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Abstract: Checking whether the error term is a marginal difference sequence

(MDS) in the multivariate time series model with a parametric conditional

mean is a crucial problem. Tests based on the martingale difference diver-

gence matrix (MDDM) are an effective statistical method for testing MDS

in the residuals of multivariate time series models. However, MDDM-based

tests require specifying the lag order. To solve this problem, we propose a

data-driven MDDM-based test that automatically selects the lag order. This

method has three main advantages: first, researchers do not need to specify

the lag order while the test automatically selects it from the data; second,

under the null hypothesis, the lag order is one; third, the proposed automatic

tests have good performance in detecting model inadequacy caused by high-

order dependence. In theory, we prove the asymptotical property of the pro-

posed method. Furthermore, we demonstrate the effectiveness of this method

through simulations and real data analysis.

Key words and phrases: Martingale difference divergence matrix (MDDM),

Marginal difference sequence (MDS), Multivariate time series model.
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1 INTRODUCTION 2

1. Introduction

The concept of marginal difference sequence (MDS) is central in many areas of economics

and finance. Many economic theories in a dynamic context, such as market efficiency

hypothesis, rational expectations, or optimal consumption smoothing, deliver such de-

pendence restrictions on the underlying economic variables, e.g., Hall (1978) and Lo and

MacKinlay (1997). The martingale difference hypothesis (MDH) states that the best pre-

dictor, in the sense of least mean squared error, of the future values of a time series given

the current information set is just the unconditional expectation. Hence, past information

does not help to improve the forecast of future values of an MDS. Furthermore, MDH can

be used to test the error term with parametric conditional mean for the time series model.

More formally, people consider a time series

Yt = m(It−1) + εt, (1.1)

where Yt ∈ Rp; m(It−1) = E(Yt|It−1) is the conditional mean almost surely (a.s.) of Yt

given the conditioning set It−1; εt = Yt − E(Yt|It−1) by construction is an MDS with

respect to It−1; and the conditioning set at time t is It = {Yt, Yt−1, · · ·}. In general,

empirical researchers usually assume that m(·) is from a parametric model, i.e., m(·) ∈ M,

where M = {f(·, θ) : θ ∈ Θ} is a family of real functions indexed by an unknown vector

parameter θ, which lies in the parameter space Θ ∈ Rs. Correctly specifying the form of

m(·) is crucial because the inference of θ and the prediction of future values of Yt heavily

rely on the form of m(·). To check whether the form of m(·) is correctly specified or not,
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1 INTRODUCTION 3

we need to test the hypothesis of m(·) ∈ M, that is,

H0 : E(Yt|It−1) = f(It−1, θ0) a.s. for some θ0 ∈ Θ,

against the alternative hypothesis that

H1 : P {E(Yt|It−1) = f(It−1, θ)} < 1 for all θ ∈ Θ.

Equivalently, the null hypothesis H0 can be expressed as an MDH:

H0 : E(et|It−1) = 0 a.s., (1.2)

where et = et(θ0) with et(θ) = Yt − f(It−1, θ) for some θ0 ∈ Θ. If H0 is true, then the

best predictor, in the sense of the least mean squared error, of the future values of Yt

given the conditioning set It−1 is f(It−1, θ0). If H0 is not true, then there is a lack of fit

in the postulated conditional mean specification f(It−1, θ0), which can lead to misleading

statistical inferences and suboptimal point forecasts, resulting in erroneous conclusions.

Hence, valid testing tools for H0 must be provided.

In recent years, two different classes of MDH testing methods have been developed:

the first one is to test the MDH for the observed data Yt, i.e., under the assumption

that f(It−1, θ0) = µ (a constant scalar), these methods include but are not limited to

Durlauf (1991), who proposed a MDH method for the univariate time series Yt. Durlauf

(1991), Hong (1996), Deo (2000), and Shao (2011a) investigated spectral tests, which

target nonzero serial correlations. The second class of MDH testing methods is to test

the MDH for the error term of the parametric conditional mean model, i.e., under the

assumption that f(It−1, θ0) ̸≡ µ. Hong and Lee (2005) proposed the kernel-based spectral
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1 INTRODUCTION 4

test, and Escanciano (2006) proposed the generalized spectral test. For other spectral

tests on serial dependence hypotheses or for model checks, one can refer to Hong (1996),

Paparoditis (2000), Delgado et al. (2005), Shao (2011b), Chen and Hong (2014), Zhu

(2015), and many others. All the above methods are useful, but these methods are

designed for p = 1. In the case of p > 1, Hosking (1980) and Li and McLeod (1981)

proposed Portmanteau tests based on residual autocorrelations. However, these residual-

autocorrelation-based tests are expected to exhibit a lack of power to the non-MDS et with

zero autocorrelations, and their generalizations to other nonlinear multivariate models are

not straightforward. To overcome the disadvantages of portmanteau tests, Wang et al.

(2022) proposed a test for the multivariate MDH in (1.2) on the basis of the martingale

difference divergence matrix (MDDM). MDDM-based tests examine whether et is an MDS

with respect to the user-chosen variable Kt ∈ It−1. The choice of Kt is flexible, and it

can include the lagged dependent variables Yt−m (for m = 1, ...,M) and their functional

forms. In contrast to the residual-autocorrelation-based tests that can only detect linear

dependents, MDDM-based tests can detect linear and nonlinear dependents.

For most of the aforementioned methods, the lag order must be specified, and the

selection of the employed number of lag M is arbitrary. Regarding this limitation, Wang

et al. (2022) proposed computing the MDDM-based statistic for various lags M . However,

as presented in the real data analysis, different lags lead to conflicting results. Selecting a

lag order M in prior without considering the structure of the data may also lead to another

problem in which the selected lag cannot accurately reflect the true structure of the data;

furthermore, this affects the accuracy and reliability of the model. For an example, if the
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data contain a high-order dependent, the tests may suffer inefficiency when the selected

lag M does not contain the high-order dependent, i.e., the selected lag order is smaller

than the true lag of the dependent.

To deal with this problem, we propose an MDDM-based statistic, which can select

the lag of M automatically adapting to the lag of the dependent present in the data.

Thus, under the null hypothesis (1.2), the lag M is one. However, under the alternative,

the test would employ a higher value of M according to the serial dependent in the data.

The selection of lag M is similar to the selection of the number of autocorrelations in the

framework of testing for serial correlation. Thus, following Escanciano and Lobato (2009),

which combined the advantages of AIC (Akaike, 1974) and BIC (Schwarz, 1978). On the

one hand, tests constructed using the BIC criterion can effectively control the type-I error

and are more powerful when the dependent is present in the first lag dependence. On the

other hand, tests based on AIC cannot effectively control the type-I error, but they are

more powerful when the dependent is present in the high-order dependence. As shown in

the simulation study of Subsection 5.3, our statistic has good performance in detecting the

model inadequacy caused by high-order dependence, while for the MDDM-based testing

methods, the power is very low especially for the small value of lag order M . The detailed

explanation and introduction for the data-driven MDDM-based methods are presented in

Section 3.

The rest of the article is organized as follows: Section 2 reviews the MDDM-based test

statistic. Section 3 presents our proposed tests and establishes its asymptotic properties.

Section 4 provides a bootstrap method for estimating the critical values of our proposed
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tests. Section 5 studies the finite sample behavior through simulations. Section 6 makes an

empirical analysis of our proposed test statistics. Conclusion and discussion are offered in

Section 7. Proofs, the simulation studies including for p = 1 and the moment assumptions

failed are gathered in the Supplementary Materials.

Throughout the paper, R is a one-dimensional real vector space, C is a one-dimensional

complex vector space, x⋆ is used for “x-conjugate-transpose” (conjugate for scalars), ∥x∥2=

x2
1 + . . . + x2

p for x ∈ Rp, and ⟨x, y⟩ is the inner product for x, y ∈ Rp. For a matrix

X ∈ Rp×q, X⊤ is its transpose, ∥X∥F is its Frobenius norm, and ∥X∥2 is its spectral

norm, vec(X) is its vectorization. Moreover, Ip is the p × p identity matrix, I(·) is the

indicator function, n is the sample size, all limits are taken as n → ∞, op(1)(Op(1))

denotes a sequence of random vectors converging to zero (bounded) in probability, “→p”

denotes the convergence in probability and, “→d” denotes the convergence in distribution.

2. Preliminaries

In this section, we first introduce the MDDM (Lee and Shao, 2018), which forms the

MDDM-based test statistics for H0 in (1.2). For V ∈ Rp and U ∈ Rq, the MDDM is

defined as follows:

MDDM(V |U) =
1

cq

∫
Rq

G(s)G(s)⋆

∥s∥1+q
ds,

where G(s) = cov(V, ei⟨s,U⟩) = (G1(s), · · · ,Gp(s))
⊤ for s ∈ Rq, Gj(s) = cov(Vj, e

i⟨s,U⟩), and

cq = π(1+q)/2/Γ {(1 + q)/2}. If E {∥U∥2+∥V ∥2} < ∞, as shown in Lee and Shao (2018),
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2 PRELIMINARIES 7

then the MDDM has a simple and equivalent expression as follows:

MDDM(V |U) = −E[(V − E(V ))(V ′ − E(V ′))⊤∥U − U ′∥], (2.1)

where (V ′, U ′) is an independent and identically distributed (i.i.d.) copy of (V, U). For

the sake of completeness, we refer the readers to Lee and Shao (2018) and Wang et al.

(2022) for the proof of this equivalence.

Let random sample {(Uk, Vk)}nk=1 from the joint distribution of (U, V ), and the result

(2.1) implies that the sample MDDM (denoted by MDDMn(V |U)) can be computed as

MDDMn(V |U) = − 1

n2

n∑
h,l=1

(Vh − V n)(Vl − V n)
⊤∥Uh − Ul∥,

where V n = n−1
n∑

i=1

Vi (e.g., Lee and Shao, 2018).

The MDDM is a matrix-valued extension of the MDD2 in (Shao and Zhang, 2014),

and it has the following appealing property:

MDDM(V |U) = 0 if and only if E(V |U) = E(V ) a.s.

Hence, we can test the hypothesis of E(V |U) = 0 by examining whether ∥MDDMn(V |U)∥F

is significantly different from zero. In view of this fact, Wang et al. (2022) proposed two

MDDM-based test statistic T̂ F
sn(M) and T̂ F

wn(M) for H0 as follows:

T̂ F
sn(M) = n∥MDDMn(êt|Yt,1:M)∥F , (2.2)

and

T̂ F
wn(M) = n

M∑
j=1

ωj∥MDDMn(êt|Yt−j)∥F , (2.3)
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where Yt,1:M := (Y ⊤
t−1, · · · , Y ⊤

t−M)⊤, ωj = (n− j)/n, êt = Yt − f(Ît, θ̂n) is the residual, Ît is

the observed conditional set at time t, and θ̂n is an estimator of θ0. To study whether the

MDDM-based test is influenced by the matrix norm, Wang et al. (2022) also suggested to

replace the Frobenius norm with the spectral norm and proposed two another MDDM-

based tests denoted by T̂ S
sn(M) and T̂ S

wn(M). Thus, there are four MDDM-based test

statistics, T̂ F
sn(M), T̂ F

wn(M), T̂ S
sn(M), and T̂ S

wn(M) proposed by Wang et al. (2022).

The MDDM-based tests have appealing theoretical properties and good numerical

performance, but the MDDM-based tests should give a fixed lag M in advance, and

Wang et al. (2022) proposed to avoid this disadvantage by considering a variety of M .

However, the potential issue of conflicting evidence among different lag orders M has

been ignored. This conflict may lead to the selected lag order not accurately reflecting

the true structure of the data, thereby affecting the accuracy and reliability of the model.

Additionally, when the selected lag order M is smaller than the true lag dependent in the

data, the tests lose some power because the high-order dependence is not considered. A

simulation studies of a high-order dependent is designed in Subsection 5.3, which shows

that the MDDM-based tests proposed by Wang et al. (2022) is inefficient in the high-

order dependence, especially for a small value of M . To address this issue, we develop

a data-driven method for automatically selecting the lag order M , as detailed in Section

3. From the numerical study of Wang et al. (2022), the weighted MDDM-based tests

T̂ F
wn(M) and T̂ S

wn(M) are usually more powerful than the tests T̂ F
sn(M) and T̂ S

sn(M). This

result indicates that leveraging weighted MDDM-based tests could potentially enhance the

sensitivity of our tests when choosing lag orders. Alternatively, the automatic methods
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3 DATA-DRIVEN MDDM-BASED TEST 9

proposed by (Inglot and Ledwina, 2006a,b) and Escanciano and Lobato (2009) need the

test statistic increasing with the lag of M increasing, and the tests for T̂ F
sn(M) and T̂ S

sn(M)

do not necessarily increase as M increases. Thus, we do not consider the lag in the selected

method for the tests T̂ F
sn(M) and T̂ S

sn(M).

3. Data-driven MDDM-based test

3.1 Data-driven test statistics

We propose to modify the statistic (2.3) by allowing the data to select the lag M auto-

matically. In particular, the proposed test statistic is the maximized value of statistic

(2.3) corrected by a penalty term that is an increasing function of the included number

of lag M . Furthermore, we allow the data to select whether AIC or BIC is employed as

the penalty function. The motivation for letting the data select AIC or BIC is as follows.

On the one hand, the AIC criterion imposes a small penalty that naturally leads to large

values for the selected M . However, Akaike’s small penalty implies that the AIC criterion

is inconsistent in Woodroofe (1982); thus, under the null hypothesis, it leads to a test that

cannot control the type-I error. On the other hand, the large penalty imposed by the BIC

criterion implies that the chosen values for M are low. Small values for M lead to tests

that control the type-I error properly, but are less powerful when the dependence appears

at higher lags. To obtain the best from both worlds, the ideal test procedure employs the

BIC when the evidence points to the null hypothesis (the sample MDDMs appear to be

small) and employs the AIC when the evidence points to the alternative (some sample

MDDM appears to be large).

Statistica Sinica: Preprint 
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3 DATA-DRIVEN MDDM-BASED TEST 10

Formally, the proposed test statistic takes the form

ÂT
F

wn = T̂ F
wn(M

∗),

where

M∗ = min{M : 1 ≤ M ≤ d;LM ≥ Lh, h = 1, 2, · · · , d},

LM = n∥MDDMn(êt|Yt−M)∥F− log(3p)π(M,n, k),

d is a fixed upper bound, and π(M,n, k) is a penalty term that takes the form

π(M,n, k) =


M log n, if max

1≤j≤d
n||MDDMn(êt|Yt−j)||F≤ log(3p)k

√
log n,

2M, if max
1≤j≤d

n||MDDMn(êt|Yt−j)||F> log(3p)k
√
log n,

(3.1)

where k is some fixed positive number and calls log(3p)k
√
log n as the penalty term. We

denote the data-driven MDDM-based statistic as ÂT
F

wn. We also can obtain ÂT
S

wn just

by replacing the Frobenius norm with the spectral norm. Then, we propose two data-

driven MDDM-based statistics denoted by ÂT
F

wn and ÂT
S

wn, respectively. For simplicity,

we consider d to be a large fixed positive integer number. At the end of this section, we

will give a comment about d and consider that d grows slowly to infinity with the sample

size n. To implement the automatic selection procedure, we need to decide the other

turning parametric k. A small value of k could lead to the choice of the AIC criterion,

while a large k would lead to the choice of the BIC criterion. Moderate values provide a

“switching effect” in which one combines the advantages of the two selection rules. From

Subsection 5.1, we know that k = 1.8 is a reasonable value in all of the numerical studies.

Following, we will give a remark about the selected penalty term.

Statistica Sinica: Preprint 
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Remark 1. Too large a value of the penalty leads to the data-driven MDDM-based

test always choosing the BIC and resulting in low power under the alternative hypothesis.

Moreover, the test will always select the AIC if the value of the penalty is too small; thus,

the data-driven MDDM-based test cannot control the type-I error. Therefore, a suitable

choice of the penalty term is essential. The motivation of considering the penalty term

is as follows: First, compared with the automatic Portmanteau test of Escanciano and

Lobato (2009), the MDDM-based test has the same convergence rate as the Portmanteau

test; then, we can use
√
log n in the penalty term. Second, given that the automatic

Portmanteau test of Escanciano and Lobato (2009) only considers the scalar time series,

the penalty term does not contain the dimensionality of the time series p. By contrast,

our data-driven MDDM-based test is designed for multivariate series; thus, our proposed

data-driven MDDM-based test should contain p. By combining with the theoretical result

of Theorem 1 and that of vast simulation studies, we find that the term log(3p)k is a

suitable choice, where k is some fixed positive number. Thus, we choose log(3p)k
√
log n

as the penalty term. The numerical studies show that the selected penalty term is a

suitable one.

3.2 Theoretical properties of data-driven MDDM-based test

In this subsection, we study the asymptotics of ÂT
F

wn. Similar results can be shown for

ÂT
S

wn with a slight modification, and details are omitted. We first give some regularity

conditions. Let {Yt}nt=1 be a sequence of observations from model (1.1), Ft := σ(It)

be the sigma-field generated by It, and gt(θ) := g(It−1, θ) = ∂f(It−1, θ)/∂θ
′. Write

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0035



3 DATA-DRIVEN MDDM-BASED TEST 12

Yt = (Y1,t, · · · , Yp,t)
⊤.

Assumption 1. (i) {(Yt, εt)} is strictly stationary and ergodic; (ii) E∥εt∥4< ∞; (iii)

E∥Yt∥4< ∞; (iv) E
∏p

k=1∥Yk,t∥2u< ∞ for some u ∈ (1, 2].

Assumption 2. The function f(It−1, ·) is twice continuously differentiable on Θ. The

score gt(θ) satisfies E supθ∈Θ∥gt(θ)∥4F< ∞.

Assumption 3. The parametric space Θ is compact in Rs. The true parameter θ0 is an

interior point of Θ. There exists a unique θ∗ ∈ Θ such that ∥θ̂n − θ∗∥= op(1) under both

hypotheses H0 and H1, and θ∗ can take different values under H0 and H1.

Assumption 4. The estimator θ̂n satisfies the asymptotic expansion under H0,

√
n(θ̂n − θ0) =

1√
n

n∑
t=1

Υ(Yt, It−1, θ0) + op(1), (3.2)

where Υ(·, ·, θ) is a measurable function in Rs, E {Υ(Yt, It−1, θ0)|Ft−1} = 0, and L(θ0) =

E
{
Υ(Yt, It−1, θ0)Υ(Yt, It−1, θ0)

⊤} exists and is positive definite.

Assumption 5. For Ît given in êt = Yt − f(Ît, θ̂n),

lim
n→∞

n∑
t=1

(
E sup

θ∈Θ
∥f(It, θ)− f(Ît, θ)∥4

)1/4

< ∞.

Assumptions 1 – 5 are the same as those in Wang et al. (2022), which are used to

ensure that the MDDM-based test statistics converge to a random processor under the

null hypothesis and the MDDM-based test is consistent under the alternative hypothesis.

The detailed explanation for these assumptions can be found in Wang et al. (2022).

To elaborate the asymptotic distribution of ÂT
F

wn, we need more notation. Let ϕj(s) =

cov(gt(θ0), ei⟨s,Yt−j⟩), V be a normal random vector with mean zero and variance-covariance
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matrix L(θ0), ∆j(s) be a complex valued Gaussian field with mean zero and covariance

matrix function cov(∆j(s),∆j(s′)⋆) = E(εtε
⊤
t e

i[⟨s,Yt−j⟩+⟨s′,Yt−j⟩]), and (∆j(s),V) be jointly

Gaussian with covariance matrix cov(∆(s),V) = E(εtΥ(Yt, It−1, θ0)
⊤ei⟨s,Yt−j⟩).

First, we study the asymptotic of ÂT
F

wn under the null hypothesis. On the basis of

Theorem 3.1 in Wang et al. (2022), we can establish the asymptotic distribution in the

following lemma:

Lemma 1. Suppose that Assumptions 1-5 hold. Then, under H0,

(n− j)∥MDDMn(êt|Yt−j)∥F→d

∥∥∥∥ 1cp
∫
Rp

χj(s)χj(s)⋆

∥s∥1+p
ds

∥∥∥∥
F

,

where χj(s) = ∆j(s)− ϕj(s)V.

On the basis of Lemma 1, we can establish the asymptotic null distribution of ÂT
F

wn

in the following theorem:

Theorem 1. Suppose that Assumptions 1–5 hold. Then, under H0,

ÂT
F

wn →d

∥∥∥∥ 1cp
∫
Rp

χ1(s)χ1(s)⋆

∥s∥1+p
ds

∥∥∥∥
F

,

where χ1(s) defined as in Lemma 1 with j = 1.

Second, we study the asymptotic behavior of ÂT
F

wn under the following alternative:

HK
1 : MDDM(et|Yt−1) = · · · = MDDM(et|Yt−K+1) = 0,MDDM(et|Yt−K) ̸= 0,

for some K ≥ 1.

Theorem 2. Suppose that Assumptions 1(i)–(ii), 2–3 and 5 hold and as n → ∞. Then,

the test based on ÂT
F

wn is consistent against HK
1 , for K ≤ d.

Statistica Sinica: Preprint 
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From Lemma 1, it is easy to obtain T̂ F
wn(M) →d

M∑
j=1

∥∥∥∥ 1cp
∫
Rp

χj(s)χj(s)⋆

∥s∥1+p
ds

∥∥∥∥
F

under

the null hypothesis, and Assumptions 1–5 hold. Therefore, Theorem 1 is obtained because

the residuals are MDS under the null hypothesis, and thus, MDDM(et|Yt−j) = 0 for all

j ̸= 0. Hence, the optimal value for M is one, the minimum possible. Theorem 2 examines

the power properties of our automatic test against the fixed alternative HK
1 . The proofs

of both theorems are in the Supplementary Materials.

Remark 2. For simplicity, we consider the upper bound d to be a fixed large number.

Similar to the automatic Portmanteau test (Escanciano and Lobato, 2009), we can con-

sider d ≡ d(n) as an upper bound that grows slowly to infinity as n → ∞. As pointed out

by Escanciano and Lobato (2009), considering d ≡ d(n) can get a consistent test against

all alternatives H1 : MDDM(et|Yt−j) ̸= 0 for some j ≥ 1 and Theorem 2 is true for all

K ≥ 1. And the disadvantages is that it may erroneously convey the interpretation of

d as a bandwidth number because it grows slowly to infinity with the sample size. But

the key difference for our number d and the bandwidth lies in that our number d has

absolutely no influence in inference; for instance, it does not affect the convergence rate,

contrary to Hong (1996). In Subsection 5.4, we briefly examine the sensitivity of the test

to choose a value for d by simulations.

4. Bootstrap approximations

Given that the asymptotic null distribution of ÂT
F

wn in Theorem 1 is not pivotal, its

critical values have to be approximated. Similar to Wang et al. (2022), we apply a fixed-

design wild bootstrap (WB) method to approximate the critical values of ÂT
F

wn. Our

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0035
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fixed-design WB procedure is given as follows:

1. Estimate the original model and obtain the residuals {êt}nt=1 according to êt =

Yt − f(Ît−1, θ̂n).

2. Generate WB residuals {ê∗t}nt=1 by ê∗t = êtw
∗
t , with {w∗

t } being a sequence of i.i.d.

random variables with mean zero, unit variance, and bounded support and also

independent of the sequence {Yt, Ît−1}nt=1.

3. Given θ̂n and ê∗t , generate bootstrap data {Y ∗
t }nt=1 by Y ∗

t = f(Ît−1, θ̂n) + ê∗t .

4. Compute θ̂∗n from the data {Y ∗
t }nt=1 in the same manner as that for θ̂n, and then

calculate the corresponding bootstrap residuals {ê∗∗t }nt=1 by ê∗∗t = Y ∗
t − f(Ît−1, θ̂

∗
n).

5. Compute the bootstrap MDDM-based test statistic ÂT
F∗
wn = T̂ F∗

wn (M
∗) in the same

way as for T̂ F
wn(M

∗) with êt replaced by ê∗∗t , where M∗ is defined as in Section 3.

6. Repeat steps 2–5 B times to obtain {ÂT
F∗
wn,b}Bb=1, and denote the αth upper per-

centile of {ÂT
F∗
wn,b}Bb=1 as c∗α, which is considered as the approximated value of cα in

ÂT
F

wn > cα.

The distributions of {w∗
t } are flexible in practice. And there are two popular selections

for the distributions of {w∗
t } such as:

P

(
w∗

t =
1−

√
5

2

)
=

√
5 + 1

2
√
5

and P

(
w∗

t =
1 +

√
5

2

)
=

√
5− 1

2
√
5

;

and the Rademacher distribution

P (w∗
t = 1) =

1

2
and P (w∗

t = −1) =
1

2
.
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4 BOOTSTRAP APPROXIMATIONS 16

To justify the validity of our fixed-design WB method, we need one additional assump-

tion, which is the same as the Assumption 6 in Wang et al. (2022) and is similar to Assump-

tion A7 in Escanciano (2006). Let E∗ denote the expectation conditional on {Yt, Ît−1}nt=1

and o∗p(1) denote a sequence of random variables converging to zero in probability condi-

tional on {Yt, Ît−1}nt=1. We also define L∗(θ̂n) = E∗
{
Υ(Y ∗

t , Ît−1, θ̂n)Υ(Y ∗
t , Ît−1, θ̂n)

⊤
}

.

Assumption 6. The estimator θ̂∗n satisfies the asymptotic expansion

√
n(θ̂∗n − θ̂n) =

1√
n

n∑
t=1

Υ(Y ∗
t , Ît−1, θ̂n) + o∗p(1),

where Υ(Y ∗
t , Ît−1, θ̂n) satisfies

(i) E∗
{
Υ(Y ∗

t , Ît−1, θ̂n)
}
= 0 a.s.;

(ii) L∗(θ̂n) exists and is positive definite (a.s.) with L∗(θ̂n) = L(θ∗) + o∗p(1), where

L(θ∗) = E
{
Υ(Yt, It−1, θ∗)Υ(Yt, It−1, θ∗)

⊤};

(iii) n−1
n∑

t=1

E∗
{
ê∗t e

i⟨s,Yt⟩Υ(Y ∗
t , Ît−1, θ̂n)

}
= E

{
et(θ∗)e

i⟨s,Yt⟩Υ(Yt, It−1, θ∗)
}
+o∗p(1) on

any compact set Ω ∈ Rk.

Lemma 2. Suppose that Assumptions 1–3, 5 and 6 hold. Then, conditional on {Yt, Ît−1}nt=1,

ÂT
F∗
wn →d

∥∥∥∥ 1cp
∫
Rp

χ1
∗(s)χ

1
∗(s)

⋆

∥s∥1+p
ds

∥∥∥∥
F

in probability,

where χj
∗(s) = ∆j

∗(s)−ϕj
∗(s)V∗, ∆j

∗(s), ϕj
∗(s) and V∗ are defined in the same way as ∆j(s),

ϕj(s) and V in Lemma 1 with θ0 by θ∗.

Lemma 2 guarantees that our bootstrap critical value c∗α computed from steps 1–6 is

valid under the null hypothesis H0 and any fixed alternative hypothesis HK
1 . In particular,
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5 SIMULATION 17

the above limit under H0 is the same as the limiting null distribution of ÂT
F

wn, implying

the asymptotic size accuracy. In addition,

lim
n→∞

P
(
ÂT

F

wn > c∗α

)
= 1 under HK

1 ,

meaning that ÂT
F

wn with the bootstrapped critical value c∗α can detect HK
1 consistently.

5. Simulation

In this section, we use simulation studies to investigate the performance of the proposed

methods. We consider the dimensionality of the time series p = 2 and 5. First, we

decide the tuning parameter k in the penalty term (3.1) in Subsection 5.1. Second, we

compare our proposed methods with the other popular methods in finite sample. The

details are presented in Subsections 5.2 and 5.3 for p = 2 and p = 5, respectively. Last,

we show that all of the simulation results are not sensitive to the selected upper bound

d in Subsection 5.4. For all simulations, we set the significance level α = 5%. For our

proposed methods, the MDDM-based tests methods proposed by Wang et al. (2022) need

the WB method to compute the critical value, we use the Rademacher distribution for

w∗
t , and the bootstrap procedure is repeated B = 1000 times. The simulation results are

based on 1000 replications.

5.1 Selection of k

The fixed number of k in (3.1) is a tuning parameter, which much be preselected. k

determines which criterion, AIC or BIC, is selected. In this subsection, we show that
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5 SIMULATION 18

k = 1.8 is a suitable selection. Our null model is a vector AR(1) (VAR(1)) model:

Yt = A0 + A1Yt−1 + εt. (5.1)

To select k, we generate 1000 replications of sample size n = 200, 1000 from the following

DGPs based on the above model (5.1):

VAR(1) : Yt = 0.3Yt−1 + εt, εt ∼ N(0, Ip),

VAR(2) : Yt = 0.3Yt−1 + 0.2Yt−2 + εt, εt ∼ N(0, Ip),

where VAR(1) is the null model and VAR(2) is the alternative model. For these experi-

ments, we consider p = 2, 5 and d = 15. For each replication, we fit it by model (5.1) and

obtain the model residual êt, where êt = Yt − Â0n − Â1nYt−1, and adopt the least square

estimate to obtain the parameter estimate Â0n and Â1n. On the basis of the estimation,

we calculate our data-driven MDDM-based test statistics ÂT
F

wn and ÂT
S

wn for different

values of k.

Fig.1 shows the empirical rejection percentage (RP) of our proposed test at the 5%

level for k = 0, 0.1, · · · , 3.3, and the first row is corresponding to the size and the second

row is corresponding to the power. From the size study, we know that the slop of the

plot of the empirical RP becomes roughly flat for the values of k above 1.8. Moreover, it

indicates that using a value of k larger than 1.8 is not necessary to control the type-I error

properly. From the power study, we know that the power is flat for the values of k between

0 and 1.5 and decreases as k increases. We also consider all of the null and alternative

models in Subsection 5.2, and all of the models show that the selection of k = 1.8 is a

suitable choice. Hereafter, we fix k = 1.8 for all of the numerical studies.
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5 SIMULATION 19

Figure 1: Rejection percentages (5% nominal level) of the tests ÂT
F

wn and ÂT
S

wn for the models
VAR(1) and VAR(2) for several selected values of k and for p = 2, 5, where the first row is
corresponding to the null model VAR(1) and the second row is corresponding to the alternative
model VAR(2), respectively.

5.2 Finite sample tests comparison

In this subsection, we show the finite performance of the new data-driven tests ÂT
F

wn and

ÂT
S

wn and compare it with the MDDM-based tests T̂ F
sn(M), T̂ S

sn(M), T̂ F
wn(M) and T̂ S

wn(M)

for M = 3, 6, 9. In addition, we present some direct comparison with the tests in Box

and Pierce (1970), Hosking (1980) and Lütkepohl (2005). The DGPs are the same as in

Wang et al. (2022), which is also the multivariate counterparts of those univariate DGPs

in Hong and Lee (2005) and Escanciano (2006).
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5.2.1 Simulations for p = 2

In this subsection, we consider the simulation studies for p = 2. And the null model is

also a vector AR(1) (VAR(1)) model:

Yt = A0 + A1Yt−1 + εt, (5.2)

where εt = V
1/2
t ηt, and Vt = (vt,ij)i,j=1,2 with

vt,11 = ϕ1 + ϕ3vt−1,11 + ϕ5Y
2
t−1,1,

vt,22 = ϕ2 + ϕ4vt−1,22 + ϕ6Y
2
t−1,2,

vt,12 = ϕ7
√
vt,11vt,22.

On the basis of the model (5.2), we use the following two DGPs to examine the size

performance of our tests:

DGP 1 : ϕ1 = ϕ2 = 1 and the others ϕ3 = · · · = ϕ7 = 0;

DGP 2 : ϕ1 = ϕ2 = ϕ5 = ϕ6 = 0.1, ϕ3 = ϕ4 = ϕ7 = 0.5,

where A0 = 0, A1 =

 0.6 −0.4

0.8 0.2

, and ηt is a sequence of i.i.d. multivariate normal

random variables with mean zero and covariance matrix I2. εt is i.i.d. under DGP 1,

while it has a multivariate ARCH structure under DGP 2.

To examine the power performance of our tests, we consider the following six DGPs:

DGP 3 :Yt =

 0.6 −0.4

0.8 0.2

Yt−1 +

 0.4 0.2

0.2 0.4

Yt−2 + εt;

DGP 4 :Yt =

 0.6 −0.4

0.8 0.2

Yt−1 +

 0.5 0.4

0.4 0.5

 εt−1 + εt;
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DGP 5 :Yt = sign(Yt−1) + 0.43εt,where sign(x) = I(x > 0)− I(x < 0);

DGP 6 :Yt,j =


ϱ−1Yt−1,j, if 0 ≤ Yt−1,j < ϱ,

(1− ϱ)−1(1− Yt−1,j), if ϱ ≤ Yt−1,j ≤ 1,

where ϱ = 0.49999, j = 1, 2, and each entry of Y0 follows U [0, 1];

DGP 7 :Yt =

 0.6 −0.4

0.8 0.2

Yt−1 +

 0.6 0.4

0.4 0.6

 sin(0.3πYt−2) + εt;

DGP 8 :Yt =



 0.6 −0.4

0.8 0.2

Yt−1 + εt, if Yt−1,1 < 0,

 −0.6 0.4

−0.8 −0.2

Yt−1 + εt, if Yt−1,1 ≥ 0,

where εt = ηt. The functions sign(·) and sin(·) in DGPs 5 and 7 are evaluated elemen-

twisely. With respect to the null VAR(1) model, we design the DGPs 3–4 as the linear

models and DGPs 5–8 as the nonlinear models under the alternative.

For these experiments, we consider n = 200, 1000, d = 15 and k = 1.8. As in Subsec-

tion 5.1, we also use the least square to estimate the parameter θ̂n = (vec(Â0n)
⊤, vec(Â1n)

⊤)⊤,

and obtain the model residual êt = Yt − Â0n − Â1nYt−1. On the basis of the {êt}, we cal-

culate our data-driven MDDM-based test statistics ÂT
F

wn and ÂT
S

wn.

To make a comparison with correlation-based tests, we also compute the MDDM-

based test statistics T̂ F
sn(M), T̂ F

wn(M), T̂ S
sn(M), T̂ S

wn(M)(M = 3, 6, 9), the portmanteau

test statistics Q̂1(M) (Box and Pierce, 1970), Q̂2(M) (Hosking, 1980) and Q̂3(M) (Li

and McLeod, 1981), and the Lagrange multiplier (LM) test statistic L̂M(M) (Lütkepohl,
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2005), where

Q̂1(M) = n

M∑
i=1

tr(Ĉ⊤
i Ĉ

−1
0 ĈiĈ

−1
0 ), Q̂2(M) = n

M∑
i=1

n

n− i
tr(Ĉ⊤

i Ĉ
−1
0 ĈiĈ

−1
0 ),

Q̂3(M) = n
M∑
i=1

tr(Ĉ⊤
i Ĉ

−1
0 ĈiĈ

−1
0 ) +

p2M(M + 1)

2n

with Ĉi = n−1
n∑

t=i+1

êtê
⊤
t−i, and the definition of L̂M(M) can be found on p.172 of Lütke-

pohl (2005). At level α, the critical values of Q̂i(M) (i = 1, 2, 3) and L̂M(M) are

χ2
(M−1)p2(α) and χ2

Mp2(α), respectively, where χ2
s(α) is the αth upper percentile of χ2

s

distribution.

Table 1 reports the size and power for all examined tests. From Table 1, we have the

following findings for the size studies:

(1) Our proposed data-driven tests ÂT
F

wn and ÂT
S

wn and the MDDM-based tests

T̂ F
wn(M), T̂ S

wn(M), T̂ F
sn(M), and T̂ S

sn(M) have a satisfactory size performance, although

they are a little oversized when the sample size is n = 200; however, this case is relieved

as the sample size increases, i.e., n = 1000.

(2) The Portmanteau tests Q̂1(M), Q̂2(M) and Q̂3(M) and the LM test L̂M(M)

perform as well as our proposed data-driven tests and the MDDM-based tests when the

model error is homoskedastic as in DGP 1. While for the heteroskedasticity model error

of DGP 2, the Portmanteau tests and LM test suffer from size distortion. The reason for

this large size distortion is that the null distributions of all Portmanteau tests and the

LM test are derived under the assumption that et is i.i.d., which does not hold for the

heteroskedasticity model error of DGP 2.

From Table 1, we have the following findings for the power studies:
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Table 1: The size and power (×100) of all tests for DGPs 1–8 at level 5%.
DGP 1 DGP 2 DGP 3 DGP 4

Test
n 200 1000 200 1000 200 1000 200 1000

ÂT
F

wn 7.0 6.0 6.7 6.3 100 100 96.7 100
ÂT

S

wn 7.9 7.2 7.9 6.5 100 100 96.7 100
T̂F
sn(3) 7.9 6.0 7.8 8.2 100 100 89.8 100

T̂F
sn(6) 7.9 6.2 8.0 8.3 98.3 100 62.1 99.2

T̂F
sn(9) 7.7 6.2 7.7 7.3 85.9 100 56.4 97.1

T̂S
sn(3) 8.1 6.3 7.4 8.2 100 100 89.9 100

T̂S
sn(6) 8.0 6.1 8.1 8.1 97.6 100 61.6 99.2

T̂S
sn(9) 7.7 6.8 7.4 7.5 82.6 100 54.4 97.2

T̂F
wn(3) 7.2 6.0 7.5 8.5 100 100 87.4 100

T̂F
wn(6) 7.1 6.9 7.9 7.9 97.4 100 60.9 99.1

T̂F
wn(9) 6.3 6.8 7.2 7.4 83.7 100 54.8 96.4

T̂S
wn(3) 7.4 5.9 7.3 8.6 100 100 86.9 99.9

T̂S
wn(6) 6.6 7.2 7.7 7.9 97.1 100 60.6 99.1

T̂S
wn(9) 6.6 6.3 7.3 7.5 82.7 100 54.1 96.2
Q̂1(3) 5.8 5.1 11.1 11.3 100 100 100 100
Q̂1(6) 5.3 4.5 10.8 10.1 100 100 99.9 100
Q̂1(9) 4.3 4.5 10.7 9.0 100 100 99.7 100
Q̂2(3) 6.5 5.2 11.4 11.7 100 100 100 100
Q̂2(6) 6.0 5.0 11.6 10.5 100 100 100 100
Q̂2(9) 6.3 4.9 11.7 9.4 100 100 99.9 100
Q̂3(3) 6.2 5.1 11.3 11.4 100 100 100 100
Q̂3(6) 5.7 4.7 11.5 10.4 100 100 100 100
Q̂3(9) 6.6 4.8 11.9 9.3 100 100 99.9 100
L̂M(3) 4.9 4.3 11.1 9.9 100 100 100 100
L̂M(6) 4.2 4.5 9.1 10.4 100 100 100 100
L̂M(9) 3.2 3.9 6.3 7.8 100 100 100 100

DGP 5 DGP 6 DGP 7 DGP 8

Test
n 200 1000 200 1000 200 1000 200 1000

ÂT
F

wn 98.2 100 100 100 99.6 100 100 100
ÂT

S

wn 98.2 100 100 100 99.5 100 100 100
T̂F
sn(3) 98.0 100 100 100 94.1 100 62.7 99.2

T̂F
sn(6) 97.7 100 55.6 99.9 49.8 96.8 26.9 68.7

T̂F
sn(9) 97.4 100 25.8 71.0 30.9 81.3 20.2 46.6

T̂S
sn(3) 98.0 100 100 100 93.6 100 57.3 99.0

T̂S
sn(6) 97.6 100 40.4 96.4 47.4 97.0 24.1 65.0

T̂S
sn(9) 97.1 100 20.2 53.6 28.1 80.3 19.0 43.3

T̂F
wn(3) 97.9 100 100 100 97.0 100 93.2 100

T̂F
wn(6) 97.6 100 100 100 70.6 97.7 71.8 100

T̂F
wn(9) 97.5 100 100 100 49.2 98.4 58.4 99.0

T̂S
wn(3) 97.9 100 100 100 97.0 100 90.3 100

T̂S
wn(6) 97.6 100 100 100 69.3 97.7 68.4 99.8

T̂S
wn(9) 97.4 100 100 100 48.8 98.2 56.0 98.8
Q̂1(3) 95.8 100 6.6 4.8 71.3 98.7 13.0 28.0
Q̂1(6) 94.8 100 6.3 5.6 58.8 96.9 10.0 18.9
Q̂1(9) 93.2 100 6.2 5.5 50.7 94.0 9.6 15.4
Q̂2(3) 95.9 100 6.9 4.9 71.7 98.7 13.9 28.4
Q̂2(6) 95.0 100 7.0 5.9 60.1 97.1 10.6 19.7
Q̂2(9) 94.4 100 8.1 6.1 55.3 94.1 12.6 16.6
Q̂3(3) 95.9 100 6.9 4.8 71.7 98.7 13.5 28.3
Q̂3(6) 95.0 100 7.0 5.7 60.0 97.1 10.5 19.7
Q̂3(9) 94.3 100 7.2 6.0 54.5 94.1 12.0 16.3
L̂M(3) 97.3 100 2.2 1.9 66.1 98.5 7.1 19.3
L̂M(6) 96.4 100 2.6 3.2 49.8 95.4 6.8 14.1
L̂M(9) 94.8 100 2.7 2.7 36.5 91.3 5.7 11.4
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(1) For all of the DGPs 3–8, our proposed data-driven tests ÂT
F

wn and ÂT
S

wn have a

considerable power. For most of the examined case as in DGPs 3–8, the power for the

tests ÂT
F

wn and ÂT
S

wn tends to 1.0, and the smallest power is more than 0.96 for DGP 4

with n = 200.

(2) In most examined cases, the power of all T̂ F
sn(M), T̂ S

sn(M), T̂ F
wn(M), T̂ S

wn(M), Q̂i(M),

and L̂M(M) decreases as the value of M increases. For the linear alternative models (i.e.,

DGPs 3 and 4), the data-driven method has similar performance as the correlation-based

tests Q̂i(M) and L̂M(M), while the MDDM-based tests have inferior power performance

when n = 200, but their power at n = 1000 performs as well as our proposed data-driven

tests. For the nonlinear alternative models (i.e., DGPs 5-8), our proposed tests and all

MDDM-based tests in general are much more powerful than the correlation-based tests

Q̂i(M) and L̂M(M), especially when the sample size n = 200. In particular, the power

of Q̂i(M) and L̂M(M) is very low for DGPs 6 and 8.

5.2.2 Simulations for p = 5

In this subsection, we consider the simulation studies when the dimensionality of Yt is

p = 5. Similar to the previous, our null model is a VAR(1) model:

Yt = A0 + A1Yt−1 + εt, (5.3)

where εt = V
1/2
t ηt, and Vt = (vt,ij)i,j=1,2,...,5 with

vt,ii = ϕ1 + ϕ2vt−1,ii + ϕ3Y
2
t−1,i,

vt,ij = ϕ4
√
vt,iivt,jj for i ̸= j.
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To examine the size performance of our tests, we generate 1000 replications of sample

size n from the following two DGPs based on model (5.3):

DGP 9 :ϕ1 = 1 and ϕ2 = ϕ3 = ϕ4 = 0;

DGP 10 :ϕ1 = ϕ3 = 0.1 and ϕ2 = ϕ4 = 0.5,

where A0 = 0, A1 = 0.3, and ηt is a sequence of i.i.d. multivariate normal random

variables with mean zero and covariance matrix I5. To examine the power performance

of our tests, we generate 1000 replications of sample size n from the following six DGPs:

DGP 11 :Yt = 0.3Yt−1 + 0.2Yt−2 + εt;

DGP 12 :Yt = 0.3Yt−1 + 0.3εt−1 + εt;

DGP 13 :Yt = sign(Yt−1) + 0.43εt;

DGP 14 :Yt,j =


ϱ−1Yt−1,j, if 0 ≤ Yt−1,j < ϱ,

(1− ϱ)−1(1− Yt−1,j), if ϱ ≤ Yt−1,j ≤ 1,

where ϱ = 0.49999, j = 1, ..., 5, and each entry of Y0 follows U [0, 1];

DGP 15 :Yt = 0.3Yt−1 + 0.3 sin(0.3πYt−2) + εt;

DGP 16 :Yt =


0.3Yt−1 + εt, if Yt−1,1 < 0,

−0.3Yt−1 + εt, if Yt−1,1 ≥ 0,

where εt = ηt. For each replication, we compute all MDDM-based tests and correlation-

based tests as performed in Subsection 5.2.1.

Table 2 reports the size and power of all examined tests. The findings from this

table are qualitatively similar to those from Table 1. In terms of size, there is quite a
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Table 2: The size and power (×100) of all tests for DGPs 9–16 at level 5%.
DGP 9 DGP 10 DGP 11 DGP 12

Test
n 200 1000 200 1000 200 1000 200 1000

ÂT
F

wn 10.1 8.1 6.7 6.6 90.4 100 75.5 97.2
ÂT

S

wn 8.3 6.9 6.8 6.5 54.8 100 31.6 53.5
T̂F
sn(3) 11.1 7.7 7.8 6.7 89.6 100 68.0 97.3

T̂F
sn(6) 12.6 8.4 7.9 6.9 72.6 99.2 51.2 80.6

T̂F
sn(9) 16.3 8.8 7.8 7.4 67.0 97.6 48.7 71.0

T̂S
sn(3) 8.9 6.5 7.9 6.6 71.2 99.0 50.5 80.8

T̂S
sn(6) 8.6 7.0 7.9 6.6 50.2 89.4 33.8 51.4

T̂S
sn(9) 8.2 6.6 7.4 6.7 43.7 78.9 29.6 40.9

T̂F
wn(3) 11.2 7.6 8.0 7.0 86.3 100 63.7 95.9

T̂F
wn(6) 12.8 8.5 8.6 7.2 67.4 100 50.2 76.5

T̂F
wn(9) 14.9 9.4 8.5 6.1 62.4 100 47.6 64.6

T̂S
wn(3) 9.0 6.5 7.8 7.0 71.3 99.6 50.9 83.2

T̂S
wn(6) 10.4 7.8 8.2 6.7 54.8 99.5 39.4 59.3

T̂S
wn(9) 12.0 7.9 8.1 6.3 50.5 99.1 38.7 48.0
Q̂1(3) 5.7 4.9 6.3 6.3 86.2 100 67.0 99.9
Q̂1(6) 5.1 5.0 9.1 7.2 71.2 99.8 51.5 96.3
Q̂1(9) 7.0 5.5 10.7 6.5 66.9 99.3 51.4 91.5
Q̂2(3) 7.5 5.3 7.5 7.5 87.5 100 68.7 99.9
Q̂2(6) 7.6 5.6 12.6 7.5 75.6 99.8 59.2 96.8
Q̂2(9) 12.6 8.1 18.2 7.4 76.2 99.7 61.5 92.8
Q̂3(3) 7.4 5.3 7.5 9.7 87.5 100 68.9 99.9
Q̂3(6) 7.1 5.5 12.3 7.5 75.4 99.8 58.4 96.8
Q̂3(9) 12.1 7.6 16.6 9.4 75.6 99.7 60.8 92.8
L̂M(3) 4.0 5.7 4.6 6.8 67.3 100 60.0 99.2
L̂M(6) 3.4 3.9 4.0 4.1 42.5 99.5 31.7 92.2
L̂M(9) 3.7 4.1 3.3 3.4 30.6 97.5 21.4 77.6

DGP 13 DGP 14 DGP 15 DGP 16

Test
n 200 1000 200 1000 200 1000 200 1000

ÂT
F

wn 100 100 100 100 73.7 99.7 84.0 99.6
ÂT

S

wn 100 100 100 100 34.1 75.8 58.5 95.1
T̂F
sn(3) 100 100 71.5 100 70.5 99.9 13.3 13.3

T̂F
sn(6) 100 100 30.8 58.7 55.6 92.1 15.6 11.1

T̂F
sn(9) 100 100 25.2 31.5 49.8 85.4 17.0 12.3

T̂S
sn(3) 100 100 38.1 96.5 53.2 94.8 10.4 9.8

T̂S
sn(6) 100 100 16.4 29.0 36.2 72.6 11.5 9.4

T̂S
sn(9) 100 100 13.8 16.3 32.6 62.6 12.1 8.4

T̂F
wn(3) 100 100 100 100 69.2 99.8 17.3 23.8

T̂F
wn(6) 100 100 95.2 100 53.9 91.8 17.9 18.8

T̂F
wn(9) 100 100 88.8 100 48.9 83.4 18.3 17.0

T̂S
wn(3) 100 100 95.0 100 55.6 94.7 14.7 16.2

T̂S
wn(6) 100 100 79.0 100 41.1 78.3 15.1 14.3

T̂S
wn(9) 100 100 69.7 100 38.5 67.8 15.3 12.6
Q̂1(3) 99.3 100 6.1 7.0 63.0 99.8 7.3 6.1
Q̂1(6) 98.7 100 6.4 5.6 45.8 97.2 5.8 6.3
Q̂1(9) 98.3 100 7.9 6.0 47.2 92.9 8.7 8.1
Q̂2(3) 99.3 100 6.8 7.6 64.7 99.8 7.7 6.5
Q̂2(6) 98.9 100 9.0 6.6 52.6 97.8 8.0 7.1
Q̂2(9) 99.0 100 13.6 7.1 57.4 93.7 14.1 9.1
Q̂3(3) 99.4 100 6.8 7.4 64.7 99.8 7.6 6.5
Q̂3(6) 98.9 100 8.9 6.3 52.0 97.8 7.9 6.7
Q̂3(9) 99.0 100 12.6 7.0 56.7 93.8 13.3 8.9
L̂M(3) 99.7 100 3.1 1.9 40.1 99.2 4.2 3.3
L̂M(6) 99.7 100 2.7 2.9 22.1 90.2 4.4 4.2
L̂M(9) 99.1 100 3.2 4.0 17.1 76.8 4.3 5.8
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bit of size distortion with the Frobenius norm-based tests when n = 200 for DGP 9, and

the size distortion noticeably reduces at sample size n = 1000. In terms of power, our

tests are as competitive as the correlation-based tests to detect linear alternatives, and

more importantly, they show clear advantage to detect nonlinear alternatives over the

correlation-based tests.

5.3 Simulations for a high-order dependent: VAR(10)

To demonstrate that our proposed data-driven tests have good performance in the high-

order dependent, we consider the following DGP:

VAR(10) : Yt = 0.3Yt−1 + βYt−10 + εt, εt ∼ N(0, Ip).

Our null model is VAR(1):

Yt = A0 + A1Yt−1 + εt. (5.4)

For each replication, we also compute all MDDM-based tests and correlation-based tests

as performed in Subsection 5.2.

Table 3 reports the empirical RP for six values of β = −0.4,−0.3,−0.2, 0.2, 0.3, and

0.4. Moreover, we consider sample size n = 1000 and p = 2, 5. From Table 3, we have the

following findings for the study:

(1) The emprical RP for all tests increases as the absolute value of β increases. The

reason for this is that the dependent increases as the absolute value of β increases. For

all the considered six cases and two considered p = 2, 5 values, the power of the MDDM-

based tests T̂ F
sn(M), T̂ S

sn(M), T̂ F
wn(M), T̂ S

wn(M) and the power of the correlation-based tests

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0035



5 SIMULATION 28

Table 3: Empirical power (percentages) for VAR(10) for different values of β and the
sample size is n = 1000.

p β -0.4 -0.3 -0.2 0.2 0.3 0.4
ÂT

F

wn 100 85.5 13.3 13.7 83.5 100
ÂT

S

wn 100 68.4 11.5 11.6 64.8 99.8
T̂F
sn(3) 22.3 14.0 9.8 7.7 16.3 26.3

T̂F
sn(6) 24.4 14.5 10.3 15.8 27.2 50.3

T̂F
sn(9) 84.4 47.1 21.9 26.2 56.1 87.8

T̂S
sn(3) 22.0 13.8 10.7 7.6 15.1 24.2

T̂S
sn(6) 20.0 12.8 9.5 14.1 24.7 45.2

T̂S
sn(9) 77.6 41.2 19.7 21.8 49.8 83.0

T̂F
wn(3) 20.9 13.4 9.3 7.2 16.0 24.8

T̂F
wn(6) 23.6 15.0 9.6 15.2 26.8 49.8

T̂F
wn(9) 80.9 44.8 20.1 23.7 53.8 84.7

T̂S
wn(3) 20.9 12.7 8.8 7.4 16.4 24.3

2 T̂S
wn(6) 23.2 14.7 9.5 14.9 26.7 48.5

T̂S
wn(9) 78.6 42.4 20.3 23.5 51.5 83.4
Q̂1(3) 19.9 11.9 8.0 6.5 10.5 17.6
Q̂1(6) 25.4 14.2 7.6 13.2 19.9 41.4
Q̂1(9) 29.0 16.2 8.6 12.7 20.2 41.1
Q̂2(3) 20.3 12.2 8.2 6.6 10.8 18.0
Q̂2(6) 26.2 14.7 8.2 13.4 21.0 42.2
Q̂2(9) 30.9 17.1 9.1 13.7 21.3 42.2
Q̂3(3) 20.2 12.1 8.2 6.6 10.8 18.0
Q̂3(6) 26.0 14.3 7.9 13.4 20.7 41.7
Q̂3(9) 30.5 17.1 9.0 13.0 21.2 42.0
L̂M(3) 20.4 11.2 7.4 7.9 12.3 23.1
L̂M(6) 21.8 9.9 5.7 8.5 14.8 34.7
L̂M(9) 28.8 12.6 5.9 8.8 15.6 35.3
ÂT

F

wn 100 98.7 17.7 20.5 97.7 100
ÂT

S

wn 100 92.6 16.2 17.5 92.4 100
T̂F
sn(3) 55.6 39.9 15.6 15.7 52.7 69.4

T̂F
sn(6) 73.6 58.6 20.3 31.6 82.0 93.8

T̂F
sn(9) 99.7 96.6 41.3 49.7 99.0 99.9

T̂S
sn(3) 43.9 32.5 13.1 13.3 39.0 51.1

T̂S
sn(6) 55.3 39.6 13.7 22.3 61.9 77.2

T̂S
sn(9) 93.7 83.9 26.1 31.0 90.6 96.8

T̂F
wn(3) 53.9 37.7 15.3 16.9 49.9 67.6

T̂F
wn(6) 74.0 59.2 20.4 31.1 80.8 92.1

T̂F
wn(9) 99.6 95.7 40.4 45.9 98.5 99.9

T̂S
wn(3) 46.2 33.6 14.2 14.4 41.3 57.2

5 T̂S
wn(6) 68.0 51.2 17.6 26.3 71.6 87.3

T̂S
wn(9) 98.5 91.2 34.4 38.4 95.8 99.2
Q̂1(3) 52.1 37.0 11.7 13.1 39.2 53.2
Q̂1(6) 77.4 62.4 18.9 24.6 75.6 90.8
Q̂1(9) 83.8 67.3 23.3 29.3 79.4 90.7
Q̂2(3) 53.4 38.3 12.2 14.0 40.2 54.1
Q̂2(6) 79.5 64.4 20.5 26.7 77.0 91.6
Q̂2(9) 85.3 70.6 26.2 32.5 82.3 92.3
Q̂3(3) 53.2 38.2 12.0 14.0 40.1 54.0
Q̂3(6) 79.0 64.0 20.2 26.6 76.9 91.5
Q̂3(9) 85.3 70.3 26.1 31.9 82.0 92.2
L̂M(3) 70.5 52.7 15.3 15.2 55.2 74.6
L̂M(6) 79.4 61.8 13.6 15.6 72.4 88.0
L̂M(9) 100 100.0 72.7 66.4 100 100
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Q̂i(M) and L̂M(M) increase as M increases.

(2) For p = 2, our proposed data-driven tests perform better than all of the MDDM-

based tests and the correlation-based tests for θ = −0.4,−0.3, 0.3, and 0.4. While for

θ = −0.2 and 0.2, the data-driven tests perform similarly as T̂ F
sn(6), T̂ F

sn(9), T̂ F
wn(6),

T̂ F
wn(9), Q̂i(6), and Q̂i(9) for i = 1, 2, 3 and has better performance than T̂ F

sn(3), T̂ F
wn(3)

and the LM tests L̂M(3), L̂M(6), and L̂M(9). Moreover, the MDDM-based methods

T̂ F
sn(9) and T̂ F

wn(9) have similar performance and perform better than the other MDDM-

based methods.

(3) For p = 5, we can obtain similar results as p = 2. Given that this case is suitable

for LM tests, L̂M(9) has the best performance among all the considered test methods.

By contrast, our proposed methods ÂT
F

wn and ÂT
S

wn perform as well as L̂M(9), T̂ F
sn(9),

T̂ F
wn(9), T̂ S

sn(9), and T̂ S
wn(9) methods and perform better than the other methods.

5.4 Selection of d

In this subsection, we examine the sensitivity of the tests to the selection of the upper

bound d. Similarly, the null model and DGPs used are consistent with those in Section

5.1.

Table 4: RP (percentages) of the data-deriven test for different values of d with nominal
0.05 and n = 1000.

AR(1),p = 2 AR(1),p = 5 AR(2),p = 2 AR(2),p = 5

d AT̂F
wn AT̂S

wn AT̂F
wn AT̂S

wn AT̂F
wn AT̂S

wn AT̂F
wn AT̂S

wn

15 7.0 7.0 9.1 6.9 98.2 94.2 100 92.5
20 7.0 7.0 9.8 6.9 98.3 94.6 100 92.7
25 7.0 7.0 10.4 6.9 98.4 94.9 100 92.9
30 7.0 7.0 10.8 7.1 98.4 95.5 100 93.3
35 7.0 7.0 11.2 7.1 98.4 95.5 100 93.6
40 7.0 7.0 11.5 7.1 98.4 95.5 100 93.9
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Table 4 reports the result for n = 1000 and six values of d = 15, 20, 25, 30, 35 and 40,

which shows that the proposed test is completely insensitive to the choice of d. We perform

additional experiments under the null and alternative conditions for various sample sizes

and model specifications, and all cases show that the results is absolute lack of sensitivity

to the selection of d.

6. Real data example

In the real data analysis, we apply our proposed data-driven MDDM-based methods to

analyze the dataset of U.S. monthly interest rates. The time series spans from 1959.1 to

1993.2 and includes two components: three month treasury bills and three year treasury

notes. These components represent short-term and intermediate series, respectively, in the

term structure of interest rates. We denote the interest-rate series as IRt = (IR1t, IR2t)
⊤.

To analyze the growth patterns, we introduce the growth series Yt = (Y1t, Y2t)
⊤, which

comprises 409 observations. Specifically, Yit = log(IRit) − log(IRi,t−1) for i = 1, 2 repre-

sents the growth rate of the ith interest rate component at time t. Here, Yit denotes the

interest rate component i at time t.

Tsay (1998) utilized a three-regime threshold vector autoregressive (TVAR) model to

analyze the dataset {Yt}409t=1, where

Yt =

[
A

(1)
0 +

2∑
i=1

A
(1)
i Yt−i

]
I(Zt−4 ≤ r1)

+

[
A

(2)
0 +

6∑
i=1

A
(2)
i Yt−i

]
I(r1 < Zt−4 ≤ r2) (6.1)

+

[
A

(3)
0 +

7∑
i=1

A
(3)
i Yt−i

]
I(Zt−4 > r2) + εt
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with r1 = −0.22817 and r2 = −0.10392, and the threshold variable Zt is defined by

Z1 = X1, Z2 = (X1 +X2), Zt = (Xt +Xt−1 +Xt−2)/3 for t ≥ 3,

where Xt = log(IR1t)− log(IR2t) is the three month “average spread” in logged interest

rates.

In model (6.1), the unknown parameters A
(j)
i are estimated using least squares esti-

mates, and the error term εt is assumed to have a threshold constant variance structure.

In accordance with Assumption 1b in Tsay (1998), a multivariate martingale difference

assumption is made, stating that E(εt|It−1) = 0, but it is not tested for model (6.1). To

examine the multivariate MDH for εt in model (6.1), we applied our proposed data-driven

tests and MDDM-based tests. The results are presented in Table 5. The table provides

strong evidence from all the MDDM-based tests and our proposed tests, indicating that

εt in model (6.1) satisfies the multivariate MDH.

To make a comparison, we also fit the dataset {Yt}409t=1 by using a constant model:

Yt = A0 + εt (6.2)

or a VAR(m) model:

Yt = A0 +
m∑
i=1

AiYt−i + εt, (6.3)

where the order m is taken as 2, 6, and 7, which are the autoregressive orders of three

regimes in model (6.1). To check whether the constant model and the VAR models can

fit {Yt}409t=1 adequately, we again apply our data-driven tests and the MDDM-based tests

to examine the MDH for εt in models (6.2)-(6.3), and the results are given in Table 5.
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Table 5: The p-values of data-driven tests and MDDM-based tests at lag M = 1, ..., 10
for five different models.

Tests TVAR Constant VAR(2) VAR(6) VAR(7)
ÂT

F

wn 0.650 0.000 0.005 0.011 0.005
ÂT

S

wn 0.645 0.000 0.006 0.011 0.005

T̂F
sn(M)

1 0.656 0.000 0.046 0.060 0.061
2 0.847 0.000 0.019 0.016 0.010
3 0.787 0.000 0.025 0.004 0.000
4 0.845 0.000 0.073 0.009 0.003
5 0.865 0.000 0.122 0.013 0.007
6 0.896 0.000 0.022 0.013 0.009
7 0.889 0.000 0.023 0.014 0.011
8 0.879 0.000 0.028 0.020 0.025
9 0.879 0.000 0.045 0.040 0.035
10 0.901 0.000 0.068 0.066 0.025

T̂S
sn(M)

1 0.652 0.000 0.046 0.060 0.061
2 0.840 0.000 0.019 0.016 0.010
3 0.779 0.000 0.025 0.003 0.000
4 0.837 0.000 0.073 0.009 0.003
5 0.865 0.000 0.123 0.013 0.007
6 0.893 0.000 0.022 0.013 0.009
7 0.888 0.000 0.024 0.015 0.011
8 0.877 0.000 0.029 0.023 0.025
9 0.875 0.000 0.045 0.040 0.035
10 0.899 0.000 0.069 0.066 0.025

T̂F
wn(M)

1 0.650 0.000 0.046 0.060 0.061
2 0.735 0.000 0.021 0.011 0.005
3 0.732 0.000 0.034 0.010 0.006
4 0.745 0.000 0.083 0.011 0.009
5 0.751 0.000 0.029 0.002 0.004
6 0.765 0.000 0.005 0.005 0.005
7 0.766 0.000 0.004 0.007 0.008
8 0.763 0.000 0.006 0.014 0.005
9 0.763 0.000 0.009 0.014 0.009
10 0.770 0.000 0.014 0.024 0.017

T̂S
wn(M)

1 0.645 0.000 0.046 0.060 0.061
2 0.729 0.000 0.021 0.011 0.005
3 0.727 0.000 0.034 0.010 0.006
4 0.742 0.000 0.084 0.011 0.009
5 0.750 0.000 0.030 0.002 0.004
6 0.763 0.000 0.006 0.005 0.005
7 0.763 0.000 0.004 0.007 0.008
8 0.762 0.000 0.009 0.014 0.005
9 0.761 0.000 0.009 0.014 0.009
10 0.767 0.000 0.013 0.024 0.017

† The p-value larger than 5% is in boldface.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0035



7 CONCLUDING AND DISCUSSION 33

According to this table, all MDDM-based tests and our proposed data-driven tests

strongly reject the constant model, indicating that the interest rate market is not effi-

cient. Additionally, most MDDM-based tests and our tests reject the MDH in all three

VAR(m) models at a 5% significance level, suggesting that the VAR(m) model in (6.3)

does not adequately fit the data {Yt}409t=1. We did not consider the LM test L̂M(M) and

the Portmanteau tests Q̂i(M) (i = 1, 2, 3) for models (6.1)–(6.3) because their errors {εt}

are not independent and identically distributed. Furthermore, we observe conflicting re-

sults among fixed-order MDDM tests for different lag lengths when analyzing data from

VAR(m) models with m = 2, 6, 7.

Overall, our test results support the use of the TVAR model (6.1) to fit this bivariate

exchange rate dataset. The dataset exhibits a clear threshold effect, which cannot be

adequately captured by the constant and linear VAR models. Therefore, the TVAR

model is a more suitable choice in this case.

7. Concluding and Discussion

In this article, we propose a data-driven MDDM-based test for the multivariate MDH

in stationary time series models. Unlike the MDDM-based tests proposed by Wang et

al. (2022) need to specify the lag order in prior, the data-driven MDDM-based test can

automatically select the lag order by the data. The data selects whether the BIC or

the AIC criterion is employed in the selection of the lag order M . Compared with the

existing test methods, the data-driven tests have additional interesting advantages. First,

under the null hypothesis, the lag order is one, which is simple to implement. Second,
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the data-driven test exhibits higher empirical power in finite samples than the rival ones,

especially in detecting the model inadequacy caused by high-order dependence. Last, the

data-driven test is particularly suitable for financial data because it can detect both of

linear and non-linear dependence.

There are some possible extension for the current study. One possible direction is to

consider the robust MDDM-based test or the robust data-driven test. Another possible

direction, the procedures developed here could be extended to explore the data-driven

selection of lag M for alternative test statistics, such as the one proposed by Mehta et al.

(2019). This move would provide a broader framework for selecting the appropriate order

in various testing scenarios.

Supplementary Material

The oline Supplementary Material contains some additional simulation results as well as

the proofs of all theorems and lemmas in the paper.
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