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Abstract: In computer experiments, it has become a standard practice to select
the inputs that spread out as uniformly as possible over the design space. The
resulting designs are called space-filling designs and they are undoubtedly desir-
able choices when there is no prior knowledge on how the input variables affect
the response and the objective of experiments is global fitting. When there is
some prior knowledge on the underlying true function of the system or what
statistical models are more appropriate, a natural question is, are there more
suitable designs than vanilla space-filling designs? In this article, we provide an
answer for the cases where there are no interactions between the factors from
disjoint groups of variables. In other words, we consider the design issue when
the underlying functional form of the system or the statistical model to be used
is additive where each component depends on one group of variables from a set of
disjoint groups. For such cases, we recommend using grouped orthogonal arrays.
Several construction methods are provided and many designs are tabulated for

practical use. Compared with existing techniques in the literature, our construc-
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tion methods can generate many more designs with flexible run sizes and better

within-group projection properties for any prime power number of levels.

Key words and phrases: Additive model, computer experiment, design of variable
resolution, fractional factorial design, group kernel, space-filling design, uncer-

tainty quantification.

1. Introduction

Space-filling designs are ubiquitous in the practice of computer experiments
and the research community (Santner et al.l 2018; Gramacy), 2020)). These
designs are used for selecting the settings of input variables to explore how
responses depend on input variables, by scattering the points in the design
region as uniformly as possible. In practice, if there is no preference or
knowledge on the choice of statistical models, a statistically sound way is
to collect data from all portions of the design region, that is, to use space-
filling designs to entertain flexible statistical models (also called surrogate
models or emulators in computer experiments). This idea can trace back to
as early as Box and Draper| (1959) who introduced a basis for the selection
of a response surface design, to the best of our knowledge. There are rich
results on studying construction, optimality and the use of space-filling

designs (Lin and Tang, 2015; |Joseph, 2016]).
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A new and unexplored territory in designs of computer experiments
is, how to choose input settings when there is prior knowledge on the un-
derlying true response surface of the system under study. Motivated by
some recent methodological developments and real applications, we con-
sider the cases where there are no interactions between the factors from
disjoint groups of variables. In such cases, the functional form of the true
response surface or the preferred surrogate model is additive where each
component is a function of one group of variables from a number of disjoint
groups. For example, in the engine block and head joint sealing experiment
discussed in [Joseph et al.| (2008]), eight factors are selected for experimen-
tation; their analysis revealed that some linear, quadratic and interaction
effects of the first, second, and sixth factors are important effects. From the
experimental design point of view, we can split the eight factors into two
groups, the first, second and sixth factors as one group and the rest as the
other group, a design with better projection and space-filling properties for
the first group would be more desirable, comparing to space-filling designs
without this feature, as it allows more accurate estimation of the main and
interaction effects of factors in the first group.

Another application where the proposed designs with a group structure

might be useful lies in the use of blocked (or group) additive kernels. Such
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kernels have been used in Gaussian processes based on functional analysis
of variance decomposition (Muehlenstaedt et al., 2012), the non-parametric
regression (Pan and Zhu|,2017), and Bayesian optimization problems (Gard-
ner et al.|2017). An experimental design that takes into account the feature
of the kernels would enable more efficient estimation of the parameters in
the kernels.

To address these practical needs, we propose using space-filling designs
with a group structure. In this article, we focus on the projection property
onto lower dimensions. It can be accomplished with an orthogonal array-
based Latin hypercube (Owen, (1992; Tang, |1993) derived from an orthogo-
nal array of high strength. A good low-dimensional projection property is
an essential characteristic of screening designs which are indispensable for
more realistic, complex computer experiments as greater numbers of input
variables are employed. In addition, as shown in Wang et al.| (2021)), higher
strength guarantees better space-filling properties. With the group struc-
ture, we introduce grouped orthogonal arrays, so that grouped orthogonal
array-based Latin hypercubes can be constructed. The proposed grouped
orthogonal arrays are of strength two but the factors can be divided into
disjoint groups with higher strength or minimum aberration (reasons for

this property will be given later). The newly introduced designs extend the



1. INTRODUCTION

concept of designs of variable resolution proposed by |Lin| (2012) or variable
strength orthogonal arrays by Raaphorst et al. (2014) in which groups have
higher strength than the whole array. |Lin (2012)) and Lekivetz and Lin
(2016) provided several constructions for designs of variable resolution but
the focus is on two-level designs. The variable strength orthogonal arrays
obtained by Raaphorst et al. (2014) only have groups of three factors and
their run sizes are limited to s for a prime power s. Zhang et al. (2023)
constructed variable strength orthogonal arrays with strength two contain-
ing strength greater than two by Galois field and some variable strength
orthogonal arrays with strength [ > 2 containing strength greater than [ by
Fan-construction. In addition to the drawback that the designs constructed
have only one group with larger strength, the resulting designs have very
restrictive run sizes s' for a prime power s and an integer t > 4.

In this paper, we develop several construction methods for the proposed
grouped orthogonal arrays. Compared with existing designs of variable res-
olution or variable strength orthogonal arrays, the designs obtained by our
methods can have any prime power number of levels and are not restricted
to those with strength-three or strength-four groups. In particular, we first
give explicit constructions for grouped orthogonal arrays with strength-

three and near strength-three groups, and then explore the constructions of
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designs with minimum aberration groups in pursuit for better within-group
projection properties. These grouped orthogonal arrays have flexible run
sizes as well as various group structures, thereby substantially expanding
the designs that could be used for experiments with grouped factors.

The remainder of the paper is organized as follows. Section [ reviews
necessary background and introduces the notations to be used. Section
presents construction methods for grouped orthogonal arrays with strength-
three and near strength-three groups. Section 4] examines the constructions
of grouped orthogonal arrays with minimum aberration groups. Section
demonstrates the usefulness of GOAs from two aspects through simulation
studies. Section [6] concludes the paper with a discussion on further appli-
cations of GOAs and possible directions for future work. All the proofs, as
well as supplementary design tables are postponed to the Supplementary

Material.

2. Notations and background

In this section, we first review a few important concepts including Galois
fields, orthogonal arrays and projective geometries. We refer to the mono-
graphs \Dembowski (1968), |Lidl and Niederreiter| (1986)) and Hedayat et al.

(1999) for the in-depth explanations. Armed with the background knowl-
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edge and notations, we then introduce the notion of grouped orthogonal
arrays.

Throughout we focus on the case that all factors share the same number
of levels and use s to denote the number of levels. Suppose that s is a prime
power and k is a positive integer. A Galois field of order s* is a finite field
with s* elements, and is denoted by GF(s*) = {wg, w1, ..., w1} with wy =
0 in this paper. In particular, if s is a prime number and k£ = 1, then the s
elements are denoted by GF(s) = {0,1,...,s—1}. All the nonzero elements
of GF(s*) can be expressed as powers of an element 3 € GF(s*); that is,
GF(s*)\ {0} = {p% %, ... ,ﬁsk_2}. The element [ is called a primitive
element of GF(s*). The primitive polynomial h(z) corresponding to 3 is a
polynomial of degree k with coefficients from the subfield GF(s) such that
h(8) = 0. Using addition and multiplication operations of polynomials
modulo h(S), any nonzero element 3° of GF(s*) for i = 0,1...,s% — 2
can be written as a linear combination of 1, 3, 5%, ..., B*~! with coefficients

a;; € GF(s) for j =1,...,k —1; that is,
B = a0+ a4+ ai,k—lﬁk_l-

Thus the nonzero element 3’ can also be represented by a vector (a; 0, a; 1,
coaip1)t € GF(s)¥ for i = 0,1...,s" — 2. In this paper, we call

(aio,@i1,-..,a;5-1)" the vector format and 3’ the power format for a
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nonzero element of GF(s").

An N x n matrix with entries from GF(s) is called an orthogonal array
of strength ¢, and denoted by OA(N,n, s,t), if any of its N X ¢ submatrix
contains all possible level combinations equally often. An OA(N,n,s,t) is
said to be regular or linear if its NV rows form a linear space over GF(s). A
matrix with its rows formed by all vectors in a basis of this linear space is

called a generator matrix for the OA(N, n, s,t).

Example 1. The matrix D displayed in the transpose form in (2.1)) is an
0OA(8,4,2,3). All rows of D can be generated by linear combinations of

rows of G in (2.1). Thus G is a generator matrix for D.

0O00O0OT1TT1TT1S1 - .
100 1
001100171
D= , G=1o010 1] (2.1)

01 0101O0T1

0011

_O 1 10100 1_

A subset of columns of a regular orthogonal array D (or equivalently,
its generator matrix) is said to form a defining word if there exist nonzero
coefficients from G'F'(s) such that the linear combinations of these columns

is a zero vector. The length of a defining word is the number of columns

involved in it. Let A; be the number of defining words of length j in D
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for any positive integer j. Then the minimum aberration criterion aims to
sequentially minimize the entries of the wordlength pattern (A, Ay, A, .. .).
In addition, we have D is an OA(N,m,s,t) if and only if A; = 0 for
j=1,...,t

The columns of a generator matrix for an OA(s* n, s,2) can be seen as
points of a projective geometry PG(k — 1,s). These points in GF(s)* have
the property that any two of them are linearly independent over GF(s).
Hence, there are a total of (s* —1)/(s — 1) points in PG(k — 1, s). Given a
primitive element 3 € GF(s*), all these points are also given by the vector
formats of 3% for i = 0,...,(s* —1)/(s —1) — 1. A subset of PG(k — 1, 5) is
called a cap if any three points are linearly independent. Clearly, a matrix
using points of a cap as its columns can generate an array with A; = 0 for
j=1,2,3, i.e., an orthogonal array of strength three.

An OA(N,n, s, t) is said to be nonregular if its rows do not form a linear
space over GF'(s). The run size of a nonregular orthogonal array can be
very flexible as it does not need to be a prime power. Nonregular orthogonal
arrays can be constructed from difference schemes (Hedayat et al., [1999).
An r x ¢ matrix with entries from GF(s) is called a difference scheme if
the difference of any two columns contains all elements of GF'(s) equally

often; we denote this matrix by DS(r, ¢, s). We shall revisit this concept in
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Section 3.2l

In this paper, we study orthogonal arrays where the factors are divided
into groups and higher strength, or more generally, minimum aberration,
is achieved by factors in the same groups. We call these arrays the grouped
orthogonal arrays (GOAs). Aligned with the notation in Lin| (2012), we
use GOA(N, (my,ma,...,my), (t1,t2,...,1,),5,t) to denote a GOA of N
runs with g groups of s-level factors with strength ¢, where the ith group
has m,; factors and is of strength t;, where t; > to, for ¢t = 1,...,g9. If
all groups have the same size m and are of the same strength ¢, we use
GOA(N,mx g,t % g,s,tp). The two notations may be used in combination;
for example, a GOA(27, (4,3,3),3 x 3,3,2) represents a 27-run design of
strength two for 10 three-level factors, where the 10 factors are divided into

three groups each having 4, 3 and 3 factors and of strength three.

3. GOAs with strength-3 and near strength-3 groups

This section centers on construction methods for grouped orthogonal ar-
rays with strength-three or near strength-three groups. As the whole array
of these designs is of strength 2, the subdesign resulting from projecting
onto factors within the same group has better space-filling properties. In

addition, such designs allow the main effects to be estimated without being
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biased by two-factor interactions in the same group. The merits of these
designs will be demonstrated in Section [5] The construction methods pre-
sented in this section are explicit and require little use of computer search.
Specifically, Section gives two construction methods based on caps to
obtain designs of s* and s* runs for any prime power s. Next, a recursive
construction method is introduced in Section to generate designs with

larger and flexible run sizes.

3.1 Designs of s* and s* runs

We first present two construction methods for grouped orthogonal arrays
of s3 and s* runs in which the groups have strength 3, where s is a prime
power. The first method uses the following generator matrix Gy which is

known as an oval in cap theory,

T 1r 1 -+ 1 0
Go = Wy Wi Wy - ws_q 0
wp wi wp oo w1

It can be directly verified that the columns of Gy form a cap in PG(2, s)
because any three of them are linearly independent. Thus G, generates an
OA(s3,s + 1,s,3). It has been shown that this orthogonal array has the

largest number of factors when s is odd, see Corollary 3.9 of Hedayat et al.
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(1999). Now let

1 1 1 1
G; = wo w1 w2 T Ws—1
witwd witwl witw: o wtw?
fort=1,...,s — 1. Then we have the following result.
Theorem 1. The generator matric G = (Go,Gh,...,Gs_1) generates a

GOA(s®, (s +1,s,...,8),3 X 8,8,2).

As an illustration of Theorem (1, Example [2|below constructs a five-level
GOA with 125 runs and 26 factors that include four groups of 5 factors and
one group of 6 factors, and each group is of strength three.

Table 1: The generator matrix G in Example [2|
GO Gl G2 G3 G4

111110 11111 11111 11111 11111

012340 01234 01234 01234 01234

014411 12002 23113 34224 40330

Example 2. Consider the case s = 5. According to the result of Theorem
[1] the generator matrix G = (Go, G1, G2, G3, G4) shown in Table[l] generates

a GOA(125,(6,5,5,5,5),3 x 5,3,2).
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Next we present a construction method for GOAs of s* runs. [Ebert
(1985) proved that all the s>+s*+s+1 points of PG(3, s) can be divided into
s+1 disjoint caps of size s?+1, which implies the existence of GOA(s*, (s?+
1)x(s+1),3x(s+1),s,2) for any prime power s. To present this method,
we need to use the power format of points in PG(3,s). Suppose ( is a
primitive element of GF'(s*). Then all points of PG(3, s) can be represented
by 8% 8%, ..., 35t Let m = s24+1 and ¢ = s + 1. Define Gy =
(8,89, 8%, ..., 8m=D9) and G; = BiGo = (B, 59+, g2+, ..., fm=Da+i)
fori=1,...,9— 1. The next lemma rephrases Ebert’s (1985) result which

was originally stated using the language of projective geometry.

Lemma 1. The generator matriz G = (Go, G1, ..., G4_1) generates a GOA(
st (s24+1)x (s+1),3x (s+1),s,2).

We remark that the GOAs obtained by Lemma [l have large group sizes,
because an OA(s?, s> + 1, s,3) attains the largest number of factors among
all orthogonal arrays for s = 3 and among all linear orthogonal arrays for
s > 3, see Section 5.9 of |[Hedayat et al.| (1999). We conclude this subsection

with an illustration of Lemma [1l
Example 3. Suppose that 3 is a primitive element of GF(3'), with its
primitive polynomial given by h(z) = z* + x + 2. According to Lemma ,

we define Gy = (8%, 84, 8%,...,8%) and G; = B'Gy for i = 1,2,3. Then
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G = (Gy,G1,Gy,G3) generates a GOA(81,10 x 4,3 x 4,3,2). Table

displays the columns of G in the vector format.

Table 2: The generator matrix G in Example [3]

Go

G

G

Gs

1111201121

0210110202

0010021122

0002220212

0002220212

1112011212

0210110202

0010021122

0010021122

0022202120

1112011212

0210110202

0210110202

0100211220

0022202120

1112011212

3.2 A recursive construction

In this subsection, we introduce a recursive construction method which
allows us to obtain GOAs with strength-3 groups for larger run sizes from
existing orthogonal arrays and GOAs. The resulting designs have flexible
run sizes as they need not be prime powers. In addition, the groups of the
obtained GOAs can be combined to form larger groups of near strength 3.

In Lemma [2| below, we first review a useful result which enables us to

generate orthogonal arrays from difference schemes.

Lemma 2. Suppose that A is a DS(r, ¢, s) and B is an OA(N,n,s,2). Then

D =A® B is an OA(Nr,cn,s,2), where & denotes the Kronecker sum in
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GF(s).

Lemma [2| is slightly different from the standard result in the literature
in which B & A rather than A @ B is more often used, see Lemma 6.27 of
Hedayat et al. (1999). Both A @ B and B & A are OA(Nr, cn, s,2); as will
be seen later, here we use D = A @& B so that the group structure of the
factors of D becomes immediately clear without re-arranging the columns
of D.

Given an orthogonal array D = (di,...,d,), we describe its three-
column combinatorial orthogonality by the proportion of (d;,d;,d;)’s (1 <
i < j <1l < n) with strength 3 and denote it by p(D). This measure
was also used in [He et al| (2022). Clearly, D has strength 3 if and only
if p(D) = 1. The next lemma shows that if the array B in Lemma [2| has

strength 3, then the resulting design D has a high p(D) value.

Lemma 3. Suppose that A is a DS(r, ¢, s) and B is an OA(N,n,s,3). Then

D = A& B is an OA(Nr,cn, s,2) with

(c—=1)(c—2)
pD)z1- (ecn—1)(cn —2)°

(3.1)
In particular, the equality holds as long as r is not a multiple of s>.

Remark 1. A special case of Lemma [3| is related to a result of He et al.

(2022) who studied the construction of orthogonal arrays of near strength
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3. By taking A as a DS(s, s, s) and B as an OA(ny,my, s,3) in Lemma [3]
one can obtain a design with the property described by Proposition 4.3 in

their paper.

Lemma [3| indicates that when the number of factors n of B is large or
when the number of columns ¢ of A is small, the design D will be of near
strength 3 since p(D) will approach 1. In particular, if ¢ = 1 or 2, then
p(D) =1 and D becomes an OA(Nr,cn, s,3). This implies that the design
D obtained in Lemma [3]is also a GOA with strength-3 groups, as revealed

in Proposition [1}

Proposition 1. Suppose that A = (Ay, ..., A,) is a DS(r,c, s), where each
A; contains one or two columns fori=1,...,g, and B is an OA(N,n, s, 3).
Let D; = A; @ B. Then D = A® B = (Dy,...,Dy) is a GOA with g

strength-3 groups each having n or 2n columns.

Example 4] below illustrates Proposition 1| by constructing a GOA(2s°,

(25 +2) x 8,3 x s,s,2) for any prime power s.

Example 4. Take A = (A4, Ay, A3) as the DS(6,6,3) displayed in Table
6.37 of Hedayat et al| (1999), where each A; consists of 2 columns for
i = 1,2,3, and take B as an OA(81,10,3,3). Then D = (Dy, Dy, D3),

where D; = A; @ B, is a GOA(486,20 x 3,3 x 3,3,2). More generally,
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from the DS(2s,2s,s) in Theorem 6.33 of Hedayat et al.| (1999) and an
OA(s*,s*+1,s,3), a GOA(2s%, (25> +2) X 5,3 X 8, 8,2) can be obtained for

any prime power S.

If larger group sizes are needed, we can partition the columns of A in
Lemma [3| into larger blocks to obtain larger groups with the near strength

3 property in the resulting design D, as illustrated in Example [5]

Example 5. Consider the same A and B as in Example [dl If we partition
Aas A = (A, Ay) where A; has 3 columns for i = 1,2, then the design
D = (Dy,D,) is a GOA(162,12 x 2,2 x 2,3,2) where D; = A; @ B has

p(D;) =1—(2x1)/(11 x 10) = 98.2% for i = 1, 2.

By taking B in Lemma [3|as GOAs, we obtain a more general recursive

construction for GOAs with strength-3 and near strength-3 groups.

Theorem 2. Suppose A is a DS(r,c,s) and B = (By,...,By) is a GOA(N,
(ma,...,my),3 %X g,5,2). Let D; = A@® B;. Then D = (Dy,...,D,) is
a GOA(Nr,(cmy,...,cmy),2 X g,s,2) where the proportion of strength-3

groups of three columns, p(D;), of the ith group D; satisfies

(c=1)(c—2)
p(Ds) 21— (em; — 1)(em; — 2)

Furthermore, as indicated by Proposition[l, D; is also a GOA with strength-

three groups in which each group has m; or 2m; columns, fori=1,...,g.
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Theorem [2|is a direct consequence of Lemma [3| and Proposition [1] and
thus we omit its proof. It can be shown that D;’s in Theorem 2l have strength
3 for s = 2. This special case was previously investigated by Proposition 1

of [Linl (2012). We illustrate Theorem [2l with an example.

Example 6. Through a computer search (details are provided in Section
S3 of the Supplementary Material), we found a GOA(54,(5,5,4,4,4),3 X
5,3,2) from the OA(54,25,3,2) documented on page 59 of Hedayat et al.
(1999). Applying Theorem [2| to a DS(6,6,3) and this GOA, we obtain
a GOA(324,(30,30,24,24,24),2 x 5,3,2) where the groups D;’s satisfy
p(D;) = 97.5% for i = 1,2 and p(D;) = 96.0% for i = 3,4,5. On the other

hand, by Proposition [} it is also a GOA(324, (10 x 6,8 x 9),3 x 15,3,2).

4. GOAs with minimum aberration groups

As a refinement of the criterion of strength, the minimum aberration crite-
rion can be used to select an orthogonal array with better projection prop-
erties (Chenl 1998} Tang), 2001; Wang et al., |2021)). The aim of this section
is to construct regular grouped orthogonal arrays in which the groups have
minimum aberration among all regular orthogonal arrays. Such designs
are useful for situations where GOAs with strength-3 and near strength-

3 groups do not exist, and where there are many GOAs with strength-3
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groups and it is desirable to use one with better within-group projection

properties. Two construction methods will be presented in Sections [4.1] and

[4.2] respectively.

We consider regular designs throughout this section. Suppose that 3 is a
primitive element of GF(s*). As mentioned in Section the (s*—1)/(s—1)

columns of PG(k — 1, s) can be expressed as

B, 8", 8%, ..., gD (4.1)
The following lemma plays an instrumental role in this section.

Lemma 4. For any positive integers m and j and any sequence of increas-
ing integers iy < -+ < iy, the two designs generated by (B,. .., 3"™) and

(BatI ..., B™TI) have the same wordlength pattern.

4.1 Forming groups by selecting consecutive powers of [

We form groups of a GOA by taking m consecutive elements in (4.1)); that
is, the first group is given by (3°, 8, ..., ™), the second group is given by
(8™, BmFL, ..., B#m71) and so on. According to Lemma [4] all groups have

the same wordlength pattern. The structure of each group is established

by Theorem [3]

Theorem 3. For a primitive element 3 of GF(s¥), let Dy = (d1,ds, . .., d,,)

be generated by any m consecutive columns in (4.1). Then we have that (i)
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if m < k, then Dy is an OA(s*,m,s,m); and (ii) if m > k, then Dy is a

fractional factorial design, with the defining relation given by
bo b b bo 7b b bo b b
I=dydy ---difyy = ddg' - dyfyy = - = gy~ i

where, for example, I = dgodgl e dZ’“H represents the defining word byd; +
bids + - - brdpr1 = 0, and by, by, ..., b € GF(s) are the coefficients of the

primitive polynomial h(x) = bya® + -+ + byx + by corresponding to 3.

When m < k, part (i) of Theorem |3| provides a construction method of
GOA(s*,m x [(s¥—=1)/(ms—m)]|,mx | (s*—1)/(ms—m)], s, 2), where |-|
denotes the floor function, such that each group contains s*/s™ replicate(s)
of the full factorial.

Now we focus on the case m > k. Part (ii) of Theorem |3| shows that
the primitive polynomial h(x) = bya® + - -+ + byw + by of 3 determines the
defining words of Dy. The next result describes h(z) such that Dy has
minimum aberration for m = k£ + 1 and m = k + 2. Some notations are
needed to capture certain characteristics of h(z). Define b_y = b1 = 0 and
let fi={j:bj—1 #0,b;/bj_1 =w;,j=0,...,k+1} fori=0,1,...,s —1,
fo=Hi b1 =00 #0,j=0,....k+1} and fi = [{j : bj-1 = b; =

0,7=0,...,k+1}|, where |A| denotes the cardinality of a set A.

Proposition 2. We have the following results on Dy and h(x) = byz® +
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""l‘blx‘i—bo-

(1) Suppose m = k+1. Then a minimum aberration design Dy mazimizes
the number of nonzero elements among by, by, ..., bg_1. In particular,
if bo,b1,...,bg_1 are all nonzero, then Dy has minimum aberration

among all reqular OA(s*,m,s,2)’s.

(ii) Suppose m = k+2. Let fio) < fay < -+ < f(s) be the ordered values of
fo, fi,- -, fs. Then a minimum aberration design Dy minimizes f, +

fes)s - o+ fo) sequentially. In particular, if f. = 0 and fo, f1,..., f
differ by at most 1, then Do has minimum aberration among all reqular

OA(sk,m, s,2)s.
We illustrate the results of Proposition |2 through an example.

Example 7. Table C in Chapter 10 of [Lidl and Niederreiter| (1986)) gives

all 22 primitive polynomials for GF(3%). Among them, we have that
(i) 4 primitive polynomials satisfy the condition in part (i) of Proposition
and thus lead to GOA(243,6 x 20,5 x 20,3,2)’s with minimum

aberration groups. For instance, one such polynomial is h(x) = 2° +

e+t 420+ 1.

(ii) 6 primitive polynomials satisfy the conditions in part (ii) of Propo-

sition [2| and thus lead to GOA(243,7 x 17,4 x 17,3,2)’s with mini-
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mum aberration groups. For instance, one such polynomial is h(x) =

4+ a3 +202+ 20+ 1.

Next, we conduct a computer search for the primitive polynomials h(z)
that minimize the aberration of Dy in Theorem Our search is com-
plete for s = 2,3,5,7 and all k’s such that the run size s* is less than
1000 and k < m < k + 4, because all primitive polynomials of GF(s*)
have been checked. The search results are provided in Tables S1 and S2
in the Supplementary Material, which give the truncated wordlength pat-
tern (As, Ay, As, Ag) of the groups of all the obtained GOA(s*, m x [(s* —
1)/(ms —m)|,t x [(s* —1)/(ms —m)],s,2)’s (m >t > 2). In addition,
a GOA is marked with an asterisk if its groups have minimum aberra-
tion among all regular designs, which is verified either by Proposition [2| or
by comparison with existing minimum aberration designs in the literature
(Chen and Wul, |1991; Xu, 2005). For each GOA in these tables, we give the
coefficients (bg, bx_1, - .., b1, by) of one possible h(z) which can generate the

design.

4.2 Forming groups by an algorithm

The groups of a GOA obtained in Section may not have minimum

aberration among all regular designs. For example, the groups of the
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GOA(32,6 x 5,4 x 5,2,2) presented in Table S1 have a defining word of
length 5, while the minimum aberration regular OA(32, 6,2, 5) only has one
defining word of length 6. In this subsection, we use an algorithm to obtain
GOAs whose groups are guaranteed to have minimum aberration among all
regular designs.

Given a primitive polynomial, we can express the columns of a generator
matrix as powers of a primitive element. The idea of our algorithm is to
use an existing regular minimum aberration design as the first group, then
transform the columns of its generator matrix into power formats and apply
Lemma {4 to find the remaining groups. However, it should be noted that
the set of power formats for a minimum aberration design is not unique.
On one hand, there exist many primitive polynomials for a Galois field.
On the other hand, a minimum aberration design can be generated from
various generator matrices. To see this, consider the following two generator

matrices for a minimum aberration OA(16,5,2,4):

1 00 01 11101

01 001 00011
Gl = and G2 -

00101 10111

00011 11000

If we label the five columns by rq,79,73,74 and r5, then r5 can be seen
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as generated from the other four independent columns according to r5 =
r1 + ro + r3 + r4. Hence the generator matrices G; and G5 generate two
designs with the identical wordlength pattern, but they are distinct because
two different sets of independent columns (ry,ry,73,74) are used. Clearly,
the power formats for the columns of G; and G, are different in general.
Therefore, given a k X m generator matrix GG for a minimum aberration
design, other equivalent generator matrices HG should also be taken into
account, where H is a k X k non-singular matrix over GF'(s). Based on the

discussion above, we describe our full algorithm as follows.

1. Obtain a generator matrix G for a regular OA(s*, m, s, t) with mini-

mum aberration.

2. Choose a primitive polynomial h(z) for GF(s*) and generate a ran-
dom non-singular k£ x k matrix H over GF(s). Write the columns
of Go + HG as powers of a primitive element [ associated with
h(z), say (B8,5%2,---,8"™). Set v < (s* —1)/(s — 1) and G «
(pirmodv gizmodv . gimmodv)  where mod is the modulo opera-

tor.
3. 8et g« 1. Forj=1,...,0—1:

(a) Let Gj — (B(iﬁ—j) mod v7ﬁ(ig+j) mod 1}7 L. 7B(im—&—j) mod v)‘
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(b) f GNG,; =0, thenlet G <~ GUG; and g < g+ 1.

4. Repeat Steps 2 and 3 for a large number R of times and output the

largest g as well as the corresponding GOA(s*,m x g,t x g, s,2).

We set R = 100, 000 and then apply our algorithm to regular minimum
aberration OA(2%,m,2,t)’s for k = 4,5,6 and m < 28! (Chen et al., 1993),
OA(128,m,2,t)’s for m < 20 (Block and Mee| 2005) and OA(3% m,3,t)’s
for k = 4,5 and m < 20 (Xu, [2005). The resulting GOA(s*, m x g,t x
g,5,2)’s are presented in Tables S3, S4, S5 and S6 in the Supplementary
Material. Some cases are omitted, either because better designs have been
reported in Tables S1 and S2 or because the algorithm cannot find designs
with ¢ > 2. In addition, a GOA is marked by a dagger if the maximum
number of groups is attained, i.e., g = [(s* — 1)/(ms —m)].

We conclude this section with some remarks on the two methods of
generating GOAs with minimum aberration groups. Compared with the
method of selecting consecutive powers in Section [4.1] the algorithm pro-
posed in Section [4.2] can generate GOAs whose groups have less aberra-
tion. On the other hand, the algorithm relies on the existing regular mini-
mum aberration designs and may not yield the maximum number of groups
due to the computational burden. For example, in the algorithmic search

we can only find a GOA(243,6 x 18,5 x 18,3,2), while Table S1 gives a
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GOA(243,6x20,5x 20, 3,2) with the same wordlength pattern by choosing

an appropriate primitive polynomial.

5. Simulation and comparison results

In this section, we demonstrate the usefulness of GOAs from two different
aspects through simulation studies. Specifically, Section [5.1] shows GOAs
lead to more accurate estimation for main effects when data are generated
via an additive regression model, while Section [5.2]illustrates the advantage

of GOAs in providing better predictions in computer experiments.

5.1 Main effects estimation

In this subsection, we will demonstrate that the GOAs are useful for situa-

tions where there are no interactions between factors from disjoint groups

of variables. Suppose that a total of n = »"7_, my factors are divided

into ¢ disjoint groups where the factors in the kth group are denoted by

xgk), e ,xi,’f,l for Kk =1,...,9. We assume the response y and the factors

(k)

x; s are linked through an additive regression model,

g
y=>0+3 Sl e+, (5.1)
k=1

where (3 is an intercept, € is a random error and f is a function including

linear and quadratic main effects as well as associated two-factor interac-
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tions of factors belonging to the kth group, that is,

my
(k) k (k)
fk(a:l 1t 7(7111) Z(ﬁ +6]‘1 Jq) Z <ﬁ9132ll J1l le

Jj=1 J1<Jj2

(k) (k) (k) (k) (k)
+6]1]2 1gT 1,1V 2, + 6]1]2,qlx]1 q ]2 l + lejz,qq 1.9 g2, q) ) (5‘2>

(k)

where we assume that all factors T (k)

s have been scaled to [0,2] and z;;" =
V6(z —1)/2 and 21" = V2{3(z{" — 1) — 2} /2.

Suppose that our primary interest lies in estimating the linear and
quadratic main effects ﬁ( and B( despite the non-negligible two-factor

(k) (k) (k) ; :
B Biinq and B . In our simulation study,

interactions ﬁ Jig2,lg> Miija.ql

J1g2,ll
we first generate these factorial effects and the intercept [, from normal
distributions: Bg,ﬁﬁ),ﬁ;? ~ N(0,10%) and B A ll,ﬁj(.f]).z,lq,ﬂj(f;Q’ql,ﬁj(.fj),Q’qq ~
N(0,0?). Then given a design D of N runs for the n factors, let X be the
model matrix corresponding to intercept and the main effects and Y be the
vector of NV independent responses generated from model , where, for
simplicity, the random errors € are independently generated from N (0, 1).
By ignoring the interactions, one can estimate the vector § of main ef-
fects (including all 5](.§)’s and all 55»:)’5) by removing the first entry of
(XTX)2XTY. Denote this estimate by 5. Then the error in § can be

evaluated by the mean squared error e(8) = {||3 — B||2/(2n)}¥/? and a

design is desirable if e(/3) is minimized on average.
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Two specific cases are investigated to illustrate the performance of
GOAs. In case (i), we set N = 27, g = 3, m; = 4 and my = mg = 3, for
which case we take the design D as a GOA(27, (4,3,3),3 % 3, 3,2) generated
by Theorem [I] In case (i), we set N =81, g = 3 and my = my = m3 = 4,
for which case we take the design D as a GOA(81,4 x 3,3 x 3,3,2) gener-
ated by Lemma |3| In both cases, we also take D as obtained by randomly
permuting columns of the regular minimum aberration designs (Xul 2005)
for comparison. Then the procedure described in the last paragraph is re-

peated 1000 times, and the average of the 1000 e(f) values is displayed in

Table (3| for various settings of 2.

~

Table 3: The average e(f) values obtained from 1000 replications, where

the numbers in the parentheses are the corresponding standard errors.

oc=1 c=5 o=10

GOA(27,(4,3,3),3 x 3,3,2) 1.223 (0.007) 6.091 (0.033) 12.009 (0.065)

MA OA(27,10,3,2) 1.283 (0.008) 6.323 (0.038) 12.623 (0.038)

GOA(81,4 x 3,3 3,3,2)  0.110 (0.001) 0.110 (0.001)  0.109 (0.001)

MA OA(81,12,3,2) 0.495 (0.001) 2.417 (0.033)  4.845 (0.061)

From Table [3| it is evident that compared to minimum aberration

N

designs, the GOAs result in smaller e(f) values and hence more accu-



5. SIMULATION AND COMPARISON RESULTS

rate main effects estimation. It is interesting to note that the magni-

~

tude of two-factor interactions does not affect the average e(/5) values for
the GOA(81,4 x 3,3 x 3,3,2). This is implied in the proof of Lemma
Bl from which one can conclude that the main effects are in fact clear
of all two-factor interactions in model . On the other hand, for the
GOA(27,(4,3,3),3 % 3,3,2) under study, a main effect might still be biased
by a two-factor interaction from another group. Nevertheless, by making
the main effects clear of two-factor interactions from the same group, a GOA
tends to result in less bias in main effects estimation, as can be seen from
the results of Table[3] This is the intuition behind the theoretical arguments
of [Lin| (2012). As these arguments will be more tedious and complicated

than those for two-level designs, we choose to leave it for future work.

Remark 2. The GOAs are also useful for the scenario of “group-effect
sparsity”, which means that among all groups of factors, perhaps only a few
groups are active and really affect the response. More simulation studies are
presented in the Supplementary Material to show the advantage of GOAs

in this scenario.
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5.2 Predictions in computer experiments

In this subsection, we show that GOAs can be used to provide more accurate
predictions in computer experiments. We adopt the same notation as in

Section and assume the true underlying model can be written as

g
k=1

where fj takes the same form as in (5.2). The only difference between
models and is that a random error is not included in (|5.3)) as the
model is assumed to be deterministic.

Given model and a design, we can generate a training dataset in
the same way as described in the last subsection. We fit the training dataset
with a universal kriging model with fixed linear and quadratic main effects
and the Gaussian correlation function (Gramacy, [2020). Next, a random
Latin hypercube design of N; = 1000 runs is used as a test dataset, and the
fitted model is used to predict the corresponding outputs. The R package
DiceKriging (Roustant et al., 2012)) is used to implement the model fitting
and prediction procedure described above. Let z; be the ith point of the test
dataset, y(z;) be the true response from (5.3), and §(z;) be the prediction
obtained from the fitted model. Then the prediction error can be evaluated

by the root mean squared error RMSE = [va:tl{y(xz) — §(x;) 12/ Ny 2,
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Again, we examine the performances of GOA(27, (4, 3,3),3x3,3,2) and
GOA(81,4x3,3%3,3,2) by comparing them with other types of designs. In
addition to the minimum aberration designs (MAOAs) considered in Section
we also study Latin hypercube designs obtained by randomly expanding
the levels of GOAs and MAOAs, the maximum projection Latin hypercube
designs (Joseph et al., 2015) generated by the MaxProLHD() function in
R package MaxPro and the maximin-distance Latin hypercube designs (Ba
et al., 2015)) generated by the maximinSLHD() function in R package SLHD.
For each of these designs, we repeat the procedure described in the last
paragraph 1000 times, and summarize the averages of the 1000 RMSE values
in Table [

The simulation results show that GOAs outperform other designs. It
can also be observed that the GOAs and MAOAs tend to have lower RMSE
values than Latin hypercube designs. This is explainable because the three-
level designs allow more accurate estimation of the linear and quadratic
main effects in the fitted model, which will help make better predictions at
unexplored locations. Nonetheless, the Latin hypercube designs are more
desirable when the underlying functions are highly complex and many levels
are needed to fully explore the response surface. In Table [d] it can be seen

that the GOA-based Latin hypercube designs have superior performance



6. CONCLUDING REMARKS

among different types of Latin hypercube designs.

6. Concluding remarks

In this paper, we introduce grouped orthogonal arrays for experiments
where the factors under investigation are divided into groups and better
projection properties are desired for factors belonging to the same group.
We present explicit constructions for GOAs with strength-3 groups for s3
and s* runs, as well as a recursive construction method which enables us
to obtain large GOAs with strength-3 and near strength-3 groups. Then
we judiciously select powers of a primitive element to obtain regular GOAs

with minimum aberration groups.

6.1 Further applications of GOAs

The GOAs share some interesting connections with experimental designs
used for group screening (Lewis and Dean| [2001; [Moon et al} 2012 Drag-
ulji¢ et al 2014). The group screening method identifies active factors by
first dividing all potential factors into groups and determining the active
groups, then examining the factors belonging to those active groups. It
is interesting to note that GOAs can be applied to study such problems,

especially if prior knowledge indicates that factors in the same group are
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Table 4: The average RMSE values obtained from 1000 replications, where

the numbers in the parentheses are the corresponding standard errors.

c=1

oc=25

c=10

GOA(27,(4,3,3),3 x 3,3,2)
MAOA
GOA-based LHD
MAOA-based LHD
MaxPro LHD

maximin LHD

3.860 (0.015)
3.936 (0.015)
5.374 (0.033)
5.432 (0.034)
5.695 (0.045)

7.872 (0.112)

19.238 (0.072)
19.542 (0.075)
26.455 (0.160)
26.613 (0.159)
28.601 (0.224)

40.218 (0.642)

38.053 (0.149)
38.664 (0.157)
53.313 (0.317)
53.510 (0.319)
57.278 (0.453)

70.870 (1.280)

GOA(81,4 x 3,3 x 3,3,2)
MAOA
GOA-based LHD
MAOA-based LHD
MaxPro LHD

maximin LHD

3.882 (0.010)
4.020 (0.011)
4.627 (0.016)
4,688 (0.016)
4.644 (0.015)

5.492 (0.043)

19.434 (0.055)
20.098 (0.059)
23.031 (0.082)
23.357 (0.082)
23.356 (0.081)

25.467 (0.200)

38.879 (0.108)
40.259 (0.117)
46.301 (0.161)
46.721 (0.167)
46.692 (0.159)

54.232 (0.404)
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more likely to interact with each other. For example, Sexton et al.| (2001)
documented an experiment which was aimed at improving the performance
of hydraulic gear pumps. A pump is usually made up of several components
where each component consists of some geometrical features that could im-
pact the response. A GOA can be naturally employed by treating each
feature as a factor and each component as a group. For another example,
in industrial processes involving a series of stages, the quality of the final
product might be affected by several factors at each stage (Tyssedal and
Kulahci, 2015). Then factors of the same stage can be viewed as coming
from the same group. Once the active groups have been identified, the
projection properties of GOAs provide benefits for studying the factors of
these groups (see Remark 2| and Section S3 of the Supplementary Material).
Some intuition can be gained by considering the extreme case of one active
group, as the GOA endows one with the opportunity to study the factors
of this group with the same dataset since the effect aliasing among them
is small due to the high strength of the design projected onto this group.
The analysis strategy is different from that for traditional group screening,
which typically requires two sets of experimentation, one for identifying
active groups and the other for studying the factors of the active groups.

Another application where GOAs could play a role is the experiments
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for dimensional analysis (Albrecht et al. |2013; Shen et al) 2014). In di-
mensional analysis, factors are divided into groups such that those in the
same group can be formulated as a dimensionless factor. By arranging the
factors such that each dimensionless factor corresponds to a group of the
GOA, more levels of the dimensionless factors can be observed, which would

be advantageous for studying the effects of the dimensionless factors.

6.2 Possible directions for future work

For applications where more levels are needed, one may expand the levels
of a GOA in the same way as constructing orthogonal array-based Latin
hypercubes (Tang, [1993). Alternatively, one can also apply the technique
of Sun and Tang (2017)) to generate column-orthogonal designs from some
GOAs presented in this paper. We illustrate this with the GOA(32,8x 3,3
3,2,2) presented in Table S1. Denote the centered version of this design
(i.e., the two levels are denoted by —1/2 and +1/2) by D = (D, Dy, D3)

and write D; = (D;1, D;o) such that D;; and D;y each have 4 columns for
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i=1,2,3. Let
4 -2 -1 0
2 4 0 1 )
1 0 4 =2
0o -1 2 4

for i = 1,2,3 and j = 1,2. Let D] = (D}, D,,) for i = 1,2,3. Then
D' = (D}, Dj, Dj) is a column-orthogonal design of 32 runs for 24 factors
with 8 levels. In addition, since D; has strength 3, it can easily be proved
that the elementwise product of any two columns in D! is orthogonal to
another column in D] for ¢ = 1,2,3. On the other hand, it is known
that strong orthogonal arrays (He and Tang, 2013 are more space-filling
than ordinary orthogonal array-based designs. It is therefore interesting to
explore how to construct strong orthogonal arrays by using GOAs as base
arrays.

Many GOAs studied in this paper have constant group sizes. In prac-
tice, we may also encounter situations where the groups have different num-
bers of factors. One can drop columns from a GOA(N, m x g,t X g, s, () to
obtain variable group sizes. For example, all regular minimum aberration
OA(81,m,3,t)’s given in |Xul (2005) for m < 10 are embedded in a regular

OA(81,11,3,2). Hence, using the GOA(81,11 x 3,2 x 3,3,2) in Table S5,
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we can construct a GOA(81, (mq, mg, m3), (t1,t2,13),3,2) such that every
group has minimum aberration among all regular designs for any choice
of m; <11 (i = 1,2, 3). Despite being simple and useful, this approach of
dropping columns obviously cannot cover all scenarios. It is thus a potential
direction to construct GOAs with variable group sizes for future research.
Another important topic is the use of GOAs in analysis of computer
experiments and beyond. Besides the universal kriging model used in Sec-
tion [o], another approach to analyze the data, as mentioned in Section [I] is
to use a Gaussian process with a blocked additive kernel. In such a model,
the Gaussian process can be seen as a sum of several independent Gaussian
processes where each process is defined over several factors called a block.
It is intuitive to arrange the factors in such a way that those corresponding
to the same block enjoy better space-filling properties in the experimental
design. An interesting research problem is to examine how GOAs are con-
nected to blocked additive kernels, as done in |Lin and Morrill (2014)), which
showed the advantages of designs of variable resolution in model selection

of linear models.



REFERENCES

Supplementary Material

Supplementary material available online includes all the proofs of theoreti-

cal results, design tables, and other technical details of the paper.

Acknowledgments

The authors would like to thank an Editor, an AE and two referees for their
helpful comments which greatly improved the paper. Chen is supported by
National Natural Science Foundation of China, Grant No. 12401325. He
was supported by National Natural Science Foundation of China, Grant
No. 11701033. Lin was supported by Discovery Grant from the Natu-
ral Sciences and Engineering Research Council of Canada. Sun is sup-
ported by National Natural Science Foundation of China (Nos. 12371259
and 11971098) and National Key Research and Development Program of

China (Nos. 2020YFA0714102 and 2022YFA1003701).

References

Albrecht, M. C., C. J. Nachtsheim, T. A. Albrecht, and R. D. Cook (2013). Experimental design
for engineering dimensional analysis. Technometrics 55(3), 257-270.
Ba, S., W. R. Myers, and W. A. Brenneman (2015). Optimal sliced Latin hypercube designs.

Technometrics 57(4), 479-487.



REFERENCES

Block, R. M. and R. W. Mee (2005). Resolution iv designs with 128 runs. J. Qual. Technol. 37,
282-293.

Box, G. E. P. and N. R. Draper (1959). A basis for the selection of a response surface design.
J. Amer. Statist. Assoc. 54, 622—-654.

Chen, H. (1998). Some projective properties of fractional factorial designs. Statist. Probab.
Lett. 40(2), 185-188.

Chen, J., D. X. Sun, and C. F. J. Wu (1993). A catalogue of two-level and three-level fractional
factorial designs with small run sizes. Internat. Statist. Rev. 61, 131-145.

Chen, J. and C. F. J. Wu (1991). Some results on s" " fractional factorial designs with minimum
aberration or optimal moments. Ann. Statist. 19(2), 1028-1041.

Dembowski, P. (1968). Finite Geometries. Springer-Verlag, Berlin-New York.

Dragulji¢, D., D. C. Woods, A. M. Dean, S. M. Lewis, and A.-J. E. Vine (2014). Screening
strategies in the presence of interactions. Technometrics 56(1), 1-16.

Ebert, G. L. (1985). Partitioning projective geometries into caps. Canad. J. Math. 37(6),
1163-1175.

Gardner, J., C. Guo, K. Weinberger, R. Garnett, and R. Grosse (2017, 20-22 Apr). Discovering
and exploiting additive structure for bayesian optimization. In A. Singh and J. Zhu (Eds.),
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,

Volume 54, pp. 1311-1319.



REFERENCES

Gramacy, R. B. (2020). Surrogates—Gaussian Process Modeling, Design, and Optimization

for the Applied Sciences. Chapman & Hall/CRC Texts in Statistical Science Series. CRC

Press, Boca Raton, FL.

He, Y., C. D. Lin, and F. Sun (2022). A new and flexible design construction for orthogonal

arrays for modern applications. Ann. Statist. 50(3), 1473-1489.

He, Y. and B. Tang (2013). Strong orthogonal arrays and associated Latin hypercubes for

computer experiments. Biometrika 100(1), 254-260.

Hedayat, A. S., N. J. A. Sloane, and J. Stufken (1999). Orthogonal Arrays: Theory and Appli-

cations. Springer Series in Statistics. New York: Springer-Verlag.

Joseph, V. R. (2016). Space-filling designs for computer experiments: A review. Qual.

Eng. 28(1), 28-35.

Joseph, V. R., E. Gul, and S. Ba (2015). Maximum projection designs for computer experiments.

Biometrika 102(2), 371-380.

Joseph, V. R., Y. Hung, and A. Sudjianto (2008). Blind kriging: a new method for developing

metamodels. ASME J. Mech. Des. 130(3), 031102.

Lekivetz, R. and C. D. Lin (2016). Designs of variable resolution robust to non-negligible

two-factor interactions. Statist. Sinica 26(3), 1269-1278.

Lewis, S. M. and A. M. Dean (2001). Detection of interactions in experiments on large numbers

of factors. J. R. Stat. Soc. Ser. B Stat. Methodol. 63(4), 633-672. With discussion and a



REFERENCES

reply by the authors.

Lidl, R. and H. Niederreiter (1986). Introduction to Finite Fields and Their Applications.

Cambridge University Press, Cambridge.

Lin, C. D. (2012). Designs of variable resolution. Biometrika 99(3), 748-754.

Lin, C. D. and S. Morrill (2014). Design of variable resolution for model selection. J. Statist.

Plann. Inference 155, 127-134.

Lin, C. D. and B. Tang (2015). Latin hypercubes and space-filling designs. In Handbook of

Design and Analysis of Experiments, Chapman & Hall/CRC Handb. Mod. Stat. Methods,

pp- 593-625. CRC Press, Boca Raton, FL.

Moon, H., A. M. Dean, and T. J. Santner (2012). Two-stage sensitivity-based group screening

in computer experiments. Technometrics 54(4), 376-387.

Muehlenstaedt, T., O. Roustant, L. Carraro, and S. Kuhnt (2012). Data-driven Kriging models

based on FANOVA-decomposition. Stat. Comput. 22(3), 723-738.

Owen, A. B. (1992). Orthogonal arrays for computer experiments, integration and visualization.

Statist. Sinica 2(2), 439-452.

Pan, C. and M. Zhu (2017). Group additive structure identification for kernel nonparametric

regression. Adv. Neural Inf. Process. Syst. 30, 4914-4923.

Raaphorst, S., L. Moura, and B. Stevens (2014). A construction for strength-3 covering arrays

from linear feedback shift register sequences. Des. Codes Cryptogr. 73(3), 949-968.



REFERENCES

Roustant, O., D. Ginsbourger, and Y. Deville (2012). Dicekriging, Diceoptim: Two R packages

for the analysis of computer experiments by kriging-based metamodeling and optimization.

Journal of Statistical Software 51(1), 1-55.

Santner, T. J., B. J. Williams, and W. 1. Notz (2018). The Design and Analysis of Computer

Ezperiments, Second Edition. Springer Series in Statistics. New York: Springer.

Sexton, C. J.;, S. M. Lewis, and C. P. Please (2001). Experiments for derived factors with

application to hydraulic gear pumps. J. Roy. Statist. Soc. Ser. C 50(2), 155-170.

Shen, W., T. Davis, D. K. Lin, and C. J. Nachtsheim (2014). Dimensional analysis and its

applications in statistics. J. Qual. Technol. 46(3), 185-198.

Sun, F. and B. Tang (2017). A general rotation method for orthogonal Latin hypercubes.

Biometrika 104(2), 465-472.

Tang, B. (1993). Orthogonal array-based Latin hypercubes. J. Amer. Statist. Assoc. 88(424),

1392-1397.

Tang, B. (2001). Theory of J-characteristics for fractional factorial designs and projection

justification of minimum Gg-aberration. Biometrika 88(2), 401-407.

Tyssedal, J. and M. Kulahci (2015). Experiments for multi-stage processes. Qual. Technol.

Quant. Manag. 12(1), 13-28.

Wang, Y., F. Wang, Y. Yuan, and Q. Xiao (2021). Connecting U-type designs before and after

level permutations and expansions. J. Stat. Theory Pract. 15(4), Paper No. 81, 1-19.



REFERENCES

Xu, H. (2005). A catalogue of three-level regular fractional factorial designs. Metrika 62(2-3),

259-281.

Zhang, Q., S. Pang, and Y. Li (2023). On the construction of variable strength orthogonal

arrays. IEICE Trans. Foundamentals E106, 683-688.

Guanzhou Chen

School of Statistics and Data Science, LPMC & KLMDASR, Nankai University

E-mail: gzchen@nankai.edu.cn

Yuanzhen He

School of Statistics, Beijing Normal University

E-mail: heyuanzhen@bnu.edu.cn

C. Devon Lin

Department of Mathematics and Statistics, Queen’s University

E-mail: devon.lin@queensu.ca

Fasheng Sun

KLAS and School of Mathematics and Statistics, Northeast Normal University

E-mail: sunfs359@nenu.edu.cn



	Introduction
	Notations and background
	GOAs with strength-3 and near strength-3 groups
	Designs of s3 and s4 runs
	A recursive construction

	GOAs with minimum aberration groups
	Forming groups by selecting consecutive powers of 
	Forming groups by an algorithm

	Simulation and comparison results
	Main effects estimation
	Predictions in computer experiments

	Concluding remarks
	Further applications of GOAs
	Possible directions for future work




