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1. Introduction

The high-dimensional time series model has received much attention due to

its wide application in economics, finance, biology, environmental studies,

etc. The large p/small N problem becomes common with the extensively

available dataset due to advances in information technology. The white

noise testing is one of the most fundamental statistical problems in time

series analysis. For univariate time series, the Box and Pierce portmanteau

test (see Box and Pierce (1970)) and the Ljung and Box portmanteau test

(see Ljung and Box (1978)) are popular choices for testing white noise, and

they are designed for testing whether the first L autocorrelations of a time

series are zero. Under certain regularity conditions, the null distribution

of their test statistic is χ2
L. For multivariate analysis, several extensions

of the portmanteau test exist, such as the multivariate Box and Pierce

portmanteau test in Chitturi (1974), Hosking portmanteau test in Hosking

(1980), and Li and McLeod portmanteau test in Li and McLeod (1981).

They checked whether the first L autocorrelation matrices are zero, and

their null distributions are chi-square under some regularity conditions. Two

reasons prevent the application of these methods in testing high-dimensional

white noise. The first reason is that the chi-square asymptotic distribution

is derived under the assumption that p is fixed, and the second reason
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is that portmanteau tests require data to be independent and identically

distributed (i.i.d.). Data can easily violate those conditions for complicated

high-dimensional time series, and the portmanteau test almost loses all

power.

Assuming data are i.i.d., several pioneer studies have provided different

methods for testing white noise in high-dimensional settings. Li et al. (2019)

proposed a test based on the Frobenius norm of the first L lagged sample

autocovariance matrixes and established the asymptotic normality of the

test statistic under the assumption that p/N → c ∈ (0,+∞). Their method

can be viewed as a generalization of the portmanteau test method to the

high-dimensional setting. Tsay (2020) proposed a ℓ∞ type statistic based on

the largest value of the Spearman rank autocorrelation matrix and derived

its asymptotic distribution under the null hypothesis. Ling et al. (2021)

proposed two portmanteau tests on the norm.

The above hypothesis testing methods require a strong assumption that

the data are i.i.d. to derive the null distributions. For testing white noise

that is not necessary to be i.i.d, Chang et al. (2017) proposed a l∞-type

statistic based on the largest absolute value of autocorrelations matrix and

obtained critical value based on a bootstrap method. Wang and Shao (2020)

proposed a self-normalized test statistic based on a recursive subsampled
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U-statistic and derived asymptotic distribution under the null hypothesis.

Wang et al. (2022) proposed statistics based on the average of the largest

s absolute values of autocorrelation matrices and obtained critical value

based on a bootstrap method.

Both Chang et al. (2017) and Wang et al. (2022) proposed l∞-type

statistics to test whether the first L autocorrelation matrices are zero matri-

ces. It is statistical folklore that l∞-type statistics have high power against

sparse alternatives with only a few strong signals and relatively low power

against alternatives whose signals are spread out over a large number of

coordinates(see Fan et al. (2015);Wang et al. (2015);He et al. (2021), etc).

One of the most popular methods for modeling high-dimensional time series

is the factor method, which assumes that high-dimensional time series are

driven by a small number of factors. There is a large body of literature

that discusses the factor model in high-dimensional settings; see Lam and

Yao (2012);Daniel Peña and Yohai (2019);Fan et al. (2021);Baltagi et al.

(2021) etc. In the factor model, the autocovariance matrices have small but

dense elements that spread out over a large number of coordinates, and our

simulation results show that hypothesis testing methods based on the ℓ∞

statistics are less effective.

In this paper, we propose a new method to test white noise that is
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unnecessary to be i.i.d.. We construct a U-statistic to perform hypothe-

sis testing and obtain critical values based on the bootstrap method. Our

method can be viewed as a modified portmanteau test in high-dimension

settings. Moreover, Our method is particularly useful for detecting non-

white noise under dense alternatives, where signals are spread out over a

large number of coordinates. It is worth noting that the bootstrap method

has been widely used to validate the portmanteau tests for time series mod-

els in both univariate and multivariate cases, see Zhu and Li (2015), Zhu

(2016, 2019), Mukherjee (2020), Zhu et al. (2020), Li and Zhang (2022) and

many others.

The remainder of this article is organized as follows. Section 2 provides

the test statistic and new bootstrap method to approximate the distribution

of test statistics. Section 3 investigates asymptotic properties of the new

bootstrap method. Section 4 reports the simulation results, and Section 5

considers a real example. Section 6 concludes the paper.

2. Methodolgy

Let {Xt : t = 1, . . . , N} be a weak stationary p-dimensional time series with

mean zero and autocovariance matrix at lag l given by Cov(Xt, Xt−l) = Σl.

We are interested in testing whether {Xt : t = 1, . . . , N} is white noise.
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2.1 Hypothesis testing

{Xt : t = 1, . . . , N} being white noise is equivalent to Σl = 0 for l ̸= 0.

Therefore, for a given L, our hypothesis is

H0 : Σ1 = · · · = ΣL = 0 v.s. H1 : there exist l such that Σl ̸= 0 (2.1)

2.1 Hypothesis testing

For testing the hypothesis (2.1), the multivariate Box and Pierce portman-

teau test in Chitturi (1974) considers statistic N
∑L

l=1 tr
(
Σ̂⊤

l Σ̂
−1
0 Σ̂lΣ̂

−1
0

)
,

where Σ̂l =
1
N

∑N−l
i=1 XtX

⊤
t+l is sample autocovariance matrix at lag l. When

p > N , this statistic is unavailable since Σ̂0 is not invertible. Li et al.

(2019) proposed a statistic
∑L

l=1 tr
(
Σ̂⊤

l Σ̂l

)
that can be used when p > N ;

this statistic can be viewed as an extension of portmanteau test in high-

dimensional settings. Note that

L∑
l=1

tr
(
Σ̂⊤

l Σ̂l

)
=

1

N2

L∑
l=1

∣∣∣vec(Σ̂l

)∣∣∣2 = 1

N2

L∑
l=1

∑
i=1

∑
j=1

vec(XiX
⊤
i+l)

⊤ vec(XjX
⊤
j+l),

let Yt,l = vec
(
XtX

⊤
t+l

)
, then we obtain

L∑
l=1

tr
(
Σ̂⊤

l Σ̂l

)
=

1

N2

L∑
l=1

∑
i=1

∑
j=1

Y ⊤
i,lYj,l.

In Li et al. (2019), the asymptotic normality was established when the

data is i.i.d.. When the data is white noise but not i.i.d., obtaining the

asymptotic distribution of this statistic becomes challenging; this challenge
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2.1 Hypothesis testing

mainly arises due to the difficulty in obtaining the asymptotic distribution

of the diagonal part
∑L

l=1

∑
i=1 Y

⊤
i,lYi,l.

Inspired by above analysis, we remove the diagonal part of
∑L

l=1

∑
i=1

∑
j=1 Y

⊤
i,lYj,l

and propose the following statistics:

T =
1

N

L∑
l=1

wl

∑
i ̸=j

Y ⊤
i,lYj,l, (2.2)

where wl > 0 are pre-selected weights. Let qα be α quantile of T under H0,

P (T < qα | H0) = α, given significant level α, we reject null hypothesis H0

if T < qα
2

or T > q1−α
2
.

If we set wl = 1, our statistics T can be viewed as a diagonal-removed

version of statistic
∑L

l=1 tr
(
Σ̂⊤

l Σ̂l

)
. By removing the diagonal part, we can

establish the asymptotic distribution of our statistics when data is white

noise but not i.i.d.. A similar technique has been employed in Xu et al.

(2019). Our statistics can be viewed as modified version of portmanteau

test in high-dimensional settings.

Remark1. Our statistics T have a similar form to the statistics consid-

ered in Wang and Shao (2020), which was Ts = 1
N

∑L
l=1

∑
|i−j|≥d Y

⊤
i,lYj,l.

In Wang and Shao (2020), a diagonal block of length d was removed from∑L
l=1

∑
i=1

∑
j=1 Y

⊤
i,lYj,l. Wang and Shao (2020) did not obtain the criti-

cal value of Ts; consequently, they adopted the self-normalization method to

obtain the critical value. To ensure the effectiveness of the self-normalization
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2.2 Estimate the critical value by bootstrap

method, Wang and Shao (2020) required d → +∞. This reduced the effec-

tive sample size and led to a loss of power. Our statistics T preserve the

largest effective sample size and are more powerful than the hypothesis test

proposed by Wang and Shao (2020), as demonstrated by our simulations.

Remark2. Like univariate portmanteau tests, a proper weight sequence

{wl} can improve the finite sample performance of our test; for choice of

weight sequence {wl}, see the discussion in Section 3.2. Gallagher and

Fisher (2015) also provided a useful discussion on the choice of weight se-

quence.

2.2 Estimate the critical value by bootstrap

Approximating the distribution of T is equivalent to estimating the α quan-

tiles of T under the null hypothesis. Note that statistics T are U-statistics;

we adopt the following multiplier bootstrap method to estimate α quantiles.

Let {et}Nt=1 be a sequence of i.i.d. standard normal random variables, i.e

et
iid∼ N(0, 1), which is independent of {Xt}. Define the bootstrap statistics

as follows:

T ∗ =
1

N

L∑
l=1

wl

∑
i ̸=j

eiY
⊤
i,lYj,lej. (2.3)

We use the quantile of T ∗ as an estimation of critical value.

Our hypothesis testing method is as follows:
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Step 1. Given L ∈ N+ and pre-selected weight sequence {wl}Ll=1, obtain

statistics T based on data {Xt : t = 1, . . . , N} and (2.2).

Step 2. Generate a sequence of i.i.d. random weights {e1, · · · , eN}, with

et
iid∼ N(0, 1) and that are independent of the sequence {Xt}. Calculate

T ∗ =
1

N

L∑
l=1

wl

∑
i ̸=j

eiY
⊤
i,lYj,lej.

Step 3. Repeat Step 2 B times to obtain {T ∗1, T ∗2, . . . , T ∗B}. Given

α, calculate empirical α
2

quantile and empirical 1 − α
2

quantile based on

{T ∗1, T ∗2, . . . , T ∗B}, denoted as q̂α
2

and q̂1−α
2
.

Step 4. Reject null hypothesis if T < q̂α
2

or T > q̂1−α
2
.

3. Technical Assumptions and Theoretical Results

In this section, we establish the theoretical properties of our hypothesis

tests when applied to white noise tests. We demonstrate that, under certain

regularity conditions, our hypothesis test can control the probability of type

I errors under the null hypothesis. We also provide a detailed discussion

regarding the selection of weight sequence {wl} in (2.2).

3.1 Theoretical Results

Assuming the time series {Xt} has following form:

Xt = f (εt, εt−1, . . .) ,
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3.1 Theoretical Results

where f is a measurable function, and {εt}+∞
t=−∞ are i.i.d. random elements

in some measurable space. The above structure is referred to as time series

with physical dependence.

Denote Ft = σ (εt, εt−1, . . .) as the σ-field generated by {εt, εt−1, . . .}.

Define Ft,{k} = σ (εt, . . . , εk+1, ε
′
k, εk−1, . . .), where ε′k is an i.i.d. copy of εk.

Let Xt,{k} = f
(
Ft,{k}

)
. For a random variable x, denote ∥x∥q = (E|x|q)1/q.

Following Zhang and Cheng (2018), we define the total functional depen-

dence measure for {Xt}:

ut,q = sup
1≤l≤L

sup
1≤i≤p,1≤j≤p

∥∥Xt,iXt+l,j −Xt,i,{0}Xt+l,j,{0}
∥∥
q
,

and

Um,q =
∞∑

t=m

ut,q.

To investigate the theoretical results of our proposed tests, the following

regularity conditions are required.

Condition 1. U1,2 < +∞, where Um,q =
∑∞

t=m ut,q and

ut,q = sup1≤l≤L sup1≤i≤p,1≤j≤p

∥∥Xt,iXt+l,j −Xt,i,{0}Xt+l,j,{0}
∥∥
q
.

Condition 2. Set Σ0 = Var(Xt), and σ0 = tr(Σ2
0), there exist a q = 2+δ ∈

(2, 3], such that when N → +∞

(
∑+∞

m=1 min(m,N)
1
2
− 1

qum,q)
q

N δσ0

→ 0.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0037



3.1 Theoretical Results

Condition 3. There exists a constant C such that

sup
1≤l≤L

sup
1≤i≤p,1≤j≤p

E [|Xt,iXt,jXt+l,iXt+l,j|q] < C,

where q is the same as in condition 2.

Remark3. Condition 1 implies a short-range dependence of XtXt+l. Con-

dition 2 is closely related to the Uniform Geometric Moment Contraction

condition proposed by Wang and Shao (2020). We say that {Xt} has Uni-

form Geometric Moment Contraction (UGUC(k)) property if there exists

some positive number k such that

sup
1≤l≤L

sup
1≤i≤p,1≤j≤p

E
(
|Xt,iXt+l,j|k

)
< C < ∞

and

sup
1≤l≤L

sup
1≤i≤p,1≤j≤p

E
(∣∣Xt,iXt+lj −X ′

t,iX
′
t+l,j

∣∣k) ≤ Cρt, t ≥ 1

where ρ ∈ (0, 1) and X ′
t,j = fj

(
εt, . . . , ε1, ε

′
0, ε

′
−1, . . .

)
. If there exists q ∈

(2, 3] such that {Xt} is UGUC(q), then it’s easy to verify that um,q ≤ Cρm,

hence
∑+∞

m=1 min(m,N)
1
2
− 1

qum,q < +∞, so the condition 2 holds automati-

cally.

The following theorems demonstrate that under the null hypothesis H0,

our hypothesis test can control the probability of type I errors:
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3.1 Theoretical Results

Theorem 1. Assume Conditions 1-3 hold and wl > 0 for l ∈ N+. Then

under H0, and Lp2

Nδσ0
→ 0, there is

sup
t∈R

|P (T ≤ t)− P (T ∗ ≤ t)| → 0 (3.1)

Theorem 2. Assume Conditions 1-3 hold and wl > 0 for l ∈ N+. Then

under H0, and Lp2

Nδσ0
→ 0, there is

P
(
q̂α

2
< T < q̂1−α

2

)
→ 1− α (3.2)

Remark4. If all the eigenvalues of Σ0 are bounded, we have σ0 = O(p),

then the Theorem 1 and Theorem 2 hold when Lp = O(N δ−ϵ) for any

ϵ > 0. This implies that Theorem 1 and Theorem 2 remain valid as p

tends to infinity. Also, since Lp = O(N δ−ϵ), the maximum lag L is allowed

to increase as N increases. For instance, we can set L = O(lnN) and

p = O(N
δ−ϵ

lnN
), and Theorem 1 and Theorem 2 still hold. This allows us to

further explore how the choice of weight sequence {wl} affects the power of

our proposed test.

We then look into the power of the tests when an alternative hypothesis

H1 is specified. Let {zt} with zt = (zt1, · · · , ztp)⊤ be p-dimensional i.i.d.

random vectors with Ezti = 0,Ez2ti = 1 and Ez8ti < ∞. We assume that

under H1, the observations {Xt : t = 1, . . . , N} are a p-dimensional first-
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3.1 Theoretical Results

order vector moving average process of the form

H1 : Xt = A0zt + A1zt−1 (3.3)

where A0 and A1 are p× p coefficient matrices.

We investigate the asymptotic behavior of our statistics with an ar-

bitrarily given L and weight sequence {wl > 0 : l ∈ N+}. We have the

following theorem:

Theorem 3. Under H1 in (3.3) with an arbitrarily given L and weight

sequence {wl > 0 : l ∈ N+} and p = o(N
3
4 ), we have(

1

N
T − w1µS

)
/w2

1σS1
d→ N (0, 1),

where µS = tr
(
Σ̃0Σ̃1

)
+ 2

N
tr2

(
Σ̃01

)
, and

σ2
S1 =

2

N2
tr2

(
Σ̃2

0 + Σ̃2
1

)
+

6

N2
tr2

(
Σ̃0Σ̃1

)
+

4

N

[
2 tr

(
Σ̃0Σ̃1

)2

+ (ν4 − 3) tr
{
D2

(
Σ̃0Σ̃1

)}]
+

8

N2
tr
(
Σ̃01Σ̃

⊤
01

)
tr
(
Σ̃2

0 + Σ̃2
1

)
+

16

N2
tr
(
Σ̃01Σ̃1

)
tr
(
Σ̃01Σ̃0

)
+

16

N2
tr
(
Σ̃0 + Σ̃1

){
tr
(
Σ̃⊤

01Σ̃01Σ̃0

)
+ tr

(
Σ̃01Σ̃

⊤
01Σ̃1

)}
+

16

N2
tr
(
Σ̃01

){
tr
(
Σ̃2

0Σ̃
⊤
01

)
+ tr

(
Σ̃2

1Σ̃01

)
+ 2 tr

(
Σ̃1Σ̃01Σ̃0

)}
+

4

N
tr
(
Σ̃⊤

01Σ̃01Σ̃
2
0 + Σ̃01Σ̃

⊤
01Σ̃

2
1 + 2Σ̃⊤

01Σ̃1Σ̃01Σ̃0

)
+

4

N
tr
(
Σ̃01Σ̃

⊤
01Σ̃

⊤
01Σ̃01

)
+

12

N2
tr2

(
Σ̃01Σ̃

⊤
01

)
+

16

N2
tr
(
Σ̃01

)
tr
(
Σ̃01Σ̃

⊤
01Σ̃

⊤
01

)
+

4

N2
tr2

(
Σ̃0Σ̃01

)
+

4

N2
tr2

(
Σ̃1Σ̃01

)
+R,
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3.1 Theoretical Results

where R = o(σ2
S1), D

(
Σ̃0Σ̃1

)
denotes the diagonal matrix consisting of the

main diagonal elements of Σ̃0Σ̃1 and Σ̃0 = A⊤
0 A0, Σ̃1 = A⊤

1 A1, Σ̃01 = A⊤
0 A1,

ν4 = Ez4ti.

Theorem 3 demonstrates that under local alternative H1 in 3.3, for our

statistics T , 1
N
T are asymptotically normal distributed with non-zero mean.

Therefore, T → ∞ when N → ∞, while the T ∗ does not go to ∞. Hence

our test statistics T have power under local alternative H1.

We further investigate the power of the proposed test under a more gen-

eral class of alternatives. Notice that under the alternative hypothesis H1,

there exist some values of l such that Σl ̸= 0. Let Yt,l = vec
(
XtX

⊤
t+l

)
and

Yt = (
√
w1Y

⊤
t,1, . . . ,

√
wLY

⊤
t,L)

⊤. Our proposed statistic T can be expressed

as T = 1
N

∑
i ̸=j Y⊤

i Yj. Let Sk = Cov(Yi+k,Yi) denote the auto-covariance

matrix of Yt and S =
∑∞

k=−∞ Sk denote the long-run covariance matrix of

Yt. Under the alternative hypothesis H1, assuming that there exists some

value of L such that EYt = µ ̸= 0, we have the following theorem:

Theorem 4. Assume Conditions 1-3 hold and
∑∞

h=0∥Sh∥
∥S∥F

= o (1), where ∥ · ∥

denotes the Frobenius norm. Let q̂α denote the critical value obtained in

section 2.2. Under the alternative hypothesis H1 with EYt = µ ̸= 0, we

have the following results:

1. If N∥µ∥2
∥S∥F

→ c ∈ (0,∞), then P(T < q̂α
2

or T > q̂1−α
2
) → β ∈ (α, 1). That
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3.2 Some Weighting Schemes

is, our test exhibits nontrivial asymptotic power.

2. If N∥µ∥2
∥S∥F

→ ∞, then P(T < q̂α
2

or T > q̂1−α
2
) → 1. Hence, the asymptotic

power of our test is 1.

Theorem 4 indicates that the asymptotic power of our proposed test

depends on N∥µ∥2
∥S∥F

. Our proposed test can distinguish between the null

hypothesis H0 and alternative hypothesis H1 as long as N∥µ∥2
∥S∥F

→ c > 0. It

is important to note that Theorem 4 only requires that EYt = µ ̸= 0 under

the alternative hypothesis H1. Hence, we can use Theorem 4 to analyze the

power of our proposed test under a more general class of alternatives.

3.2 Some Weighting Schemes

We now provide some schemes for selecting weight sequence {wl}. Similar

to Gallagher and Fisher (2015), we consider two scenarios: one where the

maximum lag L is fixed, and another where L increases as N increases.

We first analyze the relationship between the asymptotic behavior of

our proposed tests under the null hypothesis and the maximum lag L. The

following condition is considered:

Condition 4. Under H0, let Xt = A1/2Zt, where Zt = (zt1, · · · , ztp)⊤ is a

sequence of p-dimensional i.i.d. random vectors, and each component zti

satisfy Ezti = 0,Ez2ti = 1 and Ez8ti < +∞. All the eigenvalues of A are
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3.2 Some Weighting Schemes

bounded.

For our statistics T = 1
N

∑L
l=1 wl

∑
i ̸=j Y

⊤
i,lYj,l, where Yt,l = vec

(
XtX

⊤
t+l

)
,

we have following theorem:

Theorem 5. Suppose condition 4 holds, then we have

T

2∥Γ∥F
d−→ N (0,

L∑
l=1

w2
l ), (3.4)

where Γ = Cov
(
vec

(
XtX

⊤
t+1

))
.

Theorem 5 demonstrates that under certain conditions, the limiting

distribution of T is a normal distribution N (0, (
∑L

l=1 w
2
l )4∥Γ∥2F ); therefore,

the limiting distribution of bootstrap statistics T ∗ is also a normal distri-

bution with mean zero and variance equal to (
∑L

l=1 w
2
l )4∥Γ∥2F . For the

asymptotic result of T under alternative hypothesis, Theorem 3 indicates

that under alternative hypothesis, if {Xt} is a VMA(1) process, then the

asymptotic results of T depend only on the first weight w1, and T → ∞ un-

der H1. Hence, if the maximum lag L increases as the sample size increases,∑L
l=1 w

2
l would affect the power of our test.

Since the maximum lag L is allowed to increase as the sample size

increases, similar to Gallagher and Fisher (2015), the weighting schemes

can be classified into two categories. The first category involves choosing

weights such that limL→∞
∑L

l=1 w
2
l < +∞; the second category involves
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3.2 Some Weighting Schemes

choosing weights such that limL→∞
∑L

l=1 w
2
l = ∞. The commonly employed

weights in portmanteau tests, such as wl =
N+2
N−l

in Ljung and Box (1978)

satisfy limL→∞
∑L

l=1 w
2
l = ∞. If weight sequence meets the condition that

limL→∞
∑L

l=1 w
2
l = ∞, and assuming L is large compared to sample size

N , then
∑L

l=1 w
2
l would be relatively large. This results in a loss of power

for our tests. If weight sequence satisfies limL→∞
∑L

l=1 w
2
l < ∞,

∑L
l=1 w

2
l

would be bounded when L is large, making our test less sensitive to the

choice of L. Hence, if L is large compared to N , we recommend choosing a

weight sequence such that limL→∞
∑L

l=1 w
2
l < ∞.

Remark5. We can also use Theorem 4 to demonstrate how the condition

that the weight sequences {wl} are squared summable affects the asymptotic

results of our proposed tests. This demonstration is carried out under

a more general class of alternatives than VMA(q). Consider a VAR(1)

model Xt = ρXt−1 + et, where |ρ| < 1 and et
iid∼ N(0, Ip). With some

simple calculations, we can obtain N∥µ∥2
∥S∥F

≥ N(
∑L

l=1 wlρ
2l)

p∥A∥F (
∑L

l=1 w
2
l )

1
2
, where A =∑+∞

l=−∞ Cov(Zt,Zt+l) , Zt = (Y ⊤
t,1, . . . , Y

⊤
t,L)

⊤, and Yt,l is defined in Theorem

4. Notice that A does not depend on {wl}. Assume that L increases as

the sample size N increases. If N , p and A satisfy N
p∥A∥F

→ ∞, then the

condition limL→∞
∑L

l=1 w
2
l ≤ ∞ ensures that N(

∑L
l=1 wlρ

2l)

p
1
2 ∥A∥F (

∑L
l=1 w

2
l )

1
2
→ ∞. Based

on Theorem 4, the asymptotic power of our test is 1. Compared with the
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3.2 Some Weighting Schemes

condition limL→∞
∑L

l=1 w
2
l ≤ ∞, the condition limL→∞

∑L
l=1 w

2
l = ∞ may

lead to a loss of power of our test, since it can cause N(
∑L

l=1 wlρ
2l)

p∥A∥F (
∑L

l=1 w
2
l )

1
2
< ∞.

If N , p and A satisfy N
p∥A∥F

→ C, then the condition limL→∞
∑L

l=1 w
2
l ≤ ∞

ensures that N(
∑L

l=1 wlρ
2l)

p∥A∥F (
∑L

l=1 w
2
l )

1
2
→ C, and our test has nontrivial asymptotic

power. The condition limL→∞
∑L

l=1 w
2
l = ∞ may result in loss of power of

our test, since it may cause N(
∑L

l=1 wlρ
2l)

p∥A∥F (
∑L

l=1 w
2
l )

1
2
→ 0. Hence if we allow L to

increase as the sample size N increases, the condition limL→∞
∑L

l=1 w
2
l = ∞

may result in loss of power of our tests. Therefore, we recommend choosing a

weight sequence such that limL→∞
∑L

l=1 w
2
l < ∞ when L is large compared

to N .

If the maximum lag L is fixed and relatively small compared to the sam-

ple size, then
∑L

l=1 w
2
l would be small, which implies that our tests have

relatively large power. Consequently, both weighting schemes can be em-

ployed in this scenario. For commonly used models such as the VAR model

and the dynamic factor model, the autocovariance decays exponentially as

the lag increases. Hence, under the alternative hypothesis, the autocovari-

ance at larger lags would be relatively small; therefore, the weight wl should

be relatively large when l is small.

Inspired by the above discussion, we consider two weighting schemes.

The first scheme sets wl =
N+2
N−l

κ( l
L
)2, where κ(z) is a kernel function. Hong
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(1996) used a similar weighting scheme for testing white noise in univariate

time series. This scheme assigns relatively large weight to lags with small

order l and satisfies limL→∞
∑L

l=1 w
2
l = ∞. We expect that this weighting

scheme will have relatively good power when the maximum lag L is fixed

and relatively small. The second scheme sets wl = al with a ∈ (0, 1);

this scheme also assigns relatively large weight to lags with small order l.

Furthermore, this weight sequence satisfies limL→∞
∑L

l=1 w
2
l < ∞. Hence,

we expect that this weighting scheme will have relatively good power when

max lag L is relatively large compared to the sample size.

4. Simulation studies

In the simulation study, we examine the finite sample performance of our

proposed method in comparison with several existing testing methods. To

illustrate how different choices of weight sequence {wl} affect the power of

our hypothesis test, we consider three choices of {wl}. Let T1 be statistic

in (2.2) with wl ≡ 1, i.e,

T1 =
1

N

L∑
l=1

∑
i ̸=j

Y ⊤
i,lYj,l.

Let T2 be statistic in (2.2) with wl =
N+2
N−l

κ(l/L)2, i.e,

T2 =
1

N

L∑
l=1

N + 2

N − l
κ(

l

L
)2
∑
i ̸=j

Y ⊤
i,lYj,l,
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where κ(z) =


sin(

√
3πz)√

3πz
: |z| < 1

0 : |z| ≥ 1

. The weight sequence in T2 has been

considered in Hong (1996), and it exhibits certain optimality properties

within the method proposed by Hong (1996). Let T3 be statistic in (2.2)

with wl = 0.9l, i.e,

T3 =
1

N

L∑
l=1

0.9l
∑
i ̸=j

Y ⊤
i,lYj,l.

The weight sequences {wl} in T1 and T2 satisfy limL→∞
∑L

l=1 w
2
l = ∞, while

weight sequence {wl} in T3 satisfies limL→∞
∑L

l=1 w
2
l < ∞. The hypothesis

test based on T1, T2 and T3 is conducted by the method we describe in

Section 2. We set the bootstrap number to be B = 1000.

For comparison, we consider the following five tests:

(1). TSN denotes the white noise test statistic proposed by Wang and Shao

(2020).

TSN =
Ts(1)

2

W 2
n

,

where Ts(r) =
∑[nr]

t=1

∑t
s=1 Y⊤

t+dYs, r ∈ [0, 1], n = N − L − d, W 2
n =

1
n

∑n
k=1

(
Ts(k/n)− k(k+1)

n(n+1)
Ts(1)

)2

. Wang and Shao (2020) showed that un-

der H0,

TSN
d→ B(1)2∫ 1

0
(B (u2)− u2B(1))2 du

,

where B(r), r ∈ [0, 1] is the standard Brownian motion. Following simula-

tion setup in Wang and Shao (2020), we set d = 10.
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(2). TC denotes the white noise test statistic proposed by Chang et al.

(2017).

TC =
√
N max

1≤l≤L
max

1≤i,j≤p
|ρ̂ij(l)|,

where ρ̂i,j(l) is the (i, j)th element of sample autocorrelation matrix at lag l,

Γ̂l = diag{Σ̂0}−1/2Σ̂l diag{Σ̂0}−1/2, the critical value of this test is obtained

by bootstrap method.

(3). TW1 and TW1 denote two white noise test statistics proposed by Wang

et al. (2022).

TW1 = max
l=1,...,L

wlAs

(
Γ̂l

)
,

TW2 =
L∑
l=1

wlAs

(
Γ̂l

)
,

where {wl}Ll=1 are pre-selected weight. As

(
Γ̂l

)
calculate average of the

largest s absolute value of Γ̂l, sample autocorrelation matrix at lag l. The

critical value of this test is obtained by a bootstrap method. Following

Wang et al. (2022)’s simulation setup, we set s = p, wl =
1

N−l
.

(4). TLi denotes white noise test statistic proposed by Li et al. (2019).

TLi =

∑L
l=1 tr(Σ̂

⊤
l Σ̂l)− Lnc2p,N ŝ

2
1√

2Lcp,N (ŝ2 − cp,N ŝ21)
,

where cp,N = p/N , ŝ1 = p−1 tr(Σ̂), ŝ2 = p−1 tr(Σ̂⊤
l Σ̂l), Li et al. (2019)

showed that under H0 and i.i.d assumption,

TLi
d→ N(0, 1).
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4.1 Empirical size

It is worth noting that hypothesis testing proposed by Li et al. (2019) was

a one-side test; we reject the null hypothesis when TLi > z1−α, where z1−α

is 1− α quantile of standard normal distribution.

To examine the finite sample behavior, we consider several scenarios

with combinations of p = 20, 50, 80, 120, N = 100, 200, and L = 5, 10. The

level of significance is always set at α = 5%. For each experiment, we have

500 Monte Carlo replicates.

4.1 Empirical size

To compare the empirical sizes, consider the following four models,

Model 1. Xt = Aet, where et
iid∼ N(0, Ip), A = S1/2, and S = (skl)1≤k,l≤p with

skl = 0.995|k−l|.

Model 2. Xt = et, where for i = 1, . . . p, the ith component of et, denoted

as et,i, has the following form: et,i = h
1/2
t,i εt,i, where εt,i

iid∼ N(0, 1),

ht,i = 0.01 + αie
2
t−1,i + βiht−1,i, βi = 0.98− αi, αi = 0.05 + 0.9ui and

ui
iid∼ unif(0, 1).

Model 3. Xt = et ⊙ et−1 ⊙ et−2, where et
iid∼ N(0, Ip), and ⊙ denotes the

Hadamard product.

Model 4. Xt = δt × et +3 (1− δt)× e′t, where et and e′t are independent normal
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4.1 Empirical size

random vectors from N(0, S) with S = (sij)1⩽i,j⩽p and sij = 0.5|i−j|.

δt is Bernoulli random value with P (δt = 1) = P (δt = 0) = 0.5. {δt}

are independent with {et} and {e′t}

Model 1 is i.i.d. white noise, which is the setting considered in Chang

et al. (2017) and Wang and Shao (2020). Model 2 is a multivariate gener-

alized autoregressive conditional heteroskedasticity sequence; Wang et al.

(2022) considered the same setting. Model 3 is a non-i.i.d white noise se-

quence. Model 4 is an i.i.d white noise sequence.

Set significance level at α = 5%, and empirical sizes for different models

are reported in Table 1 and Table 2. Our tests, denoted as T1, T2, and T3,

and the test proposed by Wang and Shao (2020), denoted as TSN , exhibit

accurate and stable empirical sizes for Model 1 to 4. The test proposed

by Chang et al. (2017), denoted as TC , exhibit accurate empirical size for

Model 1 but not for other models. For Model 2 and Model 4, TC tends

to underreject the null frequently. For Model 3, TC over-rejects the null

when N is small and p is large (for instance, N = 100, L = 5 and p = 120);

however, the size appears quite accurate when N = 200 and p = 50. This

indicates that TC can not control type I error for this model. Two tests

from Wang et al. (2022), denoted as TW1 and TW2, exhibit accurate and

stable empirical sizes for Model 1, 2, and 4. For Model 3, TW2 over-rejects
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4.1 Empirical size

Table 1: Empirical sizes (in %) of different test statistics at α = 5% significant

level for Model 1 and Model 2.

Model 1

p T1 T2 T3 TSN TC TW1 TW2 TLi T1 T2 T3 TSN TC TW1 TW2 TLi

N=100, L=5 N=100, L=10
20 5.2 4.2 4.4 4.4 3.4 6.0 5.6 3.2 5.4 5.8 5.0 4.2 3.4 6.0 5.8 4.4
50 4.6 5.0 4.8 6.0 5.0 5.2 5.6 3.8 2.8 4.0 4.2 4.8 2.4 4.4 3.8 3.6
80 6.8 5.8 5.8 4.6 3.4 7.0 7.4 3.2 4.6 5.4 5.2 3.2 2.6 4.4 5.2 4.0
120 3.6 4.0 4.6 4.2 3.2 4.4 4.2 4.4 6.2 5.4 6.0 6.6 2.2 5.2 6.2 4.4

N=200, L=5 N=200, L=10
20 3.8 4.4 5.0 4.0 2.9 6.2 5.6 4.8 5.4 5.2 5.4 4.0 4.2 6.8 3.8 3.6
50 4.6 5.0 4.0 6.0 5.0 5.2 5.6 3.8 3.0 4.0 3.8 4.8 2.2 4.4 3.8 3.6
80 5.0 6.2 5.0 4.4 4.4 6.0 6.8 4.0 3.0 4.6 4.8 5.8 3.8 4.4 4.6 3.8
120 4.6 5.8 6.0 4.6 5.4 6.2 6.0 4.4 5.2 5.2 4.8 4.6 4.8 6.2 5.8 4.6

Model 2

p T1 T2 T3 TSN TC TW1 TW2 TLi T1 T2 T3 TSN TC TW1 TW2 TLi

N=100, L=5 N=100, L=10
20 4.4 2.8 4.6 5.2 0 6.0 5.4 4.0 5.8 4.4 4.6 4.6 0.2 6.4 6.0 0.6
50 4.6 3.8 4.0 4.0 0.2 4.2 5.6 0.6 5.2 4.8 4.8 4.6 0 5.4 5.2 0
80 6.2 6.0 5.6 6.2 0.6 5.6 5.8 0.2 5.4 4.0 4.2 6.2 0.4 6.6 6.2 0
120 5.6 4.6 4.8 6.2 1.6 5.8 4.6 0 5.6 4.4 4.2 5.4 0.8 6.4 3.8 0

N=200, L=5 N=200, L=10
20 5.4 3.8 4.8 6.6 0.2 5.0 4.4 10.6† 4.6 5.4 5.0 5.2 0 4.4 4.8 3.6
50 4.6 5.4 4.6 4.8 0.2 5.4 4.8 5.0 4.2 4.6 4.4 6.2 0 6.4 5.8 0
80 5.8 5.6 5.2 4.4 0.4 3.0 7.0 0 5.2 5.2 5.6 6.0 0 6.2 5.2 0
120 5.2 5.0 4.6 4.4 0.2 5.0 4.8 0 6.0 5.2 5.0 5.4 0.2 4.8 4.6 0

† : Type-I errors are out of control

the null when p = 80, 120, TW1 also over-rejects the null in some cases (for

instance, N = 200 and p = 80). The test from Li et al. (2019), indicated as

TLi, exhibits accurate empirical size for Model 1 but not for other models.

For Model 2, when N = 200, L = 5, and p = 20, TLi over-rejects the null;

when N = 200, L = 5, and p = 50, the size is quite accurate; however,

when N = 200, L = 5, and p = 80, TLi under-rejects the null. The same

situations also occurs in Model 3 and Model 4, suggesting that the empirical
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Table 2: Empirical sizes (in %) of different test statistics at α = 5% significant

level for Model 3 and Model 4.

Model 3

p T1 T2 T3 TSN TC TW1 TW2 TLi T1 T2 T3 TSN TC TW1 TW2 TLi

N=100, L=5 N=100, L=10
20 5.4 4.0 4.4 3.2 6.4 7.2 5.6 33.6† 5.6 5.6 5.0 3.8 11.2† 7.6 10.8† 14.5†

50 5.4 5.0 4.8 4.4 25.4† 9.4† 14.0† 25.6† 4.4 3.8 4.4 2.4 44.2† 5.6 13.4† 4.2
80 5.6 3.8 4.2 2.6 44.6† 8.8 14.4† 19.3† 6.0 5.0 5.2 2.4 72.0† 8.4 18.2† 2.3
120 6.0 5.0 5.8 2.4 72.0† 8.4 18.2† 12.2† 6.0 5.2 5.2 3.6 90.6† 9.2† 33.0† 1.0

N=200, L=5 N=200, L=10
20 5.8 4.4 4.6 4.8 0.4 5.6 5.6 45.5† 5.0 4.2 4.6 3.4 1.6 7.8 7.2 26.8†

50 4.4 4.4 3.8 2.4 5.0 7.2 6.0 40.4† 4.6 4.8 5.0 3.2 8.8 5.4 6.6 15.4†

80 6.2 4.8 4.4 5.6 10.6† 5.8 11.8† 36.8† 6.2 4.8 5.4 4.8 17.0† 9.4† 11.7† 7.4
120 3.8 6.4 6.0 3.4 20.0† 7.2 11.2† 30.2† 4.4 5.2 5.8 3.8 36.8† 7.6 14.8† 1.9

Model 4

p T1 T2 T3 TSN TC TW1 TW2 TLi T1 T2 T3 TSN TC TW1 TW2 TLi

N=100, L=5 N=100, L=10
20 3.2 6.4 4.8 6.2 0 3.8 4.8 2.6 5.8 3.6 5.8 5.8 0 3.0 5.2 1.9
50 6.0 5.8 5.2 6.2 0 6.6 6.0 5.4 4.8 4.0 4.4 5.0 0 6.0 3.8 1.6
80 5.8 4.6 5.0 5.2 0 5.6 5.4 5.6 5.8 4.0 4.2 4.0 0.4 6.4 4.6 2.6
120 5.8 3.0 3.8 3.8 0.6 6.6 6.0 10.6† 5.2 3.2 4.2 6.0 0.8 4.4 3.8 2.3

N=200, L=5 N=200, L=10
20 3.6 3.8 4.0 4.0 0 5.0 3.4 4.6 3.6 5.8 4.8 6.4 0 6.8 4.6 2.4
50 3.6 6.6 6.2 5.0 0 5.8 3.4 6.4 6.2 4.0 6.0 4.6 0 4.4 6.0 2.2
80 3.6 5.2 4.6 4.2 0 5.2 3.4 10.0† 4.8 4.8 5.2 5.8 0.2 5.8 4.8 2.4
120 5.0 6.6 5.8 6.0 0 4.6 5.0 11.3† 3.4 5.2 4.2 4.0 0 6.2 6.4 3.4

† : Type-I errors are out of control

size of TLi is not stable for Model 2, 3, and 4. Our proposed tests have fairly

accurate empirical sizes for Model 1, 2, 3, and 4.

4.2 Empirical power

To study the empirical power, we consider the following four models:

Model 5. Xt = 0.15Xt−1 + et, where {et} has same data generation process as

{et} in Model 2, i.e. {et} is a multivariate generalized autoregressive
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conditional heteroskedasticity sequence.

Model 6. Xt = AXt−1 + et, where et is i.i.d. N(0, Ip), and

A =

A0 0

0 0


p×p

,

A0 is a k0 × k0 matrix with A0(i, j) ∼ U(−0.25, 0.25), and k0 =

min{[p/5], 12}, [·] stands for floor function. The first k0 elements of

Xt are not white noises.

Model 7. Xt = AXt−1 + et, where et is i.i.d. N(0, Ip), and A = (aij), aij =

0.9|i−j|, then we normalize A so that ∥A∥2 = 0.7.

Model 8. Xt = BYt+Et, where Et is i.i.d. N(0, Ip), B ∈ Rp×4 is a p×4 matrix,

B = (bij), bij is first generate independently from uniform distribution

U(−1, 1), then be divided by p0.25, Yt ∈ R4 with Yt = AYt−1 + et,

A ∈ R4×4 is a 4 dimensional diagonal matrix with diagonal element

set to be (−0.3, 0.35, 0.25,−0.4). et
iid∼ N(0, I4) and are independent

with {Et}.

Model 5 is an example of a sparse high-dimensional VAR model; a

similar setting has been considered in Wang et al. (2022). Model 6 is also

an example of a sparse high-dimensional VAR model, in which only the first

k0 elements of Xt are not white noises; the same setting has been considered
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in Chang et al. (2017) and Wang and Shao (2020). Model 7 and Model 8 are

added to examine the behavior of our test in the case of dense alternatives.

Model 7 is similar to the setting in Wang and Shao (2020). Model 8 is a

dynamic factor model.

Since the empirical size of TLi is not stable for Model 2, 3, and 4, we do

not consider the empirical power of TLi and only compare empirical power

of T1, T2, TSN , TC , TW1 and TW2. Since the empirical size of TC , TW1, and

TW2 is largely distorted in Model 3, we report the size-adjusted power of

these tests.

Table 3 and Table 4 present results on empirical powers for different

testing methods at the 5% significance level. Our proposed tests exhibit

nontrivial power for all four models. Under sparse alternatives (Model 5

and Model 6), as N increases, the powers of T1, T2, and T3 quickly rise to

around 1. The tests proposed by Wang et al. (2022) are strong competitors

to our test. TSN and TC exhibit low empirical powers for Model 5 and Model

6. In Model 5, T1, T2, and T3 outperform the rest of the tests, and there

is no definitive conclusion regarding how T1, T2, and T3 compare to each

other. The empirical power of TC for Model 5 is low when N = 100, and

decreases when p increases, indicating that TC does not have satisfactory

empirical powers. In Model 6, T2 outperforms the rest of the tests, T3 is
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Table 3: Empirical power (in %) of different test statistics at α = 5% significant

level for Model 5 and Model 6.

Model 5

p T1 T2 T3 TSN TC TW1 TW2 T1 T2 T3 TSN TC TW1 TW2

N=100, L=5 N=100, L=10
20 52.0 63.8 60.0 7.8 0.4 43.2 16.8 56.8 59.2 58.0 6.4 0 43.6 21.8
50 91.2 89.4 94.8 8.8 0.2 88.8 48.8 98.8 93.6 98.4 5.6 0 89.4 67.2
80 99.8 99.0 99.6 9.0 0.2 98.0 71.6 100 99.2 99.8 5.4 0.6 99.0 87.6
120 100 100 100 10.4 0.6 100 90.2 100 100 100 6.0 1.4 100 98.6

N=200, L=5 N=200, L=10
20 73.6 91.4 88.6 18.6 0.2 51.0 29.8 75.0 86.6 85.8 9.4 0 51.6 30.6
50 98.6 99.0 98.6 21.2 0 97.0 83.0 100 99.6 100 13.6 0 96.2 87.6
80 100 100 100 16.8 0 99.6 95.6 100 100 100 11.6 0 99.6 99.4
120 100 100 100 19.4 0 100 99.6 100 100 100 12.8 0.2 100 100

Model 6

p T1 T2 T3 TSN TC TW1 TW2 T1 T2 T3 TSN TC TW1 TW2

N=100, L=5 N=100, L=10
20 10.6 26.8 19.6 7.0 0 11.4 3.4 10.0 24.0 12.6 5.6 0 7.2 1.6
50 49.4 91.0 71.6 26.2 0 19.4 18.6 26.8 77.0 65.6 15.8 0 11.6 8.4
80 61.4 95.0 82.6 31.0 0 47.6 26.4 37.2 89.0 74.4 16.0 0 31.4 13.6
120 37.8 79.6 56.0 17.0 0 35.8 11.6 26.8 65.8 51.0 11.4 0 22.6 6.2

N=200, L=5 N=200, L=10
20 29.2 70.0 44.2 16.6 5.6 16.0 12.0 16.2 49.8 41.2 7.2 2.8 10.2 6.0
50 94.8 100 99.6 68.6 7.8 72.0 92.8 74.6 99.8 99.6 48.2 5.0 36.2 64.2
80 97.2 100 100 80.4 10.0 95.8 97.8 89.2 100 100 59.4 5.2 69.4 82.8
120 86.2 100 97.8 61.8 7.4 83.4 85.8 66.6 99.2 97.4 51.6 3.4 54.2 57.0

usually the second-best test, T1, TW1, and TW2 have satisfactory power, and

TSN has second worst performance. The empirical powers of TC for Model

5 are low when N = 100, and increase dramatically when N = 200; this

indicates that the powers of TC are low when sample size N is small.

For dense alternatives (Model 7 and Model 8), T2 outperforms the rest

of the tests, and T3 is usually the second-best test; this shows that our

tests have high power against dense alternatives. TSN exhibit relatively

low power, partly because the effective sample size for TSN is small. TC
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4.2 Empirical power

Table 4: Empirical power (in %) of different test statistics at α = 5% significant

level for Model 7 and Model 8.

Model 7

p T1 T2 T3 TSN TC TW1 TW2 T1 T2 T3 TSN TC TW1 TW2

N=100, L=5 N=100, L=10
20 82.2 92.4 88.6 31.4 0 63.2 44.8 70.2 88.6 84.2 20.4 0 52.4 34.4
50 64.0 75.8 75.2 21.6 0 37.6 16.8 51.0 74.0 69.0 13.4 0 28.0 13.0
80 59.4 74.2 69.8 14.0 0 38.0 12.0 49.4 68.4 67.8 9.2 0 24.0 9.0
120 61.4 78.4 71.8 14.2 0 37.6 9.8 50.2 71.6 70.8 9.8 0 30.2 7.4

N=200, L=5 N=200, L=10
20 98.4 99.8 99.6 67.8 0.4 36.2 19.0 95.6 100 100 51.6 0 22.0 12.6
50 93.6 99.6 97.0 51.2 0 70.0 45.0 86.6 98.4 96.6 39.0 0 58.0 36.4
80 88.8 98.2 96.6 43.8 0 63.2 30.8 85.6 98.8 96.2 33.4 0 51.8 25.6
120 90.8 100 96.8 48.6 0 63.8 26.4 88.4 100 96.4 37.8 0 55.0 19.0

Model 8

p T1 T2 T3 TSN TC TW1 TW2 T1 T2 T3 TSN TC TW1 TW2

N=100, L=5 N=100, L=10
20 17.0 38.8 25.6 7.4 0 10.4 4.0 13.6 26.2 21.2 6.0 0 6.4 1.4
50 26.6 54.2 31.6 13.6 0 12.2 4.8 12.8 34.4 29.2 6.8 0 7.8 2.6
80 47.2 60.6 50.6 23.6 0 8.8 4.8 21.8 58.4 46.0 12.6 0 9.0 2.4
120 37.8 79.6 40.8 17.0 0 11.8 2.8 26.8 65.8 37.2 11.4 0 8.8 1.6

N=200, L=5 N=200, L=10
20 44.2 80.8 59.0 21.8 0 4.0 1.0 25.4 69.4 57.2 16.8 0 4.2 0.6
50 55.6 92.0 77.8 29.4 0 23.2 16.4 32.4 80.6 70.8 18.2 0 14.2 7.8
80 61.0 94.4 82.0 38.6 0 25.4 17.6 42.6 89.2 76.8 23.8 0 19.4 9.8
120 67.8 89.4 76.8 35.8 0 23.8 16.8 46.4 76.4 72.4 24.0 0 11.6 6.2

can hardly detect serial correlations in dense alternatives. TW1 and TW2

perform relatively well compared to TC . As demonstrated by Wang et al.

(2022), this is mainly because TW1 and TW2 are based on the average of the

largest s absolute values of autocorrelation matrix, making them better at

picking up dense signals compared to TC .
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4.3 Numerical analysis of weight wl

4.3 Numerical analysis of weight wl

We study how weight sequence {wl} affects the power of our proposed tests

as the maximum lag L increases. We consider the following two models:

Model 9. Xt = etexp(σt), σt = 0.25σt−1 + 0.05ut, et
iid∼ N(0, Se) and ut

iid∼

N(0, Su), where Se = (se,ij)p×p and Su = (su,ij)p×p with se,ij = I(i =

j) + 0.4I(i ̸= j) and su,ij = 0.9|i−j|.

Model 10. Xt = AXt−1 + et, where et is i.i.d. N(0, Ip), and A = (aij), aij =

0.9|i−j|, then we normalize A so that ∥A∥2 = 0.6.

Model 9 is a stochastic volatility model; we study the empirical sizes

of T1, T2, and T3. Model 10 is a dense VAR model similar to Model 7; we

study the empirical powers of T1, T2, and T3. We set N = 150, p = 20 and

L = 5, 10, 15, 20, 25, 30, 35, 40, the significance level is set at α = 5%.

The empirical sizes of T1, T2, and T3 at α = 5% significant level in

Model 9 are presented in Figure 1; our proposed tests can control type I

errors when the maximum lag L is large. The empirical powers of T1, T2

and T3 at α = 5% significant level in Model 10 are presented in Figure 2.

The weight sequences {wl} in T1 and T2 satisfy limL→∞
∑L

l=1 w
2
l = ∞. The

empirical powers of T1 and T2 are gradually decreasing as the maximum

lag L increases, which is consistent with our analyses in Section 3. Figure
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Figure 1: Empirical size of T1, T2 and T3 for Model 9

2 shows that the empirical power of T3 does not decrease significantly as

the maximum lag L increases. Note that the weight sequence {wl} in T3

satisfies limL→∞
∑L

l=1 w
2
l < ∞; as analyzed in Section 3, the power of T3 is

less sensitive to the choice of L.

5. Real Data Example

In this section, we analyze the U.S. stock market using our proposed tests.

The dynamic factor model is commonly used for analyzing the stock market,

and we are interested in testing whether the use of dynamic factor model

is reasonable. The data contains daily returns of 120 securities of the S&P
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Figure 2: Empirical power of T1, T2 and T3 for Model 10

500 index from January 2001 to April 2002. Denote our data as {Xt}; the

dimension of Xt is 120, and sample size is 366.

We first use our proposed tests to test whether the data is white noise.

Let T1 be statistic in (2.2) when wl ≡ 1, T2 be statistic in (2.2) when

wl =
N+2
N−l

κ(l/L)2, where κ(z) =


sin(

√
3πz)√

3πz
: |z| < 1

0 : |z| ≥ 1

, and T3 be statistic

in (2.2) when wl = 0.9l. For comparison, we consider the white noise test

proposed by Chang et al. (2017)(denoted as TC) and two white noise tests

proposed by Wang et al. (2022)(denoted as TW1 and TW2), which have been

described in Section 4. We set L = 2, 4, 6, 8, 10 and the bootstrap number
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Table 5: p-values(in %) of T1, T2, T3, TC , TW1, TW2 for testing {Xt} is white noise

L
p.value 2 4 6 8 10

T1 11.7 51.1 89.7 94.0 91.2
T2 3.3 2.8 3.7 10.8 19.2
T3 2.1 4.6 2.0 8.6 17.1
TC 79.3 89.9 93.6 94.7 96.3
TW1 5.0 19.0 25.3 23.6 27.0
TW2 3.4 14.4 31.0 22.4 36.0

to be 1000. We calculate the p-values of these white noise tests, and the

results are shown in Table 5.

If we consider a significance level of 5%, the p-values of T2 and T3 are

lower than 5% when L = 2, 4, 6, and the p-values of TW1 and TW2 are lower

than 5% when L = 2. Based on our simulation, we believe the data is not

white noise; T1 and TC fail to detect series dependent.

We used the information criteria approach of Bai and Ng (2002) to

determine the number of factors (denoted as r) to use in the model. We

consider the following three information criteria:

IC1(r) = log
(
Vr(F̂ , Λ̂)

)
+ r

(
N + p

Np

)
log

(
Np

N + p

)
,

IC2(r) = log
(
Vr(F̂ , Λ̂)

)
+ r

(
N + p

Np

)
log(min{N, p}),

IC3(r) = log
(
Vr(F̂ , Λ̂)

)
+ r

log(min{N, p})
min{N, p}

.

where Vr(F̂ , Λ̂) =
∑p

i=1

∑N
t=1 E

[
ϵ̂2i,t

]
/Np and ϵ̂i,t = Xt,i − F̂tΛ̂i. The result

is shown in Figure 3.
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Figure 3: Information Criteria for number of factors

The result indicates that three information criteria yield two different

optimal numbers of factors; the results of IC1 and IC2 suggest that r is 2,

while the result of IC3 suggests that r is 5. By employing our white noise

testing method, we can determine the optimal number of factors by testing

whether residuals are white noise for r = 2 and r = 5. The results for r = 2

are presented in Table 6, and the results for r = 5 are presented in Table 7.

Given the significance level to be 5%, we calculate the p-values for

testing whether the residuals are white noise when the number of factors is

2 and 5, using our white noise tests (T1, T2, and T3), the white noise test
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Table 6: p-values(in %) of T1, T2, T3, TC , TW1, TW2 for testing whether residuals

is white noise when the number of factors r = 2

L
p.value 2 4 6 8 10

T1 50.0 35.9 53.3 5.8 16.3
T2 3.8 4.2 13.7 17.9 21.9
T3 2.9 3.1 8.5 5.2 4.2
TC 67.5 76.1 83.2 83.4 89.5
TW1 58.2 36.0 32.6 41.0 16.2
TW2 67.4 26.8 16.0 2.2 13.4

Table 7: p-values(in %) of T1, T2, T3, TC , TW1, TW2 for testing whether residuals

is white noise when the number of factors r = 5

L
p.value 2 4 6 8 10

T1 41.8 47.2 39.0 10.3 19.9
T2 10.4 11.7 15.0 19.9 23.8
T3 13.7 20.6 21.0 24.3 25.1
TC 65.5 76.0 82.9 86.4 90.2
TW1 61.4 12.4 9.8 49.2 42.6
TW2 37.8 25.4 18.0 17.0 19.4

proposed by Chang et al. (2017) (TC), and two white noise tests proposed

by Wang et al. (2022)(TW1 and TW2). Table 6 shows p-values of those tests

when the number of factors is 2, the p-values of T2 are less than 5% when

L = 2, 4, 6, the p-values of T3 are less than 5% when L = 2, 4, 10. This

suggests the residuals are not white noise when the number of factors is

2; therefore, using 2 factors is insufficient for modeling our data. Table

7 shows that all p-values are larger than 5% when the number of factors

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0037



is 5; this indicates using 5 factors is sufficient for modeling our data. In

summary, we choose the number of factors to be 5. In conclusion, it is

reasonable to employ dynamic factor model with factor numbers set to be

5 for modeling the U.S. stock market.

6. Conclusions

In this paper, we propose a novel high-dimensional white noise testing

method, which can be viewed as an extension of portmanteau tests in high-

dimension settings. Simulation results indicate that our proposed tests are

well-suited for detecting non-white noise, especially when signals are dis-

tributed across a large number of coordinates. We apply our method to

determine the number of factors in the dynamic factor model for modeling

the U.S. stock market, demonstrating the practical value of our proposed

method.

There are several important future research directions worth noting.

The first is to develop an automatic method for determining the maximum

lag L in our tests. The second is to develop a test capable of detecting

non-white noise signals in both sparse and dense cases since we typically

lack prior knowledge about whether the alternative is sparse or dense. We

shall leave these topics for future research.
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Supplementary Material

Additional details and supporting information can be found in the supple-

mentary file online. In Section S1, we provide additional simulation results

of the white noise test for fitted residuals. Section S2 contains proofs for

the theoretical results outlined in the main text.
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