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Abstract: We propose a novel functional linear model incorporating latent factors, where scalar
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subject. Our model accounts for latent factors that may impact the response but remain unob-

servable. To unveil and estimate these latent factors, we propose an iterated profile estimation

method. We then establish the consistency and asymptotic properties of the estimators. To

demonstrate the efficacy of our proposed estimation procedure, we conduct simulation studies

across various scenarios. We compare our results with estimations derived from conventional

functional linear models, revealing the superior performance of our method in addressing latent

factors. We further illustrate our proposed model and methodology by analyzing real data from

both financial markets and air pollution datasets. In these analyses, we successfully uncover

hidden factors that exert influence in these specific fields.
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1. Introduction

Functional data refers to a type of data that consists of observations or

measurements that are functions rather than simple numerical values or

categorical variables (Ramsay, 1982). In other words, instead of represent-

ing data points as individual values or discrete categories, functional data

captures information in the form of entire curves, trajectories, or continuous

functions. Functional data analysis (FDA) is a statistical framework and

set of techniques used to analyze and interpret functional data (Ramsay and

Silverman, 2005; Ferraty and Vieu, 2006). It involves treating functions as

the fundamental unit of analysis and applying statistical methods specifi-

cally designed for functional data. Functional regression is one of the most

popular FDA tools (Chen et al., 2021; Liu et al., 2022). A great quantity

of literature focused on this field can be divided into three categories based

on whether the response variable is functional data (Jiang and Wang, 2011)

, the prediction variable is functional data (Hilgert et al., 2013), or both

are functional data (Li et al., 2017). Functional linear models can be used

to model the relationship between functional variables and scalar response,

which have been applied to many fields as financial market, biomedical sci-

ence, climate and environment (Lin et al., 2017; Zhu et al., 2019; Guan

et al., 2020; Chen et al., 2022).
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Early research literature extensively explored estimation methods for

functional linear models. For instance, Crambes et al. (2009) proposed a

smoothing splines estimator for the functional slope parameter based on

a modified roughness penalty. Yuan and Cai (2010) studied a smoothness

regularization method for functional linear regression and constructed a

unified treatment for both the prediction and estimation problems using a

reproducing kernel Hilbert space approach. Wu et al. (2010) proposed a

varying-coefficient approach where the slope parameter was regarded as a

function of scalar covariates. Morris (2015) well summarized some existing

forms and generalizations of functional linear models.

In recent years, research on functional linear models has been extended

to more complex data structure with better interpretability. For example,

Lin et al. (2017) presented a locally sparse estimator for functional coef-

ficient based on a functional regularization technique called fSCAD. Liu

et al. (2017) proposed a new functional linear mixed model where each

subject shared a common slope function (fixed effect) in addition to an

individual one (random effects). Liu et al. (2018) proposed a functional

variable selection method via Gram–Schmidt (FGS) orthogonalization for

models with multiple functional predictors. Fang et al. (2020) considered

a multiple-smooth and locally sparse (m-SLoS) estimator for functional co-
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efficients based on the interconnections among multiple responses. Chen

et al. (2022) considered the serial dependence of the functional predictors

and proposed an autocovariance-based generalized method-of-moments es-

timator for the slope function.

The previous studies did not take into account hidden factors that could

potentially influence the response as well. Ignoring the existence of hidden

factors can lead to certain deviations in real data analysis. Take one stock

data for example. The trading data is obtained from the China Securities

Index (CSI) 300 constituent stocks from August 3rd to October 10th, 2020,

with the stock price recorded every 3 seconds. The scalar response is the

daily returns of stocks, defined as the change of the closing price in com-

parison with the opening price of the individual stock at the same day. The

functional covariate is the observed individual stock prices every 3 seconds

in one trade day. In addition to daily stock price trajectories, some hidden

factors may exist that affect stock returns to varying degrees. Specifically,

from a macro perspective, hidden factors such as macroeconomic situation,

political factors, changes in the whole financial market supply and demand

may bring a common shock to the return of all individual stocks. On the

other hand, from a micro perspective, subjective conditions like business

performance, enterprise distribution policy, and characteristics of the indus-
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try the enterprise located may also have varying degrees of impact. These

unobersevable factors cannot be expressed numerically and the influence

may vary with individual stocks over time. Moreover, the individual effect

and time effect of these factors may also interact multiplicatively with the

response variable. The factor structure can depict the correlation among

the 300 individual stocks, and integrate economic elements that are not

measurable at the macro or micro level. Our objective is to identify these

hidden factors and quantify their influence on the stock return.

The flourishing development of statistical theory and practical applica-

tions has made great progress in large-scale optimization and dimensional

reduction techniques, and factor models is one of the core modeling meth-

ods. Fan et al. (2021) provided a selective overview of the recent devel-

opments and applications of factor models. Pesaran (2006) proposed a

common correlated effect (CCE) approach, Bai (2009) developed the iter-

ated principal component (IPC) approach, and Bai and Li (2014) studied

the likelihood approach. With the popularization of potential factors in

data analysis, model research and statistical analysis has gradually been

promoted (Fan et al., 2011; Bai and Li, 2014; Feng et al., 2018).

In the modeling process of functional data, the existence and impact

of potential factors are rarely considered. In this article, our objective
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is to introduce a novel functional linear model that incorporates latent

factors and functional covariates specifically designed for functional data.

Specifically, we propose the following Functional Linear Models with Latent

Factors (FLiF):

Yit = ατW it +

∫
S

βτ (s)X it(s)ds+ λτ
iF t + εit, (1.1)

where Yit is a scalar response for the i-th subject at time t, i = 1, . . . , N, t =

1, . . . , T , W it is a p × 1 vector of scalar covariates, α is a p × 1 vector of

unknown coefficients, X it(s) = (Xit1(s), · · · , Xitq(s))
τ is a q × 1 vector of

functional predictors, β(s) = (β1(s), · · · , βq(s))
τ is the corresponding vector

of slope functions, representing the cumulative effect of X it(s) on Yit, S is

assumed to be a compact subset of an Euclidean space such as [0, 1], F t

and λi denote an r×1 vector of common factors and factor loadings for the

ith subject, respectively, and εit are mutually independent and identically

distributed (i.i.d.) random errors with mean 0 and variance σ2.

The above FLiF model can be regarded as a generalized form of sev-

eral conventional models. For example, if no functional covariate can be

observed, i.e., β(·) = 0, and the random error is serial and cross-sectional

dependent, then the model becomes the panel data model with interactive
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effects studies in Bai (2009). If no underlying factors exist, the model is the

conventional functional linear model in Ramsay and Silverman (2005). If

the factors is assumed known, then the model becomes the functional linear

mixed-effects model proposed by Liu et al. (2017). Detailed evaluation and

comparison between our proposed FLiF model and the functional linear

mixed-effects model can be found in the supplementary materials. More-

over, if there are no covariates including both scalar and functional types in

the model, that is, without functional coefficients, the model becomes the

factor-augmented smoothing model (FASM) proposed by Gao et al. (2024).

Our article make three main contributions. First, to the best of our

knowledge, this is the first attempt to model functional data with latent

factors. Second, we develop a profile method to estimate the slope functions

β(s) using penalized B-splines and to identify the underlying factor struc-

ture F t and λi using principal component analysis. Last but not least, we

establish the theoretical results including the convergence rate and asymp-

totic normality for both scalar and functional coefficient estimators for the

proposed FLiF model. We conduct numerical simulation studies under var-

ious settings of correlation between predictors and response, and compare

with the conventional models. Moreover, we demonstrate our FLiF model

with applications in financial marketing and air pollution. We provide the
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R codes for the simulation studies and real data analysis in the website

https://github.com/statszx/FLiF.

The paper is organized as follows. In Section 2, we introduce the model

and estimation procedure for both scalar and function coefficients, as well

as the factor structure. Meanwhile, the identification of the factor numbers

and the optimal choice of the smoothing parameter are also provided. In

Section 3, we establish the asymptotic theory of the resulting estimators and

the convergency of the factor determination method under assumptions. In

Section 4, numerical studies are worked to prove the efficiency of the pro-

posed estimation method under different cases. In Section 5, two real data

are analyzed to verify the application of the model and explain the unob-

served potential factors regarding the data. The discussion is concluded

in Section 6. Additional simulation results and technical details including

auxiliary theoretical results are provided in Supplementary material.

2. Estimating the FLiF Model

In this section, we propose the estimation method for the FLiF model,

as well as the implementation issues in the application to determine the

optimal factor number and identify the optimal smoothing parameter.
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2.1 Iterated Profile Estimation Method

2.1 Iterated Profile Estimation Method

We first propose a iterated profile estimation method for the FLiF model

(1.1), which can be expressed in vector and matrix notations as follows

Y i = W iα+

∫
S

X i(s)β(s)ds+ Fλi + εi, i = 1, . . . , N, (2.1)

where Y i = (Yi1, . . . , YiT )
τ , W i = (W i1, . . . ,W iT )

τ , F = (F 1, . . . ,F T )
τ ,

X i(s) = (X i1(s), . . . ,X iT (s))
τ , εi = (εi1, . . . , εiT )

τ . We denote Λ =

(λ1, . . . ,λN)
τ . For the identification of the FLiF model (2.1), the follow-

ing two restrictions are added (Bai, 2009): F τF /T = Ir, and ΛτΛ is a

diagonal matrix.

Before conducting the estimation procedure for model (2.1), we first

represent β(s) by B-spline approximation. For each j = 1, · · · , q, let βj(s)

be the linear combination of B-spline basis function as

βj(s) ≈
L∑
l=1

γjlbl(s) = γτ
j b(s), (2.2)

where b(s) = (b1(s), · · · , bL(s))τ is the vector of basis functions of order

d+1 with K interior knots, where L = K + d+1, and γj = (γj1, · · · , γjL)τ

is the corresponding vector of basis coefficients. For simplicity, we assume
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2.1 Iterated Profile Estimation Method

the same basis functions are used to represent βj(s).

Let Bi =
∫
X i(s) ⊗ bτ (s)ds, and γ = (γτ

1, . . . ,γ
τ
q )

τ . Plug (2.2) into

(2.1), we have the approximation of (2.1) as Y i ≈ W iα + Biγ + Fλi +

εi. Let Zi = (W i, Bi), θ = (ατ , γτ )τ , then the approximation can be

expressed as Y i ≈ Ziθ + Fλi + εi. We define the objective function as

Q(θ, Λ, F ) =
N∑
i=1

(Y i−Ziθ−Fλi)
τ (Y i−Ziθ−Fλi)+

q∑
j=1

ξj

∫
S

{
d2βj(s)

ds2

}2

ds,

(2.3)

subject to the identification restriction F τF /T = Ir, andΛτΛ is a diagonal

matrix. The second term in (2.3) is a roughness penalty in which ξj, j =

1, . . . , q, is the smoothing parameter. We define Gβ = diag(ξ1, . . . , ξq) ⊗∫
S
b(2)(s){b(2)(s)}τds, and Gθ = diag(0p×p,Gβ). Then the objective func-

tion (2.3) can be expressed as

Q(θ, Λ, F ) =
N∑
i=1

(Y i −Ziθ − Fλi)
τ (Y i −Ziθ − Fλi) + θτGθθ. (2.4)

Define the projection matrix MF = IT − F (F τF )−1F τ = IT −

FF τ/T . For any given θ and F , we can obtain the profile estimate for

λi by solving the score equation as λ̂i(θ,F ) = 1
T
F τ (Y i − Ziθ). Then

substituting λ̂i(θ,F ) into (2.4), the objective function becomes Q(θ, F ) =
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2.1 Iterated Profile Estimation Method∑N
i=1(Y i −Ziθ)

τMF (Y i −Ziθ) + θτGθθ.

Therefore, following Bai (2009), the least square estimators of θ and F

can be obtained by minimizing Q(θ, F ) with an iteration algorithm as

θ̂ =

(
N∑
i=1

Zτ
iM F̂Zi +Gθ

)−1 N∑
i=1

Zτ
iM F̂Y i,{

1

NT

N∑
i=1

(Y i −Ziθ̂)(Y i −Ziθ̂)
τ

}
F̂ = F̂ V NT , (2.5)

where V NT is the diagonal matrix of the r largest eigenvalues, arranged in

decreasing order, of matrix
∑N

i=1(Y i − Ziθ̂)(Y i − Ziθ̂)
τ/(NT ), and F̂ is

the matrix composed with the corresponding first r orthogonal eigenvectors

(multiplied by
√
T ) associated with these r largest eigenvalues. Finally,

the factor loadings can be estimated by Λ̂ = (λ̂1, · · · , λ̂N)
τ with λ̂i =

1
T
F̂

τ
(Y i −Ziθ̂).

Because θ = (ατ , γτ )τ , by decomposing (2.5), we have

θ̂ =


∑N

i=1W
τ
i MF̂Wi

∑N
i=1 W

τ
i MF̂Bi∑N

i=1B
τ
i MF̂Wi

∑N
i=1B

τ
i MF̂Bi +Gθ


−1

∑N
i=1 W

τ
i MF̂Yi∑N

i=1B
τ
i MF̂Yi

 .

For simplicity, we define W̃i = MF̂Wi, B̃i = MF̂Bi, and Ỹi = MF̂Yi.

Meanwhile, denote W̃ = (W̃ τ
1 , · · · , W̃ τ

N)τ , B̃ = (B̃τ
1 , · · · , B̃τ

N)τ , and

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0028



2.2 Determination of the Number of Factors

Ỹ = (Ỹ τ
1 , · · · , Ỹ τ

N)τ . We can obtain the explicit expression of α̂ and γ̂,

respectively, as α̂ = (W̃ τW̃ )−1W̃ τ

{
I−B̃(B̃τMW̃ B̃+Gθ)

−1B̃τMW̃

}
Ỹ ,

γ̂ = (B̃τMW̃ B̃+Gθ)
−1B̃τMW̃ Ỹ , where MW̃ is the projection matrix of

W̃ defined by MW̃ = INT − W̃ (W̃ τW̃ )−1W̃ τ . The expression of α̂ can

be simplified as α̂ = (
∑N

i=1 W
τ
i MF̂Wi)

−1
∑N

i=1W
τ
i MF̂ (Yi − Biγ̂). The

corresponding estimator for βj(s) is β̂j(s) = γ̂jb(s), 1 ≤ j ≤ q.

2.2 Determination of the Number of Factors

In the aforementioned estimation procedure, it is assumed that the number

of factors r and smoothing parameter ξ = (ξ1, · · · , ξq)τ are given. But in

empirical applications, they are usually unknown and should be determined

by data. We derive an information criterion to estimate the number of

factors, r, as follows. Assume that the factor number is bounded by a finite

integer rmax. Let θ̇r, Ḟ r, and Λ̇r denote the least square estimator of θ,F ,

and Λ with respect to the sum of squared residuals (without the smooth

penalty term) as Q̄(θ, Λ, F ) = 1
NT

∑N
i=1(Y i − Ziθ − Fλi)

τ (Y i − Ziθ −

Fλi). Here, the subscript r means that the estimator is the one when the

number of factors is set to be r. The estimator θ̇r can equivalently be

obtained by minimizing the profile objective function that concentrates out

F and Λ as θ̇r = argminθ

∑T
j=r+1 vj

{
1

NT

∑N
i=1(Y i −Ziθ)(Y i −Ziθ)

τ
}
,
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2.3 Choice of the Smoothing Parameter

where vj

{
1

NT

∑N
i=1(Y i −Ziθ)(Y i −Ziθ)

τ
}

is defined as the jth largest

eigenvalue of matrix 1
NT

∑N
i=1(Y i −Ziθ)(Y i −Ziθ)

τ .

We proposed to choose the number of factors, r, by minimizing BIC(r)

defined as

BIC(r) = lnV (r) + ρr, (2.6)

where V (r) =
∑T

j=r+1 vj

{∑N
i=1(Y i −Ziθ̇r)(Y i −Ziθ̇r)

τ
}
/(NT ), and the

penalty coefficient ρ is set to be ρ = (N + T )(p+ q)/ [(NT ) ln{NT/(N + T )}],

as suggested by Bai and Ng (2002), where p + q is the total dimension of

both scalar and functional covariates.

2.3 Choice of the Smoothing Parameter

The smoothing parameter ξ in the objective function controls the smooth-

ness of β(s). We propose to choose the optimal value of the smoothing

parameter by minimizing the the generalized cross-validation (GCV) crite-

rion (Wahba, 1990) defined as

GCV (ξ) =
SSE(ξ)

tr{INT − S(ξ)}2
, (2.7)

where SSE(ξ) =
∑N

i=1(Y i − Ziθ̂ξ)
τ (Y i − Ziθ̂ξ), in which the subscript

ξ denotes the estimation is with the smoothing parameter ξ, and S(ξ)
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2.3 Choice of the Smoothing Parameter

is defined as S(ξ) = Z

(
Z̃

τ
Z̃ + Gθ̂

)−1

Z̃
τ
, where Z = (Zτ

1, . . . ,Z
τ
N)

τ ,

Z̃ = (Z̃
τ

1, . . . , Z̃
τ

N)
τ , Z̃

τ

i = M F̂Zi, Gθ̂ and M F̂ are the estimation for Gθ

and MF for the given smoothing parameter ξ, respectively.

We summarize the complete estimation procedure as the following it-

eration algorithm.

Step 1: Set the number of spline bases L = T + d + 1, the smoothing

parameter ξ where ξ1 = . . . = ξq = c1 ∈ [a, b] with n grids c1, . . . , cn, the

factor number r = 1 ≤ rmax.

Step 2: Obtain the initial value of (F̂
(0)
, Λ̂

(0)
) without considering θ.

Step 3: Given F̂
(k−1)

and Λ̂
(k−1)

, get θ̂
(k−1)

as θ̂
(k−1)

(Λ̂
(k−1)

, F̂
(k−1)

) =

(
∑N

i=1Z
τ
iZi +Gθ)

−1
∑N

i=1 Z
τ
i (Y i − F̂

(k−1)
λ̂

(k−1)

i ).

Step 4: Given θ̂
(k−1)

, get F̂
(k)

as { 1

NT

∑N
i=1(Y i−Ziθ̂

(k−1)
)(Y i−Ziθ̂

(k−1)
)τ}F̂

k
=

F̂
k
V NT , and Λ̂

(k)
as λ̂

k

i =
1
T
(F̂

k
)τ (Y i −Ziθ̂

(k−1)
).

Step 5: For k = 1, · · · , K, repeat Step 3-4 until θ̂
(K)

converges to θ̂
(K−1)

.

Step 6: Set r = r + 1, repeat Step 2-5 until r = rmax, and choose the

optimal number of factors r̂ using BIC criterion.

Step 7: Set ξ = c2Iq with c2 ∈ [a, b], repeat Step 2-5 under the condition

of r̂ until ξ = cnIq, and choose the optimal smoothing parameter ξ using

GCV method.

Step 8: Get the iterated estimation θ̂ = (α̂τ , γ̂τ )τ , (F̂ , Λ̂), and β̂j(s) =
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γ̂τ
jb(s), j = 1, · · · , q.

3. Theoretical Results

We first give some assumptions required for the theoretical properties.

(A1) (a) The scalar regressor W it has bounded support, E||W it||2 ≤

M , E||W it||4 ≤ M . The eigenvalues of matrix WW τ are bounded from

0. (b) The functional regressor X it satisfies that E||
∫
X it(s)ds||2 ≤ M ,

E||
∫
X it(s)ds||4 ≤ M . The maximal and minimal eigenvalues of BBτ are

bounded from 0 and ∞ as N, T → ∞, where B is defined similarly as B̃.

(A2) Let F : {F : F τF /T = I}. Define D(F ) = 1
NT

∑N
i=1Z

τ
iMFZi −

1
N2T

∑N
i=1

∑N
k=1 Z

τ
iMFZk · λτ

i (Λ
τΛ/N)−1λk. We assume infF D(F ) > 0.

(A3) E||F t||4 ≤ M , and
∑T

t=1 F tF
τ
t /T

P−→ ΣF > 0 for some r × r

matrix ΣF , as T → ∞.

(A4) E||λi||4 ≤ M , and ΛτΛ/N
P−→ ΣΛ > 0 for some r× r matrix ΣΛ,

as N → ∞.

(A5) (a) The error is stationary, E(εit) = 0, E||εi||4 ≤ M , and E||εi||8 ≤

M . (b) For every (t, s), E[N−1/2
∑N

i=1 εitεis]
4 ≤ M .

(A6) βj(s) ∈ Hd for all j = 1, . . . , q, whereHd is defined as the collection

of all functions on the support S whose mth order derivative satisfies the

Holder condition of order v with d ≡ m+ v, where 0 < v < 1.
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(A7) The smoothing parameter ξj in roughness penalty satisfies that

ξj = O((NL)1/2), j = 1, . . . , q.

Remark 1. Assumption (A1) is the mild and general stationary condition

for scalar and functional regressors. Assumption (A2) is an identification

condition for θ to be uniquely determined. This assumption rules out the

time-invariant and common regressors, in which cases D(F ) = 0. Assump-

tions (A3) and (A4) imply the existence of r factors. Assumption (A5)

shows that εit is uniformly bounded. The random error is assumed to inde-

pendent and identically distributed which can be extended to the existence

of correlation according to minor motivations (Bai (2009)). Assumption

(A6) is the mild condition for functions which have been wildly used in

many models and practical applications. Assumption (A7) is the condition

to make the bias from the roughness penalty negligible.

Theorem 1 establishes the consistency of the estimation of both scalar

and functional coefficients, as well as the factors.

Theorem 1. Suppose that assumptions (A1)∼(A6) hold, as N, T → ∞,

define PA = A(AτA)−1Aτ for a given matrix A, then

(a) The estimator α̂ is consistent such that α̂−α
P−→ 0.

(b) The estimator β̂j(·), j = 1, . . . , q, are uniquely defined with proba-

bility tending to one.
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(c) The matrix F τ F̂ /T is invertible and ||P F̂ − P F ||
P−→ 0.

Theorem 2 shows the consistency of the determination method for the

unknown factor numbers.

Theorem 2. Suppose that assumptions (A1)∼(A6) hold, r is the true num-

ber of unobservable factor, then as N, T → ∞, P (r̂ = r) → 1.

For ease of notation, define δNT = min[
√
N,

√
T ], and ς = min[δ−2

NT , L
−2].

We derive the convergence rate for both scalar and functional coeffi-

cients in Theorem 3.

Theorem 3. Assume the assumptions (A1)∼(A6) hold. If δ−2
NTL logL → 0

and T/N → 0 as N, T → ∞, then

(1) ||α̂−α||2L2
= Op(L2(NT )−1 + L−2d+1 + Lς2).

(2)
∣∣∣∣∣∣β̂j(·)− βj(·)

∣∣∣∣∣∣2
L2

= Op(L(NT )−1 + L−2d + ς2), j = 1, . . . , q.

Define V i = Zτ
iMF− 1

N

∑N
k=1 aikZ

τ
kMF , where aik = λτ

i (Λ
τΛ/N)−1λk.

Let cα = (Ip,0p×qL) denote the p × (p + qL)-dimension matrix, then

α̂ = cαθ̂. As N, T → ∞ simultaneously, and D = {(W it,X it,λi,f t), i =

1, . . . , N, t = 1, . . . , T}, the conditional variance matrix Φα = V ar(α̂|D)

of α̂ conditioning on D is the limit in probability of Φ∗
α = cα(

∑N
i=1 V

τ
iV i+

Gθ)
−1(
∑N

i=1 σ
2V τ

iV i)(
∑N

i=1 V
τ
iV i+Gθ)

−1cα
τ . Similarly, let cγ = (0qL×p, IqL)

denote the qL × (p + qL)-dimension matrix, then γ̂ = cγ θ̂. As N, T →
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∞ simultaneously, the conditional variance matrix Φγ = V ar(γ̂|D) of γ̂

conditioning on D is the limit in probability of Φ∗
γ = cγ(

∑N
i=1 V

τ
iV i +

Gθ)
−1(
∑N

i=1 σ
2V τ

iV i)(
∑N

i=1 V
τ
iV i +Gθ)

−1cγ
τ .

The conditional variance matrix of β̂(s) conditioning onD is V ar(β̂(s)|D) =

B(s)ΦγB
τ (s), where B(s) = bτ (s) ⊗ Iq. Let wj denote the unit vec-

tor in Rq with 1 in the jth coordinate and 0 in all other coordinates for

j = 1, . . . , q, then the conditional variance of β̂j(s) is V ar(β̂j(s)|D) =

wτ
jV ar(β̂(s)|D)wj = wτ

jB(s)ΦγB
τ (s)wj. Let β̄(s) = (β̄1(s), . . . , β̄q(s))

τ ,

where β̄j(s) = E(β̂j(s)|D) is the mean of β̂j(s) conditioning on D. Then,

we have the following asymptotic result of the estimator.

The asymptotic results of both scalar and functional coefficients are

given in Theorem 4 and 5.

Theorem 4. Assume the assumptions (A1)∼(A6) hold. If δ−2
NTL logL → 0

and T/N → 0 as N, T → ∞, then

(1) {V ar(α̂|D)}−1/2(α̂−α)
L−→ N(0, I).

(2) {V ar(β̂(s)|D)}−1/2(β̂(s)− β̄(s))
L−→ N(0, I).

In particular, we have {V ar(β̂j(s)|D)}−1/2(β̂j(s) − β̄j(s))
L−→ N(0, 1), j =

1, . . . , q, where
L−→ denotes the convergence in distribution.

Theorem 5. Assume the assumptions (A1)∼(A6) hold. If L2d+1/NT → ∞

as N, T → ∞, then sups∈S |{V ar(β̂j(s)|D)}−1/2(β̄j(s)−βj(s))| = op(1), j =
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1, . . . , q.

Theorem 4 and 5 establish the asymptotic properties of the estima-

tor β̂j(·) of the coefficient functions βj(·) under assumptions. Moreover,

compared with the variance term, as N, T → ∞, the bias term of the

estimator βj(·) are asymptotically negligible from the proof of Theorem

5. Similar results can be found in Huang et al. (2004). Therefore, we

can obtain the asymptotic pointwise confidence interval of βj(s) as β̂j(s)±

zα/2 ˆV ar(β̂j(s)|D)−1/2 j = 1, . . . , q, where ˆV ar(β̂j(s)|D) is the estimator of

V ar(β̂j(s)|D), and zα/2 is the (1−α/2) of the standard normal distribution.

4. Simulation Studies

In this section, we conduct simulations to evaluate the estimation perfor-

mance of the proposed method. The simulated data are generated from

the proposed model Yit = ατWit +
∫ 1

0
βτ (s)Xit(s)ds + λτ

i Ft + εit. For

the part of interactive effects, λi = (λ1i, λ2i)
τ and Ft = (F1t, F2t)

τ are two

dimensional vectors simulated as λi ∼ N(0, I2) and Ft ∼ N(0, 0.5I2). We

consider the scalar regressors Wit with the form as (W1it + c1λ
τ
iF t,W2it)

τ ,

where c1 is a constant indicating the correlation of scalar covariates with

the hiding factors, W1it and W2it are generated from the exponential distri-

bution and the uniform distribution, respectively: W1it ∼ Exp(2), W2it ∼
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4.1 Model Evaluation

U(0, 1). Meanwhile, the coefficient α is a two dimensional vector specified

as α = (1, 0.5)τ . We define the smooth function β(·) = (β1(·), β2(·))τ to be

β1(s) = 2 + 3s+ e2s, β2(s) = 5 + 3sin(2πs) + 2cos(2πs),

The corresponding functional predictors Xit(·) = (X1it(·), X2it(·))τ is

set as X1it(s) = 1 + c2 · λτ
iF t + δ1it · s, X2it(s) = c2 · λτ

iF t + δ2it · sin(2πs),

where c2 is another constant representing the correlation of functional co-

variates with the hiding factors, δ1it is simulated from the uniform distri-

bution U(−1, 1), which is independent of δ2it, while δ2it is simulated from

the normal distribution N(0, 2). The regression error εit are generated i.i.d

from the normal distribution N(0, 1). The optimal smoothing parameter

are chosen by minimizing the GCV criterion defined as (2.7) with a grid

search in the range of 10−5 to 105.

4.1 Model Evaluation

To show the impact of the factors on the estimation, Figure 1 displays the

true slope functions β(s) = (β1(s), β2(s))
τ and our proposed iterated spline

estimation in comparison with the estimations without considering the la-

tent factors from 200 simulation replicates under the setting of the sample

size N = 100 and the number of observations T = 100. In the first case,

c1 = c2 = 0, which means both the scalar and functional regressors are
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Figure 1: The estimate for the slope functions β(s) = (β1(s), β2(s))
τ using

the functional linear model with latent factors (FLiF) and the conventional
functional linear model (FLM) in the case c1 = c2 = 1 obtained from
one Monte Carlo run with the sample sizes N = 100 and the number
of observations T = 100, where c1 and c2 are two constants indicating
the correlation of scalar and functional covariates with the hiding factors,
respectively.

independent with the responses and the latent factor, while the other cases

c1 = c2 = 0.5 or 1 consider the existence of dependency. Figure 1 shows

that our proposed estimation procedure for β(s) can roughly approximate

the true functions, which is superior to that without considering the factor

structure when c1 = c2 = 1. It indicates that the latent factors have an

influence on the estimation of the model, and our proposed iteration estima-

tion procedure indeed achieves accurate estimates for the slope functions.

The performance under the other two correlation cases and point-wise bias

of the estimations are provided in the supplementary material.
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True Number of Factors R0 = 0 True Number of Factors R0 = 2

Estimated Number of Factors R Estimated Number of Factors R

N T 0 1 2 3 ≥4 0 1 2 3 ≥4

50 50 91.5% 4.0% 2.0% 1.5% 1.0% 1.0% 1.0 % 93.0 % 3.5 % 1.5%

100 93.5% 3.0% 1.5% 1.0% 1.0% 0.5% 1.5% 95.0% 2.0 % 1.0%

100 50 96.0% 2.0% 1.0% 0.5% 0.5% 0.5% 1.0% 96.5% 1.5 % 0.5%

100 98.0% 1.0% 0.5% 0.5% 0.0% 0.0% 0.1% 99.0% 0.5% 0.0%

Table 1: Percentage of the estimated number of factors R among 100 sim-
ulation replicates when varying the true number of factors R0 = 0 or 2, the
sample sizes N = 50, 100 and the number of observations T = 50, 100.

To investigate the overall performance of the proposed estimation pro-

cedure and the determination method for the number of factors, we set

the sample size N = 50, 100 and the number of observation points T =

50, 100 in the simulations. For each setting, the simulation repeated 100

times. We use the root mean integrated squared errors (RMISEs) and

standard deviation (SD) to measure the accuracy of estimations repec-

tively, which is defined as RMISE(β̂l) =

{
1
B

∑B
b=1

∫
S
(β̂b

l (s) − βl(s))
2ds

}1/2

,

SD(β̂l) =

{
1
B

∑B
b=1

∫
S
(β̂b

l (s)−
¯̂
βB
l (s))

2ds

}1/2

, where β̂b
l (s), l = 1, 2, are the

estimations of βl(s) from the b-th simulation replicate, and
¯̂
βB
l (s) is the av-

erage estimation of βl(s) from the total B replicates. Meanwhile, we denote

the estimation of βl(s) when ignoring the factor structure as β̃l(s).

We first evaluate the accuracy of determine the number of factors. We

consider two scenarios (i) no factors exist (ii) two factors exist, both under
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the first setting where c1 = c2 = 0. Table 1 displays the percentage of

correctly estimating the number of factors R in two scenarios. It shows

that the accuracy to identify the number of factors under both scenarios

increases with the sample size N or observation number T . When N = 100

and T = 100, the number of factors are correctly determined in almost all

simulation replicates.

Table 2 presents the RMISEs and standard deviations of estimations of

β(s) = (β1(s), β2(s))
τ under three different cases of correlation. It shows

that our proposed estimation procedure has a smaller RMISE of the esti-

mate for the functional coefficients compared to the one without considering

factor structure. Moreover, the RMISEs and the standard deviations of the

estimated slope functions are decreasing with the sample size N and the

number of observations T in all cases. In addition, the RMISE and the stan-

dard deviation in the case when c1 = c2 = 0 are generally smaller than the

other two cases, which indicates that the correlation between the regressors

and responses affects the estimation accuracy to some extent. Moreover,

the result shows an obvious difference between the estimations from the

three correlation cases. The estimation of β(s) in the first case, where no

correlation exists between regressors and responses, performs better than

the other two with the dependency as expected. This means that the es-
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RMISE and Standard Deviation (SD) of the Estimates

Sample Size RMISE SD

FLM FLiF FLM FLiF

N T β̃1 β̃2 β̂1 β̂2 β̃1 β̃2 β̂1 β̂2

c1 = c2 = 0

50 50 0.495 0.457 0.292 0.274 0.281 0.253 0.268 0.251

50 100 0.448 0.426 0.243 0.219 0.224 0.217 0.206 0.195

100 100 0.402 0.374 0.187 0.159 0.179 0.152 0.153 0.121

c1 = c2 = 0.5

50 50 0.581 0.547 0.344 0.319 0.348 0.321 0.306 0.285

50 100 0.527 0.479 0.281 0.252 0.283 0.258 0.257 0.213

100 100 0.477 0.441 0.234 0.205 0.237 0.209 0.209 0.171

c1 = c2 = 1

50 50 0.664 0.638 0.415 0.402 0.429 0.408 0.365 0.359

50 100 0.621 0.579 0.356 0.324 0.367 0.331 0.298 0.272

100 100 0.569 0.521 0.303 0.256 0.293 0.271 0.255 0.219

Table 2: The root mean integrated squared errors (RMISE) and standard
deviations (SD) of the estimate for the slope functions β1(s) and β2(s) using
the functional linear model with latent factors (FLiF) and the conventional
functional linear model (FLM) when varying the sample sizes N = 50, 100
and the number of observations T = 50, 100, where c1 and c2 are two
constants indicating the correlation of scalar and functional covariates with
the hiding factors, respectively.

timations obtained in the first case is unbiased, while in the presence of

correlation in the other two cases, we can only get the biased estimations.

The RMSE of the factor structure under three cases are presented in the

supplementary material. It also proves that the existence of correlation has

a certain degree of impact on estimations.
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4.2 Comparison with the Panel Data Model

4.2 Comparison with the Panel Data Model

In this simulation study, we compare the proposed functional linear model

with latent factors (FLiF) (1.1) model with the conventional panel data

model Yit = ατWit + βτX it + λτ
i Ft + εit, where X it is the mean value of

Xit(s) over the domain S. We choose RMSE to measure the accuracy of

the estimated response variable under the two different models RMSE(Ŷ ) =

1
N

∑N
i=1

{
1
T

∑T
t=1(Ŷit−Yit)

2

}1/2

, where Ŷ and Ŷit are the estimations for the

response variable Y and Yit, respectively. The simulated data are generated

based on the FLiF model with the sample size N = 50, 100 and the number

of observations per subject T = 50, 100.

Average RMSEs for the estimated response Ŷ

Sample Size c1 = c2 = 0 c1 = c2 = 0.5 c1 = c2 = 1

N T Panel FLiF Panel FLiF Panel FLiF

50 50 0.467 0.327 0.535 0.376 0.648 0.462

50 100 0.402 0.257 0.469 0.313 0.557 0.405

100 100 0.352 0.193 0.417 0.235 0.493 0.349

Table 3: Average Root Mean Squared Errors (RMSEs) for the estimated

response Ŷ over 100 simulation replicates using the proposed functional
linear model with latent factors (FLiF) model and the conventional panel
data model when varying the sample sizes N = 50, 100 and the number of
observations T = 50, 100, where c1 and c2 are two constants indicating the
correlation of scalar and functional covariates with the hiding factors.

Table 3 shows the average RMSEs of the estimated response Ŷ of two

models under three different correlation settings. It shows that the estima-
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tions in the FLiF model have smaller RMSE than those in the panel data

model in all settings. The RMSE of estimations in both models decreases

with the sample size N and T in both cases.

5. Applications

In this section, we illustrate the efficiency of the proposed functional linear

model with latent factors (FLiF) and estimation procedure through the

analysis of two real data sets.

5.1 Stock Return Analysis

The objective of this study is to investigate how the daily returns of stocks

are affected by the temporal stock price trajectories with the existence of

hidden factors. The data we considered contains the daily stock price ev-

ery three seconds of CSI 300 constituent shares from August 3 to October

30 in 2020, as well as the average opening and the average closing price

of each stock in this period. The data is available on the official web-

site of the Shanghai and Shenzhen stock exchange (www.sse.gov.cn and

www.szse.gov.cn). To present the daily fluctuation of the stock price more

clearly, Figure 2 depicts the daily stock price every three seconds of two

chosen constituent stocks Huichuan Inovance and Shiji Information in three
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different days, respectively.
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Figure 2: The stock price every three seconds of two constituent shares
Huichuan Inovance and Shiji Information on three days: August 26,
September 20, October 23, 2020.

We consider the functional linear model with latent factors (1.1) with

N = 300, T = 59, where Yit is the daily return of the i-th CSI 300 con-

stituent share in the day t, Wit is the corresponding average daily opening

price, and Xit(s) is the trajectory of the stock price every three seconds of

each stock. We define the daily return of stocks, Yit, as the logarithm of

the ratio of the daily closing price and the opening price of each stock.

Figure 3 (a) displays the estimated slope function β̂(s). It shows that

the stock price around the time 10am has the largest positive impact on

the stock return in the morning. The stock price in the afternoon has an

increasing positive impact on the stock return.

One hidden factor is determined to have an impact on stock yields
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Figure 3: (a) The estimated slope function β̂(s) for quantifying the influ-
ence of daily stock price on the daily return of CSI 300 constituent shares.
The grey area indicates the 95% point-wise confidence intervals for β(s).
(b) Boxplot of the estimated loading on the hidden factors for CSI 300 con-
stituent shares, which is divided into ten blocks.

besides the average opening price and daily stock price trajectories by min-

imizing the BIC criterion defined in (2.6). In order to understand the

impact of the hidden factor on the stock yield, we classify the CSI 300

constituent shares into ten sectors as ‘consumption’, ‘education’, ‘electric-

ity’, ‘energy’, ‘engineering’, ‘finance’, ‘food’, ‘medicine’, ‘navigation’, and

‘software’, which is based on the industry and related attributes of each en-

terprise. Figure 3 (b) presents the boxplot of the estimated loadings sorted

according to their mean values in each sector.

The boxplot reveals that the average loadings of the ‘navigation’ and

‘energy’ sectors are relatively low, whereas the ‘consumption’, ‘finance’,
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and ‘software’ sectors have relatively high average loadings. Specifically,

the factor has an interquartile range of [-3.16, 0.13] with a median of -1.86

for the ‘energy’ sector, and an interquartile range of [-2.96, 0.32] with a

median of -1.75 for the ‘software’ sector, indicating that these sectors are

more susceptible to the negative impact of the hidden factor. Meanwhile,

the hidden factor has an interquartile range of [-0.51, 2.01] with a median of

1.14 for the ‘consumption’ sector, an interquartile range of [-0.66, 1.46] with

a median of 0.74 for the ‘finance’ sector, and an interquartile range of [-

1.25, 1.76] with a median of 0.51 for the ‘software’ sector, suggesting a more

positive impact on these sectors. Moreover, the ‘education’ and ‘electricity’

sectors, as well as the ‘food’ and ‘medicine’ sectors, are similarly affected

respectively.

In the context of 2020, the trade war initiated by the United States

against China escalated rapidly, increasing technical trade barriers. The

U.S. tariff policy towards China restricted China’s import and export trade.

Besides imposing high tariffs on Chinese exports, the U.S. intensified the

trade war at the technical level, particularly targeting technology-intensive

products and energy sectors like chips and cybersecurity. Additionally, the

U.S. imposed sanctions on Chinese technology companies such as Huawei,

ZTE, ByteDance, and Tencent, citing national security concerns. In re-
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sponse, China implemented stronger anti-sanction policies, and public sen-

timent towards the trade war fostered a more positive trend in the domestic

market economy and national consumption. Aside from external environ-

mental shocks, factors like operating performance, distribution policies, and

industry characteristics also impact individual stock returns. Therefore, the

hidden factor can be seen as a combination of these aspects.

5.2 Air Pollution Data Analysis

The air quality index (AQI) is an all-encompassing measure that quantifies

the level of air pollution in a relative and dimensionless manner. It con-

denses the monitored air composition into a single conceptual index value

by considering the proportion of different components present in the air.

The AQI assesses the severity of air pollution and the prevailing air quality

conditions, making it an effective tool for capturing the short-term status

and trend of air quality changes. Usually, particulate matter 2.5 (PM 2.5),

sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), par-

ticulate matter 10 (PM 10) and ozone (Q3 ) are used as accounting factors.

In this article, we analyze the effect of daily temperature on the PM 2.5

index. The data is obtained at the website of the China Meteorological

Administration (http://www.cma.gov.cn).
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We consider the data containing the daily temperature from 2015 to

2020 from meteorological stations in 31 provincial capitals of China, as well

as the average monthly PM 2.5 index and humidity in this period of each

station. Figure 4 presents the daily temperature curves of two cities Tianjin

and Nanjing in three different months during the period, respectively.

20

40

60

80

1 10 20 30
day

te
m

pe
ra

tu
re

Tianjin 2015.5 2017.1 2019.10

30

40

50

60

70

80

1 10 20 30
day

te
m

pe
ra

tu
re

Nanjing 2015.5 2017.1 2019.10

Figure 4: Daily temperature curves of two cities Tianjin (left panel) and
Nanjing (right panel) in three different months May 2015, January 2017
and October 2019, respectively.

The functional linear model with latent factors of interest is setting

as (1.1) with N = 31, T = 72, where Yit is the average monthly PM 2.5

of the i−th weather station in the month t, Wit is the corresponding av-

erage monthly humidity of each weather station, and Xit(s) is the daily

temperature of each weather station.

Two hidden factors are determined to have an impact on the air pol-

lution in addition to humidity and daily temperature by minimizing the
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Figure 5: The estimated loadings on two hidden factors in 31 provincial
capital cities assorted based on their loading values in the functional linear
model with latent factors (FLiF) from the air pollution data.

BIC criterion defined in (2.6). The existence of the factors also shows that

other common interactive effects have a certain impact that have a certain

impact on the air pollution besides the average humidity. To further study

the impact of potential factors on the different cities, Figure 5 depicts the

factor loadings of each provincial capital city and sorts them according to

their values. Specifically, the first loading has the most significant negative

impact on the cities of Wuhan, Guiyang and Chongqing, while showing

a strong positive impact on cities such as Guangzhou, Shijiahzuang and

Chengdu. Meanwhile, the second loading has a more relatively negative
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impact on Huhehaote, Wuhan and Zhengzhou, while cities such as Kun-

ming, Hefei and Haikou will be more positively affected. By analyzing

cities with similar impacts from each factor separately, the first factor can

be roughly regarded as the influence of geographical morphology on the

speed and intensity of air flow propagation, while the second factor can be

viewed as the impact of geographical vegetation area or extreme weather

conditions of cities.

Loading 1

−4

−2

0

2

Loading 2

−2

0

2

4

6

Figure 6: The map of estimated loadings on two hidden factors for 31
provincial capital cities in the functional linear model with latent factors
(FLiF) from the air pollution data. For visualization purposes, the color of
each province represents the estimated loading for the respective provincial
capital city.

Meanwhile, Figure 6 also plots the map of estimated loadings in 31

capital cities respectively. First, we can find that the impact degree of two

factors on the same region is roughly different. Next, for the loading of first
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factor, the areas with deeper negative impacts are mainly concentrated in

the inland areas of the central plains, while the impact on the northern

border areas is relatively similar. However, for the loading of second fac-

tor, the performance of the northwest region is relatively similar, while the

impact on the southern region is generally positive. Considering the actual

situation of each city, the presence of potential factors are not unexpected.

Generally speaking, there are many different factors including pollutant

emissions, atmospheric diffusion capacity, meteorological conditions such

as wind direction, wind speed, inversion stratification, precipitation, mete-

orological conditions, topography, etc. These possible influencing elements

can be explained by the latent factor structure.

6. Conclusions and Discussion

In this article, we present a novel functional linear model incorporating

latent factors. Our proposed iterated profile estimation method allows us

to estimate both the hidden factors and functional coefficients effectively.

The first step involves employing the B-spline expansion to approximate

the slope function. Then, we implement an iterative profile estimation

technique to derive estimators for both the functional coefficients and the

hidden factors. To determine the number of hidden factors, we introduce
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a BIC (Bayesian Information Criterion) criterion. Furthermore, we estab-

lish the theoretical properties, including the convergence and asymptotic

normality of the estimators.

The efficiency of our estimation procedure is validated through com-

prehensive simulation studies conducted under diverse scenarios. We sys-

tematically evaluate the performance of our novel iterated profile estima-

tion method under various correlation conditions between the response and

covariates. To gauge its effectiveness, we compare the results obtained

from our approach with those derived from the conventional functional lin-

ear model, which disregards the hidden factors. The comparative analysis

demonstrates that our proposed model and estimation method outperform

the conventional functional linear model in different scenarios. The im-

provement in performance signifies the significance of incorporating hidden

factors in the model to achieve more accurate estimations.

To illustrate the practical applicability of our proposed model, we con-

duct analyses on real-world data from both the financial market and air

pollution. By doing so, we successfully identify hidden factors that play

a crucial role in influencing the response variables in these domains. This

real-data application further strengthens the validity and usefulness of our

approach in gaining insights from functional data analysis.
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A key limitation of our proposed model lies in the underlying assump-

tion that the influence of the functional covariate on the response remains

static across time. This constraint may limit its practical application in

scenarios where the functional covariate and the response variable exhibit

a dynamic, time-varying relationship. To address this limitation, we aim

to extend our research in the future by exploring models that can capture

such temporal variations in the interplay between the covariate and the

response variable. There is also a large amount of follow-up research that

can be carried out in the future for this topic. For example, the quantile

model characterizes the different relationships that variables exhibit in dif-

ferent quantile situations (Zheng et al. (2018); Zhang et al. (2019); Peng

and Wang (2022)), so the model proposed in the article can be extended in

this field, such as studying the functional quantile model with factors.

Supplementary Materials

The supplementary document includes the additional numerical results and

detailed proofs for theoretical results. We also provide the R codes for the

simulation studies and real data analysis on the website

https://github.com/statszx/FLiF.
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