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Abstract

We propose a new testing framework applicable to both the two-sample problem
on point processes and the community detection problem on rectangular arrays of
point processes, which we refer to as longitudinal networks; the latter problem is
useful in situations where we observe interactions among a group of individuals over
time. Our framework is based on a multiscale discretization scheme that consider
not just the global null but also a collection of nulls local to small regions in the
domain; in the two-sample problem, the local rejections tell us where the intensity
functions differ and in the longitudinal network problem, the local rejections tell
us when the community structure is most salient. We provide theoretical analysis
for the two-sample problem and show that our method has minimax optimal power
under a Holder continuity condition. We provide extensive simulation and real data

analysis demonstrating the practicality of our proposed method.

1. Introduction

In many applications involving network data, we observe just not a single static network but
rather interactions over time. For example, in business applications, we may observe the times-
tamp of emails exchanged among employees in a company or transactions over time between
people on an e-commerce website. In biology, animal behavioral researchers often use wearable
devices to monitor physical interactions among a group of animals to understand their social

dynamics (Gelardi et al., 2020).



In this paper, we study testing problems for interactions over time under the framework of
longitudinal networks, also known as temporal networks. A longitudinal network A is a n x n
array where each entry is an independent realization from a point process; for example, in an
animal interaction network, the entry Aj;x contains all the timestamps of when an interaction

event between animal j and k was initiated. Based on the observed longitudinal network A,

n

") (or n* if network

we ask whether the collection of intensity functions, one for each of the (
is directed) point processes, contain community structure. For traditional static networks, the
problem of testing for community structure has been extensively studied, including Lei (2016)
who proposed tests based on random matrix theory and Gao and Lafferty (2017) and Jin et al.
(2021) who proposed tests based on subgraph count statistics. The new longitudinal setting
however introduces new dimensions to the problem: we may be interested in not just whether
there is a community structure but also when the community structure is most apparent. For
example, in an animal interaction network, the community structure may only be apparent
during a specific time period, such as in the morning when the group is most active.

In this work, we propose a new multiscale testing framework. This framework is motivated
by longitudinal networks but it also provides a new approach to the two-sample test on point
processes, outside of the network context. Indeed, to succinctly describe our framework, it is
simplest to first consider the two-sample test problem. Suppose we have two Poisson point
processes over the same interval support X C R, with intensity functions A, and A, respectively.
Our null hypothesis is that the two intensity functions are the same, i.e., Hy : Ag = Ap. Our
testing framework first partitions the ambient space into disjoint bins, which discretizes the
Poisson process into a collection of independent Poisson random variables. The partition is
chosen hierarchically at different scales to avoid the need to choose a smoothing parameter. In
this way, we reduce the problem of testing Poisson processes to a hierarchical collection of tests
on Poisson random variables, which we conduct by combining p-values obtained from Binomial
exact tests and making the multiple testing adjustments via resampling under the null.

The advantage of this approach, aside from its computational simplicity, is that it can
give granular local information: we can tell not just whether A\, # Ay but where in support

X that they differ significantly. We do this by testing not just the global null that Ao = Ay



but also a collection of local nulls that )‘0’1 = /\b‘l when restricted to a sub-region I C X in
our hierarchical partition. To correct for sequential/multiple testing, we apply the adjustment
method in Meinshausen (2008) to control the family-wise error rate. Somewhat surprisingly, the
simultaneously valid tests for the local nulls can be done on top of the test for the global null for
free in the sense that they can be done without any increase in computational complexity and
without any decrease in in statistical power.

This framework may be directly applied to longitudinal networks where we discretize the
network into independent Poisson-weighted networks at different scales. This reduces the prob-
lem of testing for community in a longitudinal network to a hierarchical collection of tests for
community in Poisson networks. To tackle the latter problem, we study tests based on the
maximum eigenvalue as well as tests based on subgraph count statistics. We then combine the
resulting p-values and make adjustments by resampling under the null. To generate samples
under the null for networks, we propose a MCMC procedure based on a sampling algorithm for
contingency tables.

One may ask whether a simple discretization scheme results in too much loss in power
compared to existing tests on point processes based on say kernel smoothing (Fromont et al.,
2013; Schrab et al., 2021) or wavelets (Taleb and Cohen, 2021). To that end, we analyze the power
of our proposed framework theoretically in the two-sample testing problem and prove, under a
Holder continuity condition, that when the dimension of the domain is small, our proposed
test has optimal power in the sense that it attains minimax separation rate with respect to
the distance |’ I(\/E — v/ Ap)? between the two intensity functions A\, and Ap. We also perform
empirical studies validating that the discretization-based test has competitive power compared
to existing approaches.

The remainder of the paper is organized in the following way. In Section 2, we define
Poisson point process and the two-sample problem; we describe in detail our testing procedure
in Section 2.2 and review relevant literature in Section 2.3. In Section 3, we define the notion
of longitudinal networks and testing for community structure; we describe our tests for three
settings: symmetric networks with homogeneous baseline rate (Section 3.1), asymmetric networks

with homogeneous baseline rate (Section 3.2), and degree-corrected networks with heterogeneous



baseline rates (Section 3.3). In Section 4, we provide theorems characterizing the power of our
proposed method for the two-sample test. Finally, in Section 5, we provide both simulation and
real data experiments.

Notation: Given an integer K, we write [K] := {1,2,..., K} and [K]o := {0,1,2,...,K}. For
a finite set L, we write |L| to denote its cardinality. For a matrix A, we write A1(A) to denote

its maximum eigenvalue.

2. Tests on point processes

We first define the notion of Poisson point process formally. Let the domain X be a compact
subset of R? with B(X) as the corresponding Borel o-algebra. We say that N : B(X) - Nis a
point process realization if it is a counting measure on Z that is finite on every subset I € B(X).
We write N(I) € N as the count of occurrences in I C X and write N := N(X) as the total
number of occurrences. We have N < oo since X is bounded. We write X1, Xs,..., XNy € 7 as
the locations of the occurrences.

For a finite measure A(-) on X, we say that a random point process realization N(-) is
generated by the inhomogeneous Poisson process PP(A) if for all £ € N, all disjoint subsets

A, As, .. A € B(Z), and all my, ma,...,mi €N, we have
k LI
P(N(A1) =ma,...,N(Ax) =my) = [[P(N(A) =mi) = [ |
i=1 i=1
We refer to A(-) as the intensity measure. In the case where A(-) has a density A(-) (with respect
to the Lebesgue measure), we also write PP()\) as the same Poisson point process. We refer the

readers to Diggle (2013) and Kallenberg et al. (2017) for additional details on the properties of

Poisson point processes.

2.1 Two-sample test

For two point process realizations Nq(:) ~ PP(Aq) and Ny(-) ~ PP(Ap), we test whether they

have the same intensity measure, that is, we consider the null hypothesis

Hy : Ao = Ap. (Two-sample test) (21)



2.1 Two-sample test

The null defined in (21) requires that Aq = Ay everywhere on the domain X. We thus refer
to it as the global null. We can consider local tests where we ask whether A, and A, are equal
when restricted to a sub-domain. To formalize this, we first define the notion of a hierarchical

partitioning of the domain Z.

Definition 1. Let R € N be a resolution level. We say that I = {I(0>, w1 I(R)} is a

hierarchical dyadic partition of X if I® = {I{”} with I{”) = X and
1. when r =1, we let IV = {11(1)’12(1)} be a partition of X,

2. and for each r > 1, for each £ € [27], let Ié’“), Iéi)l be a partition of I((Z;ll))/Q.

It is clear that for each resolution level r € [R]o, the collection of intervals I = {ILET) }26[2*“]
is a partition of X.

If we fix an interval 1) where s € [R]o and j € [2°], then, defining
L(s,j,r) ={2""°G - 1) +k : k=1,2,...,2" °}, withr > s,

We see that {I;S)}jeL(syjyr) is a partition of IJ(.S) at resolution level r. For example, we have
. _ . . (s+1) 7(s+1) . . s (s) .
L(s,j,s + 1) = {2j — 1,25} so that I,;7)’, I5; is a dyadic partition of I;” at one higher

resolution level. See Figure 1.

To simplify notation, if N(-) is a point process realization on X, we write
(s:3) . (s)
N = N1y

as the number of occurrences in region Ij(-s).

When X is a one-dimensional interval, we can form the hierarchical partition I by recursively
dividing each interval in halves. If X has dimension two or above, we can take any partitioning
method that in some sense ”evenly” divides each region. We also discuss how to construct I
in Remark 3. For now, we assume that such a partition I is given and does not depend on
the random realizations. Moreover, all of our discussions generalize to k-yadic partition in a
straightforward way but we will work with the dyadic version for simplicity of presentation.

For a given hierarchical partition I, we may then define the notion of a local null for the



2.1 Two-sample test
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interval IJ@:
H(()S’j) : Aa(-) = Ap(-) on I](S). (Local null) (22)

‘We note that, since I{O) = X, the null Héo’l) is exactly the global null. For reasons that will
become clear, we also define a related notion of the local null which we refer to as the discretized

local null:
A Aa(IJ(.S>) = Ab(I](S)). (Discretized local null) (23)

We note that H(gs’j ) implies H(()S’j ) but the two are generally not equivalent. They may be
similar if Aq(-), As(-) have a smooth density and if the region Ij(-s) has a small diameter.
An important observation that underpins our testing procedure is the fact that the collection

of local nulls Hés’j)’s has a logical tree structure:
Hés’j) = HST’Z) for any r € {s,s+1,...,R} and any £ € L(s, j, 7). (24)

This holds because A, = A, on the region I](S) implies that A, = A, on every sub-region
I C I](-s). Because of this logical structure, if we do not reject Hés’j>, then we should not

reject H((,T’e) for any sub-region 19 C 1(7),

Remark 1. It is clear that Hés’j) = H(()s+1’2j_1) ﬂHés+1’2j) (each local null implies its children).

For the two sample test, we in fact also have the reverse

HTW20 gt o g9 (25)



2.2 Testing procedure for two-sample test

that is, Hés‘j ) must be true if its two direct children are true. This allows us to obtain some small
improvement in power when performing the multiple testing adjustment (see Section 2.2.4). We

note that (25) does not hold in the longitudinal network setting (c.f. Remark 5).

2.2 Testing procedure for two-sample test

Our test procedure will produce simultaneously valid p-values for Hy and the entire family H (5,9)
simultaneously in the following sense: we produce a collection of p-values p(s’j ) such that if we

reject
_ (s,9) ., (5:9) (s*,3%) (s*,57) o (s,9) (s*,3™)
Ra ={H, i p < aand p < aforall I such that I cI Y, (26)

then we control family-wise error rate at level «, that is, R, contains no false positives with
probability at least > 1 — a.
On a high level, our testing strategy is to approximate the local null H, és’j ) by an intersection

of discretized local nulls:

R
{57 = ﬂ ﬂ a{. (Approximate local null) (27)
r=s (e L(s,j,r)
For a given r € {s,s+1,..., R}, we see that the intersection ﬂeeL(s,j,7-> FI(()T’Z) approximates

H(()S’j ) at discretization /resolution level r. The additional intersection over r accounts for all the
resolution levels. In the case where s = 0 and j = 1, we get an approximation of the global null

for the two sample test (21):

R 2"
o= A = () () HS™. (28)

r=04¢=1

Our testing procedure proceeds in four steps.
Step 1: construct p-values p(™9’s for I_{ér‘é)’s with exact tests.
Step 2: Combine p(™** across ¢ at the same resolution level.

Step 3: Combine p-value across the different resolution levels and use resampling to obtain indi-

vidually valid p-values ﬁ(lf‘j ) for each Hés‘j ).



2.2 Testing procedure for two-sample test

Step 4: Apply sequential testing adjustment to obtain simultaneously valid p-values p%s’j ).

We explain each of the steps in detail below and give a concise description of the whole
procedure in Algorithm 1. We also illustrate how the procedure works in an in-depth numerical

example in Section 5.1.

2.2.1 Step 1: compute p-value for each discretized local null.

In the first step, we compute a p-value for each of the discretized local nulls, that is, for each génf)
where r € [R], £ € [27]. To test ffér’@, we observe that the random counts N := N, (Iér)) and
Nb(r’z) = Nb(Il@) are Poisson random variables with means Aa(Iér)), Ab(IéT)) > 0 respectively.
Define

N(:) = Na(-) + No()

as the aggregated realization. We then have that, under the null hypothesis and conditional on
N9 the random counts NS and Nb(r’l) have the binomial Bin(%, N"*) distribution.

Thus, we may take N to be the test statistic. Write SBin(%’m)(-) := P(|Bin(3,m)— 2| >

)

as the p-value. We may then reject the local null HSM) at level a € (0,1) if 5™ < a.

-) as the two-sided tail probability function, and write

~\T ~(T T T T N(T7£>
P( 0 EP( o (Na([é >)7N( ,e)) N SBin(%,N(Tve))(‘Ncg H =

However, under the null and conditional on N (T’“, ﬁ“‘é) has a discrete distribution. We may thus

("8 5o that its distribution is continuous and uniform

gain additional power by randomizing p
under the null. To that end, let U ~ Unif[0, 1] be an independent random variable, define

§i= SBin(%,N(n@)(’N‘gM) u #‘ +1), and define

P =Upm? + (1 -U)S.
The randomized p-value p™* has the Unif[0,1] distribution under H{™®. We also have that

P70 < 59 5o there is no loss in power (we provide a proof in Proposition 3 in the appendix

for completeness).



2.2 Testing procedure for two-sample test

2.2.2 Step 2: combining p-values of the same resolution level.

In the second step, for each (s, j), we will consider each r € {s,s + 1,..., R} and combine the
p-values
(P e L(s,j,m)}

In the case where s = 0 and j = 1 so that IJ(.S) = X, this amounts to combining the p-values
{ﬁ”‘”}zagq for each r € [R]. To simplify exposition, we describe the p-value combination
method for when s = 0 and j = 1; the same method applies immediately for any (s, 7).

We combine the p-values {5 },c(or) by specifying a function f : [0, 11" — [0,1] and
taking

FEY, ).

By choosing the combining function f carefully and using the fact that {ﬁ(r’l), e ,ﬁ(r’y)} are
independent random variables uniform on [0, 1], we can guarantee that f(ﬁ(’“’l), e ,]7(’“’27‘)) has
the uniform distribution under the null. There are a number of reasonable choices for f(-) but

we focus on two:

pg) = SX%»« (—2 Z logﬁ(r’a>, (Fisher combination) (29)
Le27]
pl(\z) = Sg,r (zlé’[iﬁ] ﬁ(r’z)), (Minimum combination) (210)

where SX%,‘(-) := P(x3- > -) is the right tail probability function for the x* distribution with
2" degree of freedom and Sg,.(-) := P(Betai2r < -) is the left tail probability of the Beta
distribution with parameter (1,2"). The fact that p;f) and pg&) have the uniform distribution
under the null follows from the fact that the negative sum of logarithm of independent Unif[0, 1]
random variables has the x? distribution and that the minimum of independent Unif[0, 1] random
variables has the Beta distribution. For the remainder of this paper, we use Fisher combination

by default but it is trivial to replace it with minimum combination method instead.

We can follow the same procedure to compute, for any (s,j) and r € {s,s + 1,..., R},
the p-value pg,f’j’” which combines {ﬁ(r’f)}geL(s,J-,,«). Moreover, we derive a dynamic program
that, in the process of computing pg), . ,p%R) for the global null case (s = 0,5 = 1), can

simultaneously and without any additional computational burden, compute the whole collection



2.2 Testing procedure for two-sample test

{ {P;f’jyr)}fzs }se[R],je[m']' The dynamic program uses an iterative bottom-up approach and runs

in time O(n). We give the details in Algorithm 2.

Remark 2. The question of which combination method has more power depends on what the
alternative is. We show through our theoretical analysis in Section 4 that when the integrated
difference [ (@)2 is large, then Fisher combination has higher power. On the other hand, if

[Aa — Ap| is large only on a small region and 0 elsewhere, then the minimum combination method

has higher power.

2.2.3 Step 3: combining across different resolution levels

(s,3,7)

7 ), we combine {pp M, across resolution levels {s, s +

Finally, to obtain the p-value for H_®

1,..., R}. There are again a number of choices, but we propose

ﬁgj,j) = min{p;fajﬂ“) T r e {57 s+1,..., R}}

Since the random variables {p;f’j ™) }E_, are not independent, the distribution of ;5;”' ) under Hy

is difficult to characterize exactly. Instead, we make adjustments to ﬁg’j ). One straightforward

way is to make the Bonferroni adjustment, where we let
P’ = (R—s+1)pr. (211)

We may also adjust pr by resampling. We note that the realizations N, (-) and Ny(-) can
be equivalently characterized by two sequences of random variables X1, X2, ... Xy taking value
on X and M1, Ma, ..., My taking value on {—1, 1} where N = N, + N, is the random length of
the sequence. The occurrences of N () comprise of all X; where M; = —1 and the occurrences
of Ny(-) comprise of those points for which M; = 1.

Under Hy, M, ..., My would be Rademacher random variables, that is, Po(M; = 1) = 1/2,
and independent of Xi,..., Xn. Hence, to resample B samples from Hy, we do the following,

for b* =1,2,...,B:
1. Generate Ml(b*), oM ](Vlf 7 ~ Rademacher independently.
2. Take N () ={X; : M7 = —1} and N () = {X; : M7 =1}

10



2.2 Testing procedure for two-sample test

On each sample Na(b*>(~),Néb*)(~), we then repeat steps 1, 2, and the first part of step 3 to

compute ﬁ;fgl for each s € [R] and j € [2°]. We may then define

B
~(s,J 1 ~(s,7 ~(s,]
P = =3 1(pe < pe?). (212)
b*=1

2.2.4 Step 4: sequential/multiple testing adjustment

The unadjusted p-values p%s’j )g produced from step 3 are individually valid in that under H(()S’j )

we have that p;‘f’j ) < « with probability at most . To account for sequential/multiple testing,
we use the adjustment method proposed by Meinshausen (2008). For each (s,j) where s € [R]
and j € [2°], define

#{terminal nodes emanating from (s,7) in I} if (s,7) is not a terminal node

['(Svj) =

2 if (s,7) is a terminal node

(213)

where a terminal node in I is a region Ilfr) with no sub-region. If I is a full binary tree with R
resolution levels, then £(s,7) = 2%7° if s < R and £(R,j) = 2. The total number of terminal
regions is £(0, 1) which, in the case of a full binary tree, is 2. We then define the final adjusted

p-value:

5o £(0,1) _ ) L genR=1) (214)

(s,3) _
" L(s,j)

We note in particular that the p-value p;?’l) for the global null does not receive any adjust-
ment so that any rejections we make of the local nulls Hés’j ) comes " for free” on top of our test
for the global null. In other words, conducting the tests for the local nulls does not decrease our
power for the global null.

Using the fact that under Hés’j), we have P(5**9) < o) < @, and Theorem 2 in Meinshausen

(2008), the following FWER guarantee immediately follows:

Theorem 1. The rejection set Ra formed via (26) with p-values {pgﬁ’j)}se[m’jeps], as defined

in (214), has family-wise error rate (FWER) at most a.

11



2.3 Related work on point processes

Remark 3. Recall that we can equivalently describe the two realizations Ng(-) and Ny () through
a sequence (of random length) of positions Xi,..., Xx € X of the union of N,(-) and Ny(-) and
a set of markers Ma,..., My € {—1,41}, where M; = —1 implies that X; belong to Ng(-).
Under this characterization, we see that the type I error guarantee holds conditional on the
aggregate positions X1, ..., Xy of the union of the two realizations. This is because the p-values
"9 produced in step 1 for the discretized local nulls are valid conditional on the positions; we
only use the fact that the random markers Mi,..., My € {—1,+1} are, conditionally on N,
independent Rademacher random variables. An important implication of this fact is that the
hierarchical partition I can depend on the aggregate positions {Xi,..., X~} so long as it does
not depend on {Mi,..., M,}; in particular, we can split each region in a way such that each

sub-region has equal number of ”unmarked” points.

Remark 4. The adjustment method in Meinshausen (2008) can in fact be improved by looking
at the test sequentially and removing any previously rejected hypotheses from the set of terminal
nodes under consideration. This is analogous to how Holm’s method improves upon Bonferroni
method. We refer the readers to the excellent paper by Goeman and Solari (2010) for more

detail.

2.3 Related work on point processes

If we assume the two Poisson processes are homogeneous, then the two-sample problem is equiv-
alent to testing equality of the means of two Poisson population. This problem has been widely
studied by many related works, see Cox (1953), Gail (1974) and Krishnamoorthy and Thomson
(2004). Some numerical comparisons of different test statistics and testing procedures are also
provided, for example, by Chiu (2010) and Ng et al. (2007). For testing non-homogeneous Pois-
son process, problem arises since count of occurrences within a certain observation period does
not contain detailed spatial or temporal information of the processes. Some work has been done
with respect to testing whether the proportion of intensity functions is a constant or increasing
over time (Bovett and Saw, 1980; Deshpande et al., 1999). In the case of testing the intensity

functions themselves, Fromont et al. (2013) constructed testing procedures using U-statistics

12



2.3 Related work on point processes

Algorithm 1 Computing simultaneously valid p-values p;f’j ) for all H(gs’j ),

INPUT: Poisson process realizations N,(-) and Np(-) and a hierarchical partitioning
I= {Ié”)}re[RMe[zr] of the domain.
OUTPUT: Simultaneously valid p-values p;f’j ) for each Hés’j ).

1: for each r € [R] do

2: for each ¢ € [2"] do

3: Set 5 = Spin(s,nern) (INEO = N0 /2))

4: Use randomization described in Section 2.2.1 to obtain (™).
5: end for

6: end for

7. Apply Algorithm 2 on {p"9}, ¢ (g) sejar) to obtain {{pE7" VA Vcin) jeas-
8: Compute ﬁ(s’j) = min{p;f’j’r) cre{s,s+1,...,R}}.

9: for b* €{1,2,...,B} do:

10: Generate Ml(b*)7 M ](\f ")« Rademacher independently.

1. Take N() = {X; : M®) = —1} and N7 () = {X; - M*7) =1}
12: Repeat lines 1 to 8 on Néb*)(-) and Néb*)() to obtain ﬁ;fb])

13: end for

14: Compute the raw p-values pﬁﬁ’j) = 4 Z£f:1 ]l{ﬁg;i’bj*) < ]B;f’j)}.

B
15: Compute the adjusted p-values pg,f’j) = ﬁgf’j)28/\(3_1).

13



Algorithm 2 Dynamic program for computing the collection of p-values

(s:3," )\ R
{ {pF }T:S se[R]’je[QT]'

INPUT: a collection {ﬁ(r’e)}T.e[R],[e[Qr].

OUTPUT: The collection { {p ™} } _ o0,

1: For every r € [R],£ € [27], set mgl = —2log p(™H

2: for k € {1,2,...,R— 1} do:

(r0) _  r4+1,20—1 r+1,2¢
ko= My +tm

3: For every r € [R — k] and £ € [27], set m
4: end for

5. for s € [R],j € [2°],r € {s,s+ 1,..., R} do:
6 Setpl? =S (md)).

or—s r—s

7: end for

based on both single and multiple kernel functions; see Gretton et al. (2012) also. On the other
hand, the scanning method is also commonly used to detect clusters or compare samples of
observations modeled by Poisson process, see Kulldorff et al. (2009) and Walther et al. (2010).
Picard et al. (2018) proposed a continuous testing procedure based on scan statistics for both the
test of homogeneity of a single Poisson process and two-sample testing of equality of intensity

functions, whose test statistic is the minimum among a discrete p-value process.

3. Tests on longitudinal networks

In this section, we can consider interaction processes among a group of n individuals. For each
pair of individuals u,v € [n], we write Ny, (-) as the realization that captures the interaction
events between u and v over time. The collection { Ny, (+) : u,v € [n]} is therefore an array of
point process realizations which we refer to as a longitudinal network. Here, we take the network
to be symmetric/undirected in that Ny, (1) = Nyu(+); we study the directed/asymmetric setting
in Section 3.2.

Suppose Nuy(-) ~ PP(Ayy) for () intensity measures {Auy}. We aim to test whether the

2

14



intensity measures A,,’s are all identical. When n is large however, the space of alternative
hypothesis is enormous so that it is important for us to designate a plausible alternative with
which to test against.

We therefore assume that there is an underlying block/community structure. More pre-
cisely, suppose each individual u belongs to one of K communities and write o (u) € [K] as the
community membership of u, where o : [n] — [K] is the community assignment function. We
assume that the probability distribution of the interactions between u,v depends only on the
community memberships of v and v. More precisely, for each pairs of communities s, t € [K], let

I'st(-) be an intensity measure and suppose

Avwo =To(u)o(w) for individuals u,v € [n].

We then define the null hypothesis to be Hp : K = 1 and the alternative to be Hy : K > 1. More

precisely, we define the null hypothesis

Hy : Nuy(:) ~PP(T"), for some I, for all u,v € [n]. (Symmetric array test) (315)

This is the generalization of the two-sample test to the array case. In many applications
however, individuals may have different baseline rates of interactions. To capture potential rate
heterogeneity, we propose to augment the block model with a vector 8 € [0,00)™ of non-negative

scalars and let

NUU() ~ PP(Fa(u)a(v)euev)

We may then consider the same test of whether there exists a community structure in the

interactions. An equivalent formulation is to define

Ho : Nuyo(:) ~ PP(I'0,0,), for some I' and 0, for all u,v € [n]. (316)

We refer to (316) as the degree-corrected array test. In the next section, we focus on the symmetric

array test and consider the degree-corrected array test in Section 3.3.
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3.1 Testing procedure for longitudinal networks

3.1 Testing procedure for longitudinal networks

We now consider the test of interaction processes among a group of individuals, defined in (315).
As with the two-sample test, we construct our testing procedure based on a hierarchical parti-
tioning I = {Ié”} of the support X’ of the interactions, as described in Definition 1. The test
follows the same steps as that described in Section 2.1. The only differences are in step 1, where
we specify different test statistics for the discretized local null, and in step 4, where we specify
different resampling algorithms.

Following the two-sample test described in Section 2.1, we define, for a resolution level

r € [R] and ¢ € [2"], the local null
HS™ ' Ayy =T, on I{” for some common T, for all u,v € [n].
We also define discretized local null
HS™ 2 Ao (I87) = 4, for some common ~ > 0, for all u,v € [n].

Remark 5. Note that in our definition, we do not require two local nulls Hérl) and Hér’,f’)
to have the same I' function. This means that, although we have the logical implication that
HY = {8270 A g9 (each local null implies its children), we do not have the reverse:
it H™) is false, it may still be that both HS™ ">~ and H{"""* are true. This implies that we
may have no power against certain alternatives. This issue is difficult to overcome completely but

it can be ameliorated by performing the test with different choices of the hierarchical partition.

Our testing procedure follows the same 4 steps as the two-sample test.

3.1.1 Step 1: compute p-values for each discretized local null.

In the first step, we test the discretized local null Hér’e) for some r € [R] and ¢ € [2"]. Define
NGD = Ny, (Iy)) and observe that N3 ~ Poisson(Awy (IZ(T))). To motivate our test, define

an integer matrix A € N**" where

NG w#w
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3.1 Testing procedure for longitudinal networks

We view A as the adjacency matrix of a weighted network. If the intensity measures
{Awv} has a block structure in that Au, = I'g(u)o(s) Where o(u),o(v) € [K] are the cluster
membership of u and v (c.f. Section 3), then A is a random matrix that follows a Poisson
Stochastic Block Model (SBM). To be precise, define a matrix v € R¥*¥ where, for s,t € [K],

we have vs¢ = [y (I{")). For u # v, we then have
AE;;D ~ POisson('Ya'(u)a'(v))7
Without loss of generality, we may assume that no clusters are empty and that the rows of
~ are distinct. Now let P be a n X n matrix given by
Puv = Yo(u)ov) (318)
We can then see that E, ,[A] = P — diag(P) and now for each r € [R] and £ € [2"], we can
restate the discretized local null as
H P =+T91,1]  for some constant v > 0 (319)

where 1 a vector of all ones of length n.
Given an observed adjacency matrix A, an intuitive idea for the goodness-of-fit test is to

remove the signal using an estimate of the true mean v"**) and test whether the residual matrix

(r,€) — 2

. . . ~ r,L . .
is a noise matrix. Let 4 — Zu<v Aq(w ) be an estimator of the true Poisson mean, we

—n

denote the empirically centered and re-scaled adjacency matrix by A8

ALY 40

Y ey e} u ’U,
A .= Vin-so ? (320)

0, U =v.
The asymptotic distribution of the extreme eigenvalues of the empirically centered and re-scaled
adjacency matrix has been studied in Bickel and Sarkar (2013) and Lei (2016) while the entries

are Bernoulli distributed. Here we extend their result to the case with Poisson distributed edges.

Theorem 2. For each r € [R],£ € [27], Let A" be the adjacency matriz generated from a
Poisson Stochastric Block Model and AT be defined as in (320), then under the local null

hypotheses (319) and as n — oo, we have

B (ATY) —2) L TW. (321)
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3.1 Testing procedure for longitudinal networks

where TWi is the Tracy—Widom law with 8 = 1, and )q(A(T’Z)) is the largest eigenvalue of A9,

We relegate the proof of Theorem 2 to Section S1.4.1 of the Appendix. In Section S1.4.2, we
also characterize the behavior of Aq (A(M)) under the alternative setting where K > 1, showing
that A (AT?) diverges as n increases. These results combined suggests that A, (A™9) is a good
test statistic.

Theorem 2 shows that, if we take A1 (A™?) to be the test statistics for the local null I-_IST’E),
we may obtain the asymptotically valid p-value using the Tracy-Widom distribution. Denote

Frwi(+) as the CDF of the Tracy-Widom distribution with 8 = 1 and define the local p-value
570 = 50 (A7) = 2min <FTW1 (2 (Aa(AT)) = 2) )1 = Frws (0 (2 (AT)) = 2)))

In the same manner, we could then reject the discretized local null ffér’[) at level a € (0,1) if
pér’e) < «, and since the Tracy-Widom distribution is continuous, we don’t need to transform
the p-value as we did for the two-sample test. The Tracy-Widom distribution is asymptotic as

n — 00, so for any finite n, the quantity o

may not be an exact p-value. However, because
we perform adjustment by resampling in step 3, the final p-values that we produce are still valid

for any finite n.

3.1.2 Step 2: combining p-values of the same resolution level

We follow exactly the same procedure described in Section 2.2.2 to obtain p;f‘j”) (or pgf/j’r)) for

every s € [R],j€[2°],and r € {s,s+1,..., R}.

3.1.3 Step 3: combining across different resolution levels

We again define ﬁ;f’j) = min{pﬁf‘j‘r> :r € {s,s+1,...,R}}. We can make a Bonferroni

adjustment just as before but we propose to adjust with resampling.

Unlike the two-sample test setting where we only have two realizations, here, we have (;)
realizations, denoted as { Ny (+) : u,v € [n],u < v}. They could also be equivalently characterized
by two sequences of random variables X1, X2,..., Xy € X and random tuples M, Ma, ..., Mn

taking value on ([g]) = {(u,v) : u,v € [n],u < v}, where N =3 _ Ny, is the random length

u<v

of the sequence. Under the global null Hy, M1, Ms,..., My are multinomial random tuples
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3.2 Asymmetric arrays of interactions

distributed uniformly over the set ([g]), that is, Po{M; = (u,v)} = n(n 7y for each i € [N] and

(u,v) € ([g]). Thus we could resample B samples, b* = 1,2,..., B, from Hy in the following way:
1. Generate be*), ey M](\?*> ~ Uniform([g]) independently.
2. Take NSL*)() ={X; : M(b ) = (u,v)} for each pair of (u,v) € ([g]).

On each sample collection {fo;*)(-) s u,v € [n],u < v}, we could then compute the simulated
unadjusted p-value ﬁ;f’bj*) as in Section 2.2.3 and output p V(S’]) =+ Lo 1 (pF’]) < ﬁgf’])) as

the individually valid p-value for H{*7.

3.1.4 Step 4: sequential/multiple testing adjustment

v(s (s,9)

We make the sequential /multiple testing adjustment on p ) t0 obtain simultaneously valid p;.
just as in Section 2.2.4, with one key difference because we do not have the logical implication
that HS"TH# = nHTT) = B that s, if a local null is false, it could still be that the two

children are true. As a consequence, we must redefine £L(s, ) as

#{terminal nodes emanating from (s,7) in I} if (s,7) is not a terminal node
L(s,j) =
1 if (s,7) is a terminal node.
(322)
In the case where the hierarchical partitions I is a full binary tree, we have that L(s,j) = oR—s
and £(0,1) =

We then define the simultaneously valid p-value as

() — e EO L) 6y g
T L) T

If we form our rejections via (26) using {p;f’j)}, then our FWER is controlled at level «.

3.2 Asymmetric arrays of interactions

So far we’ve considered testing symmetric interaction processes among a single group of individ-
uals, we can also extend this to the problem of testing the asymmetric interactions between two

possibly different groups of individuals. Let V4 and V2 be two sets of individuals and suppose
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3.2 Asymmetric arrays of interactions

|[Vi] = m and |V2| = n. Now we let Ny, (-) represents the temporal interactions events between
individual v € V; and individual v € V3, resulting in a collection of asymmetric point process

realizations { Ny, (+) : u € Vi, v € Va} where
Nyv(:) ~ PP(Ayy), for intensity measure Ayy.

Now we have m X n realizations in total and similarly we can reduce the the dimensionality
of this problem by assuming community structures in both groups. Suppose there are K; and
K> communities respectively in groups Vi and Va2, we again assume the intensity function of
the realization between two individuals only depends on their community memberships. More
precisely, let o1 : [m] — [K1] and o2 : [n] — [K2] be two clustering function on groups Vi and

V>, then we assume
Auv = T'o ) (w)oa(v), for any u € V1 and v € Va

where {Tst}s tcix,]x K] 1S @ collection of K K> intensity measures. We can again consider the

goodness-of-fit test of the community structure with null hypothesis
Hy: Ki=Kox=1 ws. Hyp: Ki-Ky>1 (323)
and with a partition of I of the support X, we can define each discretized local null as
HO(T’D : Auo (Iér)) = W(T’Z), for some common 'y(r’e) >0 and for all u € V3,v € Va. (324)

Similar to the local adjacency matrix A9 defined in previous section, we let B9 be am x n
matrix with entries being counts of interactions between any two individuals from groups Vi and

Va respectively, within interval I y)

qu:;e) = NW(IZST)), for any u € V4, and v € V3
(r,2)

To test each discretized local null H;"" given observed matrix B "8 we again remove the mean

effect and check whether the residual matrix looks like random noise. We define

(r.0) B
=3 (325)

ueVy veVa
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3.3 Degree-corrected symmetric array test

Moreover, we define
B(mH _ fy(rl)

A/m - ;}‘/(r,l)

as the empirically scaled and centered counterpart of B (T’Z), with ’y(r’l) defined as in (325) and

B — e R (326)

let W0 = (B(T’[))TB(T’Z). Then we have the following limiting distribution of the largest

eigenvalues of W9,

Theorem 3. Let Al(W<"’e)) be the largest eigenvalue of matriz W9 and suppose lim, ;oo n/m €
(0,00). Then for each r € [R] and € € [2"], under the discretized local null hypothesis ffér’f) given

n (324), we have

m () — (Vi Vm?a
R e "

as n,m — 0o.

We relegate the proof of Theorem 3 to Section S1.4.3 of the Appendix.
Using Theorem 3, we can let Ay (W) be the test statistics for the local test (324), and

derive the p-value for the discretized local null as

Z5(T,@) = p(ﬁf) (W(Tﬁf))

omi M OVC0) = (kY | eme () — (i i)
.—2m1n(FTW1( (\/ﬁ—i—\/ﬁ)(ﬁ—&—ﬁ)l/?’ ),1 FTWI( (\/ﬁ‘f'\/m)(ﬁ*‘\/%)l/?’ ))

Steps 2, 3, and 4 proceed in the same way as the symmetric case, except that the resampling
method changes slightly. To generate samples under the null in this scenario, we can just change
the distribution of the random marks to be P(M; = (u,v)) = -, Vi € [N], u € V1 and v € V3.
Then we generate sequences of random marks {Ml(b*), oM 1(\57 )} under the aforementioned
distribution and let the collection {NSL*)C) :u € Vi,v € Va} be a resample of the observed

asymmetric array.

3.3 Degree-corrected symmetric array test

In this setting, we define the local null at r € [R] and ¢ € [2"] as

HéT’Z) : Ayw =T160,0,, on ILST) for some T, 0, for all u,v € [n],
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3.3 Degree-corrected symmetric array test

where 6 € [0,00)" is a vector of baseline rate for each of the n individuals. In our definition, we
do not require any two local nulls Hér’e) and Hérl’e,) to have the same baseline rate or the same
I. Therefore, we have the logical implication that H"? = H{™ 271 q g™ (cach local
null implies its children) but not the reverse (c.f. Remark 5).

We define the discretized local null as

Hér’a s Auw (Iem) = v0.0,, for some 7,80, for all u,v € [n].

3.3.1 Step 1: compute p-value for each discretized local nulls

For r € [R] and ¢ € [27], define N{y* := N, (Iér)) as with Section 3.1 and define the adjacency
matrix A7 = N9 for u # v and AmO — 0 if y = v.
Suppose the intensity measures {Au,} has a block structure so that Ay, = T'o(u)e(v) Where

o(u),o(v) € [K] are the cluster memberships of individual w and v. In the setting where each

individual u € [n] has its own baseline rate of interactions 6, > 0, we have that
A Poisson (Yo (u)o (v)ubv),

where v 1= Tst({, é”). This model is similar to the so-called degree-corrected stochastic block
model (DCSBM) where the edges are Bernoulli distributed binary random variables instead of
Poisson random integers as we have in our setting.

To test each discretized local null, we apply the Signed Triangle (SgnT) and the Signed
Quadrilateral (SgnQ) statistics introduced and analyzed by Jin et al. (2021). To define the SgnT

and SgnQ statistic, first define a vector 7 and a scalar V("9 as
i ’
HO = (1 /V“’Z)) 2AT91, where VW) = 1,401, (328)

The Signed-Polygon(SgnT) statistic T}, is then defined as

rl) __ T r,0 A(r,8) ~(7,L (N4 A(1,8) A(1,2
piEavn (320)

(ALY DR
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3.3 Degree-corrected symmetric array test

In a similar manner, we define the Signed-Quadrilateral(SgnQ) statistic as

L) T N A(1r,8) A(1,2 N4 A(1,8) A(7,2
QU= = Y (AL —alalnY) (Al -0l el
uy,ug,us,ud€n]
u117531273’;u3¢u4 (330)

(AGE, - AR (AL - Rl

The intuition behind the SgnT and SgnQ test statistics is that a network with community
structure tend to have more triangles and quadrilaterals than a network with similar number of
edges but without community structure. We refer the readers to Gao and Lafferty (2017); Jin
et al. (2018, 2021) for a more detailed discussion.

Theorem 2.1 and 2.2 in Jin et al. (2021) prove asymptotic normality for T and QY
for degree corrected stochastic block model where the edges are Bernoulli (they actually prove it
for the more general mixed membership model). However, a careful examination of their proof
shows that their result applies, without modification, to the setting where the network edges are

Poisson. We restate their result below; see also Section 5.3.2 for experimental validation.

Proposition 1. (follows from Theorem 2.1 and 2.2 in Jin et al. (2021)) Suppose ||0|2 —

0 2
00, |0]lee — 0, 1512 \/Tog [[6][1 — 0 as n — oo, then

78 a, N
1 1
Vaarop -y Oy )

and

Q) — 27"V - 1)?
VE(Co]? -~ 1)?

Based on Proposition 1, we could take T or Q™ as our test statistic for the discretized

)
)

3.3.2 Step 2: computing p-values of the same resolution level

45 N(0,1) (332)

local null H(()T’l) , define the corresponding local p-value as

(%)
‘\/é(llﬁ(’"’a\l2 —1)3/2

ﬁ(T’Z) . ﬁ(r,f) (T(T,Z)) =9 |:1 — (P(

and
QY —2(7™|* — 1)®
V(|72 — 1)2

pr0=pm0 (@) =2 {1 -0 (‘

We follow exactly the same procedure described in Section 2.2.2 to obtain p%’g’jm) (or pg\?j’”) for

every s € [R], j € [2°],and r € {s,s+1,..., R}
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3.3 Degree-corrected symmetric array test

3.3.3 Step 3: combine across different resolution levels

We again define ﬁgﬁ’j) = min{pgf‘j’r> :r € {s,s+1,...,R}}. We can make a Bonferroni
adjustment just as before but we propose to adjust with resampling. The added challenge here
however is that we do not observe the degree correction parameter vector 6.

To describe the resampling procedure, we again characterize the (g) realizations { Ny, (-) :

u,v € [n],u < v} as a random sequence X1,...,Xn € X and My,..., My taking value on ([;‘]).

Then, under Hy, we have

0.0,
Po{M; = (u,0)} = =———F—— (333)
Zu’<v’ 9“'/9“/
We cannot directly use (333) to resample My, ..., My since we do not observe 8. To overcome

this problem, we condition on the degree of all the individuals, which is a sufficient statistic for

6. To be precise, We write A := Ny, (X) as the total number of interactions between u and v

and define
Dy = Dy(A) =" AT)
vFEU
as the degree of individual u. Equivalently, we may express D, as a function of Mi,..., Mn

via the equation D, (M) = ZlNzl 1{u € M;}. Write m := {(u1,v1),...,(un,vn)} as a possible
outcome for My, ..., My and write D(m) := {Dy(m)},c[n) as the corresponding vector of all

the degrees, then

Dy (m)
Hf\[: Ou; 0o, Hue["](eu)
Po({M1,...,Mn} =m) = = 1/ 5B = 5 0

For a vector d € NV, define Mg := {m = ((u1,v1),..., (un,vn)) : D(m) = d} as the set

of all possible outcomes of M, ..., My that result in degree vector d. Then, we have that

Po({Ml,...,MN}:m) 1
Zm'EMd PO({M17-~~7MN} = m) B |Md|

Po({Ml,...,MN} :m|D(m) :d) =

Importantly, conditional on the degree, the distribution of Mi,..., My does not depend on 6.
Therefore, writing D°P® as the observed degree vector, we propose to generate b* = 1,..., B

(b%)
1 ).

Monte Carlo samples M. . M](\?*) from the conditional distribution

Po({Mi,...,My} =-|D(-) = D°™). (334)
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3.4 Related work on longitudinal networks

To generate from (334), we use a Metropolis—-Hastings algorithm. Given current state
m = {(ui,v1),...,(un,vn)}, we generate a proposal m’ by choosing a pair i,j € [n] where
i < j. Denote m; = (us,vs) and my; = (uj,v;). We then generate m;, m} by drawing uniformly

from each of the following five outcomes:

EESEN

(7)) ~umit{ (i), (), (o), (5w, (i)} (335)

<.

We complete the proposal by letting mj, = my for every k # 4,j. If m] or m) contain multi-
edge, that is, both end-points of m; or mj refer to the same node, then reject m’. Otherwise,
it is straightforward to verify that the Metropolis—Hastings ratio is exactly 1 and we accept the

proposal m/.

Proposition 2. The Markov Chain specified via (335) and the acceptance rule given below (335)

is ergodic and has stationary distribution that is uniform on Magq.

The simpler version of Proposition 2 for contingency tables is well known (see e.g. Diaconis
and Sturmfels (1998)). We give a proof for the longitudinal network setting in Section S1.3 of
the appendix.

Thus, we may generate Ml(b*>, ce Mf\?*) by taking some number of steps of the Metropolis—
Hastings algorithm and obtain our resampled point process realizations {fo{j)()}u,u. For each

b*, we may then obtain ﬁgfbj*) and construct the final p-value as ﬁgf’j) = % Zﬁzl ]l{ﬁg;zj*)

P’}
(s.4) _

Step 4: sequential/multiple testing adjustment. Following Section 3.1.4, we define py

IN

pgﬁ’j )25 We succinctly summarize all the steps in Algorithm 4.

3.4 Related work on longitudinal networks

Recently, there has been increased attention on the modeling of dynamic networks, from both the
physics community (Holme and Saraméki, 2012) as well as statistics. For example, Xu and Hero
(2013) employ a state space model to describe temporal changes at the level of the connectivity
pattern, DuBois et al. (2013) introduced a family of relational event models that captures the

heterogeneity in underlying interaction dynamics of network data over time. Modelling temporal
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interaction between two nodes by Poisson processes is also considered in Corneli et al. (2016) and
Matias et al. (2018), where they provide likelihood-based algorithms for membership estimation.
Zhang and Wang (2023) studies longitudinal networks from a tensor factorization perspective;
they discretize the time into bins and propose an adaptive merging method to ensure that the
discretized network is not too sparse. We refer the readers to the introduction in Zhang and

Wang (2023) for a more extensive review of estimation methods for longitudinal networks.

4. Theoretical analysis

In this section, we theoretically analyze the power of our proposed test under the two-sample
test setting where we have two intensities functions A\, and Ay and write A = A\s + Ap. Under the
global null hypothesis, we suppose that A\, = A\, = % on the support X. We state our results in
terms of power against the global null but they are applicable to local nulls as well. Throughout
this section, we let v be the base measure with respect to which the A,, Ay are defined; one can
assume v is the Lebesgue measure for simplicity. We also take the partitions I to be fixed and
state our results in terms of deterministic conditions on I.

Our results are of the following form: under an alternative hypothesis where A, and X\, are
sufficiently separated according to some notion of distance, our proposed tests at level o will
have power at least 8. More precisely, writing p as the p-value that we output, we have that
Pop<a)<aand Pp<a)>1-3.

Our first two results consider the Fisher combination test. For a given hierarchical partition
I and a resolution level r, it measures the separation between A, and A\ in terms of a discretized

Lo divergence.

Theorem 4. Let o, 3 € (0,1) and let C' be a universal constant greater than 1 whose value is
specified in the proof.

Assume fI(R) My > 2 for all £ € [2F]. Assume there exists r € [R] such that
4

2" ) Aa — ApdUN 2 1/2
1 f]é) @ b /2 C/ 1/2 R R
- R e Ay > 2" —— + 21 — 2log —. 436
4;( fl(“") Adv /Iér) V= B +2log o +2log o (436)
- e
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Then, we have that

P(pi < a) > 1-28.

We prove Theorem 4 in Section S2.1 of the Appendix. To better understand the implications
of Theorem 4, we next take the support X to be a compact subset of R? and take the hierarchical
partition I to be any partition such that each split divides a region into two sub-regions whose
volume is halved (measured with respect to v) and whose diameter is reduced by a factor of
0(27%). Since there is no fixed sample size for Poisson processes, we write n := fx Adv so that

A

it is in some sense an ”expected sample size”; we note then that 2 is a probability measure on

X.

Theorem 5. Let X C R? and let A\ = Aa+Xp. Suppose 0 < cmin := infeex A(z) < sup,cqr AM(z) =:

Aa—Ap
X

Cmax < 00. Let n := fx Adv and suppose that is y-Holder continuous on X in that

Aal@) = do(@) _ Aaly) = Ao(y) < Cullz —yll3 for all z,y € X.

Az) A)

Let R = |log, 2 —log,(222x) | and let {Il(r)},,e[R]yle[Qr] be a dyadic partitioning of X such that

Cmin

for all m € [R] and | € [27], l/(.ll(r)) =D 4nd diam(Il(r)) < Ca277%. Let a,f € (0,1) and

or

suppose

_ 4y 1
/(/\a)‘b>2)\ {Cm 7 (BT 4 log 18)  ify/q>1/4
X

) 2av> . , (437)
\ Cin™ @ (87" +log%5m)  ifvy/g<1/4

where C1 > 0 depends only on ¢max/Cmin, CH, and Cq. Then,
Ppy? <a) >1-28.

We prove Theorem 5 in Section S2.2 of the Appendix. It is important to note that Theorem 5
only requires the difference L;’\” to be Holder continuous; no smooth assumptions are made on

the individual intensity functions themselves.

Remark 6. As a direct consequence of Theorem 5, we see that when X' C R (so that ¢ = 1)

Aa—Ap
X

and when is Lipschitz (so that v = 1), then our test has nontrivial power when the

separation I(@f%dl/ (which is the squared L2(\/n) distance between A,/A and Ap/A) is

27



of order n~5. This matches, up to log-factor, the lower bound on the minimax separation rate
given by Fromont et al. (2011) (see Section 2 within), showing that our test has minimax optimal
power up to log-factors in this setting. We conjecture that when @ is Lipschitz, our test is

minimax optimal when ¢ < 4 and suboptimal when g > 4.

Next, we consider the testing procedure that combines all the p-values of the same resolution
level by taking the minimum instead of using the Fisher combination function. The next result
is the analog of Theorem 4. However, the separation strength between A\, and A\, is measured

by taking the maximum among the regions rather than taking the sum.

Theorem 6. Let o, € (0,1) and let C be a universal constant whose value is specified in the
proof.
Assume that [ () Adv > 2 for alll € [2%]. Assume there exists r € [R] such that
1

1 Jye A = Audvy 2 c\’ R

- — - > 2 2log —.

4 lgl[gi(]( fI(r) Adv ) /Il(r) Adv > 2r + 6 + 2log a
1

Then, we have that

P(py <) > 1-28.

We give the proof of Theorem 6 in Section S2.3 of the Appendix. To more clearly see the
implication of Theorem 6, we consider a setting where |[Aq — A\p| is non-zero possibly only on a
small region S. We show that, so long as the hierarchical partition is chosen so that each split
divides the volume equally, the minimum combination method will have non-trivial power. The

following result is an analog of Theorem 5.

Theorem 7. Let X C R be an interval and let S C X be a sub-interval. Let {I;”}TG[R] be a

dyadic partition of X such that R = |log, & — log, i:ijZJ and that for all r € [R] and | € [27],

V(IL(T)) =v(X)27". Suppose that 0 < cmin < A < cmax < 00 and that f] Adv = n. Suppose that

|%¥z)‘f(m| > s >0 for all x € S and also that v(5) > Cmax 8

v(X) Cmin T’

For any o, B € (0,1), if

2 v(5) 2

5SV(X) ~n

(logn + 87" +1log é) (438)

28



for C2 > 0 dependent only on cmax/Cmin, then we have that
P(pzu S Oz) 2 1—- 2,8.

We give the proof of Theorem 7 in Section S2.4 of the Appendix. We note that Theorem 7
does not require any smoothness on the difference A\, — Ap; it only requires that the difference is

at least ds in magnitude on the region S.

5. Experimental studies

5.1 An illustrative example

We begin with a single simulation example for the two-sample test to give a concrete illustration

of our testing procedure. Here, we let the two intensity functions be A, (z) = 5501 1

Aa(z) = 550 for z € [0, 1],

550 if x € [0,1/4] or = € [3/4,1]
/\b(a:) =

275 - sin(4w(x — 1/4)) + 550  if z € [1/4,3/4]
and they are zero outside of [0, 1]; see Figure 2a. We take our hierarchical partition I to have
R = 3 resolution level by dyadic splitting so that I\") = [0,1/2] and I$" = [1/2,1]. We see then
that H>" and H{** are true since A, = Ay on the regions [0,1/4] and [3/4,1]. We generate
two point process realizations and show them in Figure 2b.

We then perform our testing procedure with B = 1000 resampling draws and display the
final simultaneously valid p-values {p;f’j)} in Figure 3. We see that, at level a = 0.05, we
correctly reject the global null HéO‘U. Moreover, we correctly reject the local nulls Hél’o), Hél’l)
at resolution level » = 1 and the the local nulls H82’2>,Hé2‘3) at resolution level r = 2. At
resolution level r = 3, we reject Hé3’4), H((]?"5> but missed H33’3), Hé3’6>. This is not unexpected
since the multiple testing adjustment makes it rather difficult to reject hypotheses at the most
granular resolution level.

(s,9)

We note that the p-values p).”"’ are very different from the discretized null p-values )

computed in step 1. Indeed, in this example, we have that 13(0’1) = 0.37 since fol Ao = fol Ab SO
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100

900
600 FIE intensities 0
- " _ |ambda a 0.00 0.25 0.50 0.75 1.00
“ . - lambda_b
300 ‘\\‘," 100
50
0 0
0.00 025 050 0.75 1.00 0.00 0.25 050 0.75 1.00
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Figure 2: Example of a two-sample test setting
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Figure 3: Simultaneously valid p-values produced by our testing procedure. Bold indicates

rejection at level a = 0.05.
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5.2 Simulation for the two-sample test

that the discretized local null Héo’l) is actually true.

5.2 Simulation for the two-sample test

Next we provide simulations results of our proposed test for the two-sample test. We Let No(-)
and Ny (+) be two Poisson point process on support X = [0, 1], with densities Aq(-) and Ay(-) on
X with respect to the Lebesgue measure v on X. In Section S3.1 of the appendix, we verify that
our tests have the desired type I error. Here, we study the power of our proposed test.

For comparison with our proposed test, we also present simulations results of other two-
sample testing procedures. The first is the kernel-based test proposed in Gretton et al. (2012) and
Fromont et al. (2013). Recall that we can characterize N, = {X; : M; = 1} and N = {X; = —1},
then for any symmetric kernel function K : X x X — R, the test statistic of the kernel-based
test is given by

Tiernel = Z K(X@,X])MZM]
i#j €[N]

There are many choices of the Kernel but in this simulation we use the Gaussian kernel

Xi—Xj)}

K(X:, X;) = exp{f( — (539)

which is shown to have good performance in practice by Fromont et al. (2013). We also consider
the conditional Kolmogorov-Smirnov test for performance comparison, which is commonly used
for two-sample problems. We again apply Monte-Carlo method to approximate the exact p-
value of these two tests. In total, we consider 5 different tests denoted by MF, MM, KNy,
KNa2, KS, where MF and MM represent our multi-scale binning test with Fisher combination
and minimum combination respectively. The tests KN1, KNy represent the Gaussian kernel test
with parameter o = 0.5 and o = 0.2 of the kernel function (539). The test KS represents the
conditional Kolmogorov-Smirnov test.

We let A\o(+) be a constant function and Ay(-) be a piecewise constant function given below

Aa(.'E) = 50 . 1[0’1](1’)

Ao(2) = 50((1 = p) - Lppaya(2) + (1 +p) - Layaayz (@) + Lay2.1())
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5.2 Simulation for the two-sample test

For each p € {0.2,0.4,0.6,0.8,1.0}, we realize 1000 pair of simulations of two Poisson process
with intensities A\, and Ay respectively in [0, 1] and again generate 500 bootstrap resamples for
each simulated pair of Poisson realization. We plot the empirical power, i.e., the proportion of
rejections out of the 1000 simulations for each of the five tests in previous experiments, at three
different levels o = 0.01,0.05,0.10. Note that in this particular experiment, we let the bandwidth

of the two kernel functions in test KS1 and KS2 to be 01 = 0.5 and o2 = 0.1 respectively.

a=0.01 a=0.05 a=0.10
/ /
/
/ methods /
06 / 0.75-
/ KN1 -
/ 0.75
/ KN2
5 / 5 5
H H H
o / 5} KS o
©,04- / ©0.50- 9
° / ° °
2 / 2 — MF £ 050-
£ / £ £
g E i g

0.25-
0.25-

02 04 06 08 10 02 04 06 08 10 02 04 06 08
signal signal signal

Figure 4: The proportion of rejections of the five tests out of 1000 simulated samples
under different signal strength. Left: level @ = 0.01. Center: level o = 0.05. Right: level

a=0.10 .

At all three levels, We can see that the kernel based test with large bandwidth has very bad
performance which is not surprising since the large bandwidth smooths the difference between
the two Poisson realizations. The other four tests have similar number of rejections when the
signal is relatively weak while as the value of p becomes larger, the MF and MM test, i.e.,
our multi-scale binning test with Fisher and Minimum combination dominates the K-S test and
kernel based tests. We conjecture that our multi-binning tests have better performance than
the KS test in this case is because that the expected difference of empirical CDFs of the two
Poisson realizations reaches its maximum at * = 1/4 and will decrease as = gets larger, while
the multi-binning tests will continue collecting information, especially for the test using Fisher’s

combination.
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5.3 Simulation study of array test

5.3 Simulation study of array test
5.3.1 testing rate homogeneous array

As an empirical verification of Theorem 2, in Figure 11, we plot the finite sample distributions
of the largest eigenvalue of the adjacency matrix AT under the null hypothesis. We give
the details of the experimental set-up in Section S3.2 of the appendix; in that section, we also
discuss the bootstrap correction method proposed by Bickel and Sarkar (2016) to improve the

Tracy-Widom approximation.

n = 300, without correction n = 1600, without correction n = 300, with correction

— N
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o "

— Tw1

[ 1
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=

Densty

000 D05 040 045 020 025 030 035

000 005 040 015 020 025 030 035

000 005 040 015 020 025 030 035

Figure 5: The empirical distribution of 1000 simulated samples of centered and scaled

largest eigenvalues of A, compared with the Tracy-Widom distribution.

Next, we consider two alternative Poisson SBM models with K = 2 and K = 3 equally sized
communities respectively. We let the probability distribution of the interactions between two
nodes u, v only depends on whether they are in the same community and we denote the intensity
function of realizations between individuals within the same community as Asame(-) and from
different communities as Aai(-). We then define

z(1—x)*

)\samex:S'lA x), )\i )= ——— 7
. ot ) fol z(1 —x)dx

1p0,1)(x)

for both the two alternative Poisson SBM models, where s is a parameter that controls the
sparsity levels of the networks in this experiments. We again have n = 200 and either K = 2 or
K = 3 equally sized communities. We then generate 200 sample collections of realizations on the
same support for each of the two models and for each value of s € {0.1,0.175,0.25,0.5,1} and

conduct our proposed test on these samples where the bootstrap sample size and partitioning of
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5.3 Simulation study of array test

the support are exactly the same as in the preceding experiment. The proportions of rejections

for the two SBM models under different sparsity levels are recorded in Table 1.

s 1.0 05 025 0.175 0.1 1.0 05 0.25 0.175 0.1
a=0.01 1 1 098 041 0.055 1 1 1 0.785 0.05
a=0.05 1 1 0.99 0.575 0.115 1 1 1 0.905 0.145
a=0.10 1 1 0995 0.63 0.165 1 1 1 097  0.24
a=10.25 1 1 1 0.74  0.36 1 1 1 1 0.38

Table 1: The proportion of rejections of the proposed array test out of 200 sim-
ulated samples of networks of 200 nodes at different sparsity and confidence levels

a € {0.01,0.05,0.10,0.25}.

5.3.2 testing rate heterogeneous array

Now we investigate the empirical performance of the multi-binning test on testing array of
processes with heterogeneous baseline rate. We first empirically verify the null distribution of
T8 and QY| the SgnT (329) and SgnQ (330) test statistics for each discretized local nulls. For
an arbitrary I € X', we consider a Poisson DCSBM with n individuals and K = 2 communities,
where the edges Ny, (I) are just Poisson random integers. We let 8 € [0,00)™ be the vector

representing the baseline rate of interactions for each individual. Then for some p € [0, 1],

Poisson(0.6,), ow = 0o,
Nyo(I) ~

Poisson(0.0y - p), 0w # o.

In order to have a control of the sparsity level of the network, we introduce a intermediate vector

0 € [0,00)" and a scalar s > 0. Then we let 6, = s- ngl” such that [|0]| = s.

We let the number of nodes n = 1000, s = 100 and let 6, = u for each u € [n]. We consider
two equally sized communities. Then for each p € {0.95,0.975,1}, we generate 2000 samples

from the above network. We then derive the centered, scaled SgnT and SgnQ test statistics for
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5.3 Simulation study of array test

each sample and plot their empirical distribution respectively in Figure 6.

Figure 6: Histogram of Signed Polygon test statistics with different values of p.
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Next we study the empirical performance of the proposed test on array of Poisson process
realizations with heterogeneous baseline rate, where the p-value for each local null ﬁéT’e) is
derived from the null distribution of the two Signed Polygon statistics. We consider a model with
n = 100 individuals, number of communities K = 2 and again let the community membership to
be such that o, = 1 if and only if u < 5. With a fixed sparsity level where we let s = 12 and 0, =

S -

Iegl\ , we consider two levels of degree heterogeneity: (1) moderate degree heterogeneity

[
with #id 6, ~ Unif(2,3) and (2) severe degree heterogeneity with fixed 6, = \/u.

To study the performance of the proposed test at different signal strength, we let p, the vari-
able that controls the off-diagonal connection probability, to vary within the set {0.6,0.7,0.8,0.9,1.0}.
Then for each distribution of the degree vector # and each value of p, we generate 200 sample
collections of Poisson realizations {Nuy(+) : u,v € [n]} on support X = [0, 1] where the within
community and between community densities are

(1 —z)?
fol (1 — z)%dx

z(1 — )

Ain(x) = 5 - 1 ), Aout(x) =p- s 77— 1p (=
( ) [0>1]( ) t( ) p folx(l_x)zldm [0 1]( )
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5.3 Simulation study of array test

respectively. In this experiment we let the number of resolution levels R = 4 and I (8 .=

[5, &) C X be the discretized intervals for all I € [27],r € {1,2,3,4}. Also for each generated

observation we again produce B = 400 bootstrap samples using the Metropolis-Hastings algo-
rithm described in Section 3.3.3 to derive the adjusted p-values. Then we perform the proposed
multi-binning test using both SgnT and SgnQ test statistics on each sample at the two hetero-
geneity level and for different values of p. We summarize the proportion of rejections out of the

200 samples under the two degree heterogeneity levels in Table 2 and Table 3 respectively.

SgnT SgnQ
P 06 07 08 09 1.0 06 07 08 09 1.0
a=0.01 0.98 0.15 0.02 0 0 0.84 0.77 0.11 0.02 0.01
a = 0.05 0.99 041 0.07 0.05 0.03 1 095 0.15 0.07 0.04
a=0.10 099 059 0.11 0.10 0.6 1 0.97 0.22 0.09 0.05
a=0.25 099 084 027 023 0.22 1 099 035 0.19 0.23

Table 2: The proportion of rejections of the proposed array test under moderate degree

heterogeneity level, where 6, ~ Unif(2, 3).

SgnT SgnQ
D 06 07 08 09 1.0 06 07 08 09 1.0
a=0.01 0.37 0.03 001 O 0 095 0.19 0.02 002 0

o =0.05 0.64 0.15 0.08 0.05 0.10 0.96 035 0.06 0.05 0.04
o =0.10 0.80 0.29 0.14 0.09 0.12 098 043 0.13 0.11 0.08
a=0.25 095 052 0.29 026 0.22 1 0.61 0.23 0.22 0.25

Table 3: The proportion of rejections of the proposed array test under severe degree

heterogeneity level with fixed 6, = \/u.
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5.4 Traffic collision data

5.4 Traffic collision data

We conduct the two-sample test using data derived from motor vehicle collision events in New
York City recorded by police department(NYPD) during January 2022. We believe that these
collision events can be effectively modeled by a Poisson Point process. We focus on testing
whether there exists a significant difference between the occurrences of crash events at Mondays
and Saturdays during this period. To achieve this, we treat the occurrence times of collisions
on Mondays and Saturdays as two realizations of Poisson Processes. Let I be the time interval
between 00:00 and 24:00 and with the number of resolution level R = 4, we evenly partition I by
dyadic splitting such that [1(1) = [00: 00,12 : 00), If) =[12:00,24 : 00) and so on. we provide
a barplot of the number of collision events within each discretized interval at the most granular
resolution level, see Figure 7. We can see that the distribution of collisions are very similar
on Mondays and Saturdays from noon to midnight. However there are much more collisions
happening in Monday mornings than in Saturday morning and on the other hand, collisions are

more frequent at Saturday pre-dawn period.

group
Mondays
Saturdays
0
0:00 4:00 8:00

12:00 16:00 20:00 24:00
Time

©
o

Collisions
(o2}
o

w
o

Figure 7: Number of NYC collisions on Mondays and Saturdays at different time of day.

Then we perform the proposed testing procedure with 1000 bootstrap samples and use the

fisher combination method to combine p-values at the same resolution level. We provide the tree
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Figure 8: Simultaneous valid p-values for testing NYC collision occurrences at Mondays

and Saturdays. Bold indicates rejection at level o = 0.05

of valid p-values in Figure 8. At level a = 0.05, we reject the global null Héo’l), which make
sense as the two occurrences data do have different patterns. Notice that we also successfully

rejected the local nulls Hé4’2>, Hé4’3)

and Hé4’6)7 where the difference in number of occurrences
are among the largest at the resolution level r = 4. However, we can see from Figure 7 that the

number of collisions are remarkably different right before midnight while the corresponding local

null H(()4’16) is rejected due to the sequential testing adjustment.

5.5 Primates interaction data

In this study, we analyze a network of dyadic interactions within a group of 13 Guinea baboons
residing in an enclosure at a Primate Center in France starting from June 13th, 2019 (Gelardi
et al., 2020). The dataset was gathered using wearable proximity sensors attached to leather
collars worn on the front side of the 13 individuals. These sensors utilized low-power radio
communication, exchanging packets when the distance between two baboons was approximately

less than 1.5 meters. The collected data was aggregated with a temporal resolution of 20 seconds,
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5.5 Primates interaction data

defining interaction between two individuals if their sensors exchanged at least one packet during
a 20-second interval. We consider here mainly three days of data collected between July 8th and
July 10th 2019, capturing a total of 6458 interactions among the 13 baboons. To better analyze
how the network evolves during the day, we aggregate all the interactions considering only the
hour and second each interaction happens while ignoring the actual date it was recorded. We
notice the degrees of each individuals are quite different, we believe a degree corrected model is

best suited for the analysis.
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Figure 9: Subgraphs of baboon interaction network at different times of day. Left:
Interactions in the morning between 6:48AM and 7:48AM. Center: In the afternoon
between 15:53AM and 16:53AM. Right: At night between 7:55PM and 8:55PM.

We perform the multi-bining test using SgnQ statistics with boot strap sample size B = 600
and number of resolution number R = 4 and the intervals are evenly discretized between 5:30AM
and 10:00PM. At the most granular level, each bin corresponds to approximately 1 hour. We
provide the the tree of simultaneous valid p-values in Figure 9. At level o = 0.01, our testing
procedure rejected the global null and all the local nulls at resolution level » = 1,2,3. Notice
that there are two local nulls Hé4’11) and Hé4’15) at resolution level r = 4 that our test failed to

reject. We display the discretized network in these two intervals in Figure 9. We also display
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Figure 10: Simultaneous valid p-values for testing baboons interaction network. Bold

indicates rejection at level o = 0.01

another instance where we do reject the null as a comparison. We see that the results make
sense based on the visualization since there appears to be 3 distinct clusters for the morning

interaction graph.
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Supplementary material to “Multiscale Tests for Point

Processes and Longitudinal Networks”

S1. Supplementary material for Sections 2 and 3

S1.1 Concise description of algorithms for longitudinal networks

S1.2 Randomizing p-value

Let X be a discrete random variable taking value on {z1,...,2m} C R where we have the

ordering 1 < 22 < ...Zy,. Define S(z) = P(X > z) and
q1 ‘= S(l‘l) =1, q2 ‘= S(mQ)a s qm = S($W)7 gm+1 = 07

so that S(X) takes value on {q1, g2, ..., ¢m}. We define random variable S such that if S(X) = ¢,

then 5 = (qi+1-

Proposition 3. Let U ~ Unif|0, 1] be independent of X. Define

Z:=U-8X)+(1-U)-8. (S1.1)
Then, we have that Z < S(X) and that Z ~ Unif|0, 1].

Proof. Since S < S(X) by definition, it is clear that Z < S(X) as well. To show that Z has the
Unif[0, 1] distribution, fix ¢ € (0,1). Then there exists ¢ € [m] such that ¢; >t > ¢;+1. We then

have that

P(Z <t) =P(S(X) < qiv1) + P(Z < 1, 5(X) = ¢;, 5 = qit1)

= git1 -HP’(U < m)P(S(X) =q) =t
qi — qi+1

where the last inequality follows because P(S(X) = ¢;) = P(X = z;) = S(z:) — S(ziy1) =

qi — qi+1. The Proposition follows as desired.
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S1.2 Randomizing p-value

Algorithm 3 Computing simultaneously valid p-values for H(()S’]

) in the symmetric array

case.

INPUT: Poisson process realizations {/Ny,(-),u < v € [n]} and a hierarchical

partitioning I = {Iér)}re[RMG[Qr] of the domain.

OUTPUT: p-values {p{>7}.

1:

2:

3:

10:

11:

12:

13:

14:

15:

for each r € [R] do

for each ¢ € [27] do
Define integer matrix A as (317).
Set
p"Y = 2min (FTW1 (n2/3 (A (AT9)) — 2)), 1 — Frw: <n2/3 (AL (ATD)) — 2)))
end for
: end for
. Apply Algorithm 2 on {p("9} to obtain {{pgﬁ’j’r)}ﬁzs}se[RLje[gs].

(s,9) (8,3,7)

: Compute pp""’ = min{py. creds,s+1,...,R}}.

: Run Metropolis—Hastings described in Section 3.1.3 to generate Ml(b*)7 e ,M](\?*) for

b* € [B] and let {N,(E)()} be the corresponding point process realizations.
for v* €{1,2,...,B} do:
For each r € [R] and ¢ € [2"], construct AL from {NSL)()}
Repeat lines 1 to 8 to obtain ﬁg;sb])
end for
Compute pif’j) =% 25*:1 ]l{ﬁgfbj*) < pﬁ;f’j)}.

Compute pgf’j) = pgf’j)Qs.
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S1.2 Randomizing p-value

Algorithm 4 Computing simultaneously valid p-values for H(gs"j ) in the degree-corrected

setting.

INPUT: Poisson process realizations {Ny,(-),u < v € [n]} and a hierarchical
partitioning I = {I }re R],¢c[2r) of the domain.
OUTPUT: p-values {pI;’J)}

1: for each r € [R] do

2: for each ¢ € [2"] do

rd) __ Tt

B Set pl )_2[1_¢<G(MMI2—1W>}
4: end for

5: end for

6: Apply Algorithm 2 on {59} to obtain {{pF’7’ YE Yeermjepe-

7: Compute p% 20) = mm{p(s’j’ e {s,s+1,...,R}}.

8: Run Metropolis—Hastings algorithm described in Section 3.3.3 to generate m(®”) for
b* € [B] and let {NQ(LIZ,*)(-)} be the corresponding point process realizations.

9: for b* €{1,2,...,B} do:

10: For each r € [R] and ¢ € [2"], construct AGO ) from {nglf,)()}

11: Repeat lines 1 to 8 to obtain ﬁg).

12: end for

13: Compute the adjusted p-value pF =5 Zb* 1 ]l{ﬁ;f ]b* ~(S j)}.

14: Compute p(s:9) = ( J) g
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S1.3  Proof of Proposition 2

S1.3 Proof of Proposition 2

Proof. Let T(+]-) be the transition probability of the Markov Chain specified via (335), we first
verify that the Metropolis-Hastings ratio is 1 by showing that T'(-|-) is a symmetric distribution,
i.e., for any two sample vector m") # m® € My, we have T(m™"|m®) = T(m®@|mW). 1t
is obvious that the necessary condition for T(m®|m ) to be positive, is that there must exist

(2)

exactly two indices ¢ # j € [N] such that ml(-l) #m;”, mgl) #* mf) while the other elements

are all the same for the two vectors. We can see that T(m®|m®) = T(m®|mW) = 5(5“
2

regardless of the values of mﬁl), m;l), ml(?), m§-2).

Next, we show that the Markov Chain is irreducible on the support Mg. By definition
it suffice to show that for any two sample m™ #* m® € Mg, there exist a finite steps path
m® — m@ . Since the vector of all degrees D(m) are identical for all m € Mg, we can
show there exist a path m® — m® which sequentially matching each element of m™ to be

M and m® as

the same as in m®) . To be specific, we denote the jtn elements of vectors m
m;l) = (uj,v;) and m§.2) = (u},v}) respectively. Let ¢ = min {j € [N]: mg-l) # m§-2)}, we first

show that we can go from m" to an intermediate state m(*?) € Mg in finite steps, such that

mgl’i) = m;?) for all j < i. We can easily see for ml(-l) == m,l(-Q)7 there could only be two cases
1. w; = uj,v; £ vj Or Ui # uj, v, = vj

2. u; £ v £ u; £
For the first case, suppose u; = uj, v; # v, then by the fact D(m(l)) = D(m(z)) there must exist
s > i such that us = v; or vs = v;. Then by (335) we can easily check that we can go from m®
L1) . For the second case, we can go from m® to

to m*? in one step with T(m™®9|m®) =

1
5(2)

m® in two steps where in the first step we move to a state m

S = ()

such that m
which is just the state in the first case, so by the same reason we can move to m™? in the second
step. Notice that the above paths does not depend on the index i, thus there exist an integer
t < 2N such that we can sequentially move from m® — m®) — ... — MOV =@ i
t steps.

Given any state m, if not all edges are the same, i.e., m; = (u,v) for some u,v € [n] and

all ¢ € [N], then we can always find m; = (us,v;) and m; = (u;,v;) with ¢ < j € [N] such that
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the nodes w;, vi, uj, v; satisfy one of the two cases listed above. For case 1, we can see that the
five outcomes contains multi-edges, so the Markov Chain can stay at current state with positive
probability and thus the period for this state is 1. For 2, we can easily check the state can return
in t steps for any ¢ > 2, thus the period for this state is also 1. Then by irreducibility, we can
conclude that the Markov Chain is aperiodic.

With the Markov Chain being irreducible and aperiodic, it converges to its unique station-
ary distribution. Then by the construction of the Metropolis-Hastings algorithm below (335), it
is guaranteed that the stationary distribution is the target distribution, i.e., the uniform distri-

bution on Mgq.

S1.4 Supplementary material for Section 3.1

Recall that we let AT9 defined in (317), be the adjacency matrix of a undirected Poisson
Stochastic Block Model with K communities. We denote o as the membership vector and ~ as
the connection intensity between different communities, as discussed in Section 3.1.1. Without
loss of generality, we omit all the superscripts of A that represents the partition of the support
X and just use A to denote adjacency matrix generated from Poisson Stochastic Block Model
in all subsequent analysis in Section S1.4 for simplicity. For the same reason, we also omit the
subscripts of B9 the matrix with entries being counts of interactions between two groups of

individuals, in the proof of theorem 3.

S1.4.1 Proof of Theorem 2

Proof. Under the null hypothesis, we have that P = v1,1}, for some constant v > 0.

Let A’ be a n x n matrix such that

(Auwo =9)/V/(n=1)y, u#v
(v =N/Vn=1v u=v

Where 4 = ﬁ Y <o Auv is an estimator of v. Let Cn = n(y —4)/+/(n — 1)y and matrix

A* be as defined in (S1.4). Then by definition we have that A’ = A* + A’ where A’ =

A/uv =
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(v — A)1a1}/\/(n — 1)y = Cyl,1]/n. Note that 4 is the sample mean of n(n — 1)/2 i.i.d

Poisson random variables with mean -, we can apply the Poisson tail bound (S1.5) again and

get

Puw—%>s>é%”4‘z%f£§*

And thus we have |y — 4| = op(logn/n) and that C,, = op(logn//n).
Let uf be the eigenvector of A* corresponding to its iz, largest eigenvalue. Then by

Lemma 2, we have a lower bound on the largest eigenvalue of A’:

M (A) = (i) Al
— M (A7) + ()T A
= M(A%) + Co(p}) "1l pi/n
= M (A7) + O,(1/n) - 0p(logn/v/n)

> A1 (A7) —0p(n”%?)

To derive the upper bound of A\; (A’ ), we denote p} as the eigenvector corresponding to
the largest eigenvalue of A’. Let {ai,...,an} be the coordinates of the vector uj with respect
to the basis {uf,...,un}, ie, ph = S0 aipi. Define Sc, C [n] := {i € [n] : X\i(A*) >

(A1(A*) —|Cn|)} as the set of indices of those eigenvalues of A* that lies in the interval (A1 (A*)—
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i

Chl, A\1(A*)]. Then By Lemma 2 and the fact that |C,| is the largest eigenvalue of A’, we have
|Cnls y g g ;

M(A) = (uh) Ay
= () A+ ()T A

< Za?/\i(fi*)Jr( > a(u))IA(D] asu))

1€ESCcn 1€Scn

+(0 Y aww))AC Y )

i€([nl/Scy,) i€([n]/Scy,)

SN 3 -l Y @
i€Sc,, i€([n]/Scy,)
HiSc, - Y @) A | Gl Y af

i€([nl/Scy,) i€([nl/Scy,)
~ m ~
<MA) +[Se,lCal- (Y ai-Ou(1/n))
i€([nl/Scy,)

=M1 (A*) +1Sc, |- Op(1/n) - op(logn//n)

Then we could bound the size of Sc,, by using the results from Erdés et al. (2012) and Bickel
and Sarkar (2016), where the main idea is that the empirical counting of the eigenvalues is close
to the semicircle counting functions.

Let N(a, b) be the number of eigenvalues of A* lying in interval (a, b], and define Ny.(a,b) :=
nf; pse(x)dz, where ps. = (1/27)((4 — )4+ )/? denote the the density of the semicircle law
discussed in Erdds et al. (2012). Following Theorem 2.2 in Erdés et al. (2012) and the discussion
in Bickel and Sarkar (2016), there exist constant Ag > 1, C, ¢ and d < 1, such that for any L

satisfying the following:
Aoploglogn < L < log(10n)/loglogn
and for |a|, |b] < 5, we have :

P (1N (a,b) = Nec(a,b)| > 2(logn)" )
<P (|N(_oo, b) — Nye(o0,b)| > (logn)L) 4P (|N(—oo, a) — Nye(00, a)| > (logn)L)

<2Cexp{—c(logn) "}
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Notice that S¢,, = N (A1 (A*) = |Cul, M (A*)), and from the above inequality we have that:
Sc,, = N (A (A*) = [Cu|, A1 (A%)) = Nee(M(A*) = |Cul, A1 (A*))) + Op(logn)” (S1.2)
And

5. - A1 (A*) 1 5 1/2
Nl = [Cal (@) = [ (= et
AL(A%)—|Cp| 2T

2
1 2 1/2
< n/ —(4—= dx
A1<A*>—\cn\(27f(( |”
= O(n|Cu[*'?)
= 0p(n'/*(logn)*’?))

Where the second to last equality holds by using the area of a rectangle with side length (2—|C,,|)

and y/4 — (2 — |Cr])? to cover the actual size of the integral.

Now we can see that
M) € M(A%) + 18, - 0,(1/n) - op(logn/ )
= A1 (A*) + 0, (n"*(logn)*?)) - Op(1/n) - 0p(logn/v/n)
= M1 (A*) + Op((logn)>?n /")
< M(A) +op(n=%?)
And combining the lower and upper bound we have that
A (A7) = M (A%) + op(n2/?) (S1.3)
Now let’s get back to the target matrix A = %(A’ — %‘In) By triangle inequality of
matrix norm we have
Al C" Al C" Al C”
[ = | == L] < (|47 = == L] < [JA7]| + || == 2|
And since H%InH = |Cn/n| = op(logn - n_3/2), we could easily see that
4 _ 5 C
M(A) = VA/y-||A = 71n||
= (1 + op(log n/n)) (/\1(.%1’) + op(logmn - n73/2))
= Ai(A) +0,(n~*?)

= Ai(A%) + 0p(n~/%)
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Finally by Lemma 1 and Slutsky’s lemma, we have

n?* (A (A) - 2) % TW.

O
Lemma 1. Let P be defined in (318) and A* be a matriz such that
. (Auo = Puv)//(n = 1) Puy, w70
Ay = (S1.4)

0, u="v
Then we have

n?3(\(A%) —2) -L T,

Proof. Consider a n X n real symmetric Wigner matrix

Where the off-diagonal elements are i.i.d. standard normal distributed random variables and the
diagonal elements are zeros. Theorem 1.2. in Lee et al. (2014) implies that the largest eigenvalue
of G* weakly converges to the Tracy-Widom distribution.

Next, by tail bound of Poisson random variables, for any s > 0 and 1 < u,v < n we have

IP’(‘ATW

And thus there exist a constant v independent of n, such that for any s > 1 we have

iy OA;U

The above inequality shows that the entries of A* have a uniformly subexponential decay,

s P,.,s?

- Vn — 1) = Qexp(f2(Pw + \/Pm,s))

(S1.5)

S

vn—1

>

) < v exp(—s")

and thus by Theorem 2.4 in Erdés et al. (2012), we have that n?/3(A1(A*) — 2) converges to

n?/3(\1(G*) — 2) in distribution. O

Lemma 2. For each 1 < i < n, let uj be the eigenvector of A* corresponding to the i, largest

eigenvalue A\;(A*). Then for any deterministic unit vector v, we have

() "™v)? = 0,(1/n), wuniformly for all i € [n] (S1.6)
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Where we define an, = Op(bn), if for any € > 0 and D > 0, there exists no = no(e, D) such that
P(an > nby,) < n~ P for all n > no.

Lemma 2 is a direct application of the eigenvector delocalization theorem proposed in Alex
et al. (2014). Note that the conditions of Theorem 2.16 in Alex et al. (2014) does not apply
to our configuration of A* since the diagonal entries are made to be all zeros while the original
condition requires that all elements of the matrix should have positive variance. However, Erdés
et al. (2013) provides a local semicircle law(Theorem 2.3) which holds even when some entries of
a generalized Wigner matrix have zero variance, and as a result of the local semicircle law, the
eigenvector delocalization theorem still holds in our setting. See also discussions in Bickel and

Sarkar (2016) and Lei (2016).

S1.4.2 Maximum eigenvalue test statistic under an alternative

We consider the limiting distribution of A;(A"?) under some alternative cases. When the
adjacency matrix is generated from a Stochastic Block Model with K > 1 communities and
Bernoulli entries, Bickel and Sarkar (2013) shows that the largest eigenvalue of the scaled and
centered adjacency matrix is O(y/n), given that the community probability matrix 2/ is diagonally
dominant. Lei (2016) provided a more general result which requires that each community has
size at least proportional to n/K. The following proposition is a direct extension of Theorem

3.3 in Lei (2016) to the Poisson network.

Proposition 4. Let AT be an adjacency matriz from Poisson stochastic model with K com-
munities and let G, = {u € [n] : o(u) = k} be the set of vertices that belong to group k for
k€ [K].

Assume there exist a constant Cx > 0 such that for all n we have
min [Gk| > Ck - n (S1.7)
ke[K]

Then for any r € [R] and £ € [27], if K > 1 we have

VdCx — Op(1)
(I¥llmas + 0p(log n/n))*/*

where § is the minimum £~ distance between any two distinct rows of =y.

A1 (A~(r,€) ) >

(S1.8)
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Proof. Let P = 41,1}, we have

4] = ((n=1)3) "2 A = (P - diag(P))||

> ((n = 13)"*(|P - P - diag(P — P)|| - ||A~ (P - diag(P))]))

We can see that the matrix A — (P — diag(P)) has off-diagonal entries being independent,
centered Poisson random variables and diagonal entries being all zeros. By Theorem 2 in Latala

(2005), we have that there exist some C’ > 0 such that
E||A— (P — diag(P))| < C'v/n (S1.9)

and thus ||A - (P- diag(P))H < Op(v/n).

To derive an upper bound of ||P —-pP- diag(P — P)H, we notice that since K > 1, there
exist two community ki # k2. Let gr, = {u € [n] : 0(u) = k1} and gi, = {u € [n] : o(u) = k2}
be the set of vertices that belong to k1 and k2 respectively. Since we assume the matrix v have
pairwise distinct rows, there must exist a group k3 € [K] such that i, x; 7# Yroks, and we can

choose

k3 = argmin|ye, 12 — Yigk|-
& €[K]

Note that ks can be equal to k1 or ka. Now let D be a submatrix of P — P- diag(P — 15),
which only consist the rows in k1 U k2 and columns in k3. We can see that when ki # k2 # ks,

after some row permutaions D could be seen as:

D,
D=

Do

where D1 is a |k1| X |k3| matrix with all entries equal to i, x; —% and Da is a |ka| X |ks| matrix

with all entries equal to yx,x; — . Then we have

I1DI| = max (s ks = )V Tl - Ral, (Yo = 3)/Thal - Tk

> ndCk

When ks = k1 or ks = ko, we can see D could still be permuted into a block matrix with

blocks D1 and D2. However in this case, one of the blocks have all diagonal entries being zeros,
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since we do not allow self-loops. Without loss of generality, we assume that k3 = ki, and we still

have the same lower bound of HDH by

IDI| = max ((vyks = N (Iki] = 1), (Year, =)V Tkl - )

> ndCk — O,(1)
Finally we have

4] > ((n = 1)4) " (ndCx — Op(v/m))
VisCx — 0,(1)
" (I¥llmax + 0p(log n/n)) /2

S1.4.3 Proof of Theorem 3

Proof. Under the null hypothesis, we have that By, ~ Poisson(y) for some v > 0 and for any
u € Vi,v € Va. Recall that we denote 4 (325) as an estimator of v, matrix B as the empirically
centered and scaled counterpart of B and W = B"B.

Let B* be as defined in (S1.13) and B’ be a m xn matrix with entries B/, = (Buv—%)/\/m7.

Then we have B’ = B* + aA, where A = 1,,1) and o = 2=L. Denote W* = B*"B* and

3

W’ = B'"B’. Then we let (\;(W"), /Lf)?zl be the pairs of eigenvalue and eigenvector of matrix
W* with the eigenvalues in a non-increasing order, namely \i(W*) > Xa(W*)--- > A\, (W™).
Similarly, we let ()\i(W'Lu;)?:l be the pairs of eigenvalue and eigenvectors of W', where the
eigenvalues are in non-increasing order as well.

First let us derive the a lower bound on A (W’), the largest eigenvalue of W’ = B'TB':
M(W') > (u1)" BB 1y
= ()" BB i + a(ui) (BTTA+ ATB" + aATA)uy
=MW + o))" (BTA+ATB* + aATA) ]

> M) — |a(u) (B TA + ATB" + aAT A

56



S1.4 Supplementary material for Section 3.1

Let B* = 327, \/Ai(W*)s; ;T be the singular value decomposition of B*. Then we have:

BT = 3 VAN T = AT
i=1

Notice that s}, u} are the eigenvectors of the matrix B*B*T, B*" B* respectively, and we can

easily check the conditions in Lemma 4 hold for both matrix B* and its transpose, thus we have

api" B TALT = an/ M (WH)si T 1,1, 1}
= OP(IOgn/ng/Q) ) Op(l) Y )\I(W*)

= O~p(10g n/n3/2) ) Op(nil/B)

Where the op(log n/n3/2) term is derived by noticing that 4 is the sample mean of m x n indepen-

dent Poisson random variables, and again by the Poisson tail bound (S1.5) we get o = :}%

0p(logn/n3/?). On the other hand it is easily seen that a?ui' ATAu; = O,(1) - 0p((logn)?/n?),

which indicates that:

MW > (W) —|a(w]) (BTA+ATB* + aATA)u]|

> M (W*) = Op(logn/n®?) - Op(n™'?) = O,((log n)* /n)

= M(W") — Op(logn -n~ /%) (S1.10)

Next, we derive an upper bound for the largest eigenvalue of W’. Let {a1,...,an} be the
coordinates of y}, the eigenvector of W’ associated with its largest eigenvalue, with respect to
the basis consisting of eigenvector of W*, i.e., i = 1" aiuf. Let S = {i € [n] : \i(W*) >
M (W) =2|a(B*TA+ATB* +aATA)| }, such that |S| is the number of Ai(W*)'s in the interval

(M (W) =2||a(B TA+ATB* +aATA) ||, A\ (W*)). Let vi = 3.7, a;p and vo = D 1 Qilhi
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so that u} = vi + va2. we have:

M(W') = () W'l

= (W)TBTB Y + a(u) (BTA + ATE + aAT A

1
SAMW) D al+ (M) = 2a(BTA+ATB +aATA)) - > a]
jES Jj€([n]/S)
+ 2vI|a(B*TA T+ AT+ aATA)|V1 + 2v-2r|o¢(B*TA L ATB ¢ OZATA)‘VQ
<MW =2a(BTA+ATB +aATA)| Y a]
Ji€([n]/S)

+ QmZ al(u) (B TA + ATB* + aATA) |y}
i€s

+2)a(BTA+ATB +aATA)| > df
J€([n]/S)

SMWV) 4218 )i (1) (12a(BT Al + [a®ATA)|) 15
JES

<MW +2I81 D af (A (W) - Op(log n/n*’?) + Op((logn)* /n*))
JES

< MW" +2(8](0p(n™ ') - Oy (log n/n*"?) + O, ((logn)* /n?))

<MW +2|8| - Op(logn - n~ 1/

Now let a = A\ (W*) =2[|a(B'A+A'B+aA’A)|| and b = A (W*). We can see that |S| = N(a) —

N(b). Noticing that |(V(a) = N(b)) = (Nm(a) = Nm(b))] = [(N(a) = Nim(a)) = (N (b) = Nm (b))

and together with Lemma 5 we have that for any € > 0

P(|(N (@) = N(b) = Win(a) = Nin(b))] = 20" log(n) 7= 15 125)

<P[(N(a) = Nou(a)) = n™ " log(n) = =] 4 PI(N(B) — N (b)) = n™ " log(n) e o= 1o2()]

<2n exp(—log(n)"'*#'°5™)

and which indicates that |S| = [Ny (a) — N (b)| + O, (n—1 log(n)Ce 108 1°g<N>). Since Nin(a) —

N (b) = nf: om(x)dx, and it is easily seen by simple calculus that o.,(z) achieves it’s local

. _ (1—n/m)? (1—n/m)?
maximum at © = S50, and om (S50

— 1
) = w1—n/ml/nim Thus we could have the
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following bound on the size of [Ny, (a) — N (D)]:

Win(a) = N (®)] < 20lla(BTA + ATB + aATA)| -

=S

And we could see that

Ha(B*TA +ATB 4 aATA)H < |a\(HB « TAH n HA’B*

+lal -[|Aa"Al})

< lal 2| B[ - 1Al + lal - 14]3)

= op(logn - n~*2)(2/mnA (W*) + mn - o,(logn - n~*'?))

—5/6)

=op(logn -n

Thus we have that |S| = [Nin(a) — N ()] + O, (n_l log(n)C= 108 IOEW) < 0p(logn - n'/®) and

MWV < MW + S| - Op(logn - n~1/6)

<A (W) + Op((log n)? -n717/6) (S1.11)
Combine (S1.10) and (S1.11) we conclude that
MV) = M (W) + op(n~2/3) (S1.12)

Finally we can look at the target matrix B. We see that B = B’ x \/g and we can derive from

the Poisson tail bond (S1.5) that \/g = op(logn - n~'/2). Thus we can also have

MW = \/gxl(vif’)

= (14 o0p(logn-n~ ")) (A (W*) + 0, (/%))

= M(W") + 0, (%)
Then by Lemma 3 and Slutsky’s theorem, we get the result of Theorem 3. O

Lemma 3. Let B;U be a matrix with entries:

Br =B =T vy v e n) (S1.13)

VY
and let W* = B*TB* with )\1(V~V*) being its largest eigenvalue. Suppose that lim,_oo n/m €

(0,00), then we have, as m,n — oo:

m)q(W*) —(Vn+vm)? 4
Wmt v+ oy T (S1.14)
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Lemma 4 (Theorem 2.8 in Alex et al. (2014)). Let G be an m x n random matriz with inde-
pendent entries satisfying

1
EGuy =0, E|Guw|® = —.
Vnm

/¢ < m < n® for some C > 0. Suppose for allp € N,

Assume that m and n satisfy the bounds n
there exist Cp such that

E|(mn)*Gu|? < Cp

Let p; be the eigenvalue of GTG associated with its iy, largest eigenvalue. Then for any € > 0

we have
VI = Or(1/n)
uniformly for all i < (1 —¢) min (m,n) and any deterministic unit vector v € R™.

Lemma 5 (Theorem 3.3 in Pillai et al. (2014)). Let &+ = (14+./2)?, and denote the Marchenko-

Pastur law by om,, which is given by

om(z) = > (€4 —z)(z — €)]+

T 2mn 22

Let B € R, define the empirical spectral distribution of (B*)TB* by:

N(B) = 1 3 Lis.ooy (1))

And the distribution given by the Marchenko-Pastur law:

Nw(B) = /ﬁ om (@)

If limy, 00 7= € (0,00) \ {1}, then for any € > 0, there exists a constant Ce such that:

PN () — Non(8)] = 1" log(m) 7 1%50) < 0 exp(— log(n)” 1)

S2. Supplementary material for Section 4

For r € [R] and ¢ € [2"], define
fI(y-) Ao — Ab dv
£

DR A —
fI(r) Ao + Ao dv’
‘

(S2.15)
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S2.1 Proof of Theorem 4

J () Aa dv S () b dv
i —1 (r,€) I _1_ 5(n0
so that Toxar =3 +6 and Ty xar =2 1 .
Iy Iy

Proposition 5. For every r € [R] and | € [27], N{"" ~ Bin(L + 69 N9 conditional on
N©O and if 650 =0, then p™o ~ Unif0, 1].
Moreover, for every r € [R], conditional on {N(T’Z)}ge[y], the collection of random variables

{Na(r’a}le[gr] are mutually independent.

Proof. Since N&O = Na(It@), we have that NS has the Poisson distribution with mean

S5 Aadv. Since NTO _ NMO = Nb(r’e) has the Poisson distribution with mean [, Apdv, and
L l

is independent of Nér’e), we have that, for any s,t € N where s < ¢,

PN = s, N =t —s)
P(N™H = 1)

= [ (m) Aadv s = (m Apdv t=s
1 I 1 I
ge l fIz(T) Aadl/ 7“78)!6 l fll(r) Abdl/

- Aa+Apd
] fIl(r) +bV{

PN =s|NTD = 1) =

He

t
fI(T) Aa + )\bdl/}
l

VAT WA AN
_(S>(2+5 ) (h-a0)

and the first claim follows directly. If (SZ(M =0, then ﬁl(k) is uniform by Proposition 3.

The second claim follows from the independent increment property of a Poisson process. [

S2.1 Proof of Theorem 4

Proof. (of Theorem 4)
Let r* € [R] denote the resolution level that satisfies (436). Recalling that 5l(r*) is defined

as (S2.15), we define the event

o™

. . <[ CY? R R

™10 r*)2 r

Epv 1= {§ (NTTD 1) > 2 /2(,31/2 +2log"/? E) +210ga},
=S

where C' is the universal constant specified in Theorem S1 which we may assume to be greater

than 1. Then, by Theorem S1,



S2.1 Proof of Theorem 4

In order to upper bound the probability of &£, we observe, by our assumption that

ENCTD = f1<7-*) Adv > 2 for all [ € [27"] and the fact that \5l(r*>2\ < 1, that
l

V

27
D ysrz o 1 (r*)2
IEZ (N D" "> Z;(/m )5l and (52.16)
S ! Z / v)e? (52.17)
4=\ /e Lo '

Var Z(N(r*’l) - 1)51(r*)2

=1

IN

As a short hand, we write

W= ZN“ D —1)s"%, and

'r*/2(

2
T Rap =2 Jr210g1/2 g) +2log§.

We note that by (436), we have EW > %Z?:l (fjl(r*) )\dV) > Ty+ R,a,3- By this, Cheby-
shev’ inequality, and (S2.16) and (S2.17), we have
o
P(E5) = IP’{Z(N“*’” —1 % < TM,R,a,ﬂ}
1=1
=P{W < Tr- o}
=P{W —EW < T+ pas — EW}

< Var(W) - {EW — Trs poaps} >

r¥*

27 —2
{Z N<T e 5(T >2}{E( (N(T*yl) - 1)6Z<T )2) - Tr*,R,a,ﬂ}
=1 =1

o 1& -2
(r*)2 (r*)2
< — — — Lr* [eY
<G ([ )" Ha D ([ ) =T}
=1 1 =1 1
12 12 -
(r*)2 (r*)2
<<z -
< G2 Ha B ()}
=1 i =1 1

where the penultimate inequality follows from (436) and the fact that C' > 1. The Theorem

follows as desired.
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S2.2  Proof of Theorem 5
S2.2 Proof of Theorem 5

Proof. (of Theorem 5)

We first claim that, writing C' as the universal constant specified in Theorem 4,

_ 2 r/2 1/2 -
i Aa — Ao Adv > min 2 c + 210g1/2 E + g log E + LHcd 2777
dn J; A re[R] N 153 « n «

5 e, (S2.18)

To see that this claim is true, define

Cmin

10g2 % CmaxJ )
¥ =min| R, | ——= — lo ,
( { + &2

or equivalently,

logy, & Crmax .
|52 —logy S| if9/q21/4
F=q 20 .
R

if v/qg < 1/4
fmax — ] < R < log, 5 — log, ¢22x, we have

27
+2log!/? E) +210g B | CHCay-20
a n a 2

Then, using the fact that log, § — log,

oF /2 (Cl/z

n

IA

4
iCln_ Tty (,3_1 + log 105%") ify/qg>1/4

2
Lom™ @ (B +logl8n)  ify/g<1/4

for some C1 > 0 whose value depends only on ¢=2x  Cp, and C4. Therefore, we have from
min

assumption (437) that claim (S2.18) holds. Then, by Lemma 8, we have that for every r € [R],

1 or (fll(,.) )\a o Abdl/

2
r N Adv
n fIl('r‘) Adv ) Il(r)

2
> l/(A“f’\b) Ny — FEC -5
nJ; A 2

Thus, using (S2.18), we may conclude that there exists a r € [R] such that
1 or <f1l(r) Aa — A\pdV
1=1

2 "2/ 1)2
22 (¢ 2R\ . 2. R
B Adv > 21 — —1
dn & szzm Adv ) [;7») Y= < B +2log a> + n 08

o .

=1

From the hypothesis of the theorem, we also have that for all [ € [QR},

A v
Adv =n >n
(R J; Adv Cmax V(1)

Cmi _
>p2ito=FR > 9

Z 4
Cmax
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S2.3  Proof of Theorem 6

where, in the final inequality, we use the assumption that R <log, 5 — log, %

Then, from Theorem 4, it holds that P(pr < a) > 1— 204 and the conclusion of the Theorem

follows as desired.

S2.3 Proof of Theorem 6

Proof. (of Theorem 6)

The proof is similar to that of Theorem 4. Let r* € [R] and I* € [2""] denote the resolution

level and bin such that

) Ag — ApdUy 2

1 (i da =X c'? K

e e Adv > 2r* 2log —.

4< 2 [ ) AV /Ifi*) vz g t2leey
G

Define the event

. . 1/2 K
Eprpr 1= {(ml(f ) _ 1)5{: )2 > " 4 + 2logg}.

By Theorem S2, we have that

«a @
P(Pmin > —) < P* > =
(Bmin 2 ) <P 2 )
<P {p“” > 3} ngm*) +P(ECH)
K
< B+P(Ex)
To bound P(&f«;« ), we use our assumption that IEml(:*) = J,o) Adv > 2 and the fact that
o

51(:*> <1 to obtain

E(m{." — 1) 2

%

E (/ )\du> 51(:*)2 and
2\J1

(/ Adu) 52,
16
I

Var(mgf*) = 1)(51(1*)2

IN
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S2.4 Proof of Theorem 7

‘We have then

01/
ﬂ1/2

. . . 1/2 -2
< { Var( m{t) —1)s >2}{IE‘,(ml(: ) 1) — (2r* + ¢ + 2log g)}

51/2
1 2
<<= v <.
_{4(/11(:*))\@)51 } <p

P(wa):IP’((m,(I) )52 + 27" +2log5)

S2.4 Proof of Theorem 7

Proof. Let r := ﬂog2 (5 ))-| so that

<

(D) < s YD),

r—1 or

[\

Z(( )) > fmax 8y assumption,

We observe that since

< [log2 %] Llog2 — log, cmaxJ =R.

Cmin
Hence, {Il(rH)} exists in our dyadic partitioning and there exists [* € [2""!] such that the interval
II(IH) C S. Let C be the universal constant specified in Theorem 6 and let Cs := 32;&01/2.

min

From (438), we have that

1 flluﬂ) Aa — Apdr 2 )\d
4 lelgiﬁ(l] ( fI(7-+1) Adv ) /IZ(T-H) v
l

1 rgen 22y 2
> =000 A
4 ( fI(r+1) Adv ) /I<,f+1) v
1A
1 2 Cmin (r+1)
>4 Ad > 5 —2"
—4 S/I(TJr D v sn Cmax
i
S) Cmi 2 v(S) 2012
>62 2= (r—=1) Cmin 2 V( min_ (5
16cmax = " 0(1) 16cmax — S v(I) Cs
1/2 1 1/2 R
> 2logn + +2log — > 2r + + 2log —
B « 8 a’

where inequality (a) follows from the fact that

r+1) Adv
Ay = fll(*+1) > ncmin 2—(r+1).
(r+1) [y My T Cmas

The conclusion of the theorem follows from Theorem 6.
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S2.5 Auxiliary results

S2.5 Auxiliary results

Recall that, for a positive integer m, we define

.1 m
Sbin(,m)(t) 1= P(|Bin(g,m) — = > ) (S2.19)
Sz () :=P(xi, > 1). (S2.20)
Moreover, define

m m m m
m 1= T8 o 17-",7_177 2.21
M { SR 2 2 } s

{0,1,,..,%} if m is even,
M, = (S2.22)

{3,,...,2 if m is odd.

Theorem S1. Let d be a positive integer. For each | € [d], let m; € N, & € [0, 3], and let
Aiq,...,Aq be independent random variables where A; ~ Bm(% + 6l7ml),

Let Ui, ...,Ug be independent random variables distributed uniform on [0,1] and indepen-
dent of A1,...,Aq. Define py := U - SBin(%,ml)“Al - B+ (1 - UZ)SBin(%,mL)“Al - B+ 1),
define the set L := {l € [d] : m; > 2}, and define p := ngm (X1er —2logpr).

Then, there exists a universal constant C > 0 such that, for any o, B € (0,1), if

1/2
2 12(C 12 1 1
ZGEL(ml — 1)o7 > |L| (ﬂl/Z + 2log E) + 2log = (S2.23)
then P(p < a) > 1- .

Proof. Define

Li:={lcL: (m—1)3>2} and Lo:={l€L: (m—1) <2}

For simplicity of presentation, we write Z; := —2logp; and Zy = mil(Al - %)2 for I € L.

By Hoeffding’s inequality, it holds that SBin(%,m)(t) < Qexp{f2%}. Therefore, we have that
my my
20 = ~2108{ U0 Sy oy (140 = 52D+ (1= U)o (10 - 51 +1) |

2
my 4 m; -

66



S2.5 Auxiliary results

By Lemma 9, we have

S - (2|L| + VB|L|Y? 1og!/? é + 2log é) <a, (S2.24)

X2|L|

By (S2.24), the fact that ngw (+) is monotone decreasing, and the fact that 2log 2 < 2, we have

P(p > a) = P{ngm (Z —210gpz> > a}

leL

<P3>" —2logp < 2|L| + VB|L|Z logZ — +2log }
leL

Ll
Rl

leLy leLy

<SPAY (Z-EZ)+ > (Z-EZ) < Y (4-EZ)

lelq l€ELo leL

~ 1 11 1
gp{z(zl —2log2) + Y Z < 2|L| + V/8|L|? log? a+210ga}

+ 3" (2-EZ) +2|L|? log?

leL>

1 —|—210g1}. (%)
a a

‘We now observe that by Lemma 7,

. 1 1
4-FEZ 2 —EZ)+2|L|Y?log"/? = + 2log =
> D+ > ( D) +2|L 7 log 7T — - 2log —

= €Ly
< =3 20mi — 1)67 + 2|L]? 10g"? é +2log é <o,
leL
where the final inequality follows by our assumption (S2.23). Therefore, returning to (x), we
may apply Chebyshev’s inequality to obtain
) < >ler, VarZ, + >ier, VarZ 2
{— e 20m — 1)62 + 2|L|2 log? L + 21og g}

—2
< Cd{—? > (- 1)67 + 9|L|? log? é + 210gé} < B.
leL

where, in the penultimate inequality, we used Lemmas 6 and where C' > 0 is the universal
constant specified in Lemma 6. The conclusion of the Theorem follows as desired.

O

Theorem S2. Let d be a positive integer. For each l € [d], let m; € N, §; € [0,1/2], and let
Aiq,...,Aq be independent random variables where A; ~ Bm(% + 6l,ml).

Let Uy, ...,Uq be independent random variables distributed uniform on [0,1] and indepen-

dent of A, ..., Aa. Definepr := Ur-Spinc1 ) ([A=F ) +A=U1)S pin( 1 m,) (|Ai= 5 +1), define
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S2.5 Auxiliary results

the set L := {l € [d] : my > 2}, and define pmin := FBemJL‘(minleLpl) where Fpega,n)(T) 1=
P(Beta(1,|L| + 1) < z) for any = € R.
There exists universal constants C' > 0 such that for any «, 8 € (0,1), if

1/2
c +210g H’
«

—1)6% >
g e — D002 i

then P(pmin < a) > 1— 5.
Proof. Let C be the maximum of 4 and the universal constant specified in Lemma 6. By

assumption, there exists [* € [d] be such that

+2log % > 9, (S2.25)

where the last inequality follows since 3, « € (0,1).

By Hoeffding’s inequality, we have that

my=
—210gpl* Z _21OgSB‘m(%,ml*)(|Al* - B |)
2
> 4 <Al* —%> — 2log 2.
my= 2

We write Z;+ 1= i(Al* — "LTZ*)Q so that —2log p;« > T — 2log?2 > T — 4.

myx

For any «, 8 € (0,1), we may use the fact that Fgeta,z|(2) < |L|z to show that

P(pmin Z O() S ]P’(mlnpl 2 i

[
min |L|) <P(p- > m)

= IP(—Q log pi~ < 2log %)

< ]P(Z,* —EZ;- < (4—EZpx) +2log H). (%)
(e

By Lemma 7 and (S2.25), we have that

. L L
(4 —EZ;x) +2log L—' < —2(myx — 1)63 4 2log % <o0.

Therefore, continuing on from (%), we have by Chebyshev inequality and Lemma 6 that

Var(Z;+)
{=(mi —1)62 + 2log

(x) < o

Zhes
H}Q §C{—(ml* —1)87 + 2log } < B.

The conclusion of the Theorem follows as desired.
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S2.5 Auxiliary results

Lemma 6. Let m be a positive integer and let § € [0,1/2]. Let A ~ Bin(3 + 6, m) and let U ~
Unif|0, 1] be independent of A. Define Z := 7210g{U-SBm(%7m)(|A7 %DJF(l*U)SBm(%,m)“A*
2+ 1)} and Z == L(A - 2)2

There ezists a universal constant C' > 0 such that
1. if (m —1)86% < 2, then Var(Z) < C,
2. and VaT(Z) <C.

Proof. First assume that (m — 1)§% < 2. By increasing the value of the universal constant C if
necessary, we may assume without the loss of generality that m > 17.

Define M., as (S2.21). Let P,Q be probability measures on M,, such that P is the
distribution of |A — 2| and @ is the distribution of |Bin(%,m) — Z|.

Then, let 5’0(~) be defined as in Lemma 10, we have by the same lemma that

VarZ < EZ*
_ /01 Se;mzuog So(|s] + ) - SESQ(S) du
<{ = (G) e} (229
+ {/01 ; <4log2{§o(\s| +u)})2Q(s) du}l/Q. (S2.27)

Term 2 of (S2.27) is equal to 16 - Elog* So(|Bin(3,m) — 2|+ U). Since the random variable
§0(|Bin(%, m) — | +U) is uniformly distributed on [0, 1], we have that Term 2 is upper bounded
by a universal constant.

For Term 1, we define r := ifgg and observe that for any s € M,

P(s) 1. f(1 . \ET 1 NET /1 NET \ER
Qs ~ 2 {<§+5) (5—6) +(§+a> (5_5> }

(1-40%)%(r* +r7°) <7r°

N | =

Since we assume (m — 1)(52 < 2 and since we assume that m > 17, we have that §% < % and
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S2.5 Auxiliary results

thus 0 < logr < 85. Let W be a random variable distributed as [Bin(3,m) — Z|. Then

Z r?*Q(s) = Er*V = /00 P2 > t)dt

seEM 1
:/ p(w > 280 4
1 2logr
%) 2
§/ exp<th2) dt
1 4mlog” r

R log t
g/ﬁt‘ﬁ%dtgc,
1

where C' > 0 is a universal constant.
Now we turn to the second claim. Write A = ZZ’;I €; where €1, ..., €, are independent and
identically distributed Ber(% + &) random variables.

For any i € [m], we have

2
Var.| fe_;3 [(A - %) } < sup Var[(z+e&)’] <m.

ze[—, 2

Thus, by the Efron—Stein inequality,

2
VarZzl—iVar{(A—@> ]
m 2
16 _ o m\”
< — ) - — < .
< mQEi_EIVaI‘.HE_Z}[(A 2) :| <16

The conclusion of the lemma follows as desired.

O

Lemma 7. Let m be a positive integer and let § € [0,1/2]. Let A ~ Bin(m, 5 + 6) and let U ~
Unifl0, 1] be independent of A. Define Z := —2log{U~SBm(%ym>(|A— %l)—i—(l_U)SBin(%,m)(lA_

%| —i—l)} and 7 := (A-— m)2.

4
m

We have that
1. EZ — 2> 8(m — 1)82,
2. and if (m —1)6% > 2, then EZ — 4 > 2(m — 1)4°.

Proof. Define M,, as (52.21) and note that M,, = —M,,. For s € M,,, write Pn(s,0) =
(%"is) (% + 5)%“(% — 5)%75 as the probability that Bin(m, % + 0) random variable is equal to

%+ s and Qm(s) = (%ﬁs)(%)m = Pn(s,0).
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S2.5 Auxiliary results

Define W = |A — | + U. We also define
Fn(8) = EZ = E[~21log So(W)]

= Z Pm(s,é)/o {—210g§0(|s|+u)}du,

SEM

where the definition of So(-) and the second equality follow from Lemma 10. We note then that
EZ — 2 > Fu(5) — Fin(0).

Moreover, since the function § — Pn(s,d) is equal to its Taylor series expansion for all

§ € (-1, 1), the same holds for Fy,(8), that is,

_ ) e O 11
Fm(8) = F(0) +;1wa (O)ﬁ’ for all 6 € (=5, 5)-

By symmetry, P (s,d) = Ppn(—s,—0) and thus, F,,(6) = F,(—6) and Fy(nj)(O) =0 when j is an

odd integer. When j is an even integer, we have that, by Lemma 11,

FP) =Y <8§”Pm(s,6)]5:0>/0 {—21log So(|s| + u)} du > 0.

sMy,

We now claim that F)\) (0) > 8(m—1). To see this, first observe that, by Hoeffding’s inequal-

ity, it holds that —210g{SBin<%’m)(\s|)} > 25% — 2log 2. Moreover, since D sem,, Pml(s,0) =1,
writing Pg)(s, d) as second derivative of P, (s,d) with respect to d, we have >\, Pg)(s, 0) =

0. Thus, using the fact that Pr(,?)(s, 0) > 0 for all s € M,,, (by Lemma 11), we have that, for any

§€e(=1/2,1/2),

FR@0) = > P,(nz)(S,(S)/Ol{—2loggo(|s|—|—u)}du

SEMy,
> > P7(n?)(5,5)(—210g{SBin<%’m>(|s|)})
sEMpm,
> 3 P50~
SEMyy m
4 (d\? 2
_E(%) { Z Py, (s,0)s }

SEMm,

E(A—m/2)2 where A~Bin(1/248§,m)
4 d 2 m 2 2.2

m
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S2.5 Auxiliary results

We may conclude then that F7<nz)(0) > 8(m — 1) as desired. Therefore, we have that
EZ — 2 = F,,(8) — Frn(0) > 8(m — 1)8°.

For the second claim of the Lemma, we note that A ~ Bin(% + 0, m). Therefore, assuming

(m — 1)6% > 2, we have that

4 m2
EZ74—EE(A75) —4
i{E(A—%—md)Q—I—mQéQ}—ZL

m

= (1 —46°) + 4mé® — 4 > 2mé”
as desired. The conclusion of the lemma thus follows. O

Lemma 8. Let I C R? and let In,...,I1 be a partition of I such that diam(I;) < CyL™Y9 for
all l € [L] for some Cq > 0. Write § := % and suppose that § is ~y-Holder continuous for
v € (0,1], ie., |6(x) — 6(y)| < Culle — yl|3 for all z,y € I, for some Cy > 0.
Then, we have that
0< /(Aa;)\b)Q)\dz/ B { (f” s Abdl’)Q/ )\dz/} <20uCad™ </)\du).
I =1 le Adv I I
Proof. Fix an arbitrary [ € [L] and define E®[-] as expectation with respect to the probability

measure with density ﬁ. We then have that
Iy

Py
fILAdV

Sy, (22522) A Ji, Aa —Abdu}z

=EV[? > {EVs)? =
[67] = {E™6} T v

For the other direction, we observe that

f], (L;Ab)%‘dl/ _ {fl, Ao — /\de}2
fIz Adv fIz Adv

=ED[6?] — {ED6}? = Var)(5)

(a) 1

= SEV [0 — (V)]
1 1 (b) _

< lowmOIx — v < low sup flo -y € DEGe 20,
2 2 zyel] 2

72



S2.6 Technical lemmas

where in inequality (a), the random variables X, Y are independent and distributed with density
fii\\du and where in inequality (b), we use the assumption that diam(I;) < CyL ™/,
I

In summary, we have that, for each [ € [L],

2 Na — Apdv\ 2
og/(A“ Ab) Adu(f’l) //\dVS%L*W‘I/ \dv.
I A fh/\du I 2 I

By summing over ! € [L], the conclusion of the theorem follows as desired.

S2.6 Technical lemmas
Lemma 9. Let X ~ x2,. Then, we have that for all t > 0,
P(X > 2k 4+ 2V2kt 4+ 2t) < e ".

Proof. If X ~ X3, then EX = 2k and X is also a Gamma(k,2) random variable and hence its

moment generation function is bounded by Ee*X ~EX) < 2(41’“_*;) for all A € (0, %) by Boucheron

et al. (2013, Section 2.4). Then, it holds by Boucheron et al. (2013, Theorem 2.3) that P(X —

EX > +/8kt + ct) < et for all t > 0. The Lemma immediately follows. O

Lemma 10. Let m € N and let A ~ Bin(%,m). Define W=|A- F|+ U where U ~ Unif0,1]
is independent of A. We let M}, be as defined in (52.22).

Write So(z) := P(W > z). We have that, for any z € R,
(1—-(z— kl))SBi'n,(%,m)(kl) + (2 — kl)SBm(%,m)(kl +1) ifz € [min M}, 1+ max M,,)
So(z) =1 if z < min M},
0 if z > 14 max M.},
(S2.28)
where in the first case, ki is defined as k1 := max{k € M, : k < z}.

Moreover, we have that

. ~P(|A-2|=k) ifz€ [minM}, 1+ max M)
So(z) =

0 else .
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S2.6 Technical lemmas

Finally, let A ~ Bin(1+6,m) and let W = |A— 2|+ U where U ~ Unif|0, 1] is independent

of A, we have that

~ m m
So(W) £ (1= U)S pincs my (|A - 5|) + U St my <|A -+ 1).

Proof. To establish the first claim, let z € [min M}, 1+ max M:;) and let k1 := max{k € M, :

k < z}. Define the event

Then, we have that

So(z) = ]P’(W > 2)

= P&, )P(W > 2| &) +]P><|A— %\ > k1>.
= {SBin(%,m)(kl) - SBin(%,m)(kl + 1)}(1 - (Z - kl)) + S’Bin(%,rﬂ)(k1 + 1)

The first claim (52.28) follows immediately.
The second claim follows by direct differentiation, and the third claim follows directly from

the first claim. The whole Lemma thus follows as desired. O

Lemma 11. For m € N, s € M,, (defined as (S2.21)), and § € (=1, 1), define Pn(s,0) =
(%ﬁs)(% + 5)%“(% — )2 7%, We then have that, for any integer j > 1,

529

me(s’ 5)

6=0

Proof. First suppose s > 0. Since 26| < 1, we have that,

m —m(14+28\°

- (g”j‘r S) 27" (1 4 20)* <1 + 2(25)k> B

k=1

It is thus clear that in Taylor series expansion of § — P, (s, d), all the coefficients are non-negative

and and thus, %Pm(s, 0) > 0.

If s < 0 on the other hand, the same claim follows by the fact that
P (—s,0) = Pn(s,—9).
The lemma thus immediately follows. O
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S3. Supplementary material for Section 5

S3.1 Two sample test Type I error

We consider the following three intensities

—_
>
S
8

N>
I

Ap(z) =40 - 1j0,1)(x)
2. Aa(z) = Mp(x) =40 - (sin(2mz) + 1)

3. Aa(x) = Ao(z) = 40- %1[&1]@)
The first function is uniform, while the other two are not, indicating the intensities changes on
the support. Note that the third function is the scaled beta density function with parameters
(2,5). For each of the three cases under the null hypothesis, we conduct 2000 simulations of
two independent Poisson processes with the intensities functions given in the corresponding case
and present the proportions of rejections out of all simulations based on the adjusted p-value of
each test. We generate 500 bootstrap resamples of each of the 2000 pairs of Poisson processes
conditional on the total number of observations of the pooled process N = N, + N, and use the
same resamples to derive adjusted p-values for all tests. We provide the percentage of rejections
at level a = 0.05,0.1 and 0.25 for the five test procedures under 3 different intensities, the
results are given in Table 4. We can see from the results that these five tests all attains the
corresponding nominal levels, which is not a surprise due to the Monte Carlo Approximation of

the exact rejection threshold.
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S3.2  Empirical verification of Tracy-Widom approximation and bootstrap correction

Table 4: The empirical level (% of rejections) of different tests under the null

case 1 case 2 case 3

Test
5% 10% 25% 5% 10% 25% 5% 10% 25%
MF 4.9 9.8 25.7 5.5 8.9 23.7 51 10.2 245
MM 4.6 89 224 54 104 23.9 4.9 104 26.0
KNy 4.8 9.6 23.5 5.1 9.5 24.2 6.1 11.3 27.2
KN, 4.7 9.7 259 4.4 9.3 24.1 5.9 10.9 25.8
KS 5.1 9.9 249 4.5 9.1 24.6 6.2 11.4 25.9

S3.2 Empirical verification of Tracy-Widom approximation and

bootstrap correction

To see how fast the largest eigenvalues converge to the limiting distribution, we consider two cases
with the numbers of nodes n = 300 and n = 1600 respectively. For each case we simulate 1000
adjacency matrix A whose entries {A;; : i # j < n} are independent and identically distributed
Poisson random variables with mean equals to 20. Then we plot the sample distribution of
the test statistics, i.e., n®/3 ()\1 (;1) - 2) against the Tracy-Widom distribution, where A is the
empirically centered and scaled version of A.

We can see from the first two graphs in Figure 11 that when n = 300 the sample distribution
deviates in location compared with the target distribution and when n = 1600 the location is
corrected but there still is some difference in scale. Though there are some differences in location
and scale, we can see the sample distribution does have similar shape with the Tracy-Widom
distribution even when the number of nodes is as small as 300. In similar experiments where
adjacency matrices have Bernoulli distributed entries, Bickel and Sarkar (2016) proposed to apply
bootstrap correction to the largest eigenvalue, where they generate parametric bootstrap samples
of the adjacency matrices and use the bootstrapped mean and variance of the largest eigenvalues

to shift and scale the test statistics to have a better match with the Tracy-Widom distribution.
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S3.2  Empirical verification of Tracy-Widom approximation and bootstrap correction

Here we adapted the same bootstrap correction technique to the eigenvalues of adjacency matrix
with n = 300 nodes, where we generate 50 bootstrap samples for each sample adjacency matrix.
We plot the empirical distribution of the test statistics after bootstrap correction as the third
graph in Figure 11. We can see that even with just 50 bootstrap samples, the sample distributions

of the test statistics looks much closer to the target distribution.

n = 300, without correction n = 1600, without correction n = 300, with correction
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Figure 11: The empirical distribution of 1000 simulated samples of centered and scaled

largest eigenvalues of A, compared with the Tracy-Widom distribution.

Remember that here we are using the Tracy-widom distribution to compute p-values for
every local null hypotheses HST’Z) and we generate bootstrap samples to estimate the exact
critical threshold for the global null hypothesis Hy, thus we could simply use the same bootstrap
samples generated for testing the global null to correct the location and scale of the largest
eigenvalue of each local adjacency matrix A9 Given observed collection of Poisson process

realizations {Nu.(-) : w < v € [n}, we describe the procedure to derive the local p-values with

bootstrap correction of the location and scale of the largest eigenvalue in the following steps:

1. For b* = 1,2,..., B, generate bootstrap sample collections {N2,(:) : u < v € [n]} as

described in Section 3.1.3.

2. For the observed realization, estimate the Poisson mean A9 of each discretized interval

as A0 = 21 Zwév Nf/;’e) and let A9 be the centered and re-scaled adjacency matrix

n<—n
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S3.2  Empirical verification of Tracy-Widom approximation and bootstrap correction

for interval 1("9)

N&l)f;\(r,e)

Ao _ ) Ve ! 70

0, u=v.
and let \; (A(M)) be the largest eigenvalue of adjacency matrix A%,

3. Do step 2 for every bootstrap resamples to derive their largest eigenvalues Aq (A(T’e’b*)) at
every discretized interval. Then we calculate the sample mean and standard deviation of
{)q(fl”’e’b*)) :b* € {1,2,...,B}} for each r € [R],£ € [2"] and denote them as P

respectively.

4. Denote utw and sty as the mean and standard deviation of Tracy-Widom distribution with

B =1 and let
M(ATD) — "
§§7‘7Z)

)\[()Z’Z) = Htw + Stw

be the test statistic after bootstrap correction.

5. Finally we compute the p-value for the discretized local null A ;T‘Z) as

0 =0 (342 1= 2min P (V). 1= o (327) )
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