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Abstract: In this study, we explore a robust testing procedure for the high-

dimensional location parameters testing problem. Initially, we introduce a spatial-

sign based max-type test statistic, which exhibits excellent performance for sparse

alternatives. Subsequently, we demonstrate the asymptotic independence be-

tween this max-type test statistic and the spatial-sign based sum-type test statis-

tic (Feng and Sun, 2016). Building on this, we propose a spatial-sign based max-

sum type testing procedure, which shows remarkable performance under varying

signal sparsity. Our simulation studies underscore the superior performance of

the procedures we propose.
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1. Introduction

The testing of location parameters is a crucial and extensively researched

area in multivariate statistics with a fixed dimension. The conventional

Hotelling’s T 2 test is commonly applied, but it fails in high-dimensional

scenarios where the variable’s dimension p exceeds the sample sizes n. Con-

sequently, numerous efforts have been made to develop a high-dimensional

mean test procedure. One straightforward approach is to substitute the Ma-

halanobis distance with the Euclidean distance. For the two-sample location

problem, Bai and Saranadasa (1996) employed the L2-norm of the differ-

ence between two sample means. Chen and Qin (2010) eliminated some

redundant terms in Bai and Saranadasa (1996)’s test statistics and made

no assumptions about the relationship between the dimension and sample

sizes. Srivastava (2009), Park and Ayyala (2013), and Feng et al. (2015)

suggested some scalar-invariant test statistics that replace the sample co-

variance matrix in Hotelling’s T 2 test statistics with its diagonal matrix.

All these methods are built on the assumption of normal distribution or di-

verging factor models, which perform poorly for heavy-tailed distributions.

For instance, the well-known multivariate t-distribution does not meet the

above assumption. Therefore, numerous studies have also considered robust

high-dimensional test procedures.
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In traditional multivariate analysis, numerous methods have been devel-

oped to extend classic univariate rank and signed rank techniques to a mul-

tivariate context. A significant method is based on spatial signs and ranks,

utilizing the so-called Oja median (Oja, 2010). Wang et al. (2015) proposed

a high-dimensional spatial-sign test that replaces the scatter matrix with

the identity matrix for a one-sample location problem. Similarly, Feng and

Sun (2016) proposed a high-dimensional spatial sign test that replaces the

scatter matrix with its diagonal matrix, which has a scalar-invariant prop-

erty. Furthermore, Feng et al. (2016) considered the high-dimensional two-

sample location problem based on the spatial-sign method. Feng, Liu, and

Ma (2021) devised an inverse norm sign test that considers not only the di-

rection of the observations but also the modulus of the observation. Huang

et al. (2023) extended the inverse norm sign test for a high-dimensional

two-sample location problem. Feng et al. (2020) demonstrated that the

spatial-rank method also performs well for a high-dimensional two-sample

problem. All these methods are constructed using the L2-norm of the spa-

tial median, which performs well under dense alternatives, meaning many

variables have non-zero means. However, it is well-known that these sum-

type test procedures perform poorly for sparse alternatives, where only a

few variables have non-zero means.
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In high-dimensional settings, numerous max-type test procedures have

been introduced to detect sparse alternatives. Cai et al. (2013) proposed a

test statistic for the high-dimensional two-sample mean problem, which is

based on the maximum difference between the means of two samples’ vari-

ables under the Gaussian or sub-Gaussian assumption. For heavy-tailed

distributions, Cheng et al. (2023) established a Gaussian approximation

for the sample spatial median over the class of hyperrectangles and con-

structed a max-type test procedure using a multiplier bootstrap algorithm.

However, their proposed test statistic is not scalar-invariant, and they did

not provide the limit null distribution of their test statistic. The multiple

bootstrap algorithm is also time-consuming. In this paper, we first intro-

duce a novel Bahadur representation of the scaled sample spatial median

and then construct a new max-type test statistic. We demonstrate that the

limit null distribution of the proposed test statistic is still a Type I Gumbel

distribution. We also establish the consistency of the proposed max-type

test procedure. Simulation studies further illustrate its superiority over

existing methods under sparse alternatives and heavy-tailed distributions.

In practical scenarios, it’s often unknown whether the alternative is

dense or sparse. This has led to numerous studies proposing an adaptive

strategy that combines the sum-type test and max-type test. For high-
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dimensional mean problems, Xu et al. (2016) integrated different Lr-norms

of the sample means. He et al. (2021) introduced a family of U-statistics

as an unbiased estimator of the Lr-norm of the mean vectors, covariance

matrices and regression coefficients, demonstrating that U-statistics of dif-

ferent finite orders are asymptotically independent, normally distributed,

and also independent from the maximum-type test statistic. Feng et al.

(2022) relaxed the covariance matrix assumption to establish independence

between the sum-type test statistic and the max-type test statistic. There

are also many other studies showing the asymptotic independence between

the sum-type test statistics and the max-type test statistic for other high-

dimensional problems. For instance, Wu et al. (2019) and Wu et al. (2020)

examined the coefficient test in high-dimensional generalized linear mod-

els. Feng et al. (2022) looked at the cross-sectional independence test in

high-dimensional panel data models. Yu et al. (2024) focused on testing

the high-dimensional covariance matrix. Feng et al. (2022) considered the

high-dimensional white noise test, while Wang and Feng (2023) looked at

high-dimensional change point inference. Ma et al. (2024) and Yu et al.

(2024) considered testing the alpha of high-dimensional time-varying and

linear factor pricing models, respectively.

However, all these methods assume a normal or other light-tailed dis-
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tributions. There’s a gap in the literature when it comes to considering the

asymptotic independence between the sum-type test statistic and the max-

type test statistic under heavy-tailed distributions. In this paper, we first

establish the asymptotic independence between Feng and Sun (2016)’s sum-

type test statistic and a newly proposed spatial sign-based max-type test

statistic for high dimensional one sample location parameter problem. We

then propose a Cauchy combination test procedure (Liu and Xie, 2020) to

handle general alternatives. Both simulation studies and theoretical results

demonstrate the advantages of our newly proposed methods.

This paper are organized as follow. Section 2 introduce Bahadur rep-

resentation of the scaled spatial median and establish the max-type test

statistic. In section 3, we prove the asymptotic independence between the

sum-type test statistic and the new proposed max-type test statistic and

construct the Cauchy combination test procedure. Section 4 show some

simulation studies. Some discussion are stated in Section 5. Two real data

applications and all the technical details are in the Supplementary Material.

Notations: For d-dimensional x, we use the notation ∥x∥ and ∥x∥∞

to denote its Euclidean norm and maximum-norm respectively. Denote

an ≲ bn if there exists constant C, an ≤ Cbn and an ≍ bn if both an ≲ bn

and bn ≲ an hold. Let ψα(x) = exp (xα)− 1 be a function defined on [0,∞)
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for α > 0. Then the Orlicz norm ∥ · ∥ψα of a X is defined as ∥X∥ψα =

inf [t > 0,E {ψα(|X|/t)} ⩽ 1]. Let tr(·) be a trace for matrix, λmin(·) and

λmax(·) be the minimum and maximum eigenvalue for symmetric martix.

Ip represents a p-dimensional identity matrix, and diag{v1, v2, · · · , vp} rep-

resents the diagonal matrix with entries v = (v1, v2, · · · , vp). For a, b ∈ R,

we write a ∧ b = min{a, b}.

2. Max-type test

Let X1, . . . ,Xn be a sequence of independent and identically distributed

(i.i.d.) p-dimensional random vectors from a population X with cumulative

distribution function FX in Rp. We consider the following model:

Xi = θ + viΓWi,

where θ is location parameter, Wi is a p-dimensional random vector with

independent components, E(Wi) = 0, Σ = ΓΓ⊤, vi is a nonnegative uni-

variate random variable and is independent with the spatial sign of Wi.

The distribution of X depends on Γ through the shape matrix. Model (2)

encompasses a wide range of frequently utilized multivariate models and

distribution families, such as the independent components model (Nord-

hausen et al., 2009; Ilmonen and Paindaveine, 2011; Yao et al., 2015) and

the family of elliptical distributions (Hallin and Paindaveine, 2006; Oja,

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0051



2010; Fang, 2018).

In this paper, we focus on the following one sample testing problem

H0 : θ = 0 versus H1 : θ ̸= 0. (2.1)

The spatial sign function is defined as U(x) = ∥x∥−1xI(x ̸= 0). In tra-

ditional fixed p circumstance, the following so-called “inner centering and

inner standardization” sign-based procedure is usually used (cf., Chapter 6

of Oja (2010)), with statistic Q2
n = npU

⊤
U , whereU = 1

n

∑n
i=1 Ûi, Ûi =

U
(
S−1/2Xi

)
,S−1/2 are Tyler’s scatter matrix (cf., Section 6.1.3 of Oja

(2010)). Q2
n is affine-invariant and can be regarded as a nonparametric

counterpart of Hotelling’s T 2 test statistic by using the spatial-signs in-

stead of the original observations Xi ’s. However, when p > n,Q2
n is not

defined as the matrix S−1/2 is not available in high-dimensional settings.

In high-dimensional settings, Wang et al. (2015) proposed a method

where Tyler’s scatter matrix is replaced by the identity matrix. This led to

the test statistic TWPL =
∑

i<j U
⊤(Xi)U(Xj). Building on this, Feng and

Sun (2016) extended the method and introduced a scalar-invariant spatial-

sign based test procedure, which will be detailed in section 3. Both methods

utilize sum-type test statistics, which perform well under dense alternatives

where many elements of θ are nonzeros. However, their power decreases

under sparse alternatives where only a few elements of θ are nonzeros.
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2.1 Bahadur representation and Gaussian approximation

It is well-known that max-type tests have good performance under

sparse alternatives (Cai et al., 2013). Therefore, Cheng et al. (2023) first

provided the Bahadur representation of the classic spatial median θ̃, de-

fined as θ̃ = argminθ

∑n
i=1 ||Xi− θ||. They then proposed a max-type test

procedure based on Gaussian approximation. While this approach is robust

and effective in high-dimensional settings, it loses scalar information of dif-

ferent variables and is not scalar-invariant. In real-world scenarios, different

components may have entirely different physical or biological readings, and

their scales would not be identical. Moreover, due to the unequal scale of θ̃,

it is not possible to derive the limited null distribution of ||θ̃||∞ even under

weak correlation assumption. In this paper, we first provide the Bahadur

representation and Gaussian approximation of the location estimator pro-

posed in Feng et al. (2016). We then propose a new max-type test statistic

and establish its limit null distribution under some mild conditions.

2.1 Bahadur representation and Gaussian approximation

Motivated by Feng et al. (2016), we suggest to find a pair of diagonal matrix

D and vector θ for each sample that simultaneously satisfy

1

n

n∑
i=1

U (ϵi) = 0 and p

n
diag

{
n∑
i=1

U (ϵi)U (ϵi)
⊤

}
= Ip, (2.2)
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2.1 Bahadur representation and Gaussian approximation

where ϵi = D−1/2 (Xi − θ). (D, θ) can be viewed as a simplified version of

HettmanspergerRandles (HR) estimator , which is proposed in Hettmansperger

and Randles (2002), without considering the off-diagonal elements of S. We

can adapt the recursive algorithm of Feng et al. (2016) to solve Equation

2.2. That is, repeat the following three steps until convergence:

(i) ϵi ← D−1/2 (Xi − θ) , j = 1, · · · , n;

(ii) θ ← θ +
D1/2

∑n
j=1 U(ϵi)∑n

j=1∥ϵi∥
−1 ;

(iii) D← pD1/2 diag
{
n−1

∑n
j=1 U (ϵi)U (ϵi)

⊤
}
D1/2.

The resulting estimators of location and diagonal matrix are denoted as

θ̂ and D̂. The sample mean and sample variances can be utilized as initial

estimators. Regrettably, no evidence has been found to confirm the conver-

gence of the aforementioned algorithm, even in low-dimensional scenarios,

despite its consistent practical effectiveness. The existence or uniqueness

of the HR estimator mentioned above also lacks proof. This topic certainly

warrants further investigation.

In this section, we investigate some theoretical properties based on

maximum-norm about θ̂. Similar to the proof of Lemma 1 and Theorem 1

in Cheng et al. (2023), we give the Bahadur representation of D̂−1/2(θ̂−θ)

and the Gaussian approximation result for D̂−1/2(θ̂− θ) over hyperrectan-

gles. Based on Gaussian approximation, we can easily derive the limiting
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2.1 Bahadur representation and Gaussian approximation

distribution of θ̂ based on the maximum-norm.

For i = 1, 2, · · · , n, we denote Ui = U{D−1/2(Xi − θ)} and Ri =

∥D−1/2(Xi − θ)∥ as the scale-invariant spatial-sign and radius of Xi − θ,

respectively. The moments of Ri is defined as ζk = E
(
R−k
i

)
for k = 1, 2, 3, 4.

Denote Wi = (Wi,1, . . . ,Wi,p)
⊤, the assumption is as follows.

Assumption 1. Wi,1, . . . ,Wi,p are i.i.d. symmetric random variables with

E (Wi,j) = 0,E
(
W 2
i,j

)
= 1 , and ∥Wi,j∥ψα

⩽ c0 with some constant c0 > 0

and 1 ⩽ α ⩽ 2.

Assumption 2. The moments ζk = E
(
R−k
i

)
for k = 1, 2, 3, 4 exist for large

enough p. In addition, there exist two positive constants b and B̄ such that

b ⩽ lim supp E
(
Ri/
√
p
)−k ⩽ B̄ for k = 1, 2, 3, 4.

Assumption 3. The shape matrix R = D−1/2ΓΓ⊤D−1/2 = (σjℓ)p×p satis-

fies tr(R) = p and maxj=1,··· ,p
∑p

ℓ=1 |σjℓ| ⩽ a0(p) where a0(p) is a constant

depending only on dimension p. In addition, lim infp→∞ minj=1,2,··· ,p dj > d

for some constant d > 0, where D = diag{d21, d22, · · · , d2p}.

Remark 1 Assumption 1 is the same as Condition C.1 in Cheng et al.

(2023), which ensure that θ in model (2) is the population spatial median

and Wi,j has a sub-exponential distribution. If Wi ∼ N(0, Ip), Xi follows a

elliptical symmetric distribution. Assumption 2 extend the Assumption 1 in
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2.1 Bahadur representation and Gaussian approximation

Zou et al. (2014), which indicates that ζk ≍ p−k/2. It is a mild assumption

and introduced to avoid Xi from concentrating too much near θ. For three

commonly used distribution, multivariate normal, student-t and mixtures

of multivariate normal distributions, Assumptions 1-2 are satisfied. For

example, for standard multivariate normal distribution, E(R−4
i ) equals to

1/{(p−2)(p−4)} which restricts the dimension p > 4. See also discussions in

Zou et al. (2014); Cheng et al. (2023) on similar assumptions. Assumption

3 means the correlation between those variables could not be too large,

which is similar to the matrix class in Bickel and Levina (2008).

The following lemma shows a Bahadur representation of θ̂, which is the

basis of Gaussian approximation result in Theorem 1.

Lemma 1. (Bahadur representation) Assume Assumptions 1-3 with a0(p) ≍

p1−δ for some positive constant δ ≤ 1/2 hold. If log p = o(n1/3) and log n =

o(p1/3∧δ), then

n1/2D̂−1/2(θ̂ − θ) = n−1/2ζ−1
1

n∑
i=1

Ui + Cn,

where ∥Cn∥∞ = Op{n−1/4 log1/2(np)+p−(1/6∧δ/2) log1/2(np)+n−1/2(log p)1/2 log1/2(np)}.

Remark 2 Feng et al. (2016) derived the Bahadur representation of the

estimator θ̂, where the remainder term ||Cn|| is op(ζ−1
1 ), assuming a sym-

metric elliptical distribution. In this context, we provide the rate of the
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2.1 Bahadur representation and Gaussian approximation

remainder term Cn subject to a maximum-norm constraint. It’s important

to note that in this Lemma, we scale the spatial-median estimator θ̂ by

D̂−1/2. This is a departure from much of the existing literature on the Ba-

hadur representation of the spatial median, which does not exhibit scalar

invariance. Such works include Zou et al. (2014), Cheng et al. (2019), Li

and Xu (2022), and Cheng et al. (2023).

LetAre =
{∏p

j=1 [aj, bj] : −∞ ⩽ aj ⩽ bj ⩽∞, j = 1, . . . , p
}

be the class

of rectangles in Rp. Based on the Bahadur representation of θ̂, we acquire

the following Gaussian approximation of D̂−1/2(θ̂ − θ) in rectangle Are .

Lemma 2. (Gaussian approximation) Assume Assumptions 1-3 with a0(p) ≍

p1−δ for some positive constant δ ⩽ 1/2 hold. If log p = o
(
n1/5

)
and

log n = o
(
p1/3∧δ

)
, then

ρn (Are) = sup
A∈Are

∣∣∣P{n1/2D̂−1/2
(
θ̂ − θ

)
∈ A

}
− P(G ∈ A)

∣∣∣→ 0,

as n→∞, where G ∼ N
(
0, ζ−2

1 Σu

)
with Σu = E

(
U1U

⊤
1

)
.

The Gaussian approximation for θ̂ indicates that the probabilities P
{
n1/2D̂−1/2

(
θ̂ − θ

)
∈ A

}
can be approximated by that of a centered Gaussian random vector with

covariance matrix ζ−2
1 Σu for hyperrectangles A ∈ Are . Since the region

At =
{∏p

j=1 [aj, bj] : −∞ = aj ⩽ bj = t, j = 1, . . . , p
}

used in the following

corollary is contained in the set Are, it is clear that the Corollary 1 follows.
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2.2 Max-type test procedure

Corollary 1. Under the assumptions of Lemma 2, as n→∞, we have

ρn = sup
t∈R

∣∣∣P{n1/2∥D̂−1/2(θ̂ − θ)∥∞ ⩽ t
}
− P (∥G∥∞ ⩽ t)

∣∣∣→ 0,

where G ∼ N
(
0, ζ−2

1 Σu

)
.

Taking into account the relationships between Σu and p−1R, we propose

a more straightforward Gaussian approximation.

Lemma 3. (Variance approximation) Suppose G ∼ N
(
0, ζ−2

1 Σu

)
and Z ∼

N
(
0, ζ−2

1 p−1R
)
, under the assumptions of Lemma 2, as (n, p) → ∞, we

have

sup
t∈R
|P (∥Z∥∞ ⩽ t)− P (∥G∥∞ ⩽ t)| → 0.

By integrating Corollary 1 and Lemma 3, we can readily derive the

principal theorem of Gaussian approximation.

Theorem 1. Assume Assumptions 1-3 with a0(p) = p1−δ for some positive

constant δ ⩽ 1/2 hold. If log p = o
(
n1/5

)
and log n = o

(
p1/3∧δ

)
, then

ρ̃n = sup
t∈R

∣∣∣P{n1/2∥D̂−1/2(θ̂ − θ)∥∞ ⩽ t
}
− P (∥Z∥∞ ⩽ t)

∣∣∣→ 0,

where Z ∼ N
(
0, ζ−2

1 p−1R
)
.

2.2 Max-type test procedure

In order to guarantee that the maximum value of a sequence of normal vari-

ables adheres to a Gumbel limiting distribution, we introduce Assumption

Statistica Sinica: Preprint 
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2.2 Max-type test procedure

4, which is employed to specify the necessary correlation among variables.

Assumption 4. For some ϱ ∈ (0, 1), assume |σij| ≤ ϱ for all 1 ≤ i < j ≤ p

and p ≥ 2. Suppose {δp; p ≥ 1} and {κp; p ≥ 1} are positive constants

with δp = o(1/ log p) and κ = κp → 0 as p → ∞. For 1 ≤ i ≤ p, define

Bp,i = {1 ≤ j ≤ p; |σij| ≥ δp} and Cp = {1 ≤ i ≤ p; |Bp,i| ≥ pκ}. We assume

that |Cp| /p→ 0 as p→∞.

Remark 3 Assumption 4 aligns with Assumption (2.2) in Feng et al.

(2022). This assumption stipulates that for each variable, the count of

other variables that exhibit a strong correlation with it cannot be exces-

sively large. To the best of our understanding, this is the least restric-

tive assumption in the literature that allows for the limiting null distri-

bution of the maximum of correlated normal random variables to follow

a Gumbel distribution. Both Assumption 3 and 4 pertain to the cor-

relation matrix R. We examine two specific cases that satisfy both of

these conditions. The first case is the classic AR(1) structure, denoted

as R = (ρ|i−j|)1≤i,j≤p, ρ ∈ (−1, 1). In this scenario,
∑p

l=1 |σjl| →
1

1+ρ
,

which allows δ to be one in Assumption 3. For Assumption 4, we set

δp = (log p)−2, leading to Bp,i = {j : |i − j| ≤ −2 log log p/ log |ρ|}.

As a result, |Bp,i| ≤ −4 log log p/ log |ρ| < pκ with κ = 5 log log p/ log p,

which implies |Cp| = 0 and Assumption 4 is satisfied. The second case

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0051



2.2 Max-type test procedure

involves a banded correlation matrix, where σij = 0 if |i − j| > ℓ. Here,∑p
j=1 |σij| = O(ℓ) and |Bp,i| ≤ ℓ for δp = (log p)−2. Therefore, Assumptions

3 and 4 will hold if ℓ = o(pκ) for any κ→ 0.

Suppose Assumption 1-4 hold, by the Theorem 2 in Feng et al. (2022),

we can see that pζ21 max1≤i≤p Z
2
i − 2 log p+ log log p converges to a Gumbel

distribution with cdf F (x) = exp
{
− 1√

π
e−x/2

}
as p → ∞. In combining

with the Theorem 1 we can conclude that,

P
{
n1/2

∥∥∥D̂−1/2(θ̂ − θ)
∥∥∥2
∞
pζ21 − 2 log p+ log log p ≤ x

}
→ exp

{
− 1√

π
e−x/2

}
.

(2.3)

Next we replace E (R−1) with its estimators. We denote R̂i = ∥D̂−1/2(Xi−

θ̂)∥. Then the estimator is defined as ζ̂1 := 1
n

∑n
i=1 R̂

−1
i , and the proof of

consistency is shown in Lemma 3 in Supplementary Material. Because the

convergence rate of maximum is very slow, we propose a adjust max-type

test statistic which based on the scalar-invariant spatial median θ̂,

TMAX = n
∥∥∥D̂−1/2θ̂

∥∥∥2
∞
ζ̂21p ·

(
1− n−1/2

)
.

Theorem 2. Suppose the assumptions in Theorem 1 and Assumption 4

hold. Under the null hypothesis, as (n, p)→∞, we have

P (TMAX − 2 log p+ log log p ≤ x)→ exp

{
− 1√

π
e−x/2

}
.

According to Theorem 2, a level- α test will then be performed through

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0051



2.2 Max-type test procedure

rejecting H0 when TMAX − 2 log p + log log p exceeds the (1 − α) quantile

q1−α = − log π − 2 log log(1 − α)−1 of the Gumbel distribution F (x). The

following theorem shows the consistency of the proposed max-type test.

Theorem 3. Suppose the Assumptions in Theorem 2 hold. For any given

α ∈ (0, 1), if ∥θ∥∞ ≥ C̃n−1/2{log p − 2 log log(1 − α)−1}1/2 for some large

enough constant C̃, as n→∞, we have

P(TMAX − 2 log p+ log log p > q1−α | H1)→ 1.

Given a fixed significant level α, the test TMAX attains consistency

if ∥θ∥∞ ≥ C̃
√

log p/n, provided that C̃ is sufficiently large. This is the

minimax rate optimal for testing against sparse alternatives, as stated in

Theorem 3 of Cai et al. (2013). If C̃ is adequately small, then it becomes im-

possible for any α-level test to reject the null hypothesis with a probability

approaching one. Therefore, Theorem 3 also demonstrates the optimality

of our proposed test TMAX .

To show the high dimensional asymptotic relative efficiency, we consider

a special alternative hypothesis:

H1 : θ = (θ1, 0, · · · , 0)⊤, θ1 > 0,

which means there are only one variable has nonzero mean. Let xα =
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2.2 Max-type test procedure

2 log p− log log p+ q1−α. In this case,

P
(
d̂−2
1 θ̂21nζ̂

2
1p ≥ xα

)
≤ P (TMAX ≥ xα) ≤ P

(
d̂−2
1 θ̂21nζ̂

2
1p ≥ xα

)
+P
(
max
2≤i≤p

d̂−2
i θ̂2i nζ̂

2
1p ≥ xα

)
.

Under this special alternative hypothesis, we can easily have

P
(
max
2≤i≤p

d̂−2
i θ̂2i nζ̂

2
1p ≥ xα

)
→ α, and P

(
d̂−2
1 θ̂21nζ̂

2
1p ≥ xα

)
→ Φ

{
−
√
xα + (np)1/2d−1

1 θ1ζ1

}
.

So the power function of our proposed TMAX test is

βMAX(θ) ∈ (Φ
{
−
√
xα + (np)1/2d−1

1 θ1ζ1
}
,Φ
{
−
√
xα + (np)1/2d−1

1 θ1ζ1
}
+ α).

Similarly, the power function of Cai et al. (2013)’s test is

βCLX(θ) ∈ (Φ
(
−
√
xα + n1/2ς−1

1 θ1
)
,Φ
(
−
√
xα + n1/2ς−1

1 θ1
)
+ α),

where ς2i is the variance of Xki, i = 1, · · · , p. Thus, the asymptotic relative

efficiency of TMAX with respective to Cai et al. (2013)’s test could be ap-

proximated as ARE(TMAX , TCLX) = {E(R−1
i )}2E(R2

i ), which is the same

as the asymptotic relative efficiency of Feng and Sun (2016)’s test with

respective to Srivastava (2009)’s test. If Xi are generated from standard

multivariate t-distribution with ν degrees of freedom (ν > 2),

ARE(TMAX , TCLX) =
2

ν − 2

[
Γ{(ν + 1)/2}

Γ(ν/2)

]2
.

For different ν = 3, 4, 5, 6, the above ARE are 2.54, 1.76, 1.51, 1.38, respec-

tively. Under the multivariate normal distribution (ν =∞), our TMAX test

is the same powerful as Cai et al. (2013)’s test. However, our TMAX test is

much more powerful under the heavy-tailed distributions.
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3. Maxsum test

By Feng et al. (2016), we have the following theorem and assumptions:

Assumption 5. Variables {X1, . . . ,Xn} in the n-th row are independently

and identically distributed (i.i.d.) from p-variate elliptical distribution with

density functions det(Σ)−1/2 g
(∥∥Σ−1/2(x− θ)

∥∥) where θ ’s are the sym-

metry centers and Σ ’s are the positive definite symmetric p × p scatter

matrices.

Assumption 6. tr (R4) = o {tr2 (R2)}.

Assumption 7. (i) tr (R2)− p = o (n−1p2), (ii) n−2p2/ tr (R2) = O(1) and

log p = o(n).

Remark 4 Assumption 6 is a common condition for sum-type test statistic

in high dimensions, see Chen and Qin (2010); Feng et al. (2016); Feng and

Sun (2016), which requires that the eigenvalues of R not diverge excessively.

If all the eigenvalues of R are bounded, tr(R2) = O(p), tr(R4) = O(p).

So the Assumption 6 holds trivially. In this case, Assumption 7 becomes

p = O(n2) and p/n → ∞. Actually, it is not necessary for the eigenvalues

to be bounded. For b unbounded eigenvalues with respect dimension p, the

sufficient condition for Assumption 6 and 7 are λ(p)/λ(1) = o{(p−b)1/2b−1/4}

and λi = 1+ o(p1/2n−1/2). When the assumptions about the spectrum of R
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do not hold, there would be a bias therm in sum-type statistic that difficult

to calculate and deserves to be investigated further, see the Supplemental

Material of Feng et al. (2016) for more details.

The following Lemma restate the Theorem 1 in Feng and Sun (2016),

which gives the asymptotic null distribution of TSUM under the symmetric

elliptical distribution assumption.

Lemma 4. Under Assumptions 5-7. and H0, as (p, n)→∞, TSUM/σn
d→

N(0, 1), where σ2
n = 2

n(n−1)p2
tr (R2).

To broaden the application, we re-derive the limiting null distribution

of TSUM under a more generalized model (2).

Theorem 4. Under Assumptions 1-3,6-7 and H0, as (p, n)→∞, TSUM/σn
d→

N(0, 1).

Similar to Feng and Sun (2016), we propose the following estimator to

estimate the trace term in σ2
n

̂tr (R2) =
p2

n(n− 1)

n∑
i=1

n∑
j ̸=i

[
U
{
D̂

−1/2
ij

(
Xi − θ̂ij

)}T
U
{
D̂

−1/2
ij

(
Xj − θ̂ij

)}]2
,

where
(
θ̂ij, D̂ij

)
are the corresponding spatial median and diagonal matrix

estimators using leave-two-out sample {Xk}nk ̸=i,j. Similar to the proof of

Proposition 2 in Feng et al. (2016), we can easily obtain that t̂r (R2)/ tr (R2)
p−→
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1 as (p, n)→∞ under model (2). Consequently, a ratio-consistent estima-

tor of σ2
n under H0 is σ̂2

n = 2
n(n−1)p2

t̂r (R2). We reject the null hypothesis

with α level of significance if TSUM/σ̂n > zα, where zα is the upper α

quantile of N(0, 1).

And we also re-derive the asymptotic distribution of TSUM under the

following alternative hypothesis:

H1 : θ
⊤D−1θ = O

(
ζ−2
1 σ

)
and θ⊤Rθ = o

(
ζ−2
1 npσ2

)
(3.1)

Theorem 5. Under Assumptions 1-3,6-7 and the alternative hypothesis

(3.1), as (p, n)→∞,

TSUM − ζ21θ⊤D−1θ

σn

d→ N(0, 1).

By Theorem 4-5, the power function of TSUM can be approximated as

βSUM (θ) = Φ

(
−zα +

ζ21npθ
TD−1θ√

2 tr (R2)

)
.

Hence, TSUM is expected to perform well under the dense alternative hy-

pothesis. For a more detailed discussion on the asymptotic relative effi-

ciency of TSUM compared to other tests, refer to Feng and Sun (2016).

The power comparison between TSUM and TMAX will be addressed in the

following subsection.
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3.1 Maxsum test

3.1 Maxsum test

In this subsection, we demonstrate that our proposed test statistic TMAX

is asymptotically independent of the statistic TSUM presented in Feng and

Sun (2016). This allows us to carry out a Cauchy p-value combination of

the two asymptotically independent p-values, resulting in a new test. This

test is tailored to accommodate both sparse and dense alternatives.

Assumption 8. There exist C > 0 and ϱ ∈ (0, 1) so that max1≤i<j≤p |σij| ≤

ϱ and max1≤i≤p
∑p

j=1 σ
2
ij ≤ (log p)C for all p ≥ 3; p−1/2(log p)C ≪ λmin(R) ≤

λmax(R) ≪ √
p(log p)−1 and λmax(R)/λmin(R) = O (pτ ) for some τ ∈

(0, 1/4).

Remark 5 Assumption 8 is the same as the condition (2.3) in Feng et al.

(2022). As shown in Feng et al. (2022), Assumption 8 is more restrictive

than Assumption 3, 4 and 6. Under Assumption 8, we have p1/2(log p)C ≲

tr(R2) ≲ p3/2 log−1 p. So Assumption 7 will hold if n = o(p3/2 log p) and

p3/4(log p)−C/2 = O(n). Intuitively speaking, if all the eigenvalues of R are

bounded and p/n→ c ∈ (0,∞), all the assumptions 3, 4, 6, 7 and 8 hold.

Theorem 6. Under Assumptions 1-4, 7-8 and H0, TSUM and TMAX are

asymptotically independent, i.e., as (n, p)→∞,

P (TSUM/σn ≤ x, TMAX − 2 log p+ log log p ≤ y)→ Φ(x)F (y).
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3.1 Maxsum test

According to Theorem 6, we suggest combining the corresponding p-

values by using Cauchy Combination Method (Liu and Xie, 2020), to wit,

pCC = 1−G [0.5 tan{(0.5− pMAX)π}+ 0.5 tan{(0.5− pSUM)π}] ,

pMAX = 1− F (TMAX − 2 log p+ log log p), pSUM = 1− Φ(TSUM/σ̂n),

where G(·) is the CDF of the standard Cauchy distribution. If the final

p-value is less than a pre-specified significant level α ∈ (0, 1), we reject H0.

Next, we consider the relationship between TSUM and TMAX under local

alternative hypotheses:

H1 : ∥θ∥ = O(ζ−2
1 σ), ∥R1/2θ∥ = o

(
ζ−2
1 npσ2

)
and |A| = o

[
λmin(R){tr(R2)}1/2

(log p)C

]
,

(3.2)

where A = {i | θi ̸= 0, 1 ≤ i ≤ p}, θ = (θ1, θ2, · · · , θp)⊤. The following

theorem establish the asymptotic independence between TSUM and TMAX

under this special alternative hypothesis.

Theorem 7. Under Assumptions 1-4, 6-8 and the alternative hypothesis

(3.2), TSUM and TMAX are asymptotically independent, i.e., as (n, p)→∞

P (TSUM/σn ≤ x, TMAX − 2 log p+ log log p ≤ y)→

P (TSUM/σn ≤ x)P (TMAX − 2 log p+ log log p ≤ y) .

According to Long et al. (2023), the Cauchy combination-based test has

more power than the test based on the minimum of pMAX and pSUM , which
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is also known as the minimal p-value combination. This is represented as

βM∧S,α = P (min{pMAX , pSUM} ≤ 1−
√
1− α). It is clear that:

βM∧S,α ≥ P (min{pMAX , pSUM} ≤ α/2)

= βMAX,α/2 + βSUM,α/2 − P (pMAX ≤ α/2, pSUM ≤ α/2)

≥ max{βMAX,α/2, βSUM,α/2}. (3.3)

On the other hand, under the local alternative hypothesis (3.2), we have,

βM∧S,α ≥ βMAX,α/2 + βSUM,α/2 − βMAX,α/2βSUM,α/2 + o(1), (3.4)

which is due to the asymptotic independence implied by Theorem 7.

For a small α, the difference between βMAX,α and βMAX,α/2 is small,

and the same applies to βSUM,α. Therefore, by equations (3.3) and (3.4),

the power of the adaptive test is at least as large as, or even significantly

larger than, that of either the max-type or sum-type test. For a detailed

comparison of the performance of each test type under varying conditions

of sparsity and signal strength, please refer to Table 1 in Ma et al. (2024).

4. Simulation

In this section, we incorporated various methods into our study:

• the proposed test TMAX , referred as SS-MAX;
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• sum-type test proposed by Feng and Sun (2016), referred as SS-SUM;

• the proposed test TCC , referred as SS-CC;

• max-type method proposed by Cai et al. (2013) , referred as MAX;

• sum-type method proposed by Srivastava (2009), referred as SUM;

• combination test proposed by Feng et al. (2022), referred as COM.

The following scenarios are firstly considered.

(I) Multivariate normal distribution. Xi ∼ N(θ,Σ).

(II) Multivariate t-distribution tp,4. Xi’s are generated from tp,4 with lo-

cation parameter θ and scatter matrix Σ.

(III) Multivariate mixture normal distribution MNpn,γ,9. Xi’s are gener-

ated from γfpn(θ,Σ)+(1−γ)fpn(θ, 9Σ), denoted by MNpn,γ,9, where

fpn(·; ·) is the density function of pn-variate multivariate normal dis-

tribution. γ is chosen to be 0.8.

Here we consider the scatter matrix Σ = (0.5|i−j|)1≤i,j≤p. Two sample sizes

n = 50, 100 and three dimensions p = 200, 400, 600 are considered. All the

findings in this section are derived from 1000 repetitions. Table 1 presents

the empirical sizes of the six tests mentioned above. It was observed that
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the spatial-sign based tests–SS-MAX, SS-SUM, and SS-CC–are able to ef-

fectively manage the empirical sizes in a majority of scenarios. Under the

normality assumption, the Type I error of the MAX method increases as

the ratio p/n grows. This may be due to the component nx̄i/σ̂ii of the

max statistic following a t(n) distribution, which deviates from the normal

distribution. When p is fixed and n increases, leading to a closer approx-

imation to the normal distribution, the MAX method exhibits improved

control over the Type I error. When dealing with distributions that are not

multivariate normal, the SUM test tends to have empirical sizes that fall

below the nominal level. Similarly, the COM test also exhibits smaller sizes

when operating under non-normal distributions. In contrast, the SS-MAX

method is more robust to variations in data distributions.

To compare the power performance of each test, we consider θ =

(κ, κ, κ, 0, · · · , 0) where the first s components of θ are all equal to κ =√
0.5/s. Figure 4 illustrates the power curves for each test. In the case

of the multivariate normal distribution, SS-SUM and SUM exhibit simi-

lar performance, aligning with the findings of Feng and Sun (2016). The

spatial-sign based max-type test procedure, SS-MAX, is slightly less power-

ful than its mean-based counterpart, MAX. The two combination type test

procedures demonstrate comparable performance in this scenario. However,
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Table 1: Empirical size comparison of various tests with a nominal level

5%.
n = 50 n = 100

p 200 400 600 200 400 600
Multivariate Normal Distribution

SS-MAX 0.051 0.061 0.049 0.025 0.04 0.032
SS-SUM 0.061 0.056 0.041 0.06 0.059 0.068
SS-CC 0.071 0.065 0.048 0.057 0.056 0.056
MAX 0.095 0.125 0.116 0.052 0.081 0.072
SUM 0.076 0.086 0.054 0.069 0.064 0.081
COM 0.095 0.108 0.089 0.063 0.072 0.058

Multivariate t3 Distribution
SS-MAX 0.063 0.062 0.063 0.061 0.063 0.058
SS-SUM 0.067 0.053 0.064 0.062 0.064 0.053
SS-CC 0.058 0.061 0.068 0.058 0.052 0.059
MAX 0.044 0.052 0.047 0.033 0.036 0.04
SUM 0.005 0.001 0.001 0.002 0.001 0
COM 0.021 0.03 0.027 0.019 0.014 0.019

Multivariate Mixture Normal Distribution
SS-MAX 0.056 0.061 0.07 0.037 0.037 0.044
SS-SUM 0.066 0.05 0.051 0.054 0.058 0.061
SS-CC 0.067 0.058 0.064 0.052 0.046 0.059
MAX 0.037 0.042 0.056 0.031 0.038 0.03
SUM 0.004 0 0 0.007 0.002 0
COM 0.021 0.019 0.028 0.013 0.02 0.01

when dealing with non-normal distributions, the spatial-sign based test pro-

cedures surpass the mean-based ones. Moreover, the newly proposed test,

SS-CC, outperforms the others in most scenarios. In extremely sparse sce-

narios (s < 5), SS-CC’s performance is akin to SS-MAX. In highly dense

scenarios (s > 10), SS-CC performs similarly to SS-SUM. However, when

the signal is neither very sparse nor very dense, SS-CC proves to be the

most effective among all test procedures. This underscores the superiority

of our proposed max-sum procedures, not only in handling signal sparsity

but also in dealing with heavy-tailed distributions.
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Figure 1: Power of tests with different sparsity levels over (n, p) =

(100, 200).
Next, we consider the power comparison of those tests under different

signal strength. Here we consider three sparsity level s = 2, 20, 50 and

the signal parameter κ =
√
δ/s. Figures 2-4 present the power curves for

various testing methods under Scenarios I to III. As the signal strength

increases, the power of all tests also increases. Despite the presence of

heavy-tailed distributions, spatial-sign based testing methods continue to

surpass those based on means. Among all the tests, the proposed CC test

consistently delivers the best performance.

As shown in Feng and Sun (2016), for the sum-type test procedure, SS-

SUM is more powerful than the non scalar-invariant test (Wang et al., 2015).

Here we also compare our proposed test TMAX with Cheng et al. (2023)’s
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Figure 2: Power of tests with different signal strength for multivariate nor-

mal distribution over (n, p) = (100, 200).

0.2                    0.4                     0.6                     0.8                    1.0

0.
0 

   
   

   
   

   
 0

.2
   

   
   

   
   

   
0.

4 
   

   
   

   
   

 0
.6

   
   

   
   

   
  0

.8
   

   
   

   
   

   
1.

0

δ

Po
w

er

SS−MAX 

SS−SUM 

SS−CC 

MAX

SUM

COM

s=2

0.05              0.10               0.15              0.20              0.25               0.30

0.
0 

   
   

   
   

   
 0

.2
   

   
   

   
   

   
0.

4 
   

   
   

   
   

 0
.6

   
   

   
   

   
  0

.8
   

   
   

   
   

   
1.

0

δ

Po
w

er

s=10

0.02                   0.04                   0.06                  0.08                   0.10

0.
0 

   
   

   
   

   
 0

.2
   

   
   

   
   

   
0.

4 
   

   
   

   
   

 0
.6

   
   

   
   

   
  0

.8
   

   
   

   
   

   
1.

0

δ

Po
w

er

s=20

Figure 3: Power of tests with different signal strength for multivariate t3

distribution over (n, p) = (100, 200).

test (abbreviated as CPZ hereafter) to show the importance of scalar-

invariant for max-type test procedure. We consider two scatter matrix case

for Σ: (i) Σ = (0.5|i−j|)1≤i,j≤p; (ii) Σ = D1/2RD1/2,R = (0.5|i−j|)1≤i,j≤p,D =

diag{d1, · · · , dp} where di = 1, i ≤ p/2, di = 3, i > p/2. The other settings

are all the same as above. Table 2 presents the empirical sizes of the SS-

MAX and CPZ tests. Both tests are capable of controlling the empirical
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Figure 4: Power of tests with different signal strength for multivariate mix-

ture normal distribution over (n, p) = (100, 200).

sizes in the majority of cases. Moreover, we conduct a power comparison of

these two max-type tests under identical settings as previously mentioned,

but with two distinct scatter matrix cases. Figures 5 and 6 depict the power

curves of SS-MAX and CPZ under scatter matrix cases (i) and (ii), respec-

tively. We observe that SS-MAX performs comparably to CPZ when all

elements of the diagonal matrix of Σ are equal. However, SS-MAX exhibits

greater power than CPZ when the elements of the diagonal matrix of the

scatter matrix are unequal, underscoring the necessity of scalar-invariance.

5. Conclusion

In this paper, we address a one-sample testing problem in high-dimensional

settings for heavy-tailed distributions. We begin by providing a Bahadur
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Table 2: Empirical size comparison of SS-MAX and CPZ tests with a

nominal level 5%.
n = 50 n = 100 n = 50 n = 100

p 200 400 600 200 400 600 200 400 600 200 400 600
Scatter Matrix Case (i) Scatter Matrix Case (ii)

Multivariate Normal Distribution
SS-MAX 0.046 0.04 0.054 0.03 0.036 0.058 0.038 0.054 0.032 0.044 0.044 0.032
CPZ 0.076 0.054 0.076 0.056 0.08 0.088 0.07 0.052 0.074 0.058 0.056 0.05

Multivariate t3 Distribution
SS-MAX 0.06 0.09 0.096 0.06 0.054 0.054 0.064 0.08 0.068 0.058 0.068 0.064
CPZ 0.06 0.064 0.06 0.052 0.07 0.038 0.07 0.05 0.064 0.064 0.086 0.066

Multivariate Mixture Normal Distribution
SS-MAX 0.072 0.06 0.072 0.038 0.052 0.038 0.062 0.056 0.048 0.038 0.036 0.05
CPZ 0.086 0.08 0.074 0.078 0.066 0.046 0.068 0.05 0.05 0.084 0.052 0.052
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Figure 5: Power of max-type tests with different signal strength for matrix

case (i) over (n, p) = (100, 200).

representation and Gaussian approximation of the spatial median estimator,

as discussed in Feng et al. (2016). Following this, we introduce a spatial-

sign based max-type test procedure for sparse alternatives and establish

the limit null distribution and consistency of the proposed max-type test

statistic. Next, we reformulate the sum-type test statistic, originally pro-

posed by Feng and Sun (2016), under a general model. This sum-type test
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Figure 6: Power of max-type tests with different signal strength for matrix

case (ii) over (n, p) = (100, 200).

exhibits superior performance under dense alternatives. Finally, we demon-

strate the asymptotic independence between the aforementioned max-type

test statistic and the sum-type test statistic, given some mild conditions.

We then propose a Cauchy combination test procedure, which performs

exceptionally well under both sparse and dense alternatives. Both simu-

lation studies and real data applications underscore the superiority of the

proposed maxsum-type test procedure.

We propose several directions for future research. Firstly, the sum-type

test statistic in Feng and Sun (2016) only takes into account the direction of

the sample, neglecting the information of the sample’s radius. Feng et al.

(2021) introduced a more powerful inverse norm sign test. It would be

intriguing to derive a max-type test statistic that also considers the radius

of the sample. Furthermore, it remains an open question whether this new

max-type test statistic maintains asymptotic independence with the sum-
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type test statistic proposed by Feng et al. (2021).

Secondly, the newly proposed methods can be extended to address other

high-dimensional testing problems. These include the high-dimensional

two-sample location problem (Chen and Qin, 2010; Feng et al., 2016), high-

dimensional covariance matrix tests (Chen et al., 2010; Li and Chen, 2012;

Cutting et al., 2017; Cheng et al., 2019), testing the martingale difference

hypothesis in high dimension (Chang et al., 2023) and high-dimensional

white noise test (Paindaveine and Verdebout, 2016; Chang et al., 2017;

Feng et al., 2022; Zhao et al., 2024). Additionally, the alpha test in the

high-dimensional linear factor pricing model is a significant problem that

has been explored in practical applications.

Thirdly, our paper’s theoretical results are predicated on the assump-

tion of identical and independent distribution. However, there may occa-

sionally be auto-correlations among the sample sizes. Recent literature,

such as Zhang and Cheng (2018) and Chang et al. (2024), has consid-

ered the Gaussian approximation of the sample mean under a dependent

assumption. Therefore, it would be intriguing to establish the Bahadur

representation and Gaussian approximation of the spatial median in the

context of dependent observations. Building on these findings, we can also

suggest the implementation of max-type and maxsum-type testing methods
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for addressing high-dimensional location problem in the context of depen-

dent observations (Ayyala et al., 2017; Ma et al., 2024).
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