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1. Introduction

The high-dimensional time series model has received much attention due to
its wide application in economics, finance, biology, environmental studies,
etc. The large p/small N problem becomes common with the extensively
available dataset due to advances in information technology. The white
noise testing is one of the most fundamental statistical problems in time
series analysis. For univariate time series, the Box and Pierce portmanteau
test (see Box and Piercd ([1970)) and the Ljung and Box portmanteau test
(see Ljung and Box ([1978)) are popular choices for testing white noise, and
they are designed for testing whether the first L autocorrelations of a time
series are zero. Under certain regularity conditions, the null distribution
of their test statistic is x2. For multivariate analysis, several extensions
of the portmanteau test exist, such as the multivariate Box and Pierce
portmanteau test in Chitturi (1974), Hosking portmanteau test in Hosking
(1980), and Li and McLeod portmanteau test in [Li and McLeod ([1981).
They checked whether the first L autocorrelation matrices are zero, and
their null distributions are chi-square under some regularity conditions. Two
reasons prevent the application of these methods in testing high-dimensional
white noise. The first reason is that the chi-square asymptotic distribution

is derived under the assumption that p is fixed, and the second reason



is that portmanteau tests require data to be independent and identically
distributed (i.i.d.). Data can easily violate those conditions for complicated
high-dimensional time series, and the portmanteau test almost loses all
power.

Assuming data are i.i.d., several pioneer studies have provided different
methods for testing white noise in high-dimensional settings. Li et al, (2019)
proposed a test based on the Frobenius norm of the first L lagged sample
autocovariance matrixes and established the asymptotic normality of the
test statistic under the assumption that p/N — ¢ € (0, +00). Their method
can be viewed as a generalization of the portmanteau test method to the
high-dimensional setting. [Tsay (2020) proposed a /., type statistic based on
the largest value of the Spearman rank autocorrelation matrix and derived
its asymptotic distribution under the null hypothesis. [Ling et al| (2021)
proposed two portmanteau tests on the norm.

The above hypothesis testing methods require a strong assumption that
the data are i.i.d. to derive the null distributions. For testing white noise
that is not necessary to be i.i.d, Chang et al, (2017) proposed a [.-type
statistic based on the largest absolute value of autocorrelations matrix and
obtained critical value based on a bootstrap method. Wang and Shag (2020)

proposed a self-normalized test statistic based on a recursive subsampled



U-statistic and derived asymptotic distribution under the null hypothesis.
Wang et al| (2022) proposed statistics based on the average of the largest
s absolute values of autocorrelation matrices and obtained critical value
based on a bootstrap method.

Both Chang et al; (2017) and Wang et al| (2022) proposed l.-type
statistics to test whether the first L autocorrelation matrices are zero matri-
ces. It is statistical folklore that [,-type statistics have high power against
sparse alternatives with only a few strong signals and relatively low power
against alternatives whose signals are spread out over a large number of
coordinates(see Fan et al, (2015);Wang et al| (2015);He et al, (2021), etc).
One of the most popular methods for modeling high-dimensional time series
is the factor method, which assumes that high-dimensional time series are
driven by a small number of factors. There is a large body of literature
that discusses the factor model in high-dimensional settings; see Lam and
Yag (2012);Daniel Pena and Yohai (2019);Fan et al| (2021);Baltagi et al.
(R021) etc. In the factor model, the autocovariance matrices have small but
dense elements that spread out over a large number of coordinates, and our
simulation results show that hypothesis testing methods based on the /.,
statistics are less effective.

In this paper, we propose a new method to test white noise that is



unnecessary to be i.i.d.. We construct a U-statistic to perform hypothe-
sis testing and obtain critical values based on the bootstrap method. Our
method can be viewed as a modified portmanteau test in high-dimension
settings. Moreover, Our method is particularly useful for detecting non-
white noise under dense alternatives, where signals are spread out over a
large number of coordinates. It is worth noting that the bootstrap method
has been widely used to validate the portmanteau tests for time series mod-
els in both univariate and multivariate cases, see Zhu and Li (2015), Zhu
(2016, 2019), Mukherjeq (2020), Zhu et al, (2020), Li and Zhang (2022) and
many others.

The remainder of this article is organized as follows. Section E provides
the test statistic and new bootstrap method to approximate the distribution
of test statistics. Section a investigates asymptotic properties of the new
bootstrap method. Section H reports the simulation results, and Section B

considers a real example. Section E concludes the paper.

2. Methodolgy

Let {X;:t=1,..., N} be a weak stationary p-dimensional time series with
mean zero and autocovariance matrix at lag [ given by Cov(Xy, X;—;) = 3.

We are interested in testing whether {X; : ¢ = 1,..., N} is white noise.



2.1 Hypothesis testing

{X; :t =1,...,N} being white noise is equivalent to ¥, = 0 for [ # 0.

Therefore, for a given L, our hypothesis is

Hy:%¥y=---=%;,=0v.s. Hy:there exist [ such that ¥; 20  (2.1)

2.1 Hypothesis testing

For testing the hypothesis (El!), the multivariate Box and Pierce portman-
teau test in Chitturi (1974) considers statistic N 3., tr (f]ff]alf]lf](;l),
where 3, = % Zf\;l XtXtTH is sample autocovariance matrix at lag [. When
p > N, this statistic is unavailable since S is not invertible. Li et al.
(2019) proposed a statistic Zle tr (i;ig that can be used when p > N;
this statistic can be viewed as an extension of portmanteau test in high-

dimensional settings. Note that

L L
PN 1 A\ |2 1
Ztr (EZTEZ> =3 Z ‘vec (El> ‘ = — Z vee( X, X;,) " VeC(XijTH),
=1 =1 =1 i=1 j=1
let Y;; = vec (XtXtTH), then we obtain
L L
> (S15) = > Y Y.
I=1 =1 i=1 j=1

In Li et al; (2019), the asymptotic normality was established when the
data is i.i.d.. When the data is white noise but not i.i.d., obtaining the

asymptotic distribution of this statistic becomes challenging; this challenge



2.1 Hypothesis testing

mainly arises due to the difficulty in obtaining the asymptotic distribution

of the diagonal part 3", >, V,1V;,.

Inspired by above analysis, we remove the diagonal part of Zle Yoim1 2 e

and propose the following statistics:

L
T= S w i, (2.2)

=1 i#j

where w; > 0 are pre-selected weights. Let ¢, be a quantile of T" under Hy,
P(T < qo | Hy) = «, given significant level «, we reject null hypothesis H
HT <qgsorT>q-s.

If we set w; = 1, our statistics 1" can be viewed as a diagonal-removed
version of statistic ZZL:1 tr <ZA]lTZA]l> By removing the diagonal part, we can
establish the asymptotic distribution of our statistics when data is white
noise but not i.i.d.. A similar technique has been employed in Xu et al.
(2019). Our statistics can be viewed as modified version of portmanteau
test in high-dimensional settings.

Remarkl. Our statistics 7" have a similar form to the statistics consid-
ered in Wang and Shad (2020), which was 7, = + 3/ D i giza Y Vi
In Wang and Shag (2020), a diagonal block of length d was removed from
S > ;=1 Yi;Yir. Wang and Shag (2020) did not obtain the criti-
cal value of T§; consequently, they adopted the self-normalization method to

obtain the critical value. To ensure the effectiveness of the self-normalization

Y. 1Y,

i,l 2>



2.2  Estimate the critical value by bootstrap

method, Wang and Shag (2020) required d — +o00. This reduced the effec-
tive sample size and led to a loss of power. Our statistics T preserve the
largest effective sample size and are more powerful than the hypothesis test
proposed by Wang and Shag (2020), as demonstrated by our simulations.

Remark2. Like univariate portmanteau tests, a proper weight sequence
{w;} can improve the finite sample performance of our test; for choice of
weight sequence {w;}, see the discussion in Section @ Gallagher and
Fisher (2015) also provided a useful discussion on the choice of weight se-

quence.

2.2 Estimate the critical value by bootstrap

Approximating the distribution of T is equivalent to estimating the a quan-
tiles of T" under the null hypothesis. Note that statistics T are U-statistics;
we adopt the following multiplier bootstrap method to estimate o quantiles.
Let {e;}¥, be a sequence of i.i.d. standard normal random variables, i.e

iid

e; ~ N(0,1), which is independent of {X;}. Define the bootstrap statistics

as follows:

L
.1
T = N;wl;ei}ﬂ}/},lq. (23)
= 17£)

We use the quantile of T* as an estimation of critical value.

Our hypothesis testing method is as follows:



Step 1. Given L € NT and pre-selected weight sequence {w;}~,, obtain
statistics 7" based on data {X;:t=1,..., N} and (@)
Step 2. Generate a sequence of i.i.d. random weights {ej, - ,ex}, with

e XN (0,1) and that are independent of the sequence {X,}. Calculate

L
* 1 T
T = N ZE 1 Wy ‘i A eiYiJ Y}',lej.
= 17£])

Step 3. Repeat Step 2 B times to obtain {T*!,7*2 ... T*P}. Given
a, calculate empirical § quantile and empirical 1 — & quantile based on
{1+, 7*,...,T*P}, denoted as §a and ¢;_s.

Step 4. Reject null hypothesis if 7' < ga or 7' > ¢

3. Technical Assumptions and Theoretical Results

In this section, we establish the theoretical properties of our hypothesis
tests when applied to white noise tests. We demonstrate that, under certain
regularity conditions, our hypothesis test can control the probability of type
I errors under the null hypothesis. We also provide a detailed discussion

regarding the selection of weight sequence {w;} in (@)

3.1 Theoretical Results

Assuming the time series {X;} has following form:

Xt = f(Etagtfla .- ')7



3.1 Theoretical Results

where f is a measurable function, and {¢;};->°  are i.i.d. random elements
in some measurable space. The above structure is referred to as time series
with physical dependence.

Denote F; = o (g4,&-1,-..) as the o-field generated by {e,e-1,...}.
Define F; iy = 0 (e¢, ..., Ek415 €y k-1, - - ), Where ) is an i.i.d. copy of .
Let X (k) = f (F.(01)- For a random variable z, denote ||z, = (E|z|9)"4.
Following Zhang and Cheng (2018), we define the total functional depen-

dence measure for {X;}:

Ut,q = SUp sup HXt,iXtJrl,j - Xt,i,{O}Xt+l,j,{0}‘

)
1<I<L1<i<p,1<j<p 1

and

o
Uqu = : :ut7Q'
t=m

To investigate the theoretical results of our proposed tests, the following

regularity conditions are required.

Condition 1. U5 < +o0, where Uy g =Y o Uy and
Ut,g = SUP1<i<1, SUP1<i<p,1<<p HXt,iXtJrl,j = Xt 03 Xe415.(0) Hq'

Condition 2. Set ¥y = Var(X}), and oy = tr(X2), there exist a ¢ = 2+0 €

(2,3], such that when N — 400

(3220 min(m, N)2 a1, )0
N50'0




3.1 Theoretical Results

Condition 3. There exists a constant C such that

sup sup B[ X0 Xy X0, X7 < C,

1<I<L 1<i<p1<j<p

where q is the same as in condition @

Remark3. Condition EI implies a short-range dependence of X;X;,;. Con-
dition E is closely related to the Uniform Geometric Moment Contraction
condition proposed by Wang and Shag (2020). We say that {X;} has Uni-
form Geometric Moment Contraction (UGUC(k)) property if there exists

some positive number k such that

sup sup E <|XtﬁiXt+l,j|k> <(C <o

1<I<L 1<i<p,1<j<p

and

sup sup E (‘Xt,iXt—Hj . Xt/,iXt/H,j’k) <Cp', t>1

1<I<L 1<i<p,1<j<p
where p € (0,1) and X{; = f; (5t, ey E1,E0,E 1y - - ) If there exists g €

(2,3] such that {X;} is UGUC(g), then it’s easy to verify that u,,, < Cp™,

D=

hence > min(m, N) %um,q < 400, so the condition P holds automati-
cally.
The following theorems demonstrate that under the null hypothesis Hy,

our hypothesis test can control the probability of type I errors:



3.1 Theoretical Results

Theorem 1. Assume Conditions B—B hold and w; > 0 for 1l € N*. Then

2

Lp .
Nogs 0, there is

under Hy, and

sup |[P(T'<t)—P(T*<t)| =0 (3.1)

teR

Theorem 2. Assume Conditions B-B hold and w; > 0 for Il € N*. Then

under Hy, and ]\fg—’i — 0, there is
P(js <T <gi-s) > 1—a (3.2)

Remark4. If all the eigenvalues of 3, are bounded, we have oo = O(p),
then the Theorem m and Theorem E hold when Lp = O(N°¢) for any
€ > 0. This implies that Theorem m and Theorem E remain valid as p
tends to infinity. Also, since Lp = O(N°~¢), the maximum lag L is allowed
to increase as N increases. For instance, we can set L = O(InN) and
p= O(%), and Theorem m and Theorem P still hold. This allows us to
further explore how the choice of weight sequence {w;} affects the power of
our proposed test.

We then look into the power of the tests when an alternative hypothesis
H, is specified. Let {z;} with z, = (241, - ,ztp)T be p-dimensional i.i.d.
random vectors with Ez; = 0,Ez2 = 1 and Ez} < co. We assume that

under Hy, the observations {X; : t = 1,..., N} are a p-dimensional first-



3.1 Theoretical Results

order vector moving average process of the form
Hl : Xt = AOZt + Alzt_l (33)

where Ay and A; are p X p coefficient matrices.
We investigate the asymptotic behavior of our statistics with an ar-
bitrarily given L and weight sequence {w; > 0 : [ € N*}. We have the

following theorem:

Theorem 3. Under Hy in (@) with an arbitrarily given L and weight
sequence {w; > 0:1 € Nt} and p = o(N1), we have
1 9 d
NT —wipg | Jwicsy — N(0,1),
where g = tr <2~]02~11> + %tﬁ (i}m), and
2 2 S22 6 o(as
0%, —mtr (20 + 21> + (2021)
by |2 (E2) 4 -9 {02 (505)}]
+—tr (2012 ) <22+2 ) +—tr (2012 ) (2 .
16 ~ ~
+ m tr (20 + 21) {tl‘ (Zmzmzo) + tr (2012 )}
16 -0 0 S
-+ m tr <201> {tr (Zgzgl) + tr (E%E(ﬂ) + 2tr (Elz(]lz())}

4 . e
+ b <2§120123 IS A - 22312120120>

5)

4 12 S 16 ~
+ N tr <2012T ET 201) + m tI‘Q (2012;;1> + m tr (201> <2012T ET)

4 -~ 4 -~
+ m tr2 (Eozol) + m tr2 (21201> + R,



3.1 Theoretical Results

where R = o(d%,), D <iof}1> denotes the diagonal matriz consisting of the
main diagonal elements of ioil and io = AJAO, ¥, = AlTAl, 201 = AgAl,

vy = Ezf.

Theorem B demonstrates that under local alternative H; in @, for our
statistics T', %T are asymptotically normal distributed with non-zero mean.
Therefore, T' — co when N — oo, while the T™ does not go to co. Hence
our test statistics T" have power under local alternative H;.

We further investigate the power of the proposed test under a more gen-
eral class of alternatives. Notice that under the alternative hypothesis Hi,
there exist some values of [ such that ¥; # 0. Let Y;; = vec (XtXt +l) and
Ve = (VurYyh, ..., /wrY)T. Our proposed statistic 7' can be expressed
as T = >iz; Vil Yy Let Sy = Cov(Vigr, Vi) denote the auto-covariance
matrix of Y, and S = Z;oz_oo S) denote the long-run covariance matrix of
Y;. Under the alternative hypothesis H;, assuming that there exists some

value of L such that E); = u # 0, we have the following theorem:

Theorem 4. Assume Conditions H B hold and E"“SOHHSh” o (1), where || -||

denotes the Frobenius norm. Let ¢, denote the critical value obtained in

section 2.2. Under the alternative hypothesis Hy with EY, = p # 0, we

have the following results:

€ (0,00), then P(T' < G or T > g1-s) — B € (a,1). That



3.2 Some Weighting Schemes

is, our test exhibits nontrivial asymptotic power.

2. If Jmﬁf — 00, then (T < ga or T'> ¢1-2) — 1. Hence, the asymptotic

power of our test is 1.

Theorem @ indicates that the asymptotic power of our proposed test

depends on ]mﬁf Our proposed test can distinguish between the null
hypothesis Hj and alternative hypothesis H; as long as Jmﬁf —c>0. It

is important to note that Theorem @ only requires that E);, = p # 0 under
the alternative hypothesis H;. Hence, we can use Theorem @ to analyze the

power of our proposed test under a more general class of alternatives.

3.2 Some Weighting Schemes

We now provide some schemes for selecting weight sequence {w;}. Similar
to Gallagher and Fisher (2015), we consider two scenarios: one where the
maximum lag L is fixed, and another where L increases as N increases.
We first analyze the relationship between the asymptotic behavior of
our proposed tests under the null hypothesis and the maximum lag L. The

following condition is considered:

Condition 4. Under Hy, let X, = AY?Z,, where Z, = (2, - ,ztp)T s a
sequence of p-dimensional i.i.d. random vectors, and each component z

satisfy Ezy; = 0,Ez% = 1 and Ez8 < +oo. All the eigenvalues of A are



3.2 Some Weighting Schemes

bounded.

For our statistics T' = % Zle wy Y YZTlY]l, where Y; ; = vec (XtXT ),

i#] t+1

we have following theorem:

Theorem 5. Suppose condz’tion holds, then we have

T
2|7 e

4 N(0, Z wy), (3.4)

=1
where I' = Cov (vec (X;X,},)).

Theorem H demonstrates that under certain conditions, the limiting
distribution of T"is a normal distribution AV7(0, (31, w?)4||T||%); therefore,
the limiting distribution of bootstrap statistics 7™ is also a normal distri-
bution with mean zero and variance equal to (3.1, w?)4||T||%. For the
asymptotic result of 7" under alternative hypothesis, Theorem a indicates
that under alternative hypothesis, if {X;} is a VMA(1) process, then the
asymptotic results of T" depend only on the first weight w;, and T" — oo un-
der H;. Hence, if the maximum lag L increases as the sample size increases,
Zle w? would affect the power of our test.

Since the maximum lag L is allowed to increase as the sample size
increases, similar to Gallagher and Fisher (2015), the weighting schemes
can be classified into two categories. The first category involves choosing

weights such that limy_ .. Zle w? < +0o0; the second category involves



3.2 Some Weighting Schemes

choosing weights such that limy_, Zlel w? = 0o. The commonly employed

weights in portmanteau tests, such as w; = ]X,—t% in Ljung and Box (1978)

satisfy limy_, Zle w? = oo. If weight sequence meets the condition that
limy,_oo Zlel w? = oo, and assuming L is large compared to sample size
N, then Zle w? would be relatively large. This results in a loss of power
for our tests. If weight sequence satisfies limy_, Zle w} < oo, Zlel w?
would be bounded when L is large, making our test less sensitive to the
choice of L. Hence, if L is large compared to N, we recommend choosing a
weight sequence such that limy_,. Zlel w} < oo.

Remark5. We can also use Theorem @ to demonstrate how the condition
that the weight sequences {w, } are squared summable affects the asymptotic
results of our proposed tests. This demonstration is carried out under
a more general class of alternatives than VMA(q). Consider a VAR(1)

model X; = pX; 1 + e, where |p| < 1 and ¢ “ N(0,1,). With some

L 21
N2 NS we)

TSl -, where A =

—oplAle(TE w?)?
e _Cov(Z, Zi), 2= (Yfl, . ,}/;TL)T, and Y is defined in Theorem

l=—00

simple calculations, we can obtain

@. Notice that A does not depend on {w;}. Assume that L increases as

the sample size N increases. If N, p and A satisfy ﬁ — 00, then the
N(ZzL:l wlPQZ)

3 L o\3

P ||AllF (S, w?)

on Theorem @, the asymptotic power of our test is 1. Compared with the

condition limy_, Zlel w? < oo ensures that — 00. Based



3.2 Some Weighting Schemes

. . L . . L
condition limy, *  w? < 0o, the condition lim;, © w? = 00 ma
—o0 2u1=1 W ) —o0 21=1 W)

N(ZlL:1 wlPQZ)
1
plAlr (S, w?)?

— C, then the condition lim;_, Zle w? < oo

lead to a loss of power of our test, since it can cause < 00.

If N, p and A satisfy

N(Zlel wll’m)
1
pllAlr (T, wf)?

power. The condition limy,_,., Zle w? = oo may result in loss of power of

_N
pllAllr

ensures that — C, and our test has nontrivial asymptotic

L w 21
V(i wip )1 — 0. Hence if we allow L to
pllAllF (S, w?)?

. . . " e L
increase as the sample size N increases, the condition limy, o0 >, wf = 00

our test, since it may cause

may result in loss of power of our tests. Therefore, we recommend choosing a
weight sequence such that limy ., Zlel wl2 < oo when L is large compared
to N.

If the maximum lag L is fixed and relatively small compared to the sam-
ple size, then Zle w? would be small, which implies that our tests have
relatively large power. Consequently, both weighting schemes can be em-
ployed in this scenario. For commonly used models such as the VAR model
and the dynamic factor model, the autocovariance decays exponentially as
the lag increases. Hence, under the alternative hypothesis, the autocovari-
ance at larger lags would be relatively small; therefore, the weight w; should
be relatively large when [ is small.

Inspired by the above discussion, we consider two weighting schemes.

N+2

The first scheme sets w; = 5

k(L)% where k(2) is a kernel function. Hong



(1996) used a similar weighting scheme for testing white noise in univariate
time series. This scheme assigns relatively large weight to lags with small
order [ and satisfies limy_,, Zle w? = co. We expect that this weighting
scheme will have relatively good power when the maximum lag L is fixed
and relatively small. The second scheme sets w; = a' with a € (0,1);
this scheme also assigns relatively large weight to lags with small order [.
Furthermore, this weight sequence satisfies limy,_, Zle w? < oo. Hence,
we expect that this weighting scheme will have relatively good power when

max lag L is relatively large compared to the sample size.

4. Simulation studies

In the simulation study, we examine the finite sample performance of our
proposed method in comparison with several existing testing methods. To
illustrate how different choices of weight sequence {w,;} affect the power of

our hypothesis test, we consider three choices of {w;}. Let T be statistic

in (2.9) with w, = 1, ie,
L
VL

Let T; be statistic in (@) with w;, =

z‘f *LM

1i(l/L)?,

L

1 G N+2 1,
=3 k()Y VY
2=y 2 v ) #hs

=1 i£j



sm(\frrz

v el |z] <1

where k(z) = . The weight sequence in 7, has been

0 2l > 1
considered in I-\Iong (1996), and it exhibits certain optimality properties

within the method proposed by Hong (1996). Let T3 be statistic in (@)

with w; = 0.9, i.e

ZOQZZ i, Jl

=1 1#£j

The weight sequences {w;} in T} and Ty satisfy limy ., Y1, w? = oo, while
weight sequence {w;} in T3 satisfies limy . Zle w}? < 0o. The hypothesis
test based on 71,7, and T3 is conducted by the method we describe in
Section E We set the bootstrap number to be B = 1000.

For comparison, we consider the following five tests:

(1). Tsn denotes the white noise test statistic proposed by Wang and Shao

(2020).
T, (1)
Tsy = —I/§/2> ;
where Ty(r) = SIS YLV, r e (0,1, n = N—-L—d W2 =

2
D ( s(k/n) — kﬁ%T( )) . Wang and Shag (2020) showed that un-

der Ho,
q B(1)?
fo B (u?) — u2B(1))* du’

Tsn —

where B(r),r € [0, 1] is the standard Brownian motion. Following simula-

tion setup in Wang and Shao (2020), we set d = 10.



(2). T¢ denotes the white noise test statistic proposed by Chang et al.
(2017)).

Te = VN max max |p;(1)],

1<ISL1<6,5<p
where p; ;(1) is the (7, j)th element of sample autocorrelation matrix at lag [,
T, = diag{30} /25, diag{S0} 1/, the critical value of this test is obtained
by bootstrap method.
(3). Tw1 and Ty denote two white noise test statistics proposed by Wang

et al, (2022).
TWI = max wlAs <fl> y

=1L
L A~

Two = ZwlAs (H) :
=1

where {w;}£ | are pre-selected weight. A, <fl> calculate average of the
largest s absolute value of fl, sample autocorrelation matrix at lag [. The
critical value of this test is obtained by a bootstrap method. Following
Wang et al| (2022)’s simulation setup, we set s = p, w; = ﬁ

(4). Tr; denotes white noise test statistic proposed by Li et al| (2019).

L aTe .
n Yo tr(2]3) — anz’Ns%
1 T N A~
vV 2LCp7N (82 — Cp7N$%)

Y

where ¢, v = p/N, = p'tr(2), 8 = p~'tr(%/%), Li et al) (2019)

showed that under Hy and i.i.d assumption,

Tw % N(0,1).



4.1 Empirical size

It is worth noting that hypothesis testing proposed by Li et al, (2019) was
a one-side test; we reject the null hypothesis when T7; > z1_,, where z1_,,
is 1 — a quantile of standard normal distribution.

To examine the finite sample behavior, we consider several scenarios
with combinations of p = 20, 50, 80, 120, N = 100, 200, and L = 5,10. The
level of significance is always set at o = 5%. For each experiment, we have

500 Monte Carlo replicates.

4.1 Empirical size

To compare the empirical sizes, consider the following four models,

Model 1. X, = Ae;, where e; -5 N(0,1,), A= SY2 and S = (sy)1<ki<p With

sp = 0.995/F=1

Model 2. X; = e;, where for ¢ = 1,...p, the ith component of e;, denoted
as e;;, has the following form: e,; = h;fat’i, where ¢;; u N(0,1),
ht,i = 0.01 + aief_lﬂ- = ﬂiht—l,ia 61 =0.98 — oy, Oy = 0.05 + 091,1/Z and

iid .
w; ~ unif (0, 1).

Model 3. X; = e; ® e;_1 ® €;_9, Where ¢e; u N(0,1,), and ® denotes the

Hadamard product.

Model 4. X; = §; x e; +3 (1 — &;) X e}, where ¢, and e} are independent normal
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random vectors from N (0, S) with S = (s;5) and s;; = 0.5/,

1<i,5<p

d; is Bernoulli random value with P (6, = 1) = P (6, = 0) = 0.5. {d;}

are independent with {e;} and {e}}

Model 1 is i.i.d. white noise, which is the setting considered in Chang
et al| (2017) and Wang and Shao (2020). Model 2 is a multivariate gener-
alized autoregressive conditional heteroskedasticity sequence; Wang et al.
(2022) considered the same setting. Model 3 is a non-i.i.d white noise se-
quence. Model 4 is an i.i.d white noise sequence.

Set significance level at @ = 5%, and empirical sizes for different models
are reported in Table m and Table E Our tests, denoted as 17, 15, and T3,
and the test proposed by Wang and Shao (2020), denoted as Ty, exhibit
accurate and stable empirical sizes for Model 1 to 4. The test proposed
by Chang et al, (2017), denoted as T¢, exhibit accurate empirical size for
Model 1 but not for other models. For Model 2 and Model 4, T tends
to underreject the null frequently. For Model 3, T over-rejects the null
when N is small and p is large (for instance, N = 100, L = 5 and p = 120);
however, the size appears quite accurate when N = 200 and p = 50. This
indicates that T can not control type I error for this model. Two tests
from Wang et al| (2022), denoted as Ty and Tyo, exhibit accurate and

stable empirical sizes for Model 1, 2, and 4. For Model 3, Ty o over-rejects
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Table 1: Empirical sizes (in %) of different test statistics at a = 5% significant

level for Model 1 and Model 2.

Model 1
p hn 1> T3 Tsy Te Twi  Twe T Thn Ty T3 Tsy Te Twi Twa  Tp;
N=100, L=5 N=100, L=10
20 52 42 44 4.4 34 6.0 5.6 3.2 54 58 5.0 4.2 3.4 6.0 5.8 4.4
50 4.6 5.0 4.8 6.0 5.0 5.2 5.6 3.8 2.8 4.0 4.2 4.8 2.4 4.4 3.8 3.6
80 6.8 58 5.8 4.6 34 7.0 7.4 3.2 46 54 5.2 3.2 2.6 4.4 5.2 4.0
120 3.6 4.0 4.6 4.2 3.2 4.4 4.2 4.4 6.2 54 6.0 6.6 2.2 5.2 6.2 4.4
N=200, L=5 N=200, L=10
20 3.8 44 5.0 4.0 2.9 6.2 5.6 4.8 54 5.2 5.4 4.0 4.2 6.8 3.8 3.6
50 46 5.0 4.0 6.0 5.0 5.2 5.6 3.8 3.0 4.0 3.8 4.8 2.2 4.4 3.8 3.6
80 50 6.2 5.0 4.4 4.4 6.0 6.8 4.0 3.0 46 4.8 5.8 3.8 4.4 4.6 3.8
120 4.6 5.8 6.0 4.6 5.4 6.2 6.0 4.4 5.2 5.2 4.8 4.6 4.8 6.2 5.8 4.6
Model 2
P TN Ty T35 Tsn Te Twi  Two TpL; n Ty, T3 Tsny T Twi Twa Tpi
N=100, L=5 N=100, L=10
20 4.4 2.8 4.6 5.2 0 6.0 5.4 4.0 58 44 4.6 4.6 0.2 6.4 6.0 0.6
50 4.6 3.8 4.0 4.0 0.2 4.2 5.6 0.6 5.2 4.8 4.8 4.6 0 5.4 5.2 0
80 6.2 6.0 5.6 6.2 0.6 5.6 5.8 0.2 54 4.0 4.2 6.2 04 6.6 6.2 0
120 56 4.6 4.8 6.2 1.6 5.8 4.6 0 56 4.4 4.2 54 0.8 6.4 3.8 0
N=200, L=5 N=200, L=10
20 5.4 3.8 4.8 6.6 0.2 5.0 4.4 10.61 4.6 54 5.0 5.2 0 4.4 4.8 3.6
50 46 54 4.6 4.8 0.2 5.4 4.8 5.0 42 46 4.4 6.2 0 6.4 5.8 0
80 58 5.6 5.2 4.4 04 3.0 7.0 0 52 52 5.6 6.0 0 6.2 5.2 0
120 5.2 5.0 4.6 4.4 0.2 5.0 4.8 0 6.0 52 5.0 5.4 0.2 4.8 4.6 0

. Type-I errors are out of control

the null when p = 80, 120, Ty, also over-rejects the null in some cases (for

instance, N = 200 and p = 80). The test from Li et al| (2019), indicated as

Tr;, exhibits accurate empirical size for Model 1 but not for other models.

For Model 2, when N = 200, L = 5, and p = 20, T}, over-rejects the null;

when N = 200, L = 5, and p = 50, the size is quite accurate; however,

when N = 200, L = 5, and p = 80, T}; under-rejects the null. The same

situations also occurs in Model 3 and Model 4, suggesting that the empirical
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Table 2: Empirical sizes (in %) of different test statistics at a = 5% significant

level for Model 3 and Model 4.

Model 3
p Tn T T3 Tsn Tc Twi  Twa TLi Ty T T3 Tsn Tc Twi  Twa TLi
N=100, L=5 N=100, L=10
20 54 40 44 3.2 6.4 7.2 5.6 33.67 56 5.6 5.0 3.8 11.2f 7.6 10.8T  14.5T
50 54 50 4.8 4.4 254t 94t 140t 256t 44 3.8 4.4 2.4 44.2f 56 134 4.2
80 56 3.8 4.2 2.6 44.67 8.8 14.4f 19.3f 6.0 50 5.2 2.4 72.0f 8.4 18.2F 2.3
120 6.0 5.0 5.8 2.4 72.0°f 8.4 18.2F 122t 6.0 52 5.2 3.6 90.67 9.2f 33.0f 1.0
N=200, L=5 N=200, L=10
20 58 44 4.6 4.8 0.4 5.6 5.6 4557 50 4.2 4.6 3.4 1.6 7.8 7.2  26.8"
50 4.4 4.4 3.8 2.4 5.0 7.2 6.0 40.4f 46 48 5.0 3.2 8.8 5.4 6.6 15.4f
80 6.2 4.8 44 56 10.67 58 11.87  36.8f 6.2 4.8 5.4 4.8 17.0t  94f 11.7f 7.4
120 38 6.4 6.0 3.4 20.0f 7.2 1127 30.2f 44 52 538 3.8 36.8" 7.6 14.8% 1.9
Model 4
P TN T, T3 Tsn Tc  Twi  Twa Ty, Tn T» T35 Tsn Tc  Twi  Twa Ty,
N=100, L=5 N=100, L=10
20 32 64 438 6.2 0 3.8 4.8 2.6 58 3.6 5.8 5.8 0 3.0 5.2 1.9
50 6.0 5.8 5.2 6.2 0 6.6 6.0 5.4 48 4.0 4.4 5.0 0 6.0 3.8 1.6
80 5.8 4.6 5.0 5.2 0 5.6 5.4 5.6 58 4.0 4.2 4.0 0.4 6.4 4.6 2.6
120 58 3.0 38 3.8 0.6 6.6 6.0 10.6" 5.2 32 4.2 6.0 0.8 4.4 3.8 2.3
N=200, L=5 N=200, L=10
20 36 3.8 4.0 4.0 0 5.0 3.4 4.6 36 58 4.8 6.4 0 6.8 4.6 2.4
50 3.6 6.6 6.2 5.0 0 5.8 3.4 6.4 6.2 4.0 6.0 4.6 0 4.4 6.0 2.2
80 36 52 4.6 4.2 0 5.2 3.4 10.0f 48 48 5.2 5.8 0.2 5.8 4.8 2.4
120 50 6.6 58 6.0 0 4.6 5.0 11.3f 3.4 52 4.2 4.0 0 6.2 6.4 3.4

. Type-I errors are out of control

size of T}, is not stable for Model 2, 3, and 4. Our proposed tests have fairly

accurate empirical sizes for Model 1, 2, 3, and 4.

4.2 Empirical power

To study the empirical power, we consider the following four models:

Model 5. X; = 0.15X;_1 + e;, where {e;} has same data generation process as

{e;} in Model 2, i.e. {e;} is a multivariate generalized autoregressive
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conditional heteroskedasticity sequence.

Model 6. X; = AX; 1 + e, where ¢, is i.i.d. N(0,1,), and

A:

pXp

AO is a ]{?0 X ]{ZO matrix with Ao(l,]> ~ U(—025,025), and ]{0 =
min{[p/5], 12}, [-] stands for floor function. The first ko elements of

X, are not white noises.

Model 7. X; = AX; 1 + e;, where ¢, is i.i.d. N(0,1,), and A = (a;;), a;j =

0.9"791 then we normalize A so that ||Al|y = 0.7.

Model 8. X; = BY;+ F,, where F, is i.i.d. N(0,1,), B € RP** is a p X 4 matrix,
B = (bij), b;; is first generate independently from uniform distribution
U(—1,1), then be divided by p®?, Y; € R* with V; = AY;_; + e,
A € R is a 4 dimensional diagonal matrix with diagonal element
set to be (—0.3,0.35,0.25, —0.4). ¢ w N(0,1,) and are independent

Model 5 is an example of a sparse high-dimensional VAR model; a
similar setting has been considered in Wang et al| (2022). Model 6 is also
an example of a sparse high-dimensional VAR model, in which only the first

ko elements of X, are not white noises; the same setting has been considered
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in Chang et al} (2017) and Wang and Shag (2020). Model 7 and Model 8 are
added to examine the behavior of our test in the case of dense alternatives.
Model 7 is similar to the setting in Wang and Shag (2020). Model 8 is a
dynamic factor model.

Since the empirical size of T7; is not stable for Model 2, 3, and 4, we do
not consider the empirical power of T; and only compare empirical power
of T1, Ty, Tsn, Tc, Tw and Tyo. Since the empirical size of T, Ty, and
Tyo is largely distorted in Model 3, we report the size-adjusted power of
these tests.

Table E and Table @ present results on empirical powers for different
testing methods at the 5% significance level. Our proposed tests exhibit
nontrivial power for all four models. Under sparse alternatives (Model 5
and Model 6), as N increases, the powers of T7, T, and T3 quickly rise to
around 1. The tests proposed by Wang et al| (2022) are strong competitors
to our test. Tsy and T exhibit low empirical powers for Model 5 and Model
6. In Model 5, T1, T5, and T35 outperform the rest of the tests, and there
is no definitive conclusion regarding how T3, T,, and T3 compare to each
other. The empirical power of T for Model 5 is low when N = 100, and
decreases when p increases, indicating that T> does not have satisfactory

empirical powers. In Model 6, T> outperforms the rest of the tests, T3 is
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Table 3: Empirical power (in %) of different test statistics at « = 5% significant

level for Model 5 and Model 6.

Model 5
P T P T3 Tsn Tc Twi1i Twoe T T T35 Tsy Tc Twi  Twe
N=100, L=5 N=100, L=10
20 52.0 63.8 60.0 7.8 0.4 43.2 16.8 56.8 59.2 58.0 6.4 0 43.6 21.8
50 91.2 89.4 94.8 8.8 0.2 88.8 48.8 98.8 93.6 98.4 5.6 0 89.4 67.2
80 99.8 99.0 99.6 9.0 0.2 98.0 71.6 100 99.2  99.8 54 0.6 99.0 87.6
120 100 100 100 10.4 0.6 100 90.2 100 100 100 6.0 1.4 100 98.6
N=200, L=>5 N=200, L=10
20 73.6 91.4 88.6 18.6 0.2 51.0 29.8 75.0 86.6 85.8 9.4 0 51.6 30.6
50 98.6 99.0 98.6 21.2 0 97.0 83.0 100 99.6 100 13.6 0 96.2 87.6
80 100 100 100 16.8 0 99.6 95.6 100 100 100 11.6 0 99.6 99.4
120 100 100 100 19.4 0 100 99.6 100 100 100 12.8 0.2 100 100
Model 6
P 1 P T3 Tsn Te  Twi  Twe T T> T35 Tsy Tc Twi  Twe
N=100, =5 N=100, =10
20 10.6 26.8 19.6 7.0 0 11.4 3.4 10.0 24.0 12.6 5.6 0 7.2 1.6
50 49.4 91.0 71.6 26.2 0 19.4 18.6 26.8 77.0 65.6 15.8 0 11.6 8.4
80 61.4 95.0 82.6 31.0 0 47.6 26.4 37.2 89.0 74.4 16.0 0 31.4 13.6
120 37.8 79.6 56.0 17.0 0 35.8 11.6 26.8 65.8 51.0 11.4 0 22.6 6.2
N=200, L=5 N=200, L=10
20 29.2 70.0 44.2 16.6 5.6 16.0 12.0 16.2 49.8 41.2 7.2 2.8 10.2 6.0
50 94.8 100 99.6 68.6 7.8 72.0 92.8 74.6 99.8 99.6 48.2 5.0 36.2 64.2
80 97.2 100 100 80.4 10.0 95.8 97.8 89.2 100 100 59.4 5.2 69.4 82.8
120 86.2 100 97.8 61.8 7.4 83.4 85.8 66.6 99.2 974 51.6 3.4 54.2 57.0

usually the second-best test, T1, Ty, and Tyyo have satisfactory power, and

Tsn has second worst performance. The empirical powers of T for Model

5 are low when N = 100, and increase dramatically when N = 200; this

indicates that the powers of T are low when sample size N is small.

For dense alternatives (Model 7 and Model 8), T, outperforms the rest

of the tests, and T3 is usually the second-best test; this shows that our

tests have high power against dense alternatives.

Tsn exhibit relatively

low power, partly because the effective sample size for Tsy is small. T
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Table 4: Empirical power (in %) of different test statistics at « = 5% significant

level for Model 7 and Model 8.

Model 7
P T T T35 Tsy Tc Twi  Twe T T T3 Tsy Tc Twi  Twe
N=100, L=5 N=100, L=10
20 82.2 92.4 88.6 31.4 0 63.2 44.8 70.2 88.6 84.2 20.4 0 52.4 34.4
50 64.0 75.8 75.2 21.6 0 37.6 16.8 51.0 74.0 69.0 13.4 0 28.0 13.0
80 59.4 74.2 69.8 14.0 0 38.0 12.0 49.4 68.4 67.8 9.2 0 24.0 9.0
120 614 78.4 T71.8 14.2 0 37.6 9.8 50.2 T71.6 70.8 9.8 0 30.2 7.4
N=200, L=5 N=200, L=10
20 98.4 99.8 99.6 67.8 04 36.2 19.0 95.6 100 100 51.6 0 22.0 12.6
50 93.6 99.6 97.0 51.2 0 70.0 45.0 86.6 98.4 96.6 39.0 0 58.0 36.4
80 88.8 98.2 96.6 43.8 0 63.2 30.8 85.6 98.8 96.2 33.4 0 51.8 25.6
120  90.8 100 96.8 48.6 0 63.8 26.4 88.4 100 96.4 37.8 0 55.0 19.0
Model 8
P Ty Ts T3 Tsy Tc Twi  Twe Ty Ts T3 Tsy Tc Twi  Twe
N=100, L=5 N=100, L=10
20 17.0 38.8 25.6 7.4 0 10.4 4.0 13.6 26.2 21.2 6.0 0 6.4 1.4
50 26.6 54.2 31.6 13.6 0 12.2 4.8 12.8 34.4 29.2 6.8 0 7.8 2.6
80 47.2 60.6 50.6 23.6 0 8.8 4.8 21.8 58.4 46.0 12.6 0 9.0 2.4
120 37.8 79.6 40.8 17.0 0 11.8 2.8 26.8 65.8 37.2 11.4 0 8.8 1.6
N=200, L=5 N=200, L=10
20 44.2 80.8 59.0 21.8 0 4.0 1.0 25.4 69.4 57.2 16.8 0 4.2 0.6
50 55.6 92.0 77.8 29.4 0 23.2 16.4 32.4 80.6 70.8 18.2 0 14.2 7.8
80 61.0 94.4 82.0 38.6 0 25.4 17.6 42.6 89.2 76.8 23.8 0 19.4 9.8
120 67.8 89.4 76.8 35.8 0 23.8 16.8 46.4 T76.4 724 24.0 0 11.6 6.2

can hardly detect serial correlations in dense alternatives.

TWI and ng

perform relatively well compared to T, As demonstrated by Wang et al.

(2022), this is mainly because Ty and Ty o are based on the average of the

largest s absolute values of autocorrelation matrix, making them better at

picking up dense signals compared to T¢.
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4.3 Numerical analysis of weight w;

We study how weight sequence {w,} affects the power of our proposed tests

as the maximum lag L increases. We consider the following two models:

itd iid

Model 9. X; = eiexp(oy), oy = 0.250,_1 + 0.05u;, ¢, ~ N(0,S.) and u; ~
N(0,S,), where Se = (Sc,ij)pxp and Sy = (Suij)pxp With se;; = (i =

)+ 0.4I(i # §) and s,,; = 0.9/,

Model 10. X; = AX;_1 + e;, where ¢, is i.i.d. N(0,1,), and A = (a;;), a;; =

0.9"=71 then we normalize A so that ||Alls = 0.6.

Model 9 is a stochastic volatility model; we study the empirical sizes
of Ty, Ts, and T3. Model 10 is a dense VAR model similar to Model 7; we
study the empirical powers of 17,75, and T3. We set N = 150, p = 20 and
L = 5,10, 15,20, 25, 30, 35, 40, the significance level is set at o = 5%.

The empirical sizes of T1,T,, and T3 at a = 5% significant level in
Model 9 are presented in Figure m; our proposed tests can control type I
errors when the maximum lag L is large. The empirical powers of 11,75
and T3 at o = 5% significant level in Model 10 are presented in Figure @
The weight sequences {w;} in 77 and T3 satisfy limy_, Zle w? = oo. The
empirical powers of 77 and T3 are gradually decreasing as the maximum

lag L increases, which is consistent with our analyses in Section E Figure
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Figure 1: Empirical size of T7,T» and T3 for Model 9

E shows that the empirical power of T3 does not decrease significantly as
the maximum lag L increases. Note that the weight sequence {w;} in T3
satisfies limy_, Zle w}? < oo; as analyzed in Section , the power of T3 is

less sensitive to the choice of L.

5. Real Data Example

In this section, we analyze the U.S. stock market using our proposed tests.
The dynamic factor model is commonly used for analyzing the stock market,
and we are interested in testing whether the use of dynamic factor model

is reasonable. The data contains daily returns of 120 securities of the S&P
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Figure 2: Empirical power of 7,75 and T3 for Model 10

500 index from January 2001 to April 2002. Denote our data as {X;}; the
dimension of X; is 120, and sample size is 366.
We first use our proposed tests to test whether the data is white noise.

Let T} be statistic in (@) when w; = 1, T, be statistic in (@) when

—Sin(\/g:'z) Szl < 1

w; = %—t?/-{,(l/[/)a where /ﬁ)(Z) = Van , and T3 be statistic
0 2l > 1

in (@) when w; = 0.9'. For comparison, we consider the white noise test
proposed by Chang et al) (2017)(denoted as T¢x) and two white noise tests
proposed by Wang et al| (2022)(denoted as Ty and Tyy2), which have been

described in Section @ We set L = 2,4,6,8,10 and the bootstrap number



Table 5: p-values(in %) of Ty, Ts, T5, Tcr, Tw1, Ty for testing { X;} is white noise

L
p-value 2 4 6 8 10
Ty 11.7 51.1 89.7 94.0 91.2
Ty 33 28 37 108 19.2
T3 21 46 20 86 17.1
Te 79.3 899 93.6 94.7 96.3
Tw1 5.0 19.0 253 236 27.0
Two 3.4 144 31.0 224 36.0

to be 1000. We calculate the p-values of these white noise tests, and the
results are shown in Table H

If we consider a significance level of 5%, the p-values of Ty and T3 are
lower than 5% when L = 2,4, 6, and the p-values of Ty and Ty are lower
than 5% when L = 2. Based on our simulation, we believe the data is not
white noise; T} and T fail to detect series dependent.

We used the information criteria approach of Bai and Ng (2002) to
determine the number of factors (denoted as r) to use in the model. We

consider the following three information criteria:

1Gi(r) = log (Vy(F, A)) +r (N +p) log <&) ,

Np N+p

1€a(r) =tog (VilF, )+ (“- ) toglmin{ . p}),

log(min{ N, p})
min{N,p}

where V}(F, A) =>", Zi\il E [éit} /Np and €, = X;,; — EFyA;. The result

is shown in Figure B
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Figure 3: Information Criteria for number of factors

The result indicates that three information criteria yield two different
optimal numbers of factors; the results of IC and 1C5 suggest that r is 2,
while the result of IC5 suggests that r is 5. By employing our white noise
testing method, we can determine the optimal number of factors by testing
whether residuals are white noise for »r = 2 and r = 5. The results for r = 2
are presented in Table a, and the results for r = 5 are presented in Table H

Given the significance level to be 5%, we calculate the p-values for
testing whether the residuals are white noise when the number of factors is

2 and 5, using our white noise tests (77, Ts, and T3), the white noise test



Table 6: p-values(in %) of Ty, Ty, T5, T, Tw1, Tw2 for testing whether residuals

is white noise when the number of factors r = 2

L

p-value 2 4 6 8 10
T 50.0 359 533 5.8 163
Ty 3.8 42 137 179 219
T3 29 31 85 52 42
Te 67.5 76.1 832 834 89.5
Tw1 58.2 36.0 32.6 41.0 16.2
Two 67.4 268 16.0 2.2 134

Table 7: p-values(in %) of Ty, Ty, T3, T, Tw1, Tw2 for testing whether residuals

is white noise when the number of factors r = 5

L

p-value 2 4 6 8 10
Ty 41.8 472 39.0 103 199
Ty 104 11.7 150 19.9 2338
T3 13.7 20.6 21.0 243 25.1
Tc 65.5 76.0 829 864 90.2
Tw1 61.4 124 9.8 49.2 426
Two 378 254 180 17.0 194

proposed by Chang et al) (2017) (7¢), and two white noise tests proposed
by Wang et al. (2022)(Tw; and Tyo). Table a shows p-values of those tests
when the number of factors is 2, the p-values of T, are less than 5% when
L = 2,4,6, the p-values of T3 are less than 5% when L = 2,4,10. This
suggests the residuals are not white noise when the number of factors is
2: therefore, using 2 factors is insufficient for modeling our data. Table

H shows that all p-values are larger than 5% when the number of factors



is b; this indicates using 5 factors is sufficient for modeling our data. In
summary, we choose the number of factors to be 5. In conclusion, it is
reasonable to employ dynamic factor model with factor numbers set to be

5 for modeling the U.S. stock market.

6. Conclusions

In this paper, we propose a novel high-dimensional white noise testing
method, which can be viewed as an extension of portmanteau tests in high-
dimension settings. Simulation results indicate that our proposed tests are
well-suited for detecting non-white noise, especially when signals are dis-
tributed across a large number of coordinates. We apply our method to
determine the number of factors in the dynamic factor model for modeling
the U.S. stock market, demonstrating the practical value of our proposed
method.

There are several important future research directions worth noting.
The first is to develop an automatic method for determining the maximum
lag L in our tests. The second is to develop a test capable of detecting
non-white noise signals in both sparse and dense cases since we typically
lack prior knowledge about whether the alternative is sparse or dense. We

shall leave these topics for future research.
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Supplementary Material

Additional details and supporting information can be found in the supple-
mentary file online. In Section S1, we provide additional simulation results
of the white noise test for fitted residuals. Section S2 contains proofs for

the theoretical results outlined in the main text.
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