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Abstract: In this study, we explore a robust testing procedure for the high-
dimensional location parameters testing problem. Initially, we introduce a spatial-
sign based max-type test statistic, which exhibits excellent performance for sparse
alternatives. Subsequently, we demonstrate the asymptotic independence be-
tween this max-type test statistic and the spatial-sign based sum-type test statis-
tic (Feng and Sun, 2016). Building on this, we propose a spatial-sign based max-
sum type testing procedure, which shows remarkable performance under varying
signal sparsity. Our simulation studies underscore the superior performance of

the procedures we propose.
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1. Introduction

The testing of location parameters is a crucial and extensively researched
area in multivariate statistics with a fixed dimension. The conventional
Hotelling’s T2 test is commonly applied, but it fails in high-dimensional
scenarios where the variable’s dimension p exceeds the sample sizes n. Con-
sequently, numerous efforts have been made to develop a high-dimensional
mean test procedure. One straightforward approach is to substitute the Ma-
halanobis distance with the Euclidean distance. For the two-sample location
problem, Bai and Saranadasg (1996) employed the Lo-norm of the differ-
ence between two sample means. Chen and Qin (2010) eliminated some
redundant terms in Bai and Saranadasa (1996)’s test statistics and made
no assumptions about the relationship between the dimension and sample
sizes. Srivastava (2009), Park and Ayyala (2013), and Feng et al) (2015)
suggested some scalar-invariant test statistics that replace the sample co-
variance matrix in Hotelling’s T? test statistics with its diagonal matrix.
All these methods are built on the assumption of normal distribution or di-
verging factor models, which perform poorly for heavy-tailed distributions.
For instance, the well-known multivariate t-distribution does not meet the
above assumption. Therefore, numerous studies have also considered robust

high-dimensional test procedures.



In traditional multivariate analysis, numerous methods have been devel-
oped to extend classic univariate rank and signed rank techniques to a mul-
tivariate context. A significant method is based on spatial signs and ranks,
utilizing the so-called Oja median (Oja, 2010). Wang et al| (2015) proposed
a high-dimensional spatial-sign test that replaces the scatter matrix with
the identity matrix for a one-sample location problem. Similarly, Feng and
Sun (2016) proposed a high-dimensional spatial sign test that replaces the
scatter matrix with its diagonal matrix, which has a scalar-invariant prop-
erty. Furthermore, Feng et al| (2016) considered the high-dimensional two-
sample location problem based on the spatial-sign method. Feng, Liu, and
Ma (2021) devised an inverse norm sign test that considers not only the di-
rection of the observations but also the modulus of the observation. Huang
et all (2023) extended the inverse norm sign test for a high-dimensional
two-sample location problem. Feng et al) (2020) demonstrated that the
spatial-rank method also performs well for a high-dimensional two-sample
problem. All these methods are constructed using the Lo-norm of the spa-
tial median, which performs well under dense alternatives, meaning many
variables have non-zero means. However, it is well-known that these sum-
type test procedures perform poorly for sparse alternatives, where only a

few variables have non-zero means.



In high-dimensional settings, numerous max-type test procedures have
been introduced to detect sparse alternatives. Cai et al| (2013) proposed a
test statistic for the high-dimensional two-sample mean problem, which is
based on the maximum difference between the means of two samples’ vari-
ables under the Gaussian or sub-Gaussian assumption. For heavy-tailed
distributions, Cheng et al; (2023) established a Gaussian approximation
for the sample spatial median over the class of hyperrectangles and con-
structed a max-type test procedure using a multiplier bootstrap algorithm.
However, their proposed test statistic is not scalar-invariant, and they did
not provide the limit null distribution of their test statistic. The multiple
bootstrap algorithm is also time-consuming. In this paper, we first intro-
duce a novel Bahadur representation of the scaled sample spatial median
and then construct a new max-type test statistic. We demonstrate that the
limit null distribution of the proposed test statistic is still a Type I Gumbel
distribution. We also establish the consistency of the proposed max-type
test procedure. Simulation studies further illustrate its superiority over
existing methods under sparse alternatives and heavy-tailed distributions.

In practical scenarios, it’s often unknown whether the alternative is
dense or sparse. This has led to numerous studies proposing an adaptive

strategy that combines the sum-type test and max-type test. For high-



dimensional mean problems, Xu et al| (2016) integrated different L,-norms
of the sample means. He et al) (2021) introduced a family of U-statistics
as an unbiased estimator of the L,-norm of the mean vectors, covariance
matrices and regression coefficients, demonstrating that U-statistics of dif-
ferent finite orders are asymptotically independent, normally distributed,
and also independent from the maximum-type test statistic. [Feng et al.
(R022) relaxed the covariance matrix assumption to establish independence
between the sum-type test statistic and the max-type test statistic. There
are also many other studies showing the asymptotic independence between
the sum-type test statistics and the max-type test statistic for other high-
dimensional problems. For instance, Wu et al| (2019) and Wu et al] (2020)
examined the coefficient test in high-dimensional generalized linear mod-
els. Feng et al| (2022) looked at the cross-sectional independence test in
high-dimensional panel data models. Yu et al. (2024) focused on testing
the high-dimensional covariance matrix. Feng et al, (2022) considered the
high-dimensional white noise test, while Wang and Feng (2023) looked at
high-dimensional change point inference. Ma et al) (2024) and Yu et al.
(2024) considered testing the alpha of high-dimensional time-varying and
linear factor pricing models, respectively.

However, all these methods assume a normal or other light-tailed dis-



tributions. There’s a gap in the literature when it comes to considering the
asymptotic independence between the sum-type test statistic and the max-
type test statistic under heavy-tailed distributions. In this paper, we first
establish the asymptotic independence between Feng and Sun (2016)’s sum-
type test statistic and a newly proposed spatial sign-based max-type test
statistic for high dimensional one sample location parameter problem. We
then propose a Cauchy combination test procedure (Liu and Xie, 2020) to
handle general alternatives. Both simulation studies and theoretical results
demonstrate the advantages of our newly proposed methods.

This paper are organized as follow. Section 2 introduce Bahadur rep-
resentation of the scaled spatial median and establish the max-type test
statistic. In section 3, we prove the asymptotic independence between the
sum-type test statistic and the new proposed max-type test statistic and
construct the Cauchy combination test procedure. Section 4 show some
simulation studies. Some discussion are stated in Section 5. Two real data
applications and all the technical details are in the Supplementary Material.

Notations: For d-dimensional x, we use the notation ||| and |||
to denote its Euclidean norm and maximum-norm respectively. Denote

a, < b, if there exists constant C, a,, < Cb, and a, =< b, if both a, < b,

~

and b, < a, hold. Let ¢, (x) = exp () — 1 be a function defined on [0, c0)



for @« > 0. Then the Orlicz norm || - ||, of a X is defined as || X[y, =
inf [t > 0,E{¢o(|X|/t)} < 1]. Let tr(-) be a trace for matrix, A, (-) and
Amaz () be the minimum and maximum eigenvalue for symmetric martix.
I, represents a p-dimensional identity matrix, and diag{vy, ve,- -+, v,} rep-
resents the diagonal matrix with entries v = (v, ve,--- ,v,). For a,b € R,

we write a A b = min{a, b}.

2. Max-type test

Let X1,..., X, be a sequence of independent and identically distributed
(i.i.d.) p-dimensional random vectors from a population X with cumulative

distribution function Fx in R”. We consider the following model:
Xi=0+ul'W,;,

where 0 is location parameter, W; is a p-dimensional random vector with
independent components, E(W;) = 0, ¥ = I'T'", v; is a nonnegative uni-
variate random variable and is independent with the spatial sign of W;.
The distribution of X depends on I' through the shape matrix. Model (E)
encompasses a wide range of frequently utilized multivariate models and
distribution families, such as the independent components model (Nord-
hausen et all, 2009; [lmonen and Paindaveine, 2011; Yao et al}, 2015) and

the family of elliptical distributions (Hallin and Paindaveine, 2006; Oja,



2010; Fang, R018).

In this paper, we focus on the following one sample testing problem
Hy:0=0versus H;:0#0. (2.1)

The spatial sign function is defined as U(x) = ||x[|"'xI(x # 0). In tra-
ditional fixed p circumstance, the following so-called “inner centering and
inner standardization” sign-based procedure is usually used (cf., Chapter 6
of Oja (2010)), with statistic Q? = npUTU, whereU = 157" | U, U, =
U (S7'2X;),S7Y/2 are Tyler’s scatter matrix (cf., Section 6.1.3 of Oja
(2010)). @? is affine-invariant and can be regarded as a nonparametric
counterpart of Hotelling’s T? test statistic by using the spatial-signs in-
stead of the original observations X; ’s. However, when p > n, Q? is not
defined as the matrix S™/2 is not available in high-dimensional settings.
In high-dimensional settings, Wang et al| (2015) proposed a method
where Tyler’s scatter matrix is replaced by the identity matrix. This led to

the test statistic Typr = >, U (X;)U(X,). Building on this, Feng and

i<j
Sunl (2016) extended the method and introduced a scalar-invariant spatial-
sign based test procedure, which will be detailed in section a Both methods
utilize sum-type test statistics, which perform well under dense alternatives

where many elements of 8 are nonzeros. However, their power decreases

under sparse alternatives where only a few elements of 8 are nonzeros.



2.1 Bahadur representation and Gaussian approximation

It is well-known that max-type tests have good performance under
sparse alternatives (Cai et al), 2013). Therefore, Cheng et al| (2023) first
provided the Bahadur representation of the classic spatial median 5, de-
fined as @ = arg ming > or 11X —0]|. They then proposed a max-type test
procedure based on Gaussian approximation. While this approach is robust
and effective in high-dimensional settings, it loses scalar information of dif-
ferent variables and is not scalar-invariant. In real-world scenarios, different
components may have entirely different physical or biological readings, and
their scales would not be identical. Moreover, due to the unequal scale of 5,
it is not possible to derive the limited null distribution of ||8||s even under
weak correlation assumption. In this paper, we first provide the Bahadur
representation and Gaussian approximation of the location estimator pro-

posed in Feng et al) (2016). We then propose a new max-type test statistic

and establish its limit null distribution under some mild conditions.

2.1 Bahadur representation and Gaussian approximation

Motivated by Feng et al} (2016), we suggest to find a pair of diagonal matrix

D and vector @ for each sample that simultaneously satisfy

%Zn: U (€;) =0 and %diag {Zn: Ul(e)U <€i)T} =1, (2.2)



2.1 Bahadur representation and Gaussian approximation

where €; = D72 (X; — 0). (D, 0) can be viewed as a simplified version of
HettmanspergerRandles (HR) estimator , which is proposed in Hettmansperger
and Randles (2002), without considering the off-diagonal elements of S. We
can adapt the recursive algorithm of Feng et al| (2016) to solve Equation
@. That is, repeat the following three steps until convergence:

(1) el(_Dil/Q(Xz_e)’ ]:1,,TL,

D23 Ule)
Sl T

(ﬁﬂI)e—pDVQdmg{n‘IZﬁﬁIJ@JCI@JT}Iﬂﬂ.

(ii) 6 « 0 +

The resulting estimators of location and diagonal matrix are denoted as
6 and D. The sample mean and sample variances can be utilized as initial
estimators. Regrettably, no evidence has been found to confirm the conver-
gence of the aforementioned algorithm, even in low-dimensional scenarios,
despite its consistent practical effectiveness. The existence or uniqueness
of the HR estimator mentioned above also lacks proof. This topic certainly
warrants further investigation.

In this section, we investigate some theoretical properties based on
maximum-norm about 8. Similar to the proof of Lemma 1 and Theorem 1
in Cheng et al| (2023), we give the Bahadur representation of D~/2(9 — )
and the Gaussian approximation result for DY 2(9 — 0) over hyperrectan-

gles. Based on Gaussian approximation, we can easily derive the limiting



2.1 Bahadur representation and Gaussian approximation

distribution of @ based on the maximum-norm.

For i = 1,2,---,n, we denote U; = U{D Y?(X; — 0)} and R; =
ID~Y2(X; — 6)|| as the scale-invariant spatial-sign and radius of X; — 6,
respectively. The moments of R; is defined as (;, = E (R;k) fork =1,2,3,4.

Denote W, = (W, 1, ... ,Wi,p)T, the assumption is as follows.

Assumption 1. W, ;, ..., W;, are i.i.d. symmetric random variables with
E(W;;) = 0,E(W2) =1, and [Wijll,, < co with some constant ¢o > 0

and 1 < a < 2.

Assumption 2. The moments (;, = E (R;k) for k = 1,2, 3,4 exist for large
enough p. In addition, there exist two positive constants b and B such that

b < limsup, E (R,/\/]_?)fk < Bfork=1,23,4.

Assumption 3. The shape matrix R = D™'’TTTD"'/2 = (o), satis-
fies tr(R) = p and max;_ .. , y p_, |0j¢| < ao(p) where ao(p) is a constant

depending only on dimension p. In addition, liminf, ,. min;— .. ,d; > d

for some constant d > 0, where D = diag{d?,d3,--- ,d2}.

Remark 1 Assumption E] is the same as Condition C.1 in Cheng et al.
(023), which ensure that € in model (E) is the population spatial median

and W; ; has a sub-exponential distribution. If W; ~ N(0,1,), X, follows a

elliptical symmetric distribution. Assumption E extend the Assumption 1 in



2.1 Bahadur representation and Gaussian approximation

Zou et al, (2014), which indicates that ¢, =< p~*/2. It is a mild assumption
and introduced to avoid X; from concentrating too much near 6. For three
commonly used distribution, multivariate normal, student-f and mixtures
of multivariate normal distributions, Assumptions E—E are satisfied. For
example, for standard multivariate normal distribution, E(R; ) equals to
1/{(p—2)(p—4)} which restricts the dimension p > 4. See also discussions in
Zou et al] (2014); Cheng et al) (2023) on similar assumptions. Assumption
E means the correlation between those variables could not be too large,
which is similar to the matrix class in Bickel and Levina (2008).

The following lemma shows a Bahadur representation of é, which is the

basis of Gaussian approximation result in Theorem l__l_l

Lemma 1. (Bahadur representation) Assume Assumptions @—B with ag(p) =<
p'=% for some positive constant § < 1/2 hold. Iflogp = o(n'/3) and logn =
o(p'/?"9), then

n'PD7V2(0 — 0) =72 Ui+,

=1

where ||Cy||oo = Op{n="*1og"?(np)+p~ /522 1og?(np)+n=1/2(log p)/*log"?(np)}.

Remark 2 [Feng et al] (2016) derived the Bahadur representation of the
estimator @, where the remainder term ||C,|| is 0,((;}), assuming a sym-

metric elliptical distribution. In this context, we provide the rate of the



2.1 Bahadur representation and Gaussian approximation

remainder term C;, subject to a maximum-norm constraint. It’s important
to note that in this Lemma, we scale the spatial-median estimator 0 by
D~1/2. This is a departure from much of the existing literature on the Ba-
hadur representation of the spatial median, which does not exhibit scalar
invariance. Such works include Zou et al] (2014), Cheng et al) (2019), Li
and Xu (2022), and Cheng et al| (2023).

Let A = {H§:1 laj,bj] i —o0 < a; <b;<o0,j=1,... ,p} be the class
of rectangles in RP. Based on the Bahadur representation of é, we acquire

the following Gaussian approximation of D=/2(9 — 6) in rectangle A™ .

Lemma 2. (Gaussian approzimation) Assume Assumptions B—B with ag(p) =<
pt=% for some positive constant & < 1/2 hold. If logp = 0(n1/5) and

logn = o (p/3"9), then

pn (A) = sup
AeAre

P {n1/21f)—1/2 (é . 9) c A} PG e A)) 0,
as n — oo, where G ~ N (0,(°%,) with 3, = E (U,U)).

The Gaussian approximation for 8 indicates that the probabilities P {nl/ 2H-1/2 (é - 0) € A}
can be approximated by that of a centered Gaussian random vector with
covariance matrix ¢;?%, for hyperrectangles A € A™ . Since the region
Al = {H?:l laj, bj]: —c0o=a; <bj=t,j=1,... ,p} used in the following

corollary is contained in the set A™, it is clear that the Corollary m follows.



2.2  Max-type test procedure

Corollary 1. Under the assumptions of Lemma E, as n — 0o, we have

pu = sup [P {02 [D12(0 - 0)c <t} ~P(IG] < 1)] =0,

teR
where G ~ N (0, szEu) :
Taking into account the relationships between 3, and p~ 'R, we propose

a more straightforward Gaussian approximation.

Lemma 3. (Variance approzimation) Suppose G ~ N (O, QI_QEU) and Z ~
N (O, Cl_Qp_lR), under the assumptions of Lemma @, as (n,p) — o0, we
have

sup P12l <t) =P (|Gl < )| = 0.

By integrating Corollary Ej and Lemma a, we can readily derive the

principal theorem of Gaussian approximation.

Theorem 1. Assume Assumptions B—B with ag(p) = p*~° for some positive

constant 6 < 1/2 hold. If logp = o (n'/?) and logn = o (p'/*"?), then
pn = sup [P {02 D120 - 0) o <t} ~P(I1Z]lc <)| 0,
teR

where Z ~ N (0,(*p'R).

2.2 Max-type test procedure

In order to guarantee that the maximum value of a sequence of normal vari-

ables adheres to a Gumbel limiting distribution, we introduce Assumption



2.2  Max-type test procedure

@, which is employed to specify the necessary correlation among variables.

Assumption 4. For some p € (0,1), assume |o;;| < pforall1 <i<j<p
and p > 2. Suppose {d,;p > 1} and {k,;p > 1} are positive constants
with 0, = o(1/logp) and kK = Kk, — 0 as p — oco. For 1 < i < p, define
B, ={1<j<p;loij| > 6,}and C, = {1 <i < p;|B,| > p"}. We assume

that |C,| /p — 0 as p — oo.

Remark 3 Assumption @ aligns with Assumption (2.2) in Feng et al.
(2022). This assumption stipulates that for each variable, the count of
other variables that exhibit a strong correlation with it cannot be exces-
sively large. To the best of our understanding, this is the least restric-
tive assumption in the literature that allows for the limiting null distri-
bution of the maximum of correlated normal random variables to follow
a Gumbel distribution. Both Assumption a and @ pertain to the cor-
relation matrix R. We examine two specific cases that satisfy both of
these conditions. The first case is the classic AR(1) structure, denoted
as R = (p")i<ij<p,p € (=1,1). In this scenario, 7 |ou] — ﬁp,
which allows § to be one in Assumption B For Assumption @, we set
6, = (logp)~?, leading to B,; = {j : |i — j| < —2loglogp/log|p|}.
As a result, |B,;| < —4loglogp/log|p| < p* with k = 5loglogp/log p,

which implies |C,| = 0 and Assumption @ is satisfied. The second case



2.2  Max-type test procedure

involves a banded correlation matrix, where o;; = 0 if |[i — j| > (. Here,
> b1 loil = O(f) and | B, ;| < € for 6, = (logp)~*. Therefore, Assumptions
B and @ will hold if ¢ = o(p*) for any x — 0.

Suppose Assumption El—@ hold, by the Theorem 2 in Feng et al| (2022),
we can see that p(? maxi<;<, Z2 — 2log p+ log log p converges to a Gumbel
distribution with cdf F(z) = exp {—\%6*‘”/2} as p — oo. In combining

with the Theorem |ﬂ we can conclude that,
P {nl/ 2

Next we replace E (R™') with its estimators. We denote R; = ||D~/2(X,;—

N ~ 2 1
D™'2(0 - ‘9)H PGt —2logp +loglogp < x} — exp {——em} _

\/E
(2.3)

0)|. Then the estimator is defined as (; := LD R;7', and the proof of
consistency is shown in Lemma 3 in Supplementary Material. Because the
convergence rate of maximum is very slow, we propose a adjust max-type

test statistic which based on the scalar-invariant spatial median é,
~ 1252 p2 1/2
Thyax :nHD_ / 9H Gp-(1—n" / ).
o0

Theorem 2. Suppose the assumptions in Theorem B and Assumption 4

hold. Under the null hypothesis, as (n,p) — oo, we have

1
P (Tyax —2logp +loglogp < x) — exp {_Te—x/Q} _
T

According to Theorem E, a level- « test will then be performed through



2.2  Max-type test procedure

rejecting Hy when Thyax — 2logp + loglogp exceeds the (1 — «) quantile
qi_o = —logm — 2loglog(1 — a)~! of the Gumbel distribution F(z). The

following theorem shows the consistency of the proposed max-type test.

Theorem 3. Suppose the Assumptions in Theorem @ hold. For any given
€ (0,1), if [|0]c > Cn=2{logp — 2loglog(1 — a)~}2 for some large

enough constant 5, as n — 0o, we have
P(Tyax —2logp +loglogp > ¢1-o | H1) — 1.

Given a fixed significant level «, the test Th;ax attains consistency
if |0]]s > C+/logp/n, provided that C is sufficiently large. This is the
minimax rate optimal for testing against sparse alternatives, as stated in
Theorem 3 of Cai et al) (2013). If C is adequately small, then it becomes im-
possible for any a-level test to reject the null hypothesis with a probability
approaching one. Therefore, Theorem a also demonstrates the optimality
of our proposed test Thyax-

To show the high dimensional asymptotic relative efficiency, we consider

a special alternative hypothesis:

Hy:0=(6,,0,---,0)",0, >0,

which means there are only one variable has nonzero mean. Let z, =



2.2  Max-type test procedure

2logp —loglogp + q1_. In this case,

P (dAIQé%néfp > ma) <P(Tyax > xq) <P (széfnffp > ,’Ea)—HP) (max d7262nl?p > :va> .
2<i<p

Under this special alternative hypothesis, we can easily have

P (max (f:zé?néfp > xa) — o, and P (J;Qéfnéfp > :ca) — P {f\/xa + (np)1/2d1_101C1} )

2<i<p

So the power function of our proposed Ty ax test is

Briax(0) € (@ {—y/aa + (np)2d'0:G ), @ {—/aa + (np)2d 101G} + ).

Similarly, the power function of Cai et al, (2013)’s test is

Borx(0) € (P (—\/xa + n1/2q1_101) , P (—\/xa + n1/2§1_191) + ),

where ¢? is the variance of X;,i = 1,--- ,p. Thus, the asymptotic relative
efficiency of Ty;4x with respective to Cai et al] (2013)’s test could be ap-
proximated as ARE(Tyax, Torx) = {E(R; V)}2E(R?), which is the same
as the asymptotic relative efficiency of Feng and Sun (2016)’s test with
respective to Srivastava (2009)’s test. If X; are generated from standard

multivariate t-distribution with v degrees of freedom (v > 2),

ARE(Tyax, Tevx) = - i 2 {F{(;(j/lz))/z}} _

For different v = 3,4, 5,6, the above ARE are 2.54,1.76,1.51, 1.38, respec-
tively. Under the multivariate normal distribution (v = 00), our Thyax test
is the same powerful as Cai et al| (2013)’s test. However, our Ty 4x test is

much more powerful under the heavy-tailed distributions.



3. Maxsum test

By Feng et al| (2016), we have the following theorem and assumptions:

Assumption 5. Variables { X1, ..., X,,} in the n-th row are independently
and identically distributed (i.i.d.) from p-variate elliptical distribution with
density functions det(X)~"/2 g (||S7"2(x — 6)||) where 6 ’s are the sym-
metry centers and X ’s are the positive definite symmetric p x p scatter

matrices.
Assumption 6. tr (R?) = o {tr? (R?)}.

Assumption 7. (i) tr (R*) —p = o (n"'p?), (ii) n2p*/ tr (R?) = O(1) and
logp = o(n).

Remark 4 Assumption H is a common condition for sum-type test statistic
in high dimensions, see Chen and Qin (2010); Feng et al| (2016); Feng and
Sun (2016), which requires that the eigenvalues of R not diverge excessively.
If all the eigenvalues of R are bounded, tr(R?) = O(p), tr(R*) = O(p).
So the Assumption E holds trivially. In this case, Assumption B becomes
p = O(n?) and p/n — oco. Actually, it is not necessary for the eigenvalues
to be bounded. For b unbounded eigenvalues with respect dimension p, the
sufficient condition for Assumption B and H are \p) /A1) = o{ (p—b)¥/2b=1/4}

and \; = 14 0(p'/?n=1/2). When the assumptions about the spectrum of R,



do not hold, there would be a bias therm in sum-type statistic that difficult
to calculate and deserves to be investigated further, see the Supplemental
Material of Feng et al) (2016) for more details.

The following Lemma restate the Theorem 1 in Feng and Sun (2016),
which gives the asymptotic null distribution of Ty, under the symmetric

elliptical distribution assumption.

Lemma 4. Under Assumptions B—H and Hy, as (p,n) — o0, Tsun/on )

N(0,1), where 6% = tr (R?).

n(n— 1)

To broaden the application, we re-derive the limiting null distribution

of Tsyar under a more generalized model (E)

Theorem 4. Under Assumptions B—E,H and Hy, as (p,n) — 00, Tsun/on a4

N(0,1).

Similar to Feng and Sun (2016), we propose the following estimator to

estimate the trace term in o2

) =SS [o {00 (x-,)) 0 {03 (x5-6,))]

1=1 j#i
where (0137 D, ) are the corresponding spatial median and diagonal matrix

estimators using leave-two-out sample { Xy}, ;. Similar to the proof of

Proposition 2 in Feng et al| (2016), we can easily obtain that tr/(-f?)/ tr (R?) &



1 as (p,n) — oo under model (E) Consequently, a ratio-consistent estima-

—

str (R?). We reject the null hypothesis

2 A2 2
tor of o, under Hy is 0, = o=,

with « level of significance if Tsynr/0, > za, where z, is the upper «
quantile of N(0,1).
And we also re-derive the asymptotic distribution of Ts;; under the

following alternative hypothesis:
H :0'D'6=0 (CI_QO') and 0'RO = o (Cl_anO'Q) (3.1)

Theorem 5. Under Assumptions @-B,B-B and the alternative hypothesis
.4), as (p.n) = o0,

Toun — C20TD10
sum =G 4 N(0,1).

On
By Theorem @—B, the power function of T3 can be approximated as

CGnpdTD-10
2t (R?)

Bsum (8) = @ (Za +
Hence, Ty is expected to perform well under the dense alternative hy-
pothesis. For a more detailed discussion on the asymptotic relative effi-
ciency of Tsyp compared to other tests, refer to Feng and Sun (2016).

The power comparison between Ty and Thyax will be addressed in the

following subsection.



3.1 Maxsum test

3.1 Maxsum test

In this subsection, we demonstrate that our proposed test statistic Th;ax
is asymptotically independent of the statistic Tsyyps presented in Feng and
Sun (2016). This allows us to carry out a Cauchy p-value combination of
the two asymptotically independent p-values, resulting in a new test. This

test is tailored to accommodate both sparse and dense alternatives.

Assumption 8. There exist C' > 0 and p € (0, 1) so that maxj<;<j<; |04] <
oand maxy<i<, Y5y 03y < (logp)© forall p > 3;p7'/2(log p)¢ < Auin(R) <
Amax(R) < /p(logp)™" and Apax(R)/Amin(R) = O (p7) for some 7 €

(0,1/4).

Remark 5 Assumption E is the same as the condition (2.3) in Feng et al.
(2022). As shown in Feng et al| (2022), Assumption B is more restrictive
than Assumption [, and [ ~ V2ogp)C <

an Assumption B, ff and §. Under Assumption g, we have p'/*(logp)® <
tr(R?) < p*2log™'p. So Assumption H will hold if n = o(p*?logp) and
p**(log p)~¢/2 = O(n). Intuitively speaking, if all the eigenvalues of R are

bounded and p/n — ¢ € (0, 00), all the assumptions , @, B, H and E hold.

Theorem 6. Under Assumptions @-, H—B and Hy, Tsyy and Thyax are

asymptotically independent, i.e., as (n,p) — oo,

P(Tsum/on < x,Thax — 2logp +loglogp < y) — &(z)F(y).



3.1 Maxsum test

According to Theorem a, we suggest combining the corresponding p-

values by using Cauchy Combination Method (Liu and Xie, 2020), to wit,
poc =1 — G [0.5tan{(0.5 — pprax)m} + 0.5tan{(0.5 — psyrm )7},
pumax =1 — F(Tyax — 2logp +loglogp), psum =1 — ®(Tsunm/64),
where G(-) is the CDF of the standard Cauchy distribution. If the final
p-value is less than a pre-specified significant level a € (0, 1), we reject Hy.

Next, we consider the relationship between Ty and Ty 4x under local

alternative hypotheses:

) /
Hl . ||0|| _ O(CfQO')v HR1/20H — 0 (C;2np0_2) and ’A‘ -0 [)\mln(R){tI‘(Rz)}l 2] |

(log p)©
(3.2)

where A = {i | 0; # 0,1 < i < p}, 0 = (01,02,---,0,)". The following
theorem establish the asymptotic independence between Tsy s and Thyax

under this special alternative hypothesis.

Theorem 7. Under Assumptions B—, B—B and the alternative hypothesis
), Tsuar and Ty ax are asymptotically independent, i.e., as (n,p) — o0
P(Tsun/on < x,Tyax —2logp +loglogp < y) —
P (Tsun/on < )P (Thrax —2logp +loglogp < y) .

According to [Long et al) (2023), the Cauchy combination-based test has

more power than the test based on the minimum of py;4x and psyar, which



is also known as the minimal p-value combination. This is represented as

ﬁM/\S,a = P(min{pMAX,pSUM} S 1-— vV 1-— a). It is clear that:

Brns,e > P(min{parax,psva} < a/2)
= Bmax,a/2 + Bsumajz — P(Pmax < a/2,psum < a/2)

> max{ By ax,a/2: BSUM,a/2}- (3.3)

On the other hand, under the local alternative hypothesis (@), we have,

Brns,a = Brax,a/2 + Bsumare — Brax,a2Bsumasz +o(1), (3.4)

which is due to the asymptotic independence implied by Theorem H

For a small «, the difference between Syax. and Buyrax,a/2 is small,
and the same applies to Bsyaa. Therefore, by equations (@) and (@),
the power of the adaptive test is at least as large as, or even significantly
larger than, that of either the max-type or sum-type test. For a detailed
comparison of the performance of each test type under varying conditions

of sparsity and signal strength, please refer to Table 1 in Ma et al| (2024).

4. Simulation

In this section, we incorporated various methods into our study:

o the proposed test Ty ax, referred as SS-MAX;



« sum-type test proposed by Feng and Sun (2016), referred as SS-SUM,;
o the proposed test Toe, referred as SS-CC;
« max-type method proposed by Cai et al] (2013) , referred as MAX;
« sum-type method proposed by Srivastava (2009), referred as SUM;
 combination test proposed by Feng et al| (2022), referred as COM.
The following scenarios are firstly considered.

(I) Multivariate normal distribution. X; ~ N(8,X).

(II) Multivariate t-distribution t,4. X;’s are generated from t,, with lo-

cation parameter @ and scatter matrix 3.

(III) Multivariate mixture normal distribution MN,, ,o. X;’s are gener-
ated from vf,,(60,3)+ (1 —7)f,,.(0,9%), denoted by MN,,. 9, where
fpn(+;+) is the density function of p,-variate multivariate normal dis-

tribution. 7 is chosen to be 0.8.

Here we consider the scatter matrix X = (0.5|i_j ‘)1§i,j§p. Two sample sizes
n = 50,100 and three dimensions p = 200, 400, 600 are considered. All the
findings in this section are derived from 1000 repetitions. Table m presents

the empirical sizes of the six tests mentioned above. It was observed that



the spatial-sign based tests—SS-MAX, SS-SUM, and SS-CC-are able to ef-
fectively manage the empirical sizes in a majority of scenarios. Under the
normality assumption, the Type I error of the MAX method increases as
the ratio p/n grows. This may be due to the component nz;/d; of the
max statistic following a ¢(n) distribution, which deviates from the normal
distribution. When p is fixed and n increases, leading to a closer approx-
imation to the normal distribution, the MAX method exhibits improved
control over the Type I error. When dealing with distributions that are not
multivariate normal, the SUM test tends to have empirical sizes that fall
below the nominal level. Similarly, the COM test also exhibits smaller sizes
when operating under non-normal distributions. In contrast, the SS-MAX
method is more robust to variations in data distributions.

To compare the power performance of each test, we consider 8 =
(K, Kk, k,0,-+-,0) where the first s components of 8 are all equal to kK =
v/0.5/s. Figure H illustrates the power curves for each test. In the case
of the multivariate normal distribution, SS-SUM and SUM exhibit simi-
lar performance, aligning with the findings of Feng and Sun (2016). The
spatial-sign based max-type test procedure, SS-MAX| is slightly less power-
ful than its mean-based counterpart, MAX. The two combination type test

procedures demonstrate comparable performance in this scenario. However,



Table 1: Empirical size comparison of various tests with a nominal level

5%.

n = 50 n = 100

p 200 400 600 200 400 600
Multivariate Normal Distribution

SS-MAX 0.051 0.061 0.049 0.025 0.04 0.032
SS-SUM 0.061 0.056 0.041 0.06 0.059 0.068

SS-CC 0.071 0.065 0.048 0.057 0.056 0.056
MAX 0.095 0.125 0.116 0.052 0.081 0.072
SUM 0.076 0.086 0.054 0.069 0.064 0.081
COM 0.095 0.108 0.089 0.063 0.072 0.058

Multivariate t3 Distribution
SS-MAX 0.063 0.062 0.063 0.061 0.063 0.058
SS-SUM 0.067 0.053 0.064 0.062 0.064 0.053

SS-CC 0.058 0.061 0.068 0.058 0.052 0.059
MAX 0.044 0.052 0.047 0.033 0.036 0.04
SUM 0.005 0.001 0.001 0.002 0.001 0

COM 0.021 0.03 0.027 0.019 0.014 0.019

Multivariate Mixture Normal Distribution
SS-MAX 0.056 0.061 0.07 0.037 0.037 0.044
SS-SUM 0.066 0.05 0.051 0.054 0.058 0.061

SS-CC 0.067 0.058 0.064 0.052 0.046 0.059
MAX 0.037 0.042 0.056 0.031 0.038 0.03
SUM 0.004 0 0 0.007 0.002 0

COM 0.021 0.019 0.028 0.013 0.02 0.01

when dealing with non-normal distributions, the spatial-sign based test pro-
cedures surpass the mean-based ones. Moreover, the newly proposed test,
SS-CC, outperforms the others in most scenarios. In extremely sparse sce-
narios (s < 5), SS-CC’s performance is akin to SS-MAX. In highly dense
scenarios (s > 10), SS-CC performs similarly to SS-SUM. However, when
the signal is neither very sparse nor very dense, SS-CC proves to be the
most effective among all test procedures. This underscores the superiority
of our proposed max-sum procedures, not only in handling signal sparsity

but also in dealing with heavy-tailed distributions.
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Figure 1: Power of tests with different sparsity levels over (n,p) =

(100, 200).

Next, we consider the power comparison of those tests under different
signal strength. Here we consider three sparsity level s = 2,20,50 and
the signal parameter xk = \/% Figures E—@ present the power curves for
various testing methods under Scenarios I to III. As the signal strength
increases, the power of all tests also increases. Despite the presence of
heavy-tailed distributions, spatial-sign based testing methods continue to
surpass those based on means. Among all the tests, the proposed CC test
consistently delivers the best performance.

As shown in Feng and Sun (2016), for the sum-type test procedure, SS-
SUM is more powerful than the non scalar-invariant test (Wang et all, 2015).

Here we also compare our proposed test Thyax with Cheng et al| (2023)’s
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Figure 2: Power of tests with different signal strength for multivariate nor-

mal distribution over (n,p) = (100, 200).
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Figure 3: Power of tests with different signal strength for multivariate ¢3
distribution over (n,p) = (100, 200).

test (abbreviated as CPZ hereafter) to show the importance of scalar-
invariant for max-type test procedure. We consider two scatter matrix case
for : (i) X = (0.579) ., ;<,; (ii) & = DYV2RDY2 R = (0.5770) ., ;,, D =
diag{dy,--- ,d,} where d; = 1,1 < p/2,d; = 3,i > p/2. The other settings
are all the same as above. Table E presents the empirical sizes of the SS-

MAX and CPZ tests. Both tests are capable of controlling the empirical



s=20

Power
Power

Figure 4: Power of tests with different signal strength for multivariate mix-
ture normal distribution over (n,p) = (100, 200).

sizes in the majority of cases. Moreover, we conduct a power comparison of
these two max-type tests under identical settings as previously mentioned,
but with two distinct scatter matrix cases. Figures B and a depict the power
curves of SS-MAX and CPZ under scatter matrix cases (i) and (ii), respec-
tively. We observe that SS-MAX performs comparably to CPZ when all
elements of the diagonal matrix of 3 are equal. However, SS-MAX exhibits
greater power than CPZ when the elements of the diagonal matrix of the

scatter matrix are unequal, underscoring the necessity of scalar-invariance.

5. Conclusion

In this paper, we address a one-sample testing problem in high-dimensional

settings for heavy-tailed distributions. We begin by providing a Bahadur



Table 2:

nominal level 5%.

Empirical size comparison of SS-MAX and CPZ tests with a

n = 50 n = 100 n = 50 n = 100
P 200 400 600 200 400 600 200 400 600 ‘ 200 400 600
Scatter Matrix Case (i) Scatter Matrix Case (ii)
Multivariate Normal Distribution
SS-MAX | 0.046 0.04 0.054 | 0.03 0.036 0.058 | 0.038 0.054 0.032|0.044 0.044 0.032
CPZ 0.076 0.054 0.076 | 0.056 0.08 0.088 | 0.07 0.052 0.074 | 0.058 0.056 0.05
Multivariate t3 Distribution
SS-MAX | 0.06 0.09 0.096 | 0.06 0.054 0.054 | 0.064 0.08 0.068 | 0.058 0.068 0.064
CPZ 0.06 0.064 0.06 |0.052 0.07 0.038 | 0.07 0.05 0.064 | 0.064 0.086 0.066
Multivariate Mixture Normal Distribution
SS-MAX | 0.072 0.06 0.072 | 0.038 0.052 0.038 | 0.062 0.056 0.048 | 0.038 0.036 0.05
CPZ 0.086 0.08 0.074 | 0.078 0.066 0.046 | 0.068 0.05 0.05 | 0.084 0.052 0.052
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Figure 5: Power of max-type tests with different signal strength for matrix
case (i) over (n,p) = (100, 200).

representation and Gaussian approximation of the spatial median estimator,
as discussed in Feng et al| (2016). Following this, we introduce a spatial-
sign based max-type test procedure for sparse alternatives and establish
the limit null distribution and consistency of the proposed max-type test
statistic. Next, we reformulate the sum-type test statistic, originally pro-

posed by Feng and Sun (2016), under a general model. This sum-type test
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Figure 6: Power of max-type tests with different signal strength for matrix

case (ii) over (n,p) = (100, 200).

exhibits superior performance under dense alternatives. Finally, we demon-
strate the asymptotic independence between the aforementioned max-type
test statistic and the sum-type test statistic, given some mild conditions.
We then propose a Cauchy combination test procedure, which performs
exceptionally well under both sparse and dense alternatives. Both simu-
lation studies and real data applications underscore the superiority of the
proposed maxsum-type test procedure.

We propose several directions for future research. Firstly, the sum-type
test statistic in Feng and Sun (2016) only takes into account the direction of
the sample, neglecting the information of the sample’s radius. Feng et al.
(021) introduced a more powerful inverse norm sign test. It would be
intriguing to derive a max-type test statistic that also considers the radius
of the sample. Furthermore, it remains an open question whether this new

max-type test statistic maintains asymptotic independence with the sum-



type test statistic proposed by tFeng et al.| (|2021|).

Secondly, the newly proposed methods can be extended to address other

high-dimensional testing problems. These include the high-dimensional

two-sample location problem (|Chen and Qin|7 I‘ZOld; tFeng et alJ, l2016|)7 high-

dimensional covariance matrix tests (|Chen et al.|, bOld; tLi and Chen|, |201ﬂ;

|Cutting et al.|, |2017|; |Cheng et a1.|, I201d), testing the martingale difference

hypothesis in high dimension (|Chang et alL |‘2023|) and high-dimensional

white noise test (tPaindaveine and Verdeboutl, lZOld; |Chang et al.|, l‘ZOl?I;

tFeng et al.|, b02j; chao et al.|, |2024l). Additionally, the alpha test in the

high-dimensional linear factor pricing model is a significant problem that
has been explored in practical applications.

Thirdly, our paper’s theoretical results are predicated on the assump-
tion of identical and independent distribution. However, there may occa-

sionally be auto-correlations among the sample sizes. Recent literature,

such as hhang and Chengj (b018|) and |Chang et a1.| (b024l), has consid-

ered the Gaussian approximation of the sample mean under a dependent
assumption. Therefore, it would be intriguing to establish the Bahadur
representation and Gaussian approximation of the spatial median in the
context of dependent observations. Building on these findings, we can also

suggest the implementation of max-type and maxsum-type testing methods



for addressing high-dimensional location problem in the context of depen-

dent observations (Ayyala et al|, 2017; Ma et al, 2024).
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