4 demonstrate
superior performance of our proposed method compared to such ratio estimators across

various regimes.

1.3 Owur contributions

Methodological contributions. NIT offers several advantages over existing shrinkage
estimators. Firstly, it provides a nonparametric framework for assimilating auxiliary data
from multiple sources, setting it apart from existing works such as (Ke et al., 2014; Cohen
et al., 2013; Kou and Yang, 2017; Ignatiadis and Wager, 2019). Unlike these methods, NIT
does not require the specification of any functional relationship, and its asymptotic optimality
holds for a wider class of prior distributions. Secondly, NIT has the ability to incorporate
various types of side information and effectively handle multivariate covariates. By contrast,
Weinstein et al. (2018); Banerjee et al. (2020) only focus on the variance or sparsity structure,
and both methods can only deal with univariate covariates by adopting a grouping approach.
However, under the multivariate covariate setting, it may be infeasible to determine the
optimal number of groups and to search for the ideal grouping structure. Furthermore,
grouping involves discretizing a continuous variable, leading to a loss of efficiency. Finally,
NIT is a fast, scalable, and flexible tool that can incorporate various structural constraints

and produce stable estimates.

Theoretical contributions. Firstly, we establish the convergence rates of NIT to the oracle

integrative Tweedie estimator, which explicitly characterizes the improvements in estimation
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risk by leveraging auxiliary data. Secondly, our theoretical analysis precisely quantifies the
deterioration in convergence rates as the dimension of the side information increases, provid-
ing important caveats on utilizing high-dimensional auxiliary data. For this theoretical analy-
sis, we introduce new analytical tools that formalize the L, risk properties of Kernelized Stein
Discrepancy (KSD) based estimators. To rigorously prove results for the L, risk, we establish
a local isometry between the L, risk and the RKHS norm of the proposed estimator. Related
KSD-based works (Liu et al., 2016; Chwialkowski et al., 2016; Banerjee et al., 2021) assume
the existence of such local isometries without providing a formal analysis. The probability
tools developed here can be of independent interest for decision theorists; particularly our
techniques have demonstrated their usefulness for analyzing the L, risk of recently proposed
KSD methods, in the context of both heteroskedastic normal means problem (Banerjee et al.,
2024) and mixed effects models (Banerjee and Sharma, 2025). For instance, in the context
of the heteroskedastic normal means problem, Banerjee et al. (2024) (BFJMS24) consider

nd. i.4.d

the following hierarchical model: Y;|(6;, 0?) R N(6;,02), 6; | 0; "™ Gu(-loi), o "~ Hy(-),
where G, (- | 0;) and H,(-) are unspecified prior distributions, and develop novel techniques to
address non-exchangeability in coordinate-wise rules arising from heterogeneous variances.
We note that this setting does not fall within the scope of the homoskedastic framework
considered in our paper since the models described in equations (1.1) and (2.1) assume a
relationship between the location parameter 6; and the side information S;, but they do not
account for relationships involving variances in a heteroskedastic setup. However, the theory
in our paper aligns with the theoretical derivations for Bayes-optimal rules in BFJMS 2024,

and the convergence rates are related.

The article is organized as follows. In Section 2, we discuss the empirical Bayes esti-



mation framework, NIT estimator, and computational algorithms. Section 3 delves into the
theoretical properties of the NIT estimator. Sections 4 and 5 investigate the performance
of NIT using simulated and real data, respectively. Additional technical details, numerical
illustrations and proofs are provided in the online Supplementary Material. All R codes for
reproducing the numerical experiments conducted in this paper are available at the following

GitHub repository: https://github.com/jiajunluo121/NIT.

2. Methodology

Let d(y,s) = (0; : 1 < i < n) be an estimator of 8, and £2(8,0) =n~' > ", (6; — §;)* be
the corresponding loss function. We define the risk as R,,(8,0) = Ey g9 {£2(d,0)} and the
Bayes risk as B, (8) = [ R,(d,0)dI(0), where I1(0) is an unspecified prior distribution for
0.

We assume that the primary and auxiliary data are related through a latent vector

€= (&, ,&)7T according to the following hierarchical model:

Qi — 90(&‘:%,07 1 S 1 S n,
(2.1)

S'EJ) :gj(£z7ﬁ],l)7 1 SJ S K7
where gy and g; are unspecified functions, and 7, ; and 7;; are random perturbations that are
independent from &. This hierarchical model assumes that the shared information between 6;
and S; is encoded by a common latent variable &;. The relevance of the auxiliary information
hinges on the noise level as well as the functional forms of gy and g;. Our methodology does
not require prior knowledge of gg and g;, offering a versatile framework for integrating both

continuous and discrete auxiliary data, and accommodates various types of side information

ranging from entirely non-informative to perfectly informative. As gy and g; are unknown,


https://github.com/jiajunluo121/NIT

2.1 Oracle integrative Tweedie estimator

we propose to incorporate covariate information nonparametrically. This section initially
presents an oracle rule that optimally utilizes information from S, followed by a discussion
on a data-driven non-parametric rule designed to mimic the oracle rule. Subsequently, in
Section 3.2, we delve into the frequentist risk properties of the proposed methods for a fixed

sequence of 6.

Remark 1. Equations (1.1) and (2.1) can also be conceptualized as a Bayesian hierarchical

model as follows:
ind. ind. i.3.d.
Yi | (Q’L} Sz) ~ N<6)170-2)7 (017 SZ) | fz ~ G@( | gl)Gs( | 51)7 f’b ~ GE()7

where Gy, G5 and G¢ are unknown distributions. In particular, the above representation
includes the hierarchical model of Ignatiadis et al. (2023) (see Equation 1) as a special case
where, marginalizing out &;, the conditional distribution of 6; given S; is assumed to be

Gaussian.

2.1 Oracle integrative Tweedie estimator

We consider an oracle with access to f(y|s). The oracle rule that minimizes the Bayes
risk among all decision rules with the full data set, comprising both primary and auxiliary
data, is referred to as the integrative Tweedie rule. In Section 3, we will quantify its improved
performance over the Bayes rule relying solely on the primary data. The integrative Tweedie
rule is presented in following proposition. It can be derived from Tweedie’s formula in (Efron,

2011) and is provided in the supplement for completeness.

Proposition 1 (Integrative Tweedie). Consider the hierarchical model (1.1) and (2.1). Let

f(y|s) be the conditional density of Y given S and denote V,log f(y|s) = 8% log f(y|s). The
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optimal estimator that minimizes the Bayes risk is 8" (y, s) = {0 (y;, 8;) : 1 <1i < n}, where

6" (y,8) =y + 0°V, log f(y|s). (2.2)

The integrative T'weedie rule (2.2) provides a versatile framework for integrating primary
and auxiliary data. Existing literature on shrinkage estimation with side information typi-
cally requires a pre-specified form of the conditional mean function m(S;) = E(Y;|S;) (Ke
et al., 2014; Cohen et al., 2013; Kou and Yang, 2017). In contrast, integrative Tweedie incor-
porates side information through a much wider class of functions f(y|s) (where f conditioned
on s is a mixture of Gaussian location densities), eliminating the need to pre-specify a fixed
relationship between Y and S. In Section S1 of the Supplementary Material, we present two
toy examples that respectively demonstrate: (a) the reduction of integrative Tweedie to an
intuitive data averaging strategy when the distributions of primary and auxiliary variables
match perfectly, and (b) the effectiveness of integrative Tweedie in reducing the risk (relative

to ignoring S) even when the two distributions differ.

2.2 Nonparametric estimation via convex programming

This section proposes a data-driven approach to emulate the oracle rule. Let X = (zy, -+ ,@,)T
denote the set of all data, where the primary sequence is denoted by x1; = y; and the (k—1)th
auxiliary sequence is denoted by xp; = s%kil) fork=2....K+1land¢=1,...,n. Our

objective is to estimate the shrinkage factor, which is given by

hi(X) = {Vm log f(uq|ug, ... ’UKJFI)‘u:wi 1< < n}

= {Vy, log f(yilsi) : 1 <i < n}.



2.2 Nonparametric estimation via convex programming

We present a convex program designed to estimate h;(X). This program is motivated by
the kernelized Stein’s discrepancy (KSD) that we formally define in Section 3. The KSD
measures the distance between a given h and the true score h;. It is always non-negative, and
is equal to 0 if and only if b = hy. Let K)(x, ') be a kernel function that is integrally strictly
positive definite, where \ is a tuning parameter. A detailed discussion on the construction
of kernel K(-,-) and choice of A is provided in Section 2.3. Consider the following two n X n
matrices:

(KA)ij =n? K,\(a%, wj)7 (VK)\)z’j =n? Vxle,\(CUz‘, il?j) .

Given a fixed \, we define h An as the solution to the following quadratic program:

ﬁ,\yn =argmin hTK,h+2RTVK,1, (2.3)
heV,

where V,, is a convex subset of R™. Convex constraints, such as linearity and monotonicity,
can be imposed through V,,. Such constraints play an essential role in enhancing the stability
and efficiency of compound estimation procedures (Koenker and Mizera, 2014); we provide
a detailed discussion on these constraints in Section 2.3. In Section 3, we provide theory
to demonstrate that solving the convex program (2.3) is equivalent to finding a shrinkage
estimator, aided by side information, that minimizes the estimation risk.

Now combining (2.3) and Proposition 1, we propose the following class of nonparametric

integrative Tweedie (NIT) estimators
{6 : X € (0,00)}, where &) =y + o Py, (2.4)

In Section 3, we show that as n — oo there exist choices of A such that the resulting estimator
(2.4) is asymptotically optimal.

The NIT estimator (2.4) marks a clear departure from existing NPMLE methods (Jiang
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and Zhang, 2009; Koenker and Mizera, 2014; Gu and Koenker, 2017), which cannot be easily
extended to handle multivariate auxiliary data. Furthermore, NIT has several additional
advantages over existing empirical Bayes methods in both theory and computation. Firstly,
in comparison with the NPMLE method (Jiang and Zhang, 2009), the convex program (2.3)
is computationally efficient and easily scalable. Secondly, Brown and Greenshtein (2009)
proposed estimating the score function using the ratio f @/ f , where f is a kernel density
estimate and f (M) is its derivative. However, the ratio estimate can be highly unstable. In
contrast, our direct optimization approach produces more stable and accurate estimates.
Finally, our convex program can be fine-tuned by selecting an appropriate A, resulting in
improved numerical performance and facilitating a disciplined theoretical analysis. The
criterion in (2.3) can be rigorously analyzed to establish new rates of convergence (Sec. 3.1)

that are previously unknown in the literature.

2.3 Computational details

This section presents several computational details: (a) a discussion on how to impose con-
vex constraints; (b) a description of how to construct kernel functions capable of handling
multivariate and potentially correlated covariates; and (c) a strategy on how to select the
bandwidth .

1. Structural constraints. In the convex program, we impose the constraint 17h =
0. This constraint ensures the “unbiasedness” of the estimator, as the expectation of the
gradient of the log marginal density is theoretically zero. While other convex constraints
can be readily integrated into the optimization, they may not be entirely appropriate. For

instance, a monotonicity constraint, initially introduced in Koenker and Mizera (2014), has
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been shown to be highly effective in improving estimation accuracy in sequence models
without auxiliary variables. To facilitate ease of presentation, assume y; < 5 < --- < y,.
The monotonicity constraint, expressed as 02h;_1 —o?h; < y;—vy;_; for all i, can be formulated
as Mh =< a and incorporated into V;, in (2.3) by selecting M as the upper triangular matrix
My = o®{I(i = j) —I(i = j — 1)} and setting a” = (Y2 — y1,43 — Y2, " ;Y — Yn-1)-
However, the monotonicity constraint though satisfied by the Tweedie estimator for primary
data is not satisfied by the integrative T'weedie estimator on the full data set as y; < s
does not imply E(6,|Y7,S1) < Eby|ys, So. While our paper refrains from imposing such
constraints, they can be easily integrated into the methodology if there is a preference for
restricting the optimization space in (2.3). These additional constraints, though non-trivial,
can significantly decrease the variance of the resulting estimator. Further discussion on this
topic will be provided in Section 3.4.

2. Kernel functions. Constructing an appropriate kernel function is crucial when
dealing with the complications that arise in the multivariate setting, where the auxiliary

sequences may be correlated and have varying measurement units. We propose to use

the Mahalanobis distance || — &'||s, = /(z —@')TS;'(z — @) in the kernel function,
where ¥, denotes the sample covariance matrix. Specifically, we employ the RBF kernel
Ky(x,2') = exp(—0.5\%||x — 2'||3;_), where X is the bandwidth parameter that can be se-
lected through cross-validation. Mahalanobis distance is superior to the Euclidean distance
as it is unit less, scale-invariant and accounts for the correlations in the data. When the
auxiliary data contains both continuous and categorical variables, we propose to use the
generalized Mahalanobis distance (Krusiriska, 1987). While we illustrate the methodology

for mixed types of variables in the numerical studies, we only pursue the theory in the case



where both Y and S are continuous.

3. Modified cross-validation (MCYV) for selecting \. As the kernel bandwidth pa-
rameter, A controls the classic bias-variance trade-off in the score function estimate. For in-
stance, a larger value of \ allows unbiasedness but the resulting n dimensional score function
estimator has more variance relative to a smaller A which forces the estimated scores towards
0. Thus, to appropriately regularize the score function estimates, we propose to determine
A via the modified cross-validation (MCV) approach of Brown et al. (2013). Specifically, we
introduce n; ~ N(0,0?), 1 <1i < n, as i.i.d. noise variables that are independent of y and
81, ,8k. Define an uncorrelated pair U; = y; + an; and V; = y; — n;/c, which satisfies
Cov(U;,V;) = 0. The MCV strategy employs U = (Uy,---,U,) to construct estimators

S\(U, S), while validating using V' = (V;,- -, V},). Consider the following validation loss

En() ) = %Z{S‘;Z.(U, S) Vi — (14 1/a) . (2.5)

~

For small o, A is determined as the value that minimizes L, (), ), i.e., A = arg miny,., L, (A, )
for any A C R*. The proposed NIT estimator is given by {yi—l—azﬂj\ L(1) 1 <1 <n}. Propo-
sition 3 in Section 3.6 establishes that the validation loss converges to the true loss, justifying

the MCV algorithm.

3. Theory

This section presents a large-sample theory for the data-driven NIT estimator in Equation
(2.4) under the setting when o2 is known. Our theoretical analysis focuses on the continuous
case, where X; = (Y;, 81, ,Su)T, i = 1,--+ ,n, are assumed to be i.i.d. samples from a
continuous multivariate density f: RX¥*! — R*. The focus on the continuous case enables

an illuminating analysis of the convergence rates (Sections 3.3 and 3.4), providing valuable
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insights into the role that side information plays in compound estimation.

Let X = (X1,---,X,,)" denote the n x (K + 1) matrix of observations, with X *) being
the kth column of X. We define f as a density function on RXT! and h(x) as the first
conditional score (FCS) Vylog f(z1|x_1), where x_; = (z; : 2 < j < K + 1). By definition,
the FCS is equivalent to the log-gradient of the joint density for the first coordinate, i.e.,
hr(x) = Vilog f(x). Recall our primary objective is to estimate the parameter vector
60=E {X (1)}. As we have demonstrated in Proposition 1, the FCS h¢(x) plays a crucial
role in constructing the oracle estimator; hence accurately estimating the FCS enables us to
obtain a precise estimate of 6.

Section 3.1 provides a detailed explanation of the relationship between compound es-
timation and kernelized Stein’s discrepancy, and demonstrates how the FCS hy(x) can be
accurately approximated by the solution to (2.3). The properties of the scores and conver-
gence rates are established in Sections 3.2 to 3.4, with additional results presented in Sections

3.5 and 3.6.

3.1 Stein’s discrepancy, shrinkage estimation and convex optimization

We begin by introducing a conditional version of the kernelized Stein’s discrepancy measure,
which is widely used to quantify the discrepancy between probability distributions. Specif-
ically, we consider the Gaussian kernel function K, : RE*! x REF! — R with bandwidth
A. Let P and @ be two distributions on R¥*! with densities denoted by p and ¢, and
associated first conditional score functions denoted by b, and by, respectively. We define
the conditional kernelized Stein’s discrepancy (KSD; Liu et al. (2016); Chwialkowski et al.

(2016); Banerjee et al. (2021)) between P and @) as the kernel-weighted distance between b,
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and b, given by:

DAP.Q) =E,, s, [Ka(0) x {b,(w) = by(u) } x {B,(v) = b,(0) }|.

The versatility and effectiveness of KSD make it a valuable tool for many statistical prob-
lems. For example, the minimization of KSD-based criteria has been a popular technique
to solve a range of statistical problems, including new goodness-of-fit tests (Liu et al., 2016;
Chwialkowski et al., 2016; Yang et al., 2018), Bayesian inference (Liu and Wang, 2016; Oates
et al., 2017), and simultaneous estimation (Banerjee et al., 2021).

KSD is closely related to Maximum Mean Discrepancy (MMD, Gretton et al. (2012));
both are measures of discrepancy between probability distributions. While KSD involves the
use of kernel functions to construct an unbiased estimate of the Stein operator, MMD uses
kernel functions to map the distributions into a reproducing kernel Hilbert space where the
distance between their mean embeddings can be computed. Compared to MMD, KSD is
particularly well-suited for empirical Bayes estimation because it can be directly constructed
based on the score functions, which, as shown in Proposition 1, yield optimal shrinkage
factors. Moreover, it can be demonstrated (See Sec. 3 of Jitkrittum et al. (2020)) that the

conditional KSD defined above satisfies the following properties:
D)\(P,Q) > 0 and D,(P,Q) = 0 if and only if / |P(ui|u1) — Q(us|u_y)| p(u) du = 0.

These properties make KSD an attractive choice for testing and comparing distributions,
as well as for other applications in which measuring the discrepancy between probability
distributions is crucial.

We leverage the property that a value of 0 for the conditional KSD indicates the equal-

ity of the conditional distributions Pj(u) = P(uj|lu_;) and Q(u) = Q(ui|u_1). How-
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ever, the direct evaluation of D, (P, @) is challenging. To overcome this difficulty, we intro-
duce an alternative representation of the KSD, initially introduced in Liu et al. (2016) and
Chwialkowski et al. (2016), that can be easily evaluated empirically. Specifically, we define

a quadratic functional ky[h] over REF! x REF! for any functional b : REFT — R, given by:

ralb](uw, v) = Kx(u,v)h(u)h(v) + Vo Ky (u,v) h(u) + Vi, Ky (u,v) h(v) + Vo Ki(u, v) .
(3.1)

Then the KSD, which solely involves b,, can be equivalently represented by

DA(P,Q)=E,, , s ,{mlb)(u )}, (3.2)

We now turn to the compound estimation problem and discuss its connection to the KSD.
Proposition 1 demonstrates that, when f is known, the optimal estimator is constructed
using hs(X) = {bs(x1),...,b(x,)}", the conditional score function evaluated at the n

observed data points. Define
Syn(h) = K"K \h + 20 VK1 + 17 V2K, 1, (3.3)

where (V2K );; = n7?V,, V,, Kx(z;,x;), K, is the n x n Gaussian kernel matrix with
bandwidth )\, and VK, is defined in Section 2.2. As the extra term 17 V2K, 1 is independent
of h, it is easy to see that the convex program (2.3) is equivalent to minimizing g,\,n(h) over
h. When h is set to h, = {h,(x1),...,bhe(x,)}, (3.3) becomes the empirical version of the

KSD defined in (3.2):

Sin(hy) = Di(F,,Q) = E

1 n
(u,0) Fn{“/\[bq] (w,v)} = 2 Z “A[thmmmJ’) )
ig=1
where, F, =n~' Y27 | 0, is the empirical distribution function.

We will now present a heuristic explanation of the optimization criterion (2.3). As

n — oo, I, 55 F and it follows that gSA’Am(hq) K Sx(by) := Di(F, Q). While stronger versions
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of these results, such as uniform convergence, are available, we will not delve into those
intricate details in this heuristic explanation of the proposed method’s working principle.
Moreover, Dy (F,Q) = 0 iff the first conditional distributions given the rest are equal, i.e.,
F(ujlu_1) = Q(uz|u_y). Thus, if we could have minimized Sy(bh,) over the class H =
{b, = Vilogq(x) : q is any density on R**'} then the minimum would be achieved at the
true FCS by and the minimum value would be 0. However, Sy(h,) involves the unknown
true distribution F, making direct minimization impractical. Alternatively, we minimize
the corresponding sample based criterion S, \n(hy) in (3.3) (or equivalently, (2.3)). In large-
sample situations, we expect the sampling fluctuations to be small; hence, minimizing §m

will lead to score function estimates very close to the true score functions.

3.2 Score estimation under the L, loss

The next three subsections formulate a rigorous theoretical framework, in the context of
compound estimation, to derive the convergence rates of the proposed estimator.

The criterion (2.3) involves minimizing the V-statistic §>\7n(h). Using standard asymp-
totics results for V-statistics (Serfling, 2009), it follows that for any density ¢, §,\7n(hq) —
Sa(h,) in probability as n — oco. Also, it follows from, for example, Liu et al. (2016), that

R, the solution to (2.3), satisfies:

Y K@i @) {hani) = bs@) | {Aanli) = bs(@) | = Op(n™)  (34)

1]

as n — oo , where iz)\n(z) = fALAn(iL‘Z) fori=1,...,n.

For implementational ease, we relax the optimization space from the set of all conditional score functions
H to the set all of all real functionals on R¥+1. Due to the presence of structural constraints discussed in
Section 2.1, this relaxation has little impact on the numerical performance of the NIT estimator. Simulations

in Section 4 show that the solutions to (2.3) produce efficient estimates.
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While (3.4) shows that in the RKHS norm the estimates are asymptotically close to
the true score functions, for most practical purposes we need to establish the convergence
under the £, norm. For p > 0, define €,(hx, hy) = n " 20 |haa () — by(z;)P. The case
of p = 2 corresponds to Fisher’s divergence. Denote the RKHS norm on the left side of
(3.4) by d(han,bs). The essential difficulty in the analysis is that the isometry between
the RKHS metric and ¢, metric may not exist. Concretely, for any A > 0, we can show that
dy < Cy ¥y, where (] is a constant. However, the inequality in the other direction does not
always hold. We aim to show that /o < C5d, for some constant Cs; this would produce
the desired bound on the L, risk. Next we provide an overview of the main ideas and key

contributions of the theoretical analyses in later subsections.

T )

o h

o Ty = —

Topology with L1 norm

Topology with RKHS norm

Figure 1: Schematic illustrating the relation between the RKHS and ¢; risks of iL/\m. The
(approximate) isometry can be still established. However, the error rate is increased from

n~! to r; ! due to inversion.

In Sections 3.3 and 3.5, we show that as n — oo then &(f},)\’n, hr) < crn d,\(ﬁ,\,n, he){l+
op(1)}, for some c, ,, that depends on A and n only. This result, coupled with the convergence

in the RKHS norm (3.4), produces a tolerance bound on the L, risk of hy,, which is
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subsequently minimized over the choice of A (Theorem 1 in Section 3.3). However, as a
result of inverting, the n=! error rate in (3.4) is increased to r;;! ~ n=Y/&+2) for the ¢, risk
(in Theorem 1, we let p = 1). Figure 2 provides a schematic description of the phenomenon;
further explanations regarding this error rate are provided after Theorem 1.

We point out that existing KSD minimization approaches, including the proposed NIT
procedure, involve first mapping the observed data into RKHS and subsequently estimating
unknown quantities under the RKHS norm. A tacit assumption for developing theoretical
guarantees on the [, risk is that the lower RKHS loss would also translate to lower ¢, loss;
see, for example, Assumption 3 of Banerjee et al. (2021) and Section 5.1 of Liu et al. (2016).
Heuristically, if K)(u,v) = cxI(u = v), with ¢y — oo as n — oo, then (3.4) would imply
Ez(fc,)\7n, hs) — 0. By rigorously characterizing the asymptotic quasi-geodesic between the
two topologies, it can be shown that there exists such choices of \. We provide a complete
analysis of the phenomenon that our score function estimates in the RKHS transformed
space has controlled £, risk for the compound estimation problem. This analysis, which is
new in the literature, also yields the rates of convergence for the ¢, error of the proposed

NIT estimator in the presence of covariates.

3.3 Convergence rates for sub-exponential densities

To facilitate a simpler proof, in this section we assume that the true (K + 1)-dimensional
joint density f as well as its score function by are Lipschitz continuous. We first provide
results for sub-exponential densities, which encompass the popular cases with Gaussian and

exponential priors; the convergence rates for heavier-tail priors are discussed in Section 3.5.

Assumption 1. The (K + 1) dimensional joint density f is sub-exponential.
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Our main result is concerned with the ¢; risk of the solution from (2.3). The following
theorem shows that the mean absolute deviation of the solution from the true score function
is asymptotically negligible as n — oo. In the theorem we adopt the notation a,, < b,, for two
sequences a, and b,, which means that cja,, < b, < cb, for all large n and some constants

cy > cp > 0.

Theorem 1. Under Assumption 1, as n — oo with X\ =< n~1/(K+2)

e

i=1

~

hyn(i) = b (i)

} 0 in Ly, (3.5)
where, r, = n'/ K+ {log(n)}~CK+5),

Remark 2. It follows immediately from Theorem 1 that the deviations between our proposed

estimate and the oracle estimator in (2.2) obeys:

1< e
Tn{; > ‘5';(2') — 07 (yilsi) } —0in Ly as n — oo. (3.6)
=1

Under the classical setting with no auxiliary data (K = 0), we achieve the traditional
y/n—rate as established in Jiang and Zhang (2009). However, the convergence rate r, ~
n'/(E+2) (barring poly-log terms) decreases polynomially in n as K increases. Noting that,
for a (K + 1) dimensional Gaussian density, the rate of convergence of the mean integrated
squared error for the optimally tuned kernel density estimate is n*/ 5+ (Wand and Jones,
1995), we see similar non-parametric (polynomial decay but different exponent) deterioration
type in the convergence rate of our estimator as K increases. Adding additional structural
constraints discussed in Section 2.3 can greatly improve this convergence rate but the resul-
tant estimator might be highly sub-optimal under misspecification, i.e., when the structural

constraints introduced in the model is not true for the data generation process. We pro-
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vide further discussions on the convergence rate of our proposed estimator, as well as its

implications for transfer learning, in Section 3.4.

Next we sketch the outline of and main ideas behind the proof of Theorem 1; detailed

arguments are provided in the supplement. Consider

B = E{dr(an: 07)} = Ex, |Ka(@1,20) {Ran(1) = 0(@1) } {Ban(n) = bs(@a) ]

where the expectation is taken over X,, = {x1,...,®,} and x; are i.i.d. samples from f.
From (3.4) it follows that A, = O(n™!'). For A = 0, Ky(x1,2,) is negligible only when
l|x1 — ||z is small. Thus for studying the asymptotic behavior of Ay, we shall restrict
ourselves on the event where ||x;—x,]|2 is small. Conditional on this event, we show that A ,,
can be well approximated by ky,Ax,_1, where Ay, ;| = Eanl[{lAl,\,n(l) — bhp(x1)}2 f(21)]
and the expectation is taken over X, 1 = (@1,...,@,_1). To heuristically understand the

genesis of A An—1, Substitute ; 4 € in place of x,, in the expression:

Ann = /KA(;CI, €, ) {han(1) = hp(@)} {han(n) — bp(x,)}f() ... f(e,)de ... dx,

and let €] — 0. As A — 0, the contributions from the kernel weight K can be separated out
of the expression and subsequently accounted by constants k) ,. Meanwhile the remaining
terms produce Ay, ;. The rate at which || — 0 needs to be appropriately tuned with A
to get the optimal rate of convergence; a rigorous probability argument is provided in the
supplement. We shall see that the intermediate quantity Ay, 1, which links the L, and
RKHS norms, can be explicitly characterized. The rate of convergences will be established
by sandwiching A an—1 With functionals involving L; and L, norms.

Finally we present a result investigating the performance of the NIT estimator under

the mean squared loss. Using sub-exponential tail bounds, the /5 loss of score functions
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can be obtained by extending the results on ¢; loss. The difference in the mean squared
losses between the oracle and data-driven NIT estimators can be subsequently characterized.
Lemma 1 below shows that this difference is asymptotically negligible.

Lemma 1. For any unknown prior I1 satisfying Assumption 1 and A < n~"/(E+2),

L2(8'T,6) — £L2(87,0) = 0,(r; ") as n — co. (3.7)

Combining (3.6) and (3.7), we have established the asymptotic optimality of the data-
driven NIT procedure by showing that it achieves the risk performance of the oracle rule
asymptotically when n — oo; this theory is corroborated by the numerical studies in Section

4.

3.4 Benefits and caveats in exploiting auxiliary data

The amount of efficiency gain of the data-driven NIT estimator depends on two factors:
(a) the usefulness of the side information and (b) the precision of the approximation to the
oracle. Intuitively when the dimension of the side information increases, the former increases
whereas the latter deteriorates.

Consider the Tweedie estimator y; + 02V log f1(y;) that only uses the marginal density
f1 of Y and no auxiliary information. The Fisher information based on the marginal f; and

the conditional density f(y|s) are

= {%}me dy and Iys = | {%}%y, s)dyds

The following proposition, which follows from Brown (1971) (for completeness a proof is
provided in the supplement), shows that, under the oracle setting, utilizing side information
is always beneficial, and the efficiency gain becomes larger when more columns of auxiliary

data are incorporated into the estimator.
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Proposition 2. Consider hierarchical model (1.1)-(2.1). Let 6™ (y) and 67 (y, S) respectively
denote the oracle estimator with only y and the oracle estimator with both y and S. The

efficiency gain due to usage of auxiliary information is
B {6"(y)} — B {67(y, 8)} = 0, {Ivis) — Iy} > 0.

The above equality is attained if and only if the primary variable is independent of all auzxiliary

variables.

Theorems 1 and Lemma 1 demonstrate that as the dimension K increases, the rate of
convergence 1, decreases. This means that while adding more columns of auxiliary data
(even if they are non-informative) theoretically never leads to a loss, there is still a tradeoff
under our estimation framework. Specifically, the increase of K can widen the gap between
the oracle and data-driven rules and potentially offset the benefits of including additional
side information. To better understand this tradeoff, we present a numerical example that
highlights two key aspects of the phenomenon.

Consider the hierarchical model (1.1)—(2.1). We draw the latent vector &€ from a two-point
mixture model, with equal probabilities on two atoms 0 and 2, i.e. & ~ 0.5d50y + 0.50(9}.
The mean vectors are simulated as 0; = & + 1y, and pp; = & + mii, 1 < B < K with
Tyis ki ug N(0,1). Finally we generate Y; ~ N (6;,1) and Sg; ~ N (i, 1), 1 < k < K.
We vary K from 1 to 12 and compare the oracle and data-driven NIT procedures in Figure 2.
We can see that the increase of K has two effects: (a) the MSE of the oracle NIT procedure
decreases steadily, while (b) the gap between the oracle and data-driven NIT procedures
increases quickly. The combined effect initially leads to a rapid decrease in the MSE of the

data-driven NIT procedure, but the decline slackens as K > 5.

In light of the above discussion, it follows that when we have a large number of auxiliary
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0.60+

MSE

0.55;

Figure 2: Mean squared error (MSE) of our proposed method (in sky blue) is plotted along
with the oracle risk (in magenta) as the number of auxiliary variable (K) increases. The
MSE of the oracle procedure always decreases but the MSE of the data-driven NIT procedure

stops decreasing as K > 9.

variables, it may be beneficial to conduct compress the auxiliary data to lower dimensions
before applying the NIT estimator. Another remedy can be to impose structural constraints
such as monotonicity or lower-dimensional functional relationship between the primary and

the auxiliary data akin to (Ignatiadis et al., 2023).

3.5 Convergence rates for heavy-tail densities

In this section, we expand upon the results presented in Section 3.3 to encompass a broader

range of prior distributions. We still assume that the true (K + 1)-dimensional joint density
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[ as well as its score function by are Lipschitz continuous. Akin to conditions in Theorem
5.1 of Xie et al. (2012) we further assume that the density has (2 + J) moment bounded for

some 0 > 0.

Assumption 2: For some § > 0, the K + 1 dimensional joint density f has bounded 2 + ¢

240 < oo,

moment, i.e., Epr|/z|
The next theorem shows that, for suitably chosen bandwidth, the data-driven NIT estimator
is asymptotically close to the oracle estimator and the difference in their losses also converges
to 0 under any prior satisfying Assumption 2. The rate of convergence is slower than that of

Theorem 1, which is mainly due to the larger terms needed to bound heavier tails. Similar

to Theorem 1, the rate decreases with the increase of K.

Theorem 2. Under Assumption 2, with A\ < n~Y5+2) and

S(K+2)"1(K+3+28)~ K-3

“(logn) <3,

'm =N

we have

o (3 ot e

Additionally, we have L£2(0,0) — L2(67,8) = o,(r; ") as n — o.

}%O m Le as n — oco.

The rate r, above converges to the rate in Theorem 1 as 6 — oo, which heuristically
translates to the existence of all possible moments. Also, theorems 1 and 2 are based on the

same value of the bandwidth \.

3.6 Consistency of the MCYV criterion

In sections 3.3 and 3.5, we have established asymptotic risk properties of our proposed

method as bandwidth A\ — 0. For finite sample sizes, it is important to select the “best”



bandwidth based on a data-driven criterion as provided in Section 2.3. The following propo-
sition establishes the consistency of the validation loss to the true loss, justifying the effec-

tiveness of the bandwidth selection rule.

Proposition 3. For any fixred A\ > 0 and n, we have
lim E{ﬁn()\, a) — £2(8'T, 9)} ~0.
a—0

provided that there is a unique solution to (2.3) for az = 0.

4. Simulation

We consider three different settings where the structural information is encoded in (a)
one given auxiliary sequence that shares structural information with the primary sequence
through a common latent vector (Section 4.1); (b) one auxiliary sequence carefully con-
structed within the same data to capture the sparsity structure of the primary sequence
(Section S8.1 of the Supplement); (c) multiple auxiliary sequences that share a common
structure with the primary sequence (Section 4.2).

The following methods are considered in the comparison: (a) James-Stein estimator (JS);
(b) the empirical Bayes Tweedie (EBT) estimator implemented using kernel smoothing as
described in Brown and Greenshtein (2009); (c) the NPMLE method by Koenker and Mizera,
2014, implemented by the R-package REBayes in Koenker and Gu (2017a); (d) the empirical
Bayes with cross-fitting (EBCF) method by Ignatiadis and Wager (2019); (e) the oracle NIT
procedure (2.2) with known f(y|s) (NIT.OR); (f) the data-driven NIT procedure (2.4) by
solving the convex program (NIT.DD). The last three methods, which utilize auxiliary data,

are expected to outperform the first three methods when the side information is informative.



4.1 Simulation 1: integrative estimation with one auxiliary sequence

The MSE of NIT.OR is provided as the optimal benchmark for assessing the efficiency of
various methods.

To implement NIT.DD, we employ the generalized Mahalanobis distance, as discussed in
Section 2.3, to compute the RBF kernel with bandwidth A. To select an optimal A, we solve
optimization problems 2.3 across a range of A values and then compute the corresponding
modified cross-validation (MCV) loss. The data-driven bandwidth is chosen as the value of

A that minimizes the validation loss (2.5).

4.1 Simulation 1: integrative estimation with one auxiliary sequence

Let £ = (& : 1 <i <mn) be a latent vector obeying a two-point normal mixture:

& ~ 0.5M(0,1) + 0.5M (1, 1).

The primary data Y = (Y; : 1 <i < n) in the target domain are simulated according to the
following hierarchical model: 6; ~ N'(&;,0?), Y; ~ N(6;,1). By contrast, the auxiliary data
S =(S;:1<1i<n)obeys(; ~N(&, 0%), S;~N(¢,o?). This data generating mechanism
is a special case of the hierarchical model (2.1) where both the primary parameter 6; and
auxiliary parameter (; are related to a common latent variable &, with o controlling the
amount of common information shared by #; and (;. We further use o, to reflect the noise
level when collecting data in the source domain. The auxiliary sequence S becomes more
useful when both ¢ and o, decrease. We consider the following settings to investigate the

impact of o, o, and sample size n on the performance of different methods.
Setting 1: we fix n = 1000 and ¢ = 0.1, then vary o from 0.1 to 1.

Setting 2: we fix n = 1000 and o4 = 1, then vary ¢ from 0.1 to 1.
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Setting 3: we fix 0, = 0.5 and o = 0.5, then vary n from 100 to 1000.

Finally we consider a setup where the auxiliary sequence is a binary vector. In the imple-
mentation of NIT.DD for categorical variables, we use indicator function to compute the
pairwise distance between categorical variables. Precisely, assume that s; and s; are two

categorical variables, then the distance d(s;, s;) = 1(s; = s;).

Setting 4: Let € = (& : 1 < i < n) be a latent vector obeying a Bernoulli distribution
& ~ Bernoulli(p). The primary sequence in the target domain is generated according
to a hierarchical model: 6; ~ N(2§;,0.25), y; ~ N(6;,1). The auxiliary vector is a
noisy version of the latent vector: s; ~ (1 — &;)Bernoulli(0.05) + &;Bernoulli(0.9). We

fix n = 1000 and vary p from 0.05 to 0.5.

We apply different methods to simulated data generated by the models described above and
calculate the MSEs over 100 replications. Figure 3 presents the simulation results for Set-
tings 1-4, from which we observe several important patterns. First, the integrative methods
(NIT.DD, EBCF) outperform univariate methods (JS, NPMLE, EBT) that do not incor-
porate auxiliary information in most settings. Moreover, NIT.DD consistently outperforms
EBCF, with substantial efficiency gains observed in many cases. This is not unexpected since
under the data generating scheme of Simulation 1, the conditional distribution of 6; given
S; under Settings 1-4 is not necessarily Gaussian and this represents a deviation from the
hierarchical model of Ignatiadis et al. (2023) upon which EBCF relies. Second, the efficiency
gain of the integrative methods decreases as o and oy increase (i.e., when the auxiliary data
become less informative or more noisy), as indicated by Settings 1-2. Third, as shown in
Setting 3, sample size has a significant impact on integrative empirical Bayes estimation,

with larger sample sizes being essential for effectively integrating side information. EBCF
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Figure 3: Simulation results for one given auxiliary sequence.

may under-perform univariate methods when n is small. Fourth, the gap between NIT.OR

and NIT.DD narrows as n increases. Finally, Setting 4 demonstrates that side information

can be highly informative even when the types of primary and auxiliary data differs.
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4.2 Simulation 3: integrative estimation with multiple auxiliary sequences

This section considers a setup where auxiliary data are collected from multiple source do-
mains. Denote Y the primary sequence and S7, 1 < j < 4, the auxiliary sequences. In our
simulation, we assume that the primary vector 8y = E(Y") share some common information
with auxiliary vectors Og = E(S7), 1 < j < 4 through a latent vector i, which obeys a

mixture model with two point masses at 0 and 2 respectively:
7; ~ 0.55{0} + 0.55{2}, 1<t <n.

There can be various ways to incorporate auxiliary data from multiple sources. We consider,
in addition to NIT.DD that utilizes all sequences, an alternative strategy that involves firstly
constructing a new auxiliary sequence S = $(S' + §% 4+ 8% + §*) to reduce the dimension
and secondly applying NIT.DD to the pair (Y, S); this strategy is denoted by NIT1.DD.
Intuitively, if all auxiliary sequences share identical side information, then data reduction via
S is lossless. However, if the auxiliary data are collected from heterogeneous sources with
different structures and measurement units, then NIT1.DD may distort the side information
and lead to substantial efficiency loss.

To illustrate the benefits and caveats of different data combination strategies, we first
consider the scenario where all sequences share a common structure via the same latent
vector (Settings 1-2). Then we turn to the scenario where the auxiliary sequences share
information with the primary data in distinct ways (Settings 3-4). In all simulations below

we use n = 1000 and 100 replications.

Setting 1: The primary and auxiliary data are generated from the following models:

V=0 +€&, S/ =6+, (4.1)
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where 0 ~ N (m:,02), ¢/ ~ N(1;,0%), 1 < j < 4, ¢ ~ N(0,1) and € ~ N(0,02),

1 <7 <n. We fix 0 = 0.5 and vary o, from 0.1 to 1.

Setting 2: the data are generated using the same models as in Setting 1 except that we fix

os = 0.5 and vary o from 0.1 to 1.

Setting 3: We generate Y and S7 using model (4.1). However, we now allow 6’ to have
different structures across j. Specifically, let n'[1 : 500] = n[l : 500], n'[501 : n] =
0, m?[1 : 500] = 0 and n?[501 : n] = n[501 : n]. The following construction implies

that only the first two sequences are informative in inference:
0y ~ Nl o%); ¢ ~Nnto?,i=1,2 6 ~N(n?0o%),j=34
We fix ¢ = 0.5 and vary o, from 0.1 to 1.

Setting 4: the data are generated using the same models as in Setting 3 except that we fix

o, = 0.5 and vary o from 0.1 to 1.

We apply different methods to simulated data and summarize the results in Figure 4. Our
observations are as follows. First, the integrative methods (NIT.DD, NIT.OR, EBCF,
NIT1.DD) outperform the univariate methods (JS, NPMLE, EBT), with the efficiency gain
being more pronounced when ¢ and o, are small. Second, NIT.DD dominates EBCF, and
the gap between the performances of NIT.OR and NIT.DD widens with higher-dimensional
estimation problems involving multiple auxiliary sequences. Third, in Settings 1-2, NI'T1.DD
is more efficient than NIT.DD as there is no loss in data reduction and fewer sequences are
utilized in estimation. Finally, in Settings 3-4, the average S does not provide an effective
way to combine the information in auxiliary data. Improper data reduction leads to sub-

stantial information loss, such that NIT1.DD still outperforms univariate methods but is
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Figure 4: Integrative estimation with multiple auxiliary sequences.

much worse than EBCF and NIT.DD. Overall, our simulation results suggest that reducing
the dimension of auxiliary data can be potentially beneficial, but there can be significant
information loss if the data reduction step is carried out improperly. It would be of interest
to develop principled methods for data reduction to extract structural information from a

large number of auxiliary sequences.



In Section S8.1 of the supplement we present an additional simulation study involving

integrative estimation in two-sample inference of sparse means.

5. Application: Integrative Nonparametric estimation of Gene Expressions

We consider the data set in Sen et al. (2018) that measures gene expression levels from
cells that are without interferon alpha (INFA) protein and have been infected with varicella-
zoster virus (VZV). VZV is known to cause chickenpox and shingles in humans (Zerboni
et al., 2014). INFA helps in host defense against VZV but is often regulated in the presence
of virus. Thus, it is important to estimate the gene expressions in infected cells without
INFA. Let @ be the true unknown vector of mean gene expression values that need to be
estimated. Further details about the dataset is provided in Section S8.2 of the Supplement.

The data had gene expression measurements from two independent experiments studying
VZV infected cells without INFA. We use one vector, denoted Y, to construct the estimates
and the other, denoted Y, for validation. To estimate 6, alongside the primary data Y,
we also consider auxiliary information: Sy which are corresponding gene expression values
from uninfected cells, and Figure 5 shows the heatmap of the primary, the auxiliary and the
validation sequences. We implemented the following estimators (a) the modified James-Stein
(JS) following Xie et al. (2012), (b) Non-parametric Tweedie estimator without auxiliary
information, (¢) Empirical Bayes with cross-fitting (EBCF) by Ignatiadis and Wager (2019)
and the Non-parametric Integrated Tweedie (NIT) with auxiliary information: (d) with Sy
only, (e) with S only (f) using both auxiliary sequences. The mean square prediction errors
of the above estimates were computed with respect to the validation vector Y.

Table 1 reports the percentage gain acheived over the naive unshrunken estimator that



uses Y to estimate 0. It shows that non-parametric shrinkage produces an additional 0.6%
gain over parametric JS and using auxiliary information via NIT yields a further 5.2% gain.
In particular, NIT method outperforms EBCF, which also leverage side information from
both Sy and S), by 1.7% gain. Panel B of Figure 5 shows the differences between the
Tweedie and NIT estimates. The differences are more pronounced in the left tails where
Tweedie estimator is seen to overestimate the levels compared to NIT. The JS and NIT
effective size estimates disagree by more than 50% at 28 genes (which are listed in the top
panel of Figure 2 in the Supplement). These genes impact 35 biological processes and 12
molecular functions in human cells (see bottom two panels of Figure 2 in the Supplement);
this implies that important inferential gains can be made by using auxiliary information via

our proposed NIT estimator.

Table 1: % gain in prediction errors by different estimators over the naive unshrunken

estimator of gene expressions of INFA regulated infected cells.

Methods James-Stein  Tweedie EBCF using Sy & S NIT using Sy NIT using Sy NIT using Sy & S|

% Gain 3.5 4.1 7.6 6.9 7.5 9.3

MSE 2.014 2.001 1.927 1.930 1.951 1.895

In Section S8.3 of the supplement we present an additional real data application that
involves leveraging auxiliary information to predict monthly sales of common grocery items

across stores.

6. Discussion

The NIT procedure introduces a powerful framework for leveraging useful structural knowl-

edge from auxiliary data to facilitate the estimation of a high-dimensional parameter. It
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Figure 5: Panel A: Heatmaps of the gene expression datasets showing the four expression
vectors corresponding to the observed, validation and auxiliary sequences. Panel B: scatter-
plot of the effect size estimates of gene expressions based on Tweedie and NIT (using both
Sy and S)). Magnitude of the auxiliary variables used in the NIT estimate is reflected by

different colors.

builds upon classical empirical Bayes ideas and significantly expands upon them, allowing
for the handling of multivariate auxiliary data. The framework is highly versatile as it
does not impose any distributional assumptions on auxiliary data, which can be categorical,
numerical, or of mixed types.

When the noise variance o2 is known in Equation (1.1), our theoretical analysis quanti-
fies the reduction in estimation errors and deterioration in learning rates as the dimension
of S increases. This suggests that when faced with a large number of variables as potential
choices for auxiliary data, it may be beneficial to conduct data reduction prior to applying
the NIT estimator. However, our simulation results in Section 4.2 demonstrate that im-

proper data reduction can lead to significant information loss. This highlights the need for
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future research in three directions: (a) extending the theoretical analysis considered here
with a consistent estimator of o2, (b) investigating the trade-off between achievable error
limits of the oracle rule and the decreased convergence rate of the data-driven rule as K
increases, and (c) developing principled structure-preserving dimension reduction methods
under the integrative estimation framework to extract useful structural information from a

large number of auxiliary sequences.

Supplementary Material

The online Supplement provides the proofs of all results stated in the main paper, an ad-
ditional numerical experiment, further details regarding the real data example of Section 5

and an additional real data example.

Acknowledgements

The authors thank the Editor, Associate Editor, and three anonymous referees for their
thoughtful and constructive feedback, which has substantially improved the quality and

presentation of this article.

References

Banerjee, T., L. J. Fu, G. M. James, G. Mukherjee, and W. Sun (2024). Nonparametric empirical bayes estimation
on heterogeneous data. arXiv preprint arXiv:2002.12586.

Banerjee, T., Q. Liu, G. Mukherjee, and W. Sun (2021). A general framework for empirical bayes estimation in
discrete linear exponential family. Journal of Machine Learning Research 22(67), 1-46.

Banerjee, T., G. Mukherjee, and D. Paul (2021). Improved shrinkage prediction under a spiked covariance structure.

Journal of machine learning research 22(180), 1-40.



REFERENCES

Banerjee, T., G. Mukherjee, and W. Sun (2020). Adaptive sparse estimation with side information. Journal of the
American Statistical Association 115, 2053—-2067.

Banerjee, T. and P. Sharma (2025). Nonparametric empirical bayes prediction in mixed models. Statistics and
Computing 35(5), 145.

Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society. Series B. Methodological 57, 289-300.

Brown, L. D. (1971). Admissible estimators, recurrent diffusions, and insoluble boundary value problems. The Annals
of Mathematical Statistics 42(3), 855-903.

Brown, L. D. and E. Greenshtein (2009). Nonparametric empirical bayes and compound decision approaches to
estimation of a high-dimensional vector of normal means. The Annals of Statistics 37, 1685—1704.

Brown, L. D., E. Greenshtein, and Y. Ritov (2013). The poisson compound decision problem revisited. Journal of
the American Statistical Association 108(502), 741-749.

Cai, T. T., W. Sun, and W. Wang (2019). CARS: Covariate assisted ranking and screening for large-scale two-sample
inference (with discussion). Journal of the Royal Statistical Society Series B: Statistical Methodology 81, 187-234.

Chwialkowski, K., H. Strathmann, and A. Gretton (2016). A kernel test of goodness of fit. In Proceedings of The
33rd International Conference on Machine Learning, Volume 48 of Proceedings of Machine Learning Research,
New York, New York, USA, pp. 2606-2615. PMLR.

Cohen, N.; E. Greenshtein, and Y. Ritov (2013). Empirical bayes in the presence of explanatory variables. Statistica
Sinica 23(1), 333-357.

Dou, Z., S. Kotekal, Z. Xu, and H. H. Zhou (2024). From optimal score matching to optimal sampling. arXiv preprint
arXiv:2409.07032.

Efron, B. (2011). Tweedie’s formula and selection bias. Journal of the American Statistical Association 106(496),
1602-1614.

Efron, B. (2016). Empirical bayes deconvolution estimates. Biometrika 103(1), 1-20.

Efron, B., R. Tibshirani, J. D. Storey, and V. Tusher (2001). Empirical Bayes analysis of a microarray experiment.
J. Amer. Statist. Assoc. 96, 1151-1160.

Gretton, A., K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. Smola (2012). A kernel two-sample test. The
Journal of Machine Learning Research 13(1), 723-773.

Gu, J. and R. Koenker (2017). Unobserved heterogeneity in income dynamics: An empirical bayes perspective.

Journal of Business & Economic Statistics 35(1), 1-16.



REFERENCES

Gu, J. and R. Koenker (2023). Invidious comparisons: Ranking and selection as compound decisions. Economet-
rica 91(1), 1-41.

Ignatiadis, N. and W. Huber (2021). Covariate powered cross-weighted multiple testing. Journal of the Royal
Statistical Society Series B: Statistical Methodology 83(4), 720-751.

Ignatiadis, N., S. Saha, D. L. Sun, and O. Muralidharan (2023). Empirical bayes mean estimation with nonparametric
errors via order statistic regression. Journal of the American Statistical Association 118(542), 987-999.

Ignatiadis, N. and S. Wager (2019). Covariate-powered empirical bayes estimation. In Advances in Neural Information
Processing Systems, pp. 9617-9629. Curran Associates, Inc.

Jana, S., Y. Polyanskiy, A. Z. Teh, and Y. Wu (2023). Empirical bayes via erm and rademacher complexities: the
poisson model. In The Thirty Sizth Annual Conference on Learning Theory, pp. 5199-5235. PMLR.

Jiang, W. and C.-H. Zhang (2009). General maximum likelihood empirical bayes estimation of normal means. The
Annals of Statistics 37(4), 1647-1684.

Jiang, W. and C.-H. Zhang (2010). Empirical bayes in-season prediction of baseball batting averages. In Borrowing
Strength: Theory Powering Applications—A Festschrift for Lawrence D. Brown, Volume 6, pp. 263-274. Institute
of Mathematical Statistics.

Jitkrittum, W., H. Kanagawa, and B. Scholkopf (2020). Testing goodness of fit of conditional density models with
kernels. In Conference on Uncertainty in Artificial Intelligence, pp. 221-230. PMLR.

Ke, T., J. Jin, and J. Fan (2014). Covariance assisted screening and estimation. Annals of statistics 42(6), 2202—-2242.

Kiefer, J. and J. Wolfowitz (1956). Consistency of the maximum likelihood estimator in the presence of infinitely
many incidental parameters. Annals of Mathematical Statistics 27(1), 887-906.

Kim, Y., W. Wang, P. Carbonetto, and M. Stephens (2022). A flexible empirical bayes approach to multiple linear
regression and connections with penalized regression. arXiv preprint arXiv:2208.10910.

Koenker, R. and J. Gu (2017a). REBayes: An R package for empirical bayes mixture methods. Journal of Statistical
Software 82(8), 1-26.

Koenker, R. and J. Gu (2017b). Rebayes: Empirical bayes mixture methods in r. Journal of Statistical Software 82(8),
1-26.

Koenker, R. and 1. Mizera (2014). Convex optimization, shape constraints, compound decisions, and empirical bayes
rules. Journal of the American Statistical Association 109(506), 674—685.

Kou, S. and J. J. Yang (2017). Optimal shrinkage estimation in heteroscedastic hierarchical linear models. In Big

and Complex Data Analysis, pp. 249-284. Springer.



REFERENCES

Krusiriska, E. (1987). A valuation of state of object based on weighted mahalanobis distance. Pattern Recogni-
tion 20(4), 413-418.

Lei, L. and W. Fithian (2018). Adapt: an interactive procedure for multiple testing with side information. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 80(4), 649-679.

Li, A. and R. F. Barber (2019). Multiple testing with the structure-adaptive benjamini—-hochberg algorithm. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 81 (1), 45-T4.

Liu, Q., J. Lee, and M. Jordan (2016). A kernelized stein discrepancy for goodness-of-fit tests. In International
conference on machine learning, pp. 276-284. PMLR.

Liu, Q. and D. Wang (2016). Stein variational gradient descent: A general purpose bayesian inference algorithm. In
Advances in Neural Information Processing Systems, Volume 29, pp. 2378-2386. Curran Associates, Inc.

Oates, C. J., M. Girolami, and N. Chopin (2017). Control functionals for monte carlo integration. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 79(3), 695-718.

Polyanskiy, Y. and Y. Wu (2020). Self-regularizing property of nonparametric maximum likelihood estimator in
mixture models. arXiv preprint arXiv:2008.08244 .

Ren, Z. and E. Candeés (2020). Knockoffs with side information. arXiv preprint arXiv:2001.07835.

Robbins, H. (1951). Asymptotically subminimax solutions of compound statistical decision problems. In Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, Berkeley and Los Angeles,
pp. 131-148. University of California Press.

Robbins, H. (1964). The empirical bayes approach to statistical decision problems. The Annals of Mathematical
Statistics 35(1), 1-20.

Roeder, K. and L. Wasserman (2009). Genome-wide significance levels and weighted hypothesis testing. Statistical
science: a review journal of the Institute of Mathematical Statistics 24(4), 398.

Saha, S. and A. Guntuboyina (2020). On the nonparametric maximum likelihood estimator for gaussian location
mixture densities with application to gaussian denoising. The Annals of Statistics 48(2), 738-762.

Sen, N., P. Sung, A. Panda, and A. M. Arvin (2018). Distinctive roles for type i and type ii interferons and interferon
regulatory factors in the host cell defense against varicella-zoster virus. Journal of virology 92(21), e01151-18.

Serfling, R. (2009). Approzimation Theorems of Mathematical Statistics. Wiley.

Shen, Y. and Y. Wu (2022). Empirical bayes estimation: When does g-modeling beat f-modeling in theory (and in
practice)? arXiv preprint arXiv:2211.12692.

Soloff, J. A., A. Guntuboyina, and B. Sen (2021). Multivariate, heteroscedastic empirical bayes via nonparametric



REFERENCES

maximum likelihood. arXiv preprint arXiv:2109.03466.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Technical
report, STANFORD UNIVERSITY STANFORD United States.

Sun, W. and T. T. Cai (2007). Oracle and adaptive compound decision rules for false discovery rate control. Journal
of the American Statistical Association 102, 901-912.

Wand, M. and M. Jones (1995). Kernel Smoothing. Monographs on Statistics and Applied Probability. Chapman
and Hall/CRC.

Weinstein, A., Z. Ma, L. D. Brown, and C.-H. Zhang (2018). Group-linear empirical bayes estimates for a het-
eroscedastic normal mean. Journal of the American Statistical Association 113(522), 698-710.

Wibisono, A., Y. Wu, and K. Y. Yang (2024). Optimal score estimation via empirical bayes smoothing. arXiv preprint
arXiv:2402.07747.

Xie, X., S. Kou, and L. D. Brown (2012). Sure estimates for a heteroscedastic hierarchical model. Journal of the
American Statistical Association 107(500), 1465-1479.

Yang, J., Q. Liu, V. Rao, and J. Neville (2018). Goodness-of-fit testing for discrete distributions via stein discrepancy.
In International Conference on Machine Learning, pp. 5561-5570. PMLR.

Zerboni, L., N. Sen, S. L. Oliver, and A. M. Arvin (2014). Molecular mechanisms of varicella zoster virus pathogenesis.
Nature reviews microbiology 12(3), 197-210.

Zhang, C.-H. (1997). Empirical bayes and compound estimation of normal means. Statistica Sinica 7(1), 181-193.

Zhang, K., C. H. Yin, F. Liang, and J. Liu (2024). Minimax optimality of score-based diffusion models: Beyond the
density lower bound assumptions. arXiv preprint arXiv:2402.15602.

Zhang, Y., Y. Cui, B. Sen, and K.-C. Toh (2022). On efficient and scalable computation of the nonparametric

maximum likelihood estimator in mixture models. arXiv preprint arXiv:2208.07514 .

Jiajun Luo - University of Southern California
E-mail: jiajunluo121@gmail.com

Trambak Banerjee - University of Kansas

E-mail: trambak@ku.edu

Gourab Mukherjee - University of Southern California

E-mail: gourab@usc.edu



REFERENCES

Wenguang Sun - Zhejiang University

E-mail: wgsun@zju.edu.cn



	Introduction
	Compound decisions, structural knowledge and side information
	Nonparametric integrative Tweedie
	Our contributions

	Methodology
	Oracle integrative Tweedie estimator
	Nonparametric estimation via convex programming
	Computational details

	Theory
	Stein's discrepancy, shrinkage estimation and convex optimization
	Score estimation under the Lp loss
	Convergence rates for sub-exponential densities
	Benefits and caveats in exploiting auxiliary data
	Convergence rates for heavy-tail densities
	Consistency of the MCV criterion

	Simulation
	Simulation 1: integrative estimation with one auxiliary sequence
	Simulation 3: integrative estimation with multiple auxiliary sequences

	Application: Integrative Nonparametric estimation of Gene Expressions
	Discussion



