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Abstract: Conjugate distributions provide an entry point to Bayesian analysis.

By defining summation, subtraction, and multiplication operators for conjugate

distributions, we study Bayesian statistics by arithmetic operations. A striking

feature is that the non-informative prior fulfills the central role of zero in math-

ematics. The summation operator connects Bayesian and frequentist estimators

by a simple equation, which also provides an efficient method for evaluating the

marginal likelihood. The subtraction operator facilitates cross-validation, rolling-

window estimation, and regression under multicollinearity. The multiplication

operator simplifies the weighted regression with a discount factor. Arithmetic

operations conceptualize pseudo data in the conjugate prior, sufficient statistics

that determine the likelihood, and the posterior that balances the prior and data.

Key words and phrases: Conjugacy, Exponential family, Linear regression, Statis-

tics education
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1. Introduction

On the one hand, summation, subtraction, and multiplication are basic

arithmetic operators essential for primary education of mathematics. On

the other hand, normal, beta and gamma priors are common conjugate

distributions essential for introductory courses of Bayesian statistics. Tra-

ditionally, they are separate topics studied in different areas. We bridge the

gap by defining arithmetic operators for conjugate distributions. Bayesian

textbook materials, such as normal linear regressions, beta-binomial and

gamma-Poisson models, are presented from a new perspective. The conju-

gate arithmetic operations provide novel pedagogical methods for studying

1) the conjugate prior that incorporates pseudo data, 2) the non-informative

prior that accomplishes the role of zero in mathematics, 3) the sufficient

statistics that determine the likelihood function, and 4) the posterior that

balances data and the prior information.

Section 2 is the core of the paper, focusing on the theory and appli-

cations of normal-inverse-gamma (NIG) arithmetic for linear regressions.

Section 3 extends the summation operator to distributions in the exponen-

tial family. Section 4 provides an application of rolling-window regressions.

Section 5 concludes the paper.
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2. Normal Linear Regressions

Linear regressions are presented in most textbooks of Bayesian statistics

and econometrics. See Gelman et al. (2014, p.353), Bolstad and Curran

(2017, p.411), Christensen et al. (2011, p.223), Koop (2003, p.33), among

others. A normal linear regression is specified as

Y = Xβ + σε, (2.1)

where Y and X are n× 1 and n× d matrices for the response variable and

predictors. The disturbances ε follow the standard normal distributions.

2.1 Priors and Posteriors

The normal likelihood is derived from Equation (2.1), and specification of

the model is completed by specifying a prior for the regression coefficients

β and the disturbance variance σ2. Definition 1 and Proposition 1 provide

a recap of the familiar results on the conjugate priors and posteriors for

linear regressions.

Definition 1. The d-dimensional regression coefficients β and the distur-

bance variance σ2 follow the NIG (µ,Λ, a, b) distribution if

p
(
β, σ2

)
∝
(
σ2
)−(a+ d

2
+1)

e−σ−2b− 1
2
σ−2(β−µ)′Λ(β−µ).
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2.1 Priors and Posteriors

The NIG distribution is a concatenation of the multivariate normal and

the inverse gamma distributions. By the marginal-conditional decomposi-

tion, we have p (β, σ2) = p (β |σ2 ) p (σ2), where the former is the multi-

variate normal distribution with the mean µ and the precision σ−2Λ. The

covariance matrix is σ2Λ−1. The latter is the inverse gamma distribution

with the hyperparameters a and b.

Proposition 1. When β and σ2 have the prior distribution NIG (µ,Λ, a, b),

the posterior distribution is NIG
(
µ̄, Λ̄, ā, b̄

)
:

µ̄ = (Λ +X ′X)
−1

(Λµ+X ′Y ) ,

Λ̄ = Λ +X ′X,

ā = a+
n

2
,

b̄ = b+
1

2
Y ′Y +

1

2
µ′Λµ− 1

2
µ̄′Λ̄µ̄.

A non-informative prior takes the form p (β, σ2) ∝ σ−2, which can be

represented by an improper distribution NIG
(
µ0, 0d×d,−d

2
, 0
)
, for an arbi-

trary d× 1 vector µ0. As a corollary of Proposition 1, the non-informative

prior leads to the posterior NIG
(
µ̃, Λ̃, ã, b̃

)
, where

µ̃ = (X ′X)
−1

X ′Y,

Λ̃ = X ′X,
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2.1 Priors and Posteriors

ã =
n− d

2
,

b̃ =
1

2
Y ′Y − 1

2
Y ′X (X ′X)

−1
X ′Y.

Throughout the paper, upper-bar-form variables (e.g., µ̄) denote the

posterior under an informative (proper) prior, while tilde-form variables

(e.g., µ̃) denote the posterior under a non-informative prior. They are

determined by sufficient statistics X ′X, X ′Y and Y ′Y . The tilde-form

posterior mean µ̃ is identical to the classical ordinary least squares (OLS)

estimator.

It is helpful to conceptualize conjugate distributions in terms of pseudo

data. Proposition 2 shows the pseudo data extracted from the NIG dis-

tribution. Because data provide no additional information than sufficient

statistics for posterior inference, pseudo data are unique up to sufficient

statistics as well.

Proposition 2. Given d-dimensional NIG (µ,Λ, a, b), where Λ is positive

definite, a > 0, b > 0 and n = 2a + d is a positive integer, we construct

pseudo data such that

X =

 Λ1/2

0(n−d)×d

 , Y =

 Λ1/2µ√
b/a · 1(n−d)×1

 ,

where Λ1/2 is the Cholesky factor of Λ. Under the non-informative prior

and the pseudo data, the posterior distribution reproduces NIG (µ,Λ, a, b).
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2.2 Summation Operator

2.2 Summation Operator

Motivated by the pseudo data interpretation of conjugate distributions,

Qian (2018) defines the NIG summation operator. The sum of two NIG

distributions can be thought as the tilde-form posterior distribution ob-

tained by concatenating the data extracted from two NIG distributions.

Alternatively, we may choose one of the NIGs as the prior, extract data

from the other NIG, and run a Bayesian linear regression by Proposition 1.

The upper-bar-form posterior distribution corresponds to the sum of NIGs.

Definition 2. For d-dimensional NIG (µ1,Λ1, a1, b1) and NIG (µ2,Λ2, a2, b2),

the sum of two NIG distributions NIG (µ,Λ, a, b) is defined as

µ = (Λ1 + Λ2)
−1 (Λ1µ1 + Λ2µ2) ,

Λ = Λ1 + Λ2,

a = a1 + a2 +
d

2
,

b = b1 + b2 +
1

2
(µ1 − µ)′ Λ1 (µ1 − µ) +

1

2
(µ2 − µ)′ Λ2 (µ2 − µ) ,

denoted by

NIG (µ,Λ, a, b) = NIG (µ1,Λ1, a1, b1) +NIG (µ2,Λ2, a2, b2) ,

or more compactly,

NIG (µ,Λ, a, b) =
2∑

j=1

NIG (µj,Λj, aj, bj) .

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0052



2.2 Summation Operator

Definition 2 indicates that the NIG summation operator satisfies com-

mutativity and associativity:

NIG (µ1,Λ1, a1, b1)+NIG (µ2,Λ2, a2, b2) = NIG (µ2,Λ2, a2, b2)+NIG (µ1,Λ1, a1, b1) ,

3∑
j=1

NIG (µj,Λj, aj, bj) = NIG (µ1,Λ1, a1, b1) +
3∑

j=2

NIG (µj,Λj, aj, bj) .

As is shown in Proposition 3, a striking feature of summation is that

the non-informative distribution NIG
(
µ0, 0d×d,−d

2
, 0
)
fulfills the role of

zero in mathematics. When the NIG summation operator is applied to

the non-informative distribution, the neutral element leaves unchanged any

NIG distribution.

Proposition 3. The NIG summation operator has the additive identity

NIG (µ,Λ, a, b) +NIG

(
µ0, 0d×d,−

d

2
, 0

)
= NIG (µ,Λ, a, b) .

The NIG summation operator separates the roles of data and prior infor-

mation in the posterior distribution. Proposition 4 established a high-level

link between Bayesian and frequentist estimators, as the former is repre-

sented by the upper-bar-form posterior NIG
(
µ̄, Λ̄, ā, b̄

)
, and the latter is

analogues to the tilde-form NIG
(
µ̃, Λ̃, ã, b̃

)
, where µ̃ is the OLS estimator.

Proposition 4 may be informally read as an equation:

Bayesian estimator = prior + frequentist estimator.
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2.2 Summation Operator

Proposition 4. Consider the prior and posterior specified in Propositions

1. We have

NIG
(
µ̄, Λ̄, ā, b̄

)
= NIG (µ,Λ, a, b) +NIG

(
µ̃, Λ̃, ã, b̃

)
.

Qian (2018) shows that Proposition 4 facilitates regression variable se-

lection, where mixture-NIG priors have adaptive shrinkage effects on the

regression coefficients. For example, Bayesian lasso (see Tibshirani (1996)

and Park and Casella (2008)) has the double exponential prior represented

as a scale mixture of NIG distributions.

The regression data are also separable by the NIG summation opera-

tor. If data are divided into subsets, Proposition 5 shows that the tilde-form

posterior is the sum of subset tilde-form posteriors. Because of commuta-

tivity and associativity, summation can be processed by divide and conquer.

Summation results do not change with partition methods.

Proposition 5. Partition data X, Y into k subsets Xj, Yj, j = 1, . . . , k. Let

the subset tilde-form posterior distributions be NIG
(
µ̃j, Λ̃j, ãj, b̃j

)
under

the non-informative prior. The full-sample tilde-form posterior NIG
(
µ̃, Λ̃, ã, b̃

)
is reproduced by

NIG
(
µ̃, Λ̃, ã, b̃

)
=

k∑
j=1

NIG
(
µ̃j, Λ̃j, ãj, b̃j

)
.
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2.3 Subtraction Operator

Propositions 4 and 5 justify online updating for flow data. For example,

when new data Xk+1, Yk+1 come in, we make an update NIG
(
µ̄, Λ̄, ā, b̄

)
+

NIG
(
µ̃k+1, Λ̃k+1, ãk+1, b̃k+1

)
,which equals the regression results obtained

by concatenating all data pointsNIG (µ,Λ, a, b)+
∑k+1

j=1 NIG
(
µ̃j, Λ̃j, ãj, b̃j

)
.

2.3 Subtraction Operator

The NIG distribution serves as a container of compressed data in the form

of sufficient statistics. The summation operator adds data to the container,

while the subtraction operator deducts data from the container. The NIG

subtraction operator is defined by reverting Definition 2.

Definition 3. For d-dimensional NIG (µ,Λ, a, b) and NIG (µ1,Λ1, a1, b1),

the difference of two NIG distributions NIG (µ2,Λ2, a2, b2) is defined as

µ2 = (Λ− Λ1)
−1 (Λµ− Λ1µ1) ,

Λ2 = Λ− Λ1,

a2 = a− a1 −
d

2
,

b2 = b− b1 −
1

2
(µ1 − µ)′ Λ1 (µ1 − µ)− 1

2
(µ2 − µ)′ Λ2 (µ2 − µ) ,

denoted by

NIG (µ2,Λ2, a2, b2) = NIG (µ,Λ, a, b)−NIG (µ1,Λ1, a1, b1) .
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2.3 Subtraction Operator

The NIG subtraction operator has broad applications. We provide three

examples.

First, k-fold cross-validation. As in Proposition 5, data are partitioned

into k subsets, one of which is reserved for testing the model and the re-

maining are used for parameter estimation. The process is repeated k times,

with each subset used once as the validation data. As an alternative to re-

peated estimation, an efficient approach is to estimate the model once for

the full-sample posterior NIG
(
µ̄, Λ̄, ā, b̄

)
. The NIG subtraction operation

NIG
(
µ̄, Λ̄, ā, b̄

)
−NIG

(
µ̃j, Λ̃j, ãj, b̃j

)
provides the results with the jth sub-

set (i.e., Xj, Yj) excluded from the training data.

Second, rolling-window regression. Suppose that we have daily data

and update regressions every month with the most recent data of m + 1

months. Let NIG
(
µ̃j, Λ̃j, ãj, b̃j

)
be the subset tilde-form posterior by the

jth month data alone. The dynamic posterior is given by

NIG
(
µ̄k, Λ̄k, āk, b̄k

)
= NIG (µ,Λ, a, b) +

k∑
j=k−m

NIG
(
µ̃j, Λ̃j, ãj, b̃j

)
.

In the next month, the rolling-window regression is updated by adding new
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2.4 Multiplication Operator

data and retiring old data:

NIG
(
µ̄k+1, Λ̄k+1, āk+1, b̄k+1

)
= NIG

(
µ̄k, Λ̄k, āk, b̄k

)
+NIG

(
µ̃k+1, Λ̃k+1, ãk+1, b̃k+1

)
−NIG

(
µ̃k−m, Λ̃k−m, ãk−m, b̃k−m

)
.

Third, perfect collinearity. Suppose that the predictors include an in-

tercept and month dummy variables. Subset regressions by the jth month

data alone suffer from perfect collinearity. The problem can be addressed

by borrowing a prior for each subset regression:

NIG
(
µ̈j, Λ̈j, äj, b̈j

)
= NIG (µ,Λ, a, b) +NIG

(
µ̃j, Λ̃j, ãj, b̃j

)
.

The borrowed priors must be repaid eventually. The m copies of duplicated

priors are subtracted from the posterior:

NIG
(
µ̄k, Λ̄k, āk, b̄k

)
=

k∑
j=k−m

NIG
(
µ̈j, Λ̈j, äj, b̈j

)
−

m∑
j=1

NIG (µ,Λ, a, b) .

2.4 Multiplication Operator

In the above example, the borrowed priors amount to
∑m

j=1NIG (µ,Λ, a, b),

which seem to be m times NIG (µ,Λ, a, b). This is a motivation of the

scalar multiplication for simplifying the repeated summation. Moreover,

the operator is not limited to integer multiplication. If we multiply the
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2.4 Multiplication Operator

NIG distribution by a real number between zero and one, we interpret it as

a discount factor of the NIG distribution.

Definition 4. Consider d-dimensional NIG (µ,Λ, a, b). Let δ be a nonneg-

ative scalar. If a distribution NIG
(
µ̂, Λ̂, â, b̂

)
satisfies

µ̂ = µ,

Λ̂ = δΛ,

â = δ

(
a+

d

2

)
− d

2
,

b̂ = δb,

it is scalar multiplication of the NIG distribution, denoted by

NIG
(
µ̂, Λ̂, â, b̂

)
= δ ·NIG (µ,Λ, a, b) .

Proposition 6 shows that the NIG multiplication operator follows the

law of distributivity and associativity. The NIG summation operation has

a zero, which is also the result of any NIG distribution multiplied by zero.

Proposition 6. The NIG scalar multiplication operator satisfies

1. Distributivity:

k∑
j=1

δj ·NIG (µ,Λ, a, b) =

(
k∑

j=1

δj

)
·NIG (µ,Λ, a, b) ,
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2.4 Multiplication Operator

k∑
j=1

δ ·NIG (µj,Λj, aj, bj) = δ ·
k∑

j=1

NIG (µj,Λj, aj, bj) .

2. Associativity:

δ1δ2 ·NIG (µ,Λ, a, b) = δ1 · {δ2 ·NIG (µ,Λ, a, b)} .

3. Identity/zero element:

1 ·NIG (µ,Λ, a, b) = NIG (µ,Λ, a, b) ,

0 ·NIG (µ,Λ, a, b) = NIG

(
µ, 0d×d,−

d

2
, 0

)
.

A corollary of Proposition 6 is the equivalence between scalar multipli-

cation and repeated summation. For an integer δ, we have

δ ·NIG (µ,Λ, a, b) =
δ∑

j=1

NIG (µ,Λ, a, b) ,

because we can write δ =
∑δ

i=1 1 and apply the distributive law of scalar

multiplication.

The NIG scalar multiplication facilitates weighted regressions, in which

a scalar δ ∈ [0, 1] serves as the discount (i.e., forgetting or smoothing) factor.

For time series data, it is desirable to down-weight past observations as the

time elapses and place more weights on recent observations. Just as the

geometrically weighted least squares is an extension to OLS, the weighted

NIG summation is an extension to the equal-weight summation.
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2.4 Multiplication Operator

By the NIG summation and multiplication rules, weighted summation

satisfies the identity

k∑
j=1

δk−j ·NIG
(
µ̃j, Λ̃j, ãj, b̃j

)
= NIG

(
µ̂k, Λ̂k, âk, b̂k

)
,

where

µ̂k =

(
k∑

j=1

δk−jΛ̃j

)−1( k∑
j=1

δk−jΛ̃jµ̃j

)
,

Λ̂k =
k∑

j=1

δk−jΛ̃j,

âk = −d

2
+

k∑
j=1

δk−j

(
ãj +

d

2

)
,

b̂k =
k∑

j=1

δk−j b̃j +
1

2

k∑
j=1

δk−j (µ̃j − µ̂k)
′ Λ̃j (µ̃j − µ̂k) .

Because NIG
(
µ̃j, Λ̃j, ãj, b̃j

)
is the posterior distribution obtained by re-

gressing Yj on Xj under the non-informative prior, we have Λ̃j = X ′
jXj and

Λ̃jµ̃j = X ′
jYj. It follows that

µ̂k =

(
k∑

j=1

δk−jX ′
jXj

)−1( k∑
j=1

δk−jX ′
jYj

)
,

which is recognized as the geometrically weighted least squares estimator if

δ < 1, and the OLS estimator if δ = 1.

Weighted regressions support online update by a recursive formula:

NIG
(
µ̂k, Λ̂k, âk, b̂k

)
= δ·NIG

(
µ̂k−1, Λ̂k−1, âk−1, b̂k−1

)
+NIG

(
µ̃k, Λ̃k, ãk, b̃k

)
,
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2.5 Marginal Likelihood

for k > 1 and the starting value isNIG
(
µ̂1, Λ̂1, â1, b̂1

)
= NIG

(
µ̃1, Λ̃1, ã1, b̃1

)
.

In practice, we may encounter perfect collinearity or inadequate sample

size in the subset regressions. A solution is to borrow a priorNIG (µ,Λ, a, b)

and apply the distributive law of multiplication:

NIG
(
µ̄k, Λ̄k, āk, b̄k

)
=

k∑
j=1

δk−j
{
NIG

(
µ̃j, Λ̃j, ãj, b̃j

)
+NIG (µ,Λ, a, b)

}
= NIG

(
µ̂k, Λ̂k, âk, b̂k

)
+

1− δk

1− δ
NIG (µ,Λ, a, b) .

To offset the effects of the borrowed prior, we apply the NIG subtraction:

NIG
(
µ̂k, Λ̂k, âk, b̂k

)
= NIG

(
µ̄k, Λ̄k, āk, b̄k

)
− 1− δk

1− δ
NIG (µ,Λ, a, b) .

2.5 Marginal Likelihood

An attraction of the conjugate prior is the analytically tractable marginal

likelihood, which is the key to Bayesian model selection and averaging. In

the context of Bayesian linear regressions, the marginal likelihood can be

derived by Equation (2.1) in two steps. First, conditional on σ2, the data

Y follows the multivariate normal distribution with the mean Xµ and the

covariance matrix σ2V , where V = In + XΛ−1X ′, because the prior of

β is normal with the mean µ and the covariance matrix σ2Λ−1. Second,

marginalization over the inverse gamma distributed σ2 provides a scale

mixture that follows the multivariate t distribution, namely t
(
Xµ, b

a
V, 2a

)
.
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2.5 Marginal Likelihood

The marginal likelihood is the density of the t distribution:

p (Y ) =
Γ
(
a+ n

2

)
ba

Γ (a) (2π)
n
2

|V |−
1
2

{
b+

1

2
(Y −Xµ)′ V −1 (Y −Xµ)

}−(a+n
2 )

.

Unfortunately, the formula is unusable when the sample size is large,

as it is difficult to save/load a n × n matrix in the computer memory,

and it costs O (n3) operations to invert such a large matrix and compute

its determinant. The NIG summation operator offers a computationally

efficient method for evaluating the marginal likelihood by the Bayes formula

p (Y ) =
p (β, σ2) p (Y |β, σ2 )

p (β, σ2 |Y )
,

where p (β, σ2) and p (β, σ2 |Y ) are densities ofNIG (µ,Λ, a, b) andNIG
(
µ̄, Λ̄, ā, b̄

)
respectively. The latter can be computed by the NIG summation (Proposi-

tions 4 and 5). It is feasible to evaluate the densities by divide and conquer

even if the sample size is large. Note that the NIG densities can be eval-

uated at an arbitrary β and σ2 without changing the marginal likelihood

results. For example, we may evaluate the densities at β = 0, σ2 = 1 to

simplify the functional forms:

p
(
β, σ2

)
= (2π)−

d
2 |Λ|

1
2 e−

1
2
µ′Λµ ba

Γ (a)
e−b,

p
(
β, σ2 |Y

)
= (2π)−

d
2

∣∣Λ̄∣∣ 12 e− 1
2
µ̄′Λ̄µ̄ b̄ā

Γ (ā)
e−b̄,

p
(
Y
∣∣β, σ2

)
= (2π)−

n
2 e−

1
2
Y ′Y .
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2.6 Prediction

The above expressions are fully determined by the sufficient statistics X ′X,

X ′Y and Y ′Y , so the computational complexity is O (d2n), assuming that

n > d.

2.6 Prediction

Assume that data in the forecast horizon are generated like Equation (2.1):

Yf = Xfβ + σεf .

Bayesian prediction addresses the posterior predictive distribution of

the response variables Yf , conditional on the observed data Y . The posterior

predictive distribution is the weighted average of the predicted likelihood

function, weighted by the posterior density of parameters:

p (Yf |Y ) =

∫ ∫
p
(
β, σ2 |Y

)
p
(
Yf

∣∣β, σ2, Y
)
dβdσ2.

Since the unknown parameters are integrated out, Bayesian prediction in-

corporates parameter uncertainty.

The posterior predictive distribution is analytically tractable if we spec-

ify the NIG conjugate prior. By Proposition 1, p (β, σ2 |Y ) followsNIG
(
µ̄, Λ̄, ā, b̄

)
.

Similar to derivation of the marginal likelihood, the posterior predictive dis-
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tribution is the multivariate t
(
Xf µ̄,

b̄
ā
Vf , 2ā

)
:

p (Yf |Y ) =
Γ
(

2ā+nf

2

)
b̄ā

Γ (ā) (2π)
nf
2

|Vf |−
1
2

{
b̄+

1

2
(Yf −Xf µ̄)

′ V −1
f (Yf −Xf µ̄)

}−
2ā+nf

2

,

where Vf = I +Xf Λ̄
−1X ′

f and nf is the length of Yf .

The NIG summation operator offers an alternative method of evaluating

the posterior predictive density. The Bayes formula indicates that

p (Yf |Y ) =
p (β, σ2 |Y ) p (Yf |β, σ2, Y )

p (β, σ2 |Yf , Y )
,

where p (β, σ2 |Y ) is the density of NIG
(
µ̄, Λ̄, ā, b̄

)
, while p (β, σ2 |Yf , Y )

corresponds to the posterior distribution by concatenating Y and Yf . By

Propositions 4 and 5, it can be computed by the NIG summationNIG
(
µ̄, Λ̄, ā, b̄

)
+

NIG
(
µ̃f , Λ̃f , ãf , b̃f

)
,whereNIG

(
µ̃f , Λ̃f , ãf , b̃f

)
is the subset posterior ob-

tained by using Xf , Yf under the non-informative prior.

3. Exponential Family

The NIG summation operator can be extended to conjugate models in the

exponential family. This section provides some examples.

The beta-binomial model is a common entry point for Bayesian statis-

tics textbooks. See Gelman et al. (2014, p.29), Bolstad and Curran (2017,

p.149), among others. To estimate the success probability θ, we use bino-
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mial data with y successes out of n Bernoulli trials. The likelihood is

p (y |θ ) ∝ θy (1− θ)n−y .

Under the conjugate prior Beta (α, β) such that

p (θ) ∝ θα−1 (1− θ)β−1 ,

the posterior is Beta
(
ᾱ, β̄

)
, where ᾱ = α + y and β̄ = β + n− y.

Gelman et al. (2014, p.35) give a pseudo-data interpretation of the prior

Beta (α, β): “Comparing p (θ) and p (y |θ ) suggests that this prior density

is equivalent to α− 1 prior successes and β − 1 prior failures.”

Definition 5 provides the summation rules for beta distributions. The

sum of beta distributions can be viewed as the posterior distribution ob-

tained by concatenating the pseudo data extracted from two beta distribu-

tions under the uniform prior.

Definition 5. Consider beta distributions Beta (α1, β1) and Beta (α2, β2).

If a distribution Beta (α, β) satisfies

α = α1 + α2 − 1,

β = β1 + β2 − 1,

it is the sum of beta distributions, denoted by

Beta (α, β) = Beta (α1, β1) +Beta (α2, β2) .
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The beta summation operator satisfies commutativity and associativity.

Most importantly, we have the additive identity:

Beta (α, β) = Beta (1, 1) +Beta (α, β) ,

where Beta (1, 1) is the uniform distribution that plays the role of zero in

summation. The uniform prior contains zero pseudo data (i.e., 0 success and

0 failure). Adding Beta (1, 1) to Beta (α, β) leaves the latter unchanged.

The posterior is a compromise between data and prior information, as

the posterior mean is a weighted average of the prior mean and the sam-

ple proportion (Gelman et al., 2014, p.32). The beta summation operator

connects the prior, data and posterior by a simple equation:

Beta
(
ᾱ, β̄

)
= Beta (α, β) +Beta

(
α̃, β̃

)
,

whereBeta
(
ᾱ, β̄

)
is the posterior under the priorBeta (α, β), andBeta

(
α̃, β̃

)
is the posterior under the uniform prior.

The gamma-Poisson model is another example of conjugacy in Bayesian

statistics textbooks. See Gelman et al. (2014, p.43), Bolstad and Curran

(2017, p.193). Suppose that Yi, i = 1, . . . , n follow the Poisson distribution

with the intensity parameter θ. The likelihood is

p (Y |θ ) ∝ θ
∑n

i=1 Yie−nθ.
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Under the conjugate prior Gamma (A,B) such that

p (θ) ∝ θA−1e−Bθ,

the posterior is Gamma
(
Ā, B̄

)
, where Ā = A+

∑n
i=1 Yi and B̄ = B + n.

The summation rules for gamma distributions are similar to those in

NIG and beta distributions, as is shown in Definition 6.

Definition 6. Consider gamma distributions Gamma (A1, B1) and Gamma (A2, B2).

If a distribution Gamma (A,B) satisfies

A = A1 + A2 − 1,

B = B1 +B2,

it is the sum of gamma distributions, denoted by

Gamma (A,B) = Gamma (A1, B1) +Gamma (A2, B2) .

Commutativity and associativity still hold for the gamma summation

operator. In particular, we have the additive identity:

Gamma (A,B) = Gamma (1, 0) +Gamma (A,B) ,

where Gamma (1, 0) is the positive uniform prior p (θ) ∝ 1, θ > 0.

Diaconis and Ylvisaker (1979) analyze conjugate priors for the expo-

nential family. Let Yi, i = 1, . . . , n be random samples from an exponential
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family distribution such that

p (Yi |θ ) = f (Yi) g (θ) e
ϕ(θ)′T (Yi).

Given the sufficient statistics T (·), the natural parameterization ϕ (·) and

the normalization factor g (·), Gelman et al. (2014, p.37) and Bernardo and

Smith (2000, p.266) show that the conjugate prior distribution, denoted by

ϵTϕg (τ, v), takes the form

p (θ) ∝ g (θ)v eϕ(θ)
′τ .

The posterior distribution ϵTϕg (τ̄ , v̄) is obtained by adding the hyperpa-

rameter τ to the sufficient statistics and adding the hyperparameter v to

the sample size:

τ̄ = τ +
n∑

i=1

T (Yi) ,

v̄ = v + n.

If we specify τ = 0 and v = 0, we have a non-informative prior p (θ) ∝ 1.

Definition 7 provides the summation rules for the exponential family, and

Proposition 7 is an extension of Proposition 4.

Definition 7. Let ϵTϕg (τ0, v0) be a non-informative prior. Consider distri-
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butions ϵTϕg (τ1, v1) and ϵTϕg (τ2, v2). If a distribution ϵTϕg (τ, v) satisfies

τ = τ1 + τ2 − τ0,

v = v1 + v2 − v0,

it is the sum of two distributions, denoted by

ϵTϕg (τ, v) = ϵTϕg (τ1, v1) + ϵTϕg (τ2, v2) .

Proposition 7. Let ϵTϕg (τ̄ , v̄) be the posterior under a conjugate prior

ϵTϕg (τ, v). Let ϵTϕg (τ̃ , ṽ) be the posterior under a non-informative prior

ϵTϕg (τ0, v0) with the same data. We have

ϵTϕg (τ̄ , v̄) = ϵTϕg (τ, v) + ϵTϕg (τ̃ , ṽ) .

Definition 7 is compatible with Definition 6. For the gamma-Poisson

model, we have T (Yi) = Yi, ϕ (θ) = ln θ and g (θ) = e−θ. The conjugate

prior takes the form p (θ) ∝ θτe−vθ, which is Gamma (τ + 1, v). We specify

τ0 = 0 and v0 = 0 for a non-informative prior. Definitions 6 and 7 describe

the same summation rules under different parametrization of the gamma

distribution: A = τ + 1 and B = v.

Similarly, Definition 7 is also compatible with Definition 5. We rewrite

the binomial data as n Bernoulli samples: y =
∑n

i=1 Yi. We have T (Yi) =

Yi, ϕ (θ) = ln θ
1−θ

and g (θ) = 1 − θ. The conjugate prior takes the form

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0052



p (θ) ∝ θτ (1− θ)v−τ , which is Beta (τ + 1, v − τ + 1). We specify τ0 = 0

and v0 = 0 for a non-informative prior. Definitions 5 and 7 describe the

same summation rules under different parametrization of the beta distribu-

tion: α = τ + 1 and β = v − τ + 1.

4. An Application of Rolling-window Regressions

As the economic environment changes over time, model parameters can be

time varying. Rolling-window regressions are popular in financial time series

analysis. We illustrate the NIG summation and subtraction operations in

rolling-window regressions based on the five-factor asset pricing model of

Fama and French (2015). The factors capture the effects of size, value,

profitability, investment, and market excess returns. The response variables

are daily returns of five industry portfolios from July 1963 to June 2023.

Data are publicly available at the website of Professor French.

We specify 10-year rolling windows with 2520 observations for each

regression. The first window ranges from July 1963 to June 1973, and the

second window moves forward by one month (from August 1963 to July

1973), and so on. There are 600 rolling-window regressions in total. Under

the non-informative prior, the posterior mean is the OLS estimator. Figure

1 plots the estimated “beta” coefficients for the industry portfolios.
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A series of regressions can be efficiently implemented by adding new

data with the NIG summation and retiring old data with the NIG subtrac-

tion. As the estimation window moves forward by one month (21 obser-

vations), the added computing cost is about 6000 floating-point operations

(flops). In contract, each OLS estimation with 2520 observations needs

about 210000 flops, which is over 30 times higher than the computing cost

by the NIG arithmetic.

5. Conclusion

A common critique of Bayesian statistics is the subjective prior in statistical

inference, as the prior and posterior reflect subjective states of knowledge

(Gelman, 2008). The NIG summation operator connects the subjective

and objective estimators by a simple equation shown in Proposition 4. To

disentangle the prior information from the posterior, the subtraction oper-

ator can be used: NIG
(
µ̄, Λ̄, ā, b̄

)
− NIG (µ,Λ, a, b). To reduce the prior

strength by a half, the multiplication operator provides a convenient solu-

tion: NIG
(
µ̄, Λ̄, ā, b̄

)
− 1

2
·NIG (µ,Λ, a, b).

From a pedagogical perspective, the paper shows that the hard work of

manipulating density functions of conjugate distributions can be simplified

by intuitive math operators: summation, subtraction, and multiplication.
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Figure 1: Rolling-window regressions of Fama-French five-factor asset pric-

ing model. Estimated “beta” coefficients are plotted for industry portfolios.
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Appendix

Proof of Proposition 1

The posterior density takes the form

p
(
β, σ2 |Y

)
∝
(
σ2
)−(a+n+d

2
+1)

e−σ−2{b+ 1
2
(β−µ)′Λ(β−µ)+ 1

2
(Y−Xβ)′(Y−Xβ)}.

By completing the square, we have

p
(
β, σ2 |Y

)
∝
(
σ2
)−(a+n+d

2
+1)

e−
1
2
σ−2{2b+(β−µ̄)′Λ̄(β−µ̄)−µ̄′Λ̄µ̄+µ′Λµ+Y ′Y },

where µ̄ = (Λ +X ′X)−1 (Λµ+X ′Y ) and Λ̄ = Λ+X ′X. We recognize that

it is the density of NIG
(
µ̄, Λ̄, ā, b̄

)
.

Proof of Proposition 2

The pseudo data provide the following sufficient statistics: X ′X =
(
Λ1/2

)′
Λ1/2 =

Λ, X ′Y = Λµ and Y ′Y = µ′Λµ+ 2b. Under the non-informative prior and

the pseudo data, the posterior distribution is NIG
(
µ̃, Λ̃, ã, b̃

)
, where

µ̃ = (X ′X)
−1

X ′Y = µ,
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Λ̃ = X ′X = Λ,

ã =
n− d

2
= a,

b̃ =
1

2
Y ′Y − 1

2
Y ′X (X ′X)

−1
X ′Y = b,

that is, NIG
(
µ̃, Λ̃, ã, b̃

)
= NIG (µ,Λ, a, b).

Proof of Proposition 3

The additive identity is immediate from the definition of NIG summation.

Proof of Proposition 4

Under the non-informative prior, we have µ̃ = (X ′X)−1 X ′Y , Λ̃ = X ′X,

ã = n−d
2
, b̃ = 1

2
Y ′Y − 1

2
µ̃′Λ̃µ̃. Denote NIG

(
µ̂, Λ̂, â, b̂

)
≡ NIG (µ,Λ, a, b) +

NIG
(
µ̃, Λ̃, ã, b̃

)
. By the NIG summation rules, we have

µ̂ = (Λ +X ′X)
−1

(Λµ+X ′Y ) ,

Λ̂ = Λ +X ′X,

â = a+
n

2
,

b̂ = b+
1

2
Y ′Y +

1

2
µ′Λµ− 1

2
µ̂′Λ̂µ̂.

It follows that NIG
(
µ̂, Λ̂, â, b̂

)
= NIG

(
µ̄, Λ̄, ā, b̄

)
.
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Proof of Proposition 5

The subset tilde-form posterior satisfies µ̃j =
(
X ′

jXj

)−1
X ′

jYj, Λ̃j = X ′
jXj,

ãj =
nj−d

2
, b̃j =

1
2
Y ′
jYj − 1

2
µ̃′
jΛ̃jµ̃j.

Note that X ′X =
∑k

j=1 X
′
jXj, X

′Y =
∑k

j=1X
′
jYj, Y

′Y =
∑k

j=1 Y
′
jYj,

n =
∑k

j=1 nj. By the NIG summation rules, we have NIG
(
µ̃, Λ̃, ã, b̃

)
=∑k

j=1 NIG
(
µ̃j, Λ̃j, ãj, b̃j

)
.

Proof of Proposition 6

We will show the case of n = 2. Results for n > 2 can be obtained by

induction. To show distributivity,

δ1 ·NIG (µ,Λ, a, b) + δ2 ·NIG (µ,Λ, a, b)

= NIG
{
µ, δ1Λ, δ1

(
a+ d

2

)
− d

2
, δ1b

}
+NIG

{
µ, δ2Λ, δ2

(
a+ d

2

)
− d

2
, δ2b

}
= NIG

{
µ, (δ1 + δ2) Λ, (δ1 + δ2)

(
a+ d

2

)
− d

2
, (δ1 + δ2) b

}
= (δ1 + δ2) ·NIG (µ,Λ, a, b)

δ ·NIG (µ1,Λ1, a1, b1) + δ ·NIG (µ2,Λ2, a2, b2)

= NIG
{
µ1, δΛ1, δ

(
a1 +

d
2

)
− d

2
, δb1

}
+NIG

{
µ2, δΛ2, δ

(
a2 +

d
2

)
− d

2
, δb2

}
= NIG

{
µ, δΛ, δ

(
a+ d

2

)
− d

2
, δb
}

= δ ·NIG (µ,Λ, a, b) .

We have µ = (Λ1 + Λ2)
−1 (Λ1µ1 + Λ2µ2), Λ = Λ1 +Λ2, a = a1 + a2 +

d
2
,

b = b1+ b2+
1
2
(µ1 − µ)′ Λ1 (µ1 − µ)+ 1

2
(µ2 − µ)′ Λ2 (µ2 − µ). By Definition
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2, this is the sum of two NIGs.

To show associativity,

δ1 · {δ2 ·NIG (µ,Λ, a, b)}

= δ1 ·
{
NIG

(
µ, δ2Λ, δ2

(
a+ d

2

)
− d

2
, δ2b

)}
= NIG

(
µ, δ1δ2Λ, δ1δ2

(
a+ d

2

)
− d

2
, δ1δ2b

)
= δ1δ2 ·NIG (µ,Λ, a, b) .

To show identity/zero element,

1·NIG (µ,Λ, a, b) = NIG
(
µ, 1 · Λ, 1 ·

(
a+ d

2

)
− d

2
, 1 · b

)
= NIG (µ,Λ, a, b).

0·NIG (µ,Λ, a, b) = NIG
(
µ, 0 · Λ, 0 ·

(
a+ d

2

)
− d

2
, 0 · b

)
= NIG

(
µ, 0d×d,−d

2
, 0
)
.

Proof of Proposition 7

The posterior under the conjugate prior is obtained by τ̄ = τ +
∑n

i=1 T (Yi)

and v̄ = v + n. Similarly, the posterior under the non-informative prior is

τ̃ = τ0 +
∑n

i=1 T (Yi) and ṽ = v0 + n. By the summation rules,

ϵTϕg (τ, v) + ϵTϕg (τ̃ , ṽ) = ϵTϕg (τ + τ̃ − τ0, v + ṽ − v0) = ϵTϕg (τ̄ , v̄) .
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