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Abstract: The one-sided hypotheses in a multiple testing problem make the empirical null distribution

(or p-values) conservative. Furthermore, it introduces a significant loss of power if not appropriately

considered. We propose a multiple testing procedure named discarding adaptively with bounding on

principal factor approximation (DAB-PFA) to simultaneously test a number of one-sided hypotheses

under the general dependency of test statistics. Specifically, we use the principal factor approximation

(PFA) by Fan and Han (2017) to account for the dependence structure among test statistics and

adaptively discard small or large p-values when estimating the realized false discovery proportion

(FDP). We derive the convergence rate of the proposed estimator and numerically compare the false

discovery rate (FDR) and the true positive rate (TPR) of our method to many existing procedures,

including those from Benjamini and Hochberg (1995), Efron (2004), and Wang and Fan (2017). We

demonstrate our method through simulation studies and analysis of protein phosphorylation levels for

serous ovarian adenocarcinoma samples.
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1. Introduction

1.1 Multiple testing

In the last two decades, multiple testing, in which many hypotheses are tested simultane-

ously, has been one of the few central topics of statistics. The multiple testing problem arises

in various applications, which include microarray analysis in genetics, functional magnetic

resonance imaging (fMRI) studies of the brain, clinical trials with multiple endpoints, and

tens of thousands of A/B tests performed by major internet companies. Early works on

this topic introduced various type I errors, including the family-wise error rate (FWER),

the generalized FWER, the false discovery rate (FDR), the positive FDR, and proposed

procedures to control the aforementioned errors at the nominal level. Researchers mostly

assumed that test statistics used for each hypothesis test are independent or weakly depen-

dent. However, the independence assumption of test statistics is easily broken in practice,

which makes the control of the multiple testing error rate inaccurate. Great efforts have

been made to construct procedures that consider the dependency of test statistics. Some

early works in this area focused on studying the validity of the proposed procedures, meaning

that the FDR is controlled at a nominal level under some classes of dependence structure

among the tests(Benjamini and Yekutieli, 2001; Finner and Roters, 2002; Efron, 2004, 2007;

Owen, 2005; Sarkar, 2006; Romano et al., 2008; Wu, 2008). However, it was suggested that

efficiency in terms of the false negative rate (FNR) should be considered in multiple testing

(Genovese and Wasserman, 2002; Sarkar, 2004), and some works showed that efficiency im-

provements could be made by taking into account the dependence structure (Sun and Cai,

2009; Wei et al., 2009; Xiao et al., 2013; Liu et al., 2016; Fan et al., 2012; Fan and Han, 2017).

The procedure proposed by Sun and Cai (2009) and its extensions (Wei et al., 2009; Xiao
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1.2 One-sided hypothesis

et al., 2013) were based on a hidden Markov model (HMM), which only allows sequential

dependence. Liu et al. (2016) replaced the HMM with a Markov-random-field-coupled mix-

ture model, which can be applied to more general dependence structures. Fan et al. (2012)

proposed the principal factor approximation (PFA) to estimate the realized false discovery

proportion (FDP) under an arbitrary but known dependence structure, and Fan and Han

(2017) extended the PFA method under an unknown dependence structure.

1.2 One-sided hypothesis

The main goal of this study is to develop a multiple testing procedure of one-sided hypothe-

ses for the FDR control under unknown dependence. There are many applications where

testing a number of one-sided hypotheses is of primary interest. For instance, researchers

aim to identify protein modification levels that are uniquely elevated in a specific group

of subjects compared to other groups in protein phosphorylation analysis. In clinical trials,

noninferiority and superiority tests are commonly required to assess the benefit of new drugs.

Another example of multiple one-sided hypotheses testing is the tens of thousands of A/B

tests that major internet companies perform. For more detailed examples, refer to Cohen

and Sackrowitz (2005); Tian and Ramdas (Tian and Ramdas) and the references therein.

The main difficulty in multiple testing of one-sided hypotheses results from the conser-

vative null p-value. When performing hypothesis testing, one of the standard assumptions

is that the p-value P is valid, which means that if the null hypothesis is true, then we have

Pr(P ≤ u) ≤ u for all u ∈ [0, 1]. If the inequality is strict for some u ∈ [0, 1], then the

null p-value P is said to be conservative. In a one-sided hypothesis test, the null p-value is

typically conservative since the true parameter of interest is rarely exactly at the boundary
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1.2 One-sided hypothesis

Figure 1: Histogram of p-values {Pj = Φ(−Zj)}1000j=1 , where Zjs are independently generated

from N(µj, 1) and µj ∼ U [−1, 0].

of the null set. Figure 1 presents a histogram of p-values {Pj = Φ(−Zj)}1000j=1 , where Zjs

are independently generated from N(µj, 1) with µj ∼ U [−1, 0]. If we apply existing multi-

ple testing procedures such as Fan et al. (2012); Fan and Han (2017) for the FDR control

without considering the conservativeness of the null p-values, we will overestimate the real-

ized false discovery proportion (FDP). This leads to a significant loss of power despite those

procedures remaining valid for FDR control.

One general solution for the conservative null p-values is to discard p-values close to 1

(Zhao et al., 2019). This approach was also used in the online FDR control setting, which

assumes an infinite sequence of p-values. Tian and Ramdas (Tian and Ramdas) proposed

an adaptive algorithm that discards conservative nulls. By discarding overly conservative

p-values, a power increase was achieved. However, these current procedures for conservative

nulls are based on the independence assumption among test statistics. In this paper, we

propose a procedure to control the FDR in testing multiple one-sided hypotheses under

general unknown dependence.
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1.2 One-sided hypothesis

Our main interest is to test p one-sided hypotheses

H0j : µj ≤ 0 vs. H1j : µj > 0 (1.1)

for each j = 1, 2, . . . , p based on a test statistic Zj, where the vector Z = (Z1, . . . , Zp)
⊤ of

test statistics follows a multivariate normal distribution Np(µ,Σ) with mean vector µ =

(µ1, . . . , µp)
⊤ and covariance matrix Σ. Here, we assume that Σ is an unknown correlation

matrix, which implies that the marginal variance of each test statistic is known, while the

dependence structure among the test statistics is unknown. Then, for each j = 1, . . . , p,

the p-value for the j-th hypothesis is calculated as Pj = Φ(−Zj), where Φ is the cumulative

density function of the standard normal distribution. We use a common threshold value

t ∈ (0, 1). We reject the j-th hypothesis H0j if and only if the corresponding p-value Pj does

not exceed the threshold value t. Define R(t) = #{j : Pj ≤ t} as the number of rejections

(or discoveries), and V (t) = #{j ∈ H0 : Pj ≤ t} as the number of false rejections, where H0

is the set of indices of true nulls. Under these definitions, we aim to control the FDR, which

is defined by

FDR(t) = E {FDP(t)} = E
{

V (t)

R(t) ∨ 1

}
, (1.2)

under a predetermined level α ∈ (0, 1).

To control the FDR, we need to estimate the realized false discovery proportion FDP(t)

for a given threshold level t ∈ (0, 1) and find an optimal level t̂ such that F̂DP(t̂) ≤ α. Since

the number of rejections R(t) is observable, we only need to approxomate the number of

false rejections V (t).
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1.3 Principal factor approximation (PFA)

To approximate V (t) under the unknown dependence of test statistics {Zj}pj=1, we use an

approximated factor model as in Fan and Han (2017). Let {(λj,γj)}
p
j=1 be the eigenvalues

and the corresponding eigenvectors of Σ with the ordering λ1 ≥ · · · ≥ λp. For a fixed integer

K satisfying

(C1) p−1
√

λ2
K+1 + · · ·+ λ2

p = O(p−δ) for some δ > 0,

the correlation matrix Σ is decomposed by

Σ = BB⊤ +Σu, (1.3)

where B = (
√
λ1γ1, . . . ,

√
λKγK) ∈ Rp×K and Σu =

∑p
k=K+1 λkγkγ

⊤
k . Then, the vector

of test statistics Z ∼ Np(µ,Σ) is stochastically decomposed by Z = µ + BW + u. Here

W = (W1, . . . ,WK)
⊤ ∼ NK(0, IK) are common factors and u = (u1, . . . , up)

⊤ ∼ Np(0,Σu)

are the errors, independent of W.

We note that the condition (C1) implies that the errors {u1, . . . , up} are weakly dependent,

that is,

lim
p→∞

p−2

p∑
j1,j2=1

|σu,j1j2| = 0, (1.4)

where σu,j1j2 denotes the (j1, j2)-th element of Σu.

Define aj = (1−∥bj∥22)−1/2 and ηj = b⊤
j W, and b⊤

j is the j-th row of B. Using a similar

argument as one used in Fan et al. (2012), we can show that

Vorc(t) = E {V (t)|W} =
∑
j∈H0

Φ(aj(µj + zt + ηj)) (1.5)

approximates the number of false rejections

V (t) =
∑
j∈H0

I(Pj ≤ t) =
∑
j∈H0

I(Zj ≥ −zt) (1.6)

where zt = Φ−1(t) is the t-quantile of the standard normal distribution.
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1.4 Discarding adaptively with bounding (DAB)

Since Vorc(t) can not be used in practice, we may consider the following upper bound of

Vorc(t).

VU,naive(t) =

p∑
j=1

Φ(aj(zt + ηj)) (1.7)

However, the difference between Vorc(t) and VU,naive(t) is not small and results in a significant

loss of power. There are two sources that make the difference large; the first source is

conservative null p values, and the other source is a nonignorable proportion of nonnulls.

Both are directly related to the way that the upper bound is built, where µj is replaced with

0 and the summation is expanded over the true null index set H0 to the entire index set

{1, 2, . . . , p}.

To have a precise upper bound of Vorc(t), we propose discarding p values close to 0 or 1,

following the idea by Tian and Ramdas (Tian and Ramdas). This can be simply done by

introducing an indicator I(λ < Pj ≤ τ) for λ, τ ∈ (0, 1) as done in Tian and Ramdas (Tian

and Ramdas). However, to consistently approximate Vorc(t) under the general dependency

(among the statistics), we require much more delicate terms in the upper bound that is

obtainable. For example, under the independence assumption, we may consider the naive

truncated term
∑p

j=1Φ(aj(zt + ηj))I(λ < Pj ≤ τ)/(τ − λ). However, under the unknown

dependency, the denominator of the naive truncated term should be replaced with a function

of cumulative probabilities of the standard normal distribution with an estimated mean and

variance.
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1.5 Structure of this paper

In the following, we summarize major theoretical developments of this paper and a road

map to show how we build a precise upper bound of Vorc(t) and summarize its theoretical

properties. Note that there is no sparsity assumption of the nonnull, which is common in

existing literature, including Fan et al. (2012) and Fan and Han (2017), to make the difference

of the sum over H0 and over the entire index set {1, 2, . . . , p} small.

Proposition 1 The term we would like to estimate in (1.2) is

V (t) =
∑
j∈H0

I(Φ(−Zj) ≤ t). (1.8)

In Proposition 1, we will show that V (t) ≃ Vorc(t) where

Vorc(t) :=
∑
j∈H0

Φ(aj(µj + zt + ηj)), (1.9)

and compute the convergence rate between FDPorc(t) := Vorc(t)/{R(t)∨1} and FDP(t),

which is the same rate shown by Fan and Han (2017) for multiple testing of two-sided

hypotheses. We notice that we can set µj to 0 under the two-sided null hypothesis

H0j : µj = 0 while we still need to estimate µj since it can be a negative value under

the one-sided null hypothesis H0j : µj ≤ 0.

Lemma 1 We note that the indicator I(Pj ≤ t) is approximated by Φ(aj(µj+zt+ηj)) in Proposi-

tion 1. Similarly, one may expect that the indicator I(λ < Pj ≤ τ) can be approximated

by Φ(aj(µj + zτ + ηj)) − Φ(aj(µj + zλ + ηj)). Lemma 1 shows that Vorc(t) ≃ V DA
orc (t)

where

V DA
orc (t) :=

∑
j∈H0

Φ(aj(µj + zt + ηj))I(λ < Pj ≤ τ)

Φ(aj(µj + zτ + ηj))− Φ(aj(µj + zλ + ηj))
. (1.10)
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Theorem 2 In practice, we find that the denominator of V DA
orc (t) often becomes very small and

V DA
orc (t) has high variability. To address this issue, we round up the denominators in

V DA
orc (t) by ϵ in Theorem 2 and approximate them as V DA

orc (t) ≃ V DAB
orc (t) where

V DAB
orc (t) :=

∑
j∈H0

Φ(aj(µj + zt + ηj))I(λ < Pj ≤ τ)

{Φ(aj(µj + zτ + ηj))− Φ(aj(µj + zλ + ηj))} ∨ ϵ
. (1.11)

In Theorem 2, we find the asymptotic decay rate of the difference between V DA
orc (t) and

V DAB
orc (t) with ϵ. The results recommend choosing a small value of ϵ for V DAB

orc (t).

Lemma 2 V DAB
orc (t) still can not be used in practice without knowing the true null set H0 and the

mean value µjs. To address the true null set issue, a easy solution is to use an upper

bound of V DAB
orc (t) by extending the summation over the true null set H0 to the entire

index set. However, it is not straightforward to show that the inequality can still hold

after removing the true mean values {µj : j ∈ H0} from V DAB
orc (t). Lemma 2 show that

this is the case, and we have an upper bound of V DAB
orc (t) as V DAB

orc (t) ≤ V DAB
U (t) where

V DAB
U (t) :=

p∑
j=1

Φ(aj(zt + ηj))I(λ < Pj ≤ τ)

{Φ(aj(zτ + ηj))− Φ(aj(zλ + ηj))} ∨ ϵ
. (1.12)

Theorem 3 To use V DAB
U (t) in practice, we need to estimate the unknown values aj and ηj. Fol-

lowing Fan and Han (2017), we estimate these unknown values using the eigenvalue

and eigenvector estimators {(λ̂j, γ̂j) : j = 1, . . . , p} of Σ. In Theorem 3, we show

that the plug-in estimator V̂ DAB
U (t) converges to realized V DAB

U (t) and computes the

convergence rate in terms of the estimation accuracy of the eigenvalues and eigenvec-

tors. The rate obtained is similar to that for the two-sided multiple hypothesis in Fan

and Han (2017). The only difference between our rate and the rate for the two-sided

multiple hypothesis is that our rate is inversely proportional to ϵ, which encourages us

not to take ϵ to too small a value, which is the opposite of Theorem 2. Thus, there
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exists a trade-off in choosing a proper ϵ as V DAB
orc (t) may not approximate V DA

orc (t) well

if it is too large, and if it is too small, a higher accuracy in estimating eigenvalues and

eigenvectors to approximate V DAB
U (t) is required.

Theorem 4 From Weyl’s inequality, the estimation accuracy of eigenvalues and eigenvectors can

be represented by a correlation matrix. In Theorem 4, we rewrite the convergence rate

of V̂ DAB
U (t) to realized V DAB

U (t) in terms of the estimation accuracy of the correlation

matrix of test statistics under the assumption that the leading eigenvalues are distinct.

In short, we derive an upper bound of the approximation of V (t) and estimate the realized

upper bound with V̂ DAB
U (t).

V (t) ≈ Vorc(t) ≈ V DA
orc (t) ≈ V DAB

orc (t) ≤ V DAB
U (t)

All aforementioned theoretical results for the approximation of V (t) can be applied to

the approximation of FDP(t) = V (t)/(R(t) ∨ 1) and we propose the following estimator to

approximate realized FDP(t) to control FDR.

F̂DP
DAB

U (t) = V̂ DAB
U (t)/{R(t) ∨ 1}.

The remainder of the paper is organized as follows. In Section 2, we show the theoretical

properties of the proposed method. In Section 3, we numerically investigate the theoretical

results, provide performance comparisons of the proposed method with other methods, and

present sensitivity analysis regarding the choice of thresholding parameters. In Section 4,

we demonstrate the methodology via an application to the protein phosphorylation analysis

of ovarian serous adenocarcinoma samples to identify protein modification levels that are

uniquely elevated in each of the five molecular subtypes. In Section 5, we conclude with a

discussion.
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2. Approximation of false discovery proportion

2.1 Principal factor approximation under known dependence

Suppose that we wish to test p one-sided hypotheses

H0j : µj ≤ 0 vs. H1j : µj > 0 (2.1)

for j = 1, 2, . . . , p. We have a test statistic Zj with mean µj for each hypothesis. We assume

that the p-dimensional vector Z = (Z1, . . . , Zp)
⊤ of test statistics follows a multivariate

normal distribution with mean vector µ = (µ1, . . . , µp)
⊤ and Cov(Z) = Σ. Since we assume

that the test statistics are normalized, Var(Zj) = 1 for j = 1, . . . , n and Σ is the correlation

matrix.

Let H0 = {j : µj ≤ 0} be the set of indices of true nulls. For each j ∈ {1, 2, . . . , p},

the j-th test statistic Zj marginally follows the standard normal distribution N(0, 1), so

the p-value for the j-th hypothesis is calculated as Pj = Φ(−Zj). We let t ∈ (0, 1) be a

common threshold value for the multiple tests. That is, we reject the j-th null hypothesis

H0j if the corresponding p-value does not exceed the threshold value t. Define R(t) = #{j :

Pj ≤ t} as the number of discoveries, and V (t) = #{j ∈ H0 : Pj ≤ t} as the number

of false discoveries. We are interested in controlling the false discovery rate (FDR) under

a predetermined level α ∈ (0, 1). To do this, we need to approximate the realized false

discovery proportion FDP(t) = V (t)/{R(t)∨1}. We note that R(t) is observable, while V (t)

is a realized but unobservable random variable. The number of falsely rejected hypotheses

V (t) can be expressed as

V (t) = Vos(t) =
∑
j∈H0

I(Pj ≤ t) =
∑
j∈H0

I(Zj ≥ −zt). (2.2)
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Here, the subscript “os” stands for “one-sided”. It is worth noting that this representation of

V (t) is different from that of multiple two-sided tests. When testing two-sided hypotheses,

p-values are calculated by Pj = 2Φ(−|Zj|) (j = 1, . . . , p), and thus the number of false

rejections Vts(t) is represented as

Vts(t) =
∑
j∈H0

I(Pj ≤ t) =
∑
j∈H0

{
I(Zj ≤ zt/2) + I(Zj ≥ −zt/2)

}
, (2.3)

in which H0 = {j : µj = 0} and the subscript “ts” stands for “two-sided”.

Based on the principal factor approximation (PFA) method, Fan et al. (2012) proposed

approximating Vts(t) by

Vts,orc(t) =
∑
j∈H0

{
Φ(aj(zt/2 + ηj)) + Φ(aj(zt/2 − ηj))

}
. (2.4)

where aj and ηj are defined in (1.5).

The PFA method can be applied to the multiple one-sided tests scheme. However, there

is a critical difference between one-sided tests and two-sided tests. The mean value µj is fixed

at zero for the two-sided null hypothesis H0j : µj = 0 (i.e. H0j is simple), while the mean

µj is not determined in the one-sided null hypothesis H0j : µj ≤ 0 (i.e. H0j is complex). To

reflect this difference, we show that the approximation of Vos(t) in (2.2) is given as

Vos,orc(t) = Vorc(t) =
∑
j∈H0

Φ(aj(µj + zt + ηj)). (2.5)

Compared to the approximation (2.4), the true mean values {µj : j ∈ H0} remain in the

approximation (2.5). As in Proposition 1 of Fan and Han (2017), we obtain the same conver-

gence rate result for FDPorc(t) = Vorc(t)/(R(t) ∨ 1) under the weak dependence assumption

on Σu in (1.3).

Proposition 1. If condition (C1) is satisfied, we have

|FDPorc(t)− FDP(t)| = Op(p
−(δ/2−θ)),
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on the event E0 =
{
p−1R(t) > cp−θ

}
for some c > 0 and θ ≥ 0.

Sketch of proof. Similar to the proof of Theorem 1 by Fan et al. (2012), we can show that

p−1
0 |Vorc(t)− V (t)| = Op(p

−δ/2),

where p0 = #{j : µj ≤ 0} is the number of true nulls. Hence, the desired result holds for

the event E0 =
{
p−1R(t) > cp−θ

}
.

2.2 Discarding adaptively with bounding

In the previous section, we showed that FDPorc(t) approximates FDP(t). In practice, how-

ever, we cannot observe FDPorc(t) directly for the following three reasons: we have no

information about (i) the true null set H0, (ii) the true mean values {µj : j ∈ H0}, and (iii)

the other unknown (or unobserved) values {(aj, ηj) : j = 1, . . . , p}, which are functions of

the eigenvalues and eigenvectors of Σ.

To address the first problem, Fan et al. (2012) suggested using

VU(t) =

p∑
j=1

{
Φ(aj(zt/2 + ηj)) + Φ(aj(zt/2 − ηj))

}
(2.6)

as a conservative surrogate for Vts,orc(t) in (2.4). Since they assumed that the mean vector µ

is sparse, the extra terms in (2.6) are negligible. However, in a multiple one-sided test scheme

without the negligible non-null assumption, the additional terms are nonignorable. We note

that the original method dropped the indicator terms I(j ∈ H0). Instead, we propose using

alternative indicator terms I(λ < Pj ≤ τ) for some fixed values λ, τ ∈ (0, 1). This indicator

has two purposes. One purpose is to adaptively estimate the proportion of true nulls, which

was originally proposed by Storey (2002) in an offline FDR control setting and later utilized

by Ramdas et al. (2018) in an online FDR control setting. The other purpose is to discard
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obvious conservative nulls, which was suggested by Tian and Ramdas (Tian and Ramdas)

to enhance the power in an online FDR control setting under conservative nulls. We note

that the candidate threshold λ adaptively chooses whether H0j is a candidate for rejection,

and the discarding parameter τ determines whether H0j is selected for testing. In Tian and

Ramdas (Tian and Ramdas), the indicator terms I(λ < Pj ≤ τ) were divided by (τ − λ) to

make the estimator unbiased. Likewise, we also need to multiply the indicator terms by a

proper weight to make our estimator approximate the realized FDP. The modified version,

which we call the discarding adaptively with principal factor approximation (DA-PFA), is

given as follows:

V DA
orc (t;λ, τ) =

∑
j∈H0

Φ(aj(µj + zt + ηj))I(λ < Pj ≤ τ)

Φ(aj(µj + zτ + ηj))− Φ(aj(µj + zλ + ηj))
. (2.7)

Practically, the denominator terms in (2.7) might be unstable, so we put a fixed positive

number ϵ as a lower bound of the denominator. Finally, the discarding adaptively with

bounding on the principal factor approximation (DAB-PFA) is given as

V DAB
orc (t;λ, τ, ϵ) =

∑
j∈H0

Φ(aj(µj + zt + ηj))I(λ < Pj ≤ τ)

{Φ(aj(µj + zτ + ηj))− Φ(aj(µj + zλ + ηj))} ∨ ϵ
. (2.8)

The following lemma shows the convergence rate of V DAB
orc (t) to Vorc(t).

Lemma 1. For fixed constants λ, τ ∈ (0, 1) with λ < τ , define

G(t;λ, τ) =
∑
j∈H0

gj(W)I(λ < Pj ≤ τ)

where gj : RK → R is a continuous function for all j ∈ H0. Assume that condition (C1) is

satisfied. Then,

p−1
0

∣∣∣∣∣G(t;λ, τ)−
∑
j∈H0

gj(W) {Φ(aj(µj + zτ + ηj))− Φ(aj(µj + zλ + ηj))}

∣∣∣∣∣ = Op(p
−δ/2).
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Let

gj(w) =
Φ(aj(µj + zt + b⊤

j w))

Φ(aj(µj + zτ + b⊤
j w))− Φ(aj(µj + zλ + b⊤

j w))
.

Then, the above lemma leads to the convergence rate of V DA
orc (t) to Vorc(t).

In the following theorem, we show the convergence rate of FDPDA
orc (t;λ, τ), which is a

generalized version of Proposition 1.

Theorem 1. Assume that condition (C1) holds. Then, for fixed values λ, τ ∈ (0, 1) with

λ < τ , it holds that

p−1
0 |V DA

orc (t;λ, τ)− Vorc(t)| = Op(p
−δ/2),

and thus,

p−1
0 |V DA

orc (t;λ, τ)− V (t)| = Op(p
−δ/2).

Furthermore, on the event E0 =
{
p−1R(t) > cp−θ

}
for some constants c > 0 and θ ≥ 0, it

holds that

|FDPDA
orc (t;λ, τ)− FDP(t)| = Op(p

−(δ/2−θ)).

The next theorem shows that the DAB-PFA estimator V DAB
orc (t;λ, τ, ϵ) is close to the

DA-PFA estimator V DA
orc (t;λ, τ).

Theorem 2. Assume that condition (C1) holds,

(C2) aj ≤ Ca ∀j = 1, 2, . . . , p for some finite constant Ca > 1, and

(C3) ϵ = O(p−α) for a positive constant α.

Then,

p−1
0 |V DAB

orc (t;λ, τ, ϵ)− V DA
orc (t;λ, τ)| = Op(p

−αβ) (2.9)

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0022



2.2 Discarding adaptively with bounding

for a positive constant β < 1, and therefore, we have

p−1
0 |V DAB

orc (t;λ, τ, ϵ)− V (t)| = Op(p
−δ/2 + p−αβ).

Furthermore, on the event E0 =
{
p−1R(t) > cp−θ

}
for some c > 0 and θ ≥ 0, it holds that

|FDPDAB
orc (t;λ, τ, ϵ)− FDP(t)| = Op(p

θ(p−δ/2 + p−αβ)). (2.10)

Remark 1. In the proof of Theorem 2, we show that the equation (2.9) holds for a positive

constant β = C3/C
2
a < 1. Here, C3 ∈ (0, 1) does not depend on any parameters. Hence,

the magnitude of β is only affected by Ca, which is an upper bound of {aj : j = 1, . . . , p}.

We note that a smaller value of Ca makes condition (C2) stronger, resulting in a guaranteed

faster convergence rate. Recall the definition of ajs: aj = (1−∥bj∥2)−1/2 for each j = 1, . . . , p

where b⊤
j is the j-th row of B = (

√
λ1γ1, . . . ,

√
λKγK) ∈ Rp×K . Since we assume that Σ is

a correlation matrix, we have
∑p

k=1 λkγ
2
jk = 1. By definition, ∥bj∥2 =

∑K
k=1 λkγ

2
jk. We can

expect a small value of Ca when the ratio of
∑K

k=1 λkγ
2
jk to

∑p
k=1 λkγ

2
jk is small. It is related

to the choice of K, which is the number of factors. If we take a larger value of K, we can

obtain an advantage in the convergence rate through a larger value of δ. However, a larger

value of K makes ajs larger, resulting in a slower convergence rate. Thus, there is a kind of

trade-off between the first and second terms in the convergence rate (2.10).

There are a few issues to use FDPDAB
orc (t) in practice. First, we have no information for true

null set H0. To address this issue, We replace the indicator I(j ∈ H0) with I(λ < Pj ≤ τ).

We note that changing the summation over the true null set to the summation over the

entire index set does not affect the overall summed value since the set of indices of non-nulls

has a negligible intersection with {j : λ < Pj ≤ τ}. i.e.

I(j ∈ H0, λ < Pj ≤ τ) ≃ I(λ < Pj ≤ τ).
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Another issue is due to the unknown true mean µjs. One naive approach to solve this issue

is to replace µj with any plug estimator µ̂j. However, this approach has a structural problem.

Instead, we suggest using the discarding parameter τ . Using τ enforces the discarding of test

statistics less than −zτ . For example, hypotheses with negative Z values are discarded when

τ = 0.5. Based on the positive value of the test statistic, a reasonable estimate of the true

mean value µj under the null hypothesis H0j : µj ≤ 0 is zero. It is equivalent to ignoring µj

terms in (2.8). Now, we consider the following upper bound.

V DAB
U (t;λ, τ, ϵ) =

p∑
j=1

Φ(aj(zt + ηj))I(λ < Pj ≤ τ)

{Φ(aj(zτ + ηj))− Φ(aj(zλ + ηj))} ∨ ϵ
. (2.11)

Here, the subscript “U” stands for “upper”. We note that it is not trivial that V DAB
U (t;λ, τ, ϵ)

is always larger than V DAB
orc (t;λ, τ, ϵ). To show the increment by removing µj, we introduce

the following lemma.

Lemma 2. For any x ≤ 0 and A > B > C, we have

Φ(x+ C)

Φ(x+ A)− Φ(x+B)
≤ Φ(C)

Φ(A)− Φ(B)
.

Typically, we take a candidate threshold λ larger than threshold t. This implies that if

we let x = ajµj, A = aj(zτ + ηj), B = aj(zλ + ηj), and C = aj(zt + ηj), then x ≤ 0 and

A > B > C. By Lemma 2,

Φ(aj(µj + zt + ηj))

Φ(aj(µj + zτ + ηj))− Φ(aj(µj + zλ + ηj))
≤ Φ(aj(zt + ηj))

Φ(aj(zτ + ηj))− Φ(aj(zλ + ηj))

for all j ∈ H0, and thus V DAB
U (t;λ, τ, ϵ) is larger than V DAB

orc (t;λ, τ, ϵ). We consider FDPDAB
U (t;λ, τ, ϵ) =

V DAB
U (t;λ, τ, ϵ)/{R(t) ∨ 1} as a conservative surrogate.

Finally, it should be noted that we still cannot directly use FDPDAB
U (t) due to unknown

quantities {(aj, ηj) : j = 1, . . . , p}, which are functions of the eigenvalues and eigenvectors
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of the unknown covariance matrix Σ. As in Fan and Han (2017), we plug-in the eigenvalue

and eigenvector estimators. The next section discusses the accuracy of the eigenvalue and

eigenvector estimation.

2.3 Estimation accuracy of unknown dependence structure

Practically, the dependence structure is unknown; hence, it is necessary to estimate Σ to

obtain the proposed FDP approximation. To obtain an optimal convergence rate in the

approximation of the realized FDP, we need some requirements on Σ̂. In this section, we

discuss the relationship between the accuracy of Σ̂ and the convergence rate of the proposed

FDP approximation.

Let Σ̂ be an estimator of Σ, and let {(λ̂j, γ̂j) : j = 1, . . . , p} be the eigenvalues and the

eigenvectors of Σ̂, respectively. Analogous to the decomposition (1.3), Σ̂ is decomposed by

Σ̂ = B̂B̂⊤ + Σ̂u

where B̂ = (λ̂
1/2
1 γ̂1, . . . , λ̂

1/2
K γ̂K) ∈ Rp×K and Σ̂u =

∑p
j=K+1 λ̂jγ̂jγ̂

⊤
j . Here, K denotes

the number of factors satisfying condition (C1). Commonly, K is unknown and should be

estimated. Following Fan and Han (2017), we apply the eigenvalue ratio (ER) estimator

proposed by Ahn and Horenstein (2013). The ER estimator is defined as

K̂ = argmax
1≤K≤Kmax

λ̃K

λ̃K+1

,

where λ̃j is the j-th largest eigenvalue of the sample correlation matrix and Kmax is a prede-

termined maximum possible number of factors. Other methods for estimating the number

of factors can also be used. See Dobriban (2020) and the references therein. In the rest of

this work, we assume that the number of factors K is known.
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Based on the correlation matrix estimate, we need to estimate the realized common

factors W. Practically, we use the least square method. That is, we use the least squares

estimate Ŵ = (B̂⊤B̂)−1B̂⊤Z. This also simplifies the technical arguments.

Define the DAB-PFA estimator as

F̂DP
DAB

(t;λ, τ, ϵ) :=

[
p∑

j=1

Φ(âj(zt + η̂j))I(λ < Pj ≤ τ)

{Φ(âj(zτ + η̂j))− Φ(âj(zλ + η̂j))} ∨ ϵ

]/
{R(t) ∨ 1}, (2.12)

where âj = (1−∥b̂j∥22)−1/2, η̂j = b̂⊤
j Ŵ, and b̂⊤

j is the j-th row of B̂. The following theorem

shows how the accuracy of the eigenvalue and eigenvector estimators affects the proposed

FDP estimator.

Theorem 3. On the event E that

(C2)′ aj ≤ Ca and âj ≤ Ca ∀j = 1, 2, . . . , p for a finite constant Ca > 1,

(C3) ϵ = O(p−α) for a positive constant α,

(C4) max{|ηj|, |η̂j|, |η̃j| : λ < Pj ≤ τ} ≤ Cη for a finite constant Cη > 0 where

η̃j = b⊤
j W̃ and W̃ = (B⊤B)−1B⊤Z,

(C5) max1≤k≤K ∥γ̂k − γk∥ = Op(p
−ν1) for ν1 > 0,

(C6)
∑K

k=1 |λ̂k − λk| = Op(p
1−ν2) for ν2 > 0,

(C7) p−1R(t) > cp−θ,

we have

|F̂DP
DAB

(t)− FDPDAB
U (t)| = Op

{
pα+θ(Kp−ν1 + p−ν2 + p−1/2∥µ∥)

}
(2.13)

where FDPDAB
U (t;λ, τ, ϵ) = V DAB

U (t;λ, τ, ϵ)/{R(t)∨ 1} with V DAB
U (t;λ, τ, ϵ) defined in (2.11).

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0022



2.3 Estimation accuracy of unknown dependence structure

Remark 2. As opposed to the effect of ϵ on the convergence rate results in Theorem 2, using

a small ϵ is not beneficial to the overall convergence rate in the above theorem. According to

the convergence rate in (2.13), if the eigenvalues and eigenvectors of the correlation matrix

are not precisely estimated, which is equivalent to small values of ν1 and ν2, then we have to

use ϵ = O(p−α) with small α. In other words, poor estimation of eigenvalues and eigenvectors

may result in large values of âjs, which make the denominator in (2.12) very small. Therefore,

we need a bounding parameter ϵ = O(p−α) with a small α to prevent the denominator from

being too large.

Remark 3. In practice, the normality assumption is often violated for various reasons. Fan

and Han (2017) addressed this issue by providing both theoretical and numerical analyses

of cases where the normality assumption is violated. They derived theoretical results for

test statistics that are heavy-tailed due to the estimation of marginal variances and reported

numerical simulation results with data drawn from a t-distribution. A similar theoretical

extension can be applied to our problem. Assume that the marginal variances σ2
j of the

statistics Zj are unknown, but we have estimates σ̂2
j , where each estimate σ̂2

j is independent

of Zj and follows a χ2 distribution with degrees of freedom d. In this case, the standardized

test statistics Tj = Zj/σ̂j follow a t distribution with degrees of freedom d. The p-values are

calculated as PT,j = Fd(−Tj), where Fd denotes the cumulative distribution function of a td

random variable, and the subscript ‘T’ indicates the use of td test statistics. In this setting,

we define the DAB-PFA estimator as:

F̂DP
DAB

T (t;λ, τ, ϵ) :=

[
p∑

j=1

Φ(âj(zt + η̂T,j))I(λ < PT,j ≤ τ)

{Φ(âj(zτ + η̂T,j))− Φ(âj(zλ + η̂T,j))} ∨ ϵ

]/
{R(t) ∨ 1}, (2.14)

where η̂T,j = b̂⊤
j ŴT and ŴT = (B̂⊤B̂)−1B̂⊤T. One might follow the theoretical approach

of Fan and Han (2017) to analyze the asymptotic properties of F̂DP
DAB

G (t;λ, τ, ϵ). However,
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we leave this problem for future research. Additionally, we evaluated the performance of the

proposed method when the normality condition is violated. For more details, see Model 3

of the simulation studies in Section 3.

Remark 4. Compared to previous works (Fan et al., 2012; Fan and Han, 2017), our theo-

retical results do not explicitly require sparsity of the non-nulls. However, the term ∥µ∥ in

equation (2.13) can be interpreted as a regulation on the signal strength of both the non-nulls

and true nulls. For simplicity, assume that each non-null mean value µj is equal to µA > 0

and each true null mean value µj is equal to µN ≤ 0. Then, ∥µ∥ = O(p
1/2
1 |µA| + p

1/2
0 |µN|).

Theorem 3 implies that a sufficient condition for the right-hand side of equation (2.13) to

converge to zero is ∥µ∥ = O(p1/2−α−θ). Now, we consider two scenarios: strong and sparse

signals, and weak and dense signals. In the first scenario, we assume p1 = O(pr) for some

0 < r < 1, implying p0 = O(p). If |µA| = O(p(1−r)/2−α−θ) and |µN| = O(p−α−θ), we have

∥µ∥ = O(p1/2−α−θ). In the second scenario, we assume p1 = O(p) and p0 = O(p). If

|µA| = O(p−α−θ) and |µN| = O(p−α−θ), we again obtain ∥µ∥ = O(p1/2−α−θ). From this ob-

servation, we note that the proposed method can accommodate a broader range of scenarios

compared to previous works, which only cover the strong and sparse case.

Following Fan and Han (2017), we now study sufficient conditions under which (C5) and

(C6) are satisfied. The following lemma is a restatement of Lemma 1 of Fan and Han (2017).

Lemma 3. For any matrices Σ and Σ̂, we have |λ̂j − λj| ≤ ∥Σ̂−Σ∥ and

∥γ̂j − γj∥ ≤
√
2∥Σ̂−Σ∥

min(|λ̂j−1 − λj|, |λj − λ̂j+1|)
,

where ∥M∥ = max1≤j≤p λj(M) is the operator norm for a p× p positive-definite matrix M.
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Table 1: Some literature on covariance matrix estimation and their convergence rate results,

where α is the rate of decay of a banded matrix, q is a constant between 0 and 1 that

determines the class of sparse covariance matrices, c0(p) and s0(p) are sparsity parameters

of a sparse covariance matrix.

Paper Estimator Convergence rate

Bickel and Levina (2008b) Σ̂
BLa

∥Σ̂
BLa

−Σ∥ = Op

((
log p
n

)α/(2α+2)
)

Bickel and Levina (2008a) Σ̂
BLb

∥Σ̂
BLb

−Σ∥ = Op

(
c0(p)

(
log p
n

)(1−q)/2
)

Cai and Liu (2011) Σ̂
CL

∥Σ̂
CL

−Σ∥ = Op

(
s0(p)

(
log p
n

)(1−q)/2
)

The above lemma implies that the errors in terms of eigenvalues and eigenvectors are

directly bounded by the operator norm error of the correlation estimator.

Theorem 4. If min1≤k≤K(λk − λk+1) ≥ dp for a sequence {dp} of positive numbers, then on

the event E ∩ {∥Σ̂−Σ∥ = Op(dpp
−ν)} with a constant ν > 0, we have

|F̂DP
DAB

(t;λ, τ, ϵ)− FDPDAB
U (t;λ, τ, ϵ)|

= Op

{
pα+θ

(
K(dp/p+ 1)p−ν + p−1/2∥µ∥

)}
(2.15)

where the event E is defined in Theorem 3.

Many studies on estimating the structured covariance matrix have been proposed over

the last two decades. We list some representative works in Table 1. As noted in Fan and Han

(2017), if we combine the convergence rates proved by these papers with some assumptions

on the relation between the sample size n and the number of variables p, we can obtain the

condition ∥Σ̂−Σ∥ = Op(dpp
−ν) in Theorem 4.
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In this section, we numerically investigate the performance of the proposed FDP approxima-

tion method. We mainly perform two simulation studies. One simulation study checks the

validity of the DAB-PFA by comparing the finite sample behavior of the true FDP and the

proposed FDP estimator for a fixed threshold level t = 0.01. This threshold level is chosen

because it yields an average FDR close to 0.1 in our simulation setting. The other simula-

tion study checks the performance of the proposed FDR control method with comparisons to

other multiple testing procedures. For each method, we choose a threshold level t̂ ∈ (0, 1) so

that the corresponding FDP estimate is controlled under the predetermined level α = 0.1. In

addition, we conduct a sensitivity analysis of the choice of the threshold parameters (λ, τ, ϵ).

In the simulation studies, we consider the following scenarios: sample size n = 100,

dimensionality p = 1, 000, the number of false null hypotheses p1 = p− p0 ∈ {100, 300, 500},

the threshold parameters (λ, τ, ϵ) = (0.1, 0.5, 0.01), and the number of simulation rounds

R = 200. We note that Tian and Ramdas (Tian and Ramdas) used (λ, τ) = (0.25, 0.5)

as their default choice. In our studies, we adopt the same τ = 0.5 but choose a smaller

λ = 0.1, enabling the use of more samples when estimating the upper bound F̂DP
DAB

.

We randomly set p1 elements of mean vector µ as µA = 3 and the other p0 elements as

µN ∈ {0,−0.1,−0.2}. Unlike Tian and Ramdas (Tian and Ramdas), who considered µA = 3

and µN ∈ {0,−0.5,−1,−1.5}, we use smaller µN values, as larger negative values make

the testing problem easier, making it harder to compare the performance of the considered

methods. We consider six data generation models, referring to the covariance structures

used in Fan and Han (2017). We generate the simulation data as follows. First, we generate

a covariance matrix Σ0 according to each model. Since we assume that Σ is a correlation
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matrix, we consider Σ = D−1Σ0D
−1, where D = diag(σ

1/2
0,jj : j = 1, . . . , p). We decompose

the correlation matrix Σ as Σ = BB⊤+MM⊤, where B = (λ
1/2
1 γ1, . . . , λ

1/2
K γK) ∈ Rp×K and

M = (λ
1/2
K+1γK+1, . . . , λ

1/2
p γp) ∈ Rp×(p−K). Then, we independently generate K-dimensional

random vectors {wi}ni=1 from NK(0, IK) and (p − K)-dimensional random vectors {vi}ni=1

from Np−K(0, Ip−K), except in Model 3. In Model 3, we generate each element of wi and

vi independently from
√
2/3 · t6, where t6 is the t distribution with degrees of freedom 6.

We note that the covariance matrices of wi and vi are IK and Ip−K , respectively, as in the

other models. Finally, we obtain the p-dimensional random vector Xi = µ̃+D(Bwi+Mvi)

where µ̃ = n−1/2µ. Based on this data, we calculate the test statistics Zj = n−1/2
∑n

i=1Xij

(j = 1, . . . , p). It is easy to see that E(Z) = µ and Cov(Z) = Σ0. In the following section,

we describe each of the six dependent structures in detail.

3.1 Dependence structures

• [Model 1: Strict factor model] We consider a factor model with three factors,

Xi = µ̃+ Lfi + ϵi

where fi ∼ N3(0, I3) and ϵi ∼ Np(0,Σϵ) are independent. Entries of the factor loading

matrix L are independently generated from the uniform distribution U(−1, 1). The

covariance matrix Σϵ of error vectors is set as Ip. Note that the covariance matrix of

Xi is Cov(Xi) = LL⊤ + Ip. We use Σ0 = LL⊤ + Ip with K = 3.

• [Model 2: Approximate factor model] We consider a factor model with three

factors, as in Model 1. The difference between Model 1 and Model 2 is the covariance

matrix Σϵ of error vectors. Unlike Model 1, the covariance matrix used in Model 2

is the same as the one used in the numerical study by Fan and Han (2017). In other

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0022



3.1 Dependence structures

words, in Model 2, we set Σϵ as the nearest positive definite matrix of 0.5(Σ1 +Σ2),

where Σ1 is a symmetric sparse matrix and Σ2 is a symmetric banded matrix.

• [Model 3: Non-normal model] We consider a covariance matrix Σ0 = LL⊤ + Ip

with K = 5, where entries of p × 5 matrix L are independently generated from the

uniform distribution U(−1, 1). As previously explained, we decompose Σ0 as Σ0 =

D(BB⊤+MM⊤)D, generate each element of wi and vi independently from
√

2/3 · t6,

and obtain an p-dimensional random vector Xi = µ̃+D(Bwi +Mvi). The normality

assumption is violated in this model; thus, we can check how important the normality

assumption is for the performance of the proposed method.

• [Model 4: Cluster model] In this model, the covariance matrix Σ0 is constructed

as follows. First, we generate a p-dimensional vector Λ = (l1, . . . , lp)
⊤, where

lj ∼


U(150, 170) for j = 1, 2, 3, 4,

U(3, 6) for j = 5, 6, . . . , 14,

U(0.1, 0.3) for j = 15, 16, . . . , p,

and generate a p× p matrix Q in which each element is generated independently from

N(0, 1). Let Γ be the orthonormal matrix that consists of eigenvectors of QΛQ⊤.

Finally, we let Σ0 = ΓΛΓ⊤ with K = 4. We set the number of factors as K = 4

since the eigengap between {l1, . . . , l4} and {l5, . . . , l14} is larger than the gap between

{l5, . . . , l14} and {l15, . . . , lp}.

• [Model 5: Sparse precision matrix model I] We consider a precision matrix

Ω = diag(A1,A2) with A1 = B+ c · Ip/2×p/2 and A2 = 4 · Ip/2×p/2. Here, B is a sparse

symmetric matrix in which each element takes a value of 0.5 with a probability of 0.1

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0022



3.2 Comparison with other multiple testing procedures

and takes a value of 0 with a probability of 0.9, and c = max{−λmin(B), 0}+ 0.01 is a

constant that makes A1 positive definite. Finally, Σ0 = Ω−1.

• [Model 6: Sparse precision matrix model II] Similar to Model 5, we consider a

precision matrix Ω = diag(A1,A2). However, in this model, B is a sparse symmetric

matrix of which each element takes a value uniformly in [0.3, 0.8] with probability 0.2

and takes value 0 with probability 0.8, and Σ0 = Ω−1.

3.2 Comparison with other multiple testing procedures

In this section, we introduce two existing methods that address multiple testing problems.

The first method is the BH procedure proposed by Benjamini and Hochberg (1995), and

the second method is the empirical Bayes method introduced by Efron (2004). Unlike our

procedure, the empirical Bayes method controls the local false discovery rate.

First, we briefly review the BH procedure. Based on the uniformity of p-values under

null hypotheses, it is proved that the BH procedure controls the FDR at a prespecified

level α ∈ (0, 1). Let {P(j)}pj=1 be sorted p-values obtained from p tests in ascending order.

Assuming the independence of p-values, the threshold of the BH procedure is defined as

tBH = max
1≤j≤p

{
P(j) : P(j) ≤

j

p
α

}
. (3.1)

The j-th hypothesis H0j is rejected if Pj ≤ tBH. As shown in Benjamini and Hochberg

(1995), the BH procedure controls FDR at α. The BH procedure still works well if the test

statistics have positive regression dependency (Benjamini and Yekutieli, 2001).

Next, we introduce Efron’s empirical Bayes method. Let {Zj}pj=1 be the test statistics

from p tests, and let π0 and π1 = 1 − π0 be the prior probability of null and non-null
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hypotheses, respectively. In addition, let f0(z) and f1(z) be the density from null and non-

null hypotheses, respectively. Then, the marginal density f can be written as a mixture

density f(z) = π0f0(z) + π1f1(z). The local FDR is defined as

fdr(z) =
π0f0(z)

f(z)
. (3.2)

Therefore, the local FDR can be interpreted as a posterior probability of being null, given

test statistic z. We need to estimate π0, f0(z) and f(z) to control the local FDR. Efron (2004)

used the zero-assumption technique to estimate the null density f0(z) and a nonparametric

estimator for estimating the marginal density f(z). See Efron (2004) for details. We note

that the local FDR controlling method for a given level is typically more conservative than

the FDR controlling method with the same level. Hence, controlling the local FDR at the

predetermined level α guarantees the FDR control at level α.

3.3 Fixed threshold level t setting

In this simulation study, we numerically compare the performance of the original PFA

method and the proposed DAB-PFA method. For the comparison, we fix the threshold

level t = 0.01, and consider the relative error of the approximation methods and the relative

gap of the conservative surrogates. Here, the relative errors of the original PFA method and

the proposed DAB-PFA method are defined by

REOrg =
FDPorc(t)− FDP(t)

FDP(t)
,

REDAB =
FDPDAB

orc (t;λ, τ, ϵ)− FDP(t)

FDP(t)
,
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Figure 2: Box plots of relative errors (left column) and relative gaps (right column). Each

row shows the result from each dependence structure (Model 1∼6). For each row, there are

six panels: first three panels contains box plots of the relative errors and the next three

panels contains box plots of the relative gaps for each µN ∈ {0,−0.1,−0.2}. Each panel

shows the box plots for p1 ∈ {100, 300, 500}.
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3.4 Practical setting

respectively. The above relative error measures how much accurately each method approxi-

mates the FDP. Similarly, the relative gaps are defined by

RGOrg =
FDPU(t)− FDPorc(t)

FDPorc(t)
,

RGDAB =
FDPDAB

U (t;λ, τ, ϵ)− FDPDAB
orc (t;λ, τ, ϵ)

FDPDAB
orc (t;λ, τ, ϵ)

,

respectively. A smaller relative gap implies a closer conservative surrogate to the approx-

imation. Figure 2 shows the box plots of the relative errors and the relative gaps. The

left column of Figure 2 shows that there is not much difference between the original PFA

method and the proposed method in terms of the relative error. However, the right column

of Figure 2 shows that the relative gap of the proposed method is much smaller than that

of the original method. In addition, as µN decreases, the relative gap of the original method

increases rapidly while that of the proposed method is barely increased, implying that the

proposed method is robust against the null mean value.

3.4 Practical setting

We compare the DAB-PFA method with the original PFA method, the BH procedure, and

the empirical Bayes (EB) method in a practical setting. When applying the DAB-PFA

method or the original PFA method, a covariance matrix estimator is required. We consider

two covariance matrix estimators: POET (Fan et al., 2013) and S-POET (Wang and Fan,

2017). We denote two covariance matrix estimators by “P” and “S”, respectively. We set the

level α = 0.1. For each FDP estimation method, we find the largest threshold t̂ ∈ (0, 1) that

makes the estimated FDP value less than the level α. The threshold of the BH procedure is

defined as (3.1), and the threshold of the EB method is set as the corresponding p-value of

the smallest z-value that controls the estimated local FDR under level α. Then, we compute

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0022



3.4 Practical setting

Table 2: The averages of the FDP values over 200 repetition are calculated with their

standard error in parentheses for Model 1.

Method

Model µN π1 P-PFA DAB-P-PFA S-PFA DAB-S-PFA EB BH

M1

0

0.1 0.095 (0.038) 0.107 (0.046) 0.092 (0.037) 0.104 (0.045) 0.022 (0.052) 0.073 (0.091)

0.3 0.072 (0.019) 0.104 (0.030) 0.071 (0.019) 0.103 (0.030) 0.019 (0.027) 0.062 (0.053)

0.5 0.052 (0.014) 0.103 (0.023) 0.052 (0.013) 0.102 (0.023) 0.016 (0.020) 0.046 (0.032)

-0.1

0.1 0.068 (0.031) 0.077 (0.034) 0.066 (0.029) 0.074 (0.033) 0.015 (0.041) 0.054 (0.076)

0.3 0.056 (0.018) 0.080 (0.023) 0.054 (0.018) 0.078 (0.023) 0.013 (0.023) 0.048 (0.046)

0.5 0.041 (0.012) 0.085 (0.020) 0.040 (0.012) 0.084 (0.019) 0.012 (0.015) 0.037 (0.028)

-0.2

0.1 0.050 (0.026) 0.056 (0.028) 0.049 (0.026) 0.053 (0.028) 0.011 (0.036) 0.041 (0.064)

0.3 0.042 (0.015) 0.061 (0.022) 0.041 (0.015) 0.060 (0.022) 0.009 (0.018) 0.037 (0.041)

0.5 0.032 (0.010) 0.070 (0.018) 0.031 (0.010) 0.069 (0.018) 0.008 (0.013) 0.029 (0.025)

the false discovery proportion

FDP =
FP

TP + FP

and the true positive proportion

TPP =
TP

TP + FN
,

where TP, FP, and FN are the numbers of true positives, false positives, and false negatives,

respectively.

This scenario simulates a situation we encounter in a real-world research problem. Prac-

tically, we cannot obtain information about the FDP or the TPP of a multiple testing

procedure since we do not know which hypotheses are true nulls. Through the simulation

study in this practical setting for various data-generating models, we expect the performance

comparison of the presented methods to represent the results in a real-world analysis well.

The results of two measurements for Model 1 are summarized in Tables 2 and 3. The results

for the other models are summarized in Tables S1, S2, S3, and S4, which can be found in
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Table 3: The averages of the TPP values over 200 repetition are calculated with their

standard error in parentheses for Model 1.

Method

Model µN π1 P-PFA DAB-P-PFA S-PFA DAB-S-PFA EB BH

M1

0

0.1 0.786 (0.134) 0.797 (0.129) 0.781 (0.134) 0.793 (0.130) 0.519 (0.088) 0.711 (0.064)

0.3 0.874 (0.107) 0.903 (0.091) 0.872 (0.107) 0.901 (0.092) 0.698 (0.064) 0.860 (0.051)

0.5 0.909 (0.089) 0.953 (0.056) 0.908 (0.089) 0.952 (0.057) 0.791 (0.060) 0.911 (0.043)

-0.1

0.1 0.782 (0.134) 0.791 (0.139) 0.779 (0.135) 0.786 (0.140) 0.437 (0.134) 0.707 (0.066)

0.3 0.872 (0.107) 0.897 (0.100) 0.870 (0.108) 0.896 (0.101) 0.679 (0.053) 0.858 (0.052)

0.5 0.909 (0.089) 0.949 (0.065) 0.908 (0.089) 0.948 (0.065) 0.777 (0.053) 0.909 (0.044)

-0.2

0.1 0.781 (0.135) 0.787 (0.146) 0.777 (0.136) 0.783 (0.147) 0.423 (0.120) 0.705 (0.066)

0.3 0.871 (0.108) 0.892 (0.108) 0.869 (0.109) 0.891 (0.109) 0.671 (0.056) 0.856 (0.053)

0.5 0.908 (0.089) 0.945 (0.072) 0.907 (0.090) 0.945 (0.073) 0.771 (0.053) 0.909 (0.044)

the supplementary material.

We note that all compared methods control the FDR well under the prespecified level

α = 0.1 in most cases. However, the proposed method exhibits inflated FDR values when

µN = 0 and π1 = 100 for Models 2, 3, and 4. This phenomenon can be explained by Figure

2. In Figure 2, when µN = 0 and π1 = 100, the relative errors of the proposed DAB-PFA

method show a negative bias for Models 2, 3, and 4, while the relative gaps are nearly zero.

This illustrates that although the discarding adaptively with bounding (DAB) approach

significantly reduces the relative gap, it also introduces instability in the approximation of

the FDP. When the underlying dependence structure satisfies the required conditions–weak

dependence (condition (C1)) and the existence of a reliable covariance matrix estimator

(conditions (C5) and (C6))–the proposed method outperforms the original PFA method.

However, in Models 2, 3, and 4, where these conditions are not satisfied, a large relative gap

can act as a buffer against the instability of the PFA method’s approximation, whereas a
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small relative gap may lead to an underestimation of the upper bound, resulting in slightly

inflated FDR. Importantly, this inflation is not observed when µN takes negative values.

Since the true parameter of interest is rarely exactly at the boundary of the null set in

practical scenarios, we conclude that the DAB-PFA method demonstrates robustly better

performance compared to other methods in terms of true positive rate (TPR).

3.5 Sensitivity analysis

In the previous simulation studies and the following case study, we use fixed threshold

parameters (λ, τ, ϵ) = (0.1, 0.5, 0.01). We numerically investigate how sensitive the perfor-

mance of the DAB-PFA method is when we change the threshold parameters. We consider

ζ = λ/τ ∈ {0.1, 0.2, 0.3}, τ ∈ {0.4, 0.5, 0.6}, and ϵ ∈ {0.001, 0.01, 0.1}. Since the number

of all possible combinations of threshold parameters is considerably large, we only take into

consideration the combinations that are different from the standard combination of threshold

parameters (ζ, τ, ϵ) = (0.2, 0.5, 0.01) for only one parameter. The averages of the FDP and

TPP values from 200 Monte Carlo simulations are summarized in Tables S5, S6, and S7 in

the supplementary material.

We first focus on the effect of the selection of ζ = λ/τ . This parameter decides which

proportion of hypotheses we regard as true nulls. From Table S5, we can find that using

a smaller ζ yields a larger controlled FDR and a larger TPR when the null distribution is

conservative. We note that as the null distribution becomes more conservative, the number

of true null hypotheses used in approximating the FDP decreases. Then, using a small ζ

value can increase the inclusion of true null hypotheses in approximating the FDP, which

makes the approximation more accurate. However, using too small ζ may include some
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non-null hypotheses in approximating the number of false rejections, so we suggest to use

ζ = 0.2.

We then focus on the sensitivity of the proposed method with respect to the value of τ .

We note that τ is the essential parameter that makes our method robust when the true null

distribution is conservative. From Table S6, we notice that using a smaller τ is advantageous

because it prevents too conservative true nulls to be included in approximating the FDP.

However, if we use too small τ , we have to approximate the FDP only with a small number

of hypotheses. For these reasons, we propose to use τ = 0.5 in general.

Finally, we examine the sensitivity analysis of ϵ. As mentioned in the remark following

Theorem 3, The inclusion of ϵ prevents the denominators in the DAB-PFA estimator from

becoming excessively small, a situation that may arise when estimates of {(aj, ηj)}pj=1 pop

out. In this sensitivity analysis, however, the estimations of Σ̂ and its eigenvalues and

eigenvectors are precisely conducted because the simulation data are generated from a well

structured factor model. Hence, Table S7 shows that the selection of ϵ is not sensitive to

the performance of the DAB-PFA method. Here, we provide ϵ = 0.01 as a standard, but

depending on the accuracy of the covariance matrix estimation, we need to choose a proper

value of ϵ in practice.

4. Case study: Protein phosphorylation analysis

In this section, we demonstrate the proposed method for the protein phosphorylation analysis

of ovarian serous adenocarcinoma samples compared with the other aforementioned proce-

dures. Here, we aim to identify uniquely elevated protein modification levels in each of the

five molecular subtypes, as defined by clustering analysis of mRNA-based gene expression
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Figure 3: Heatmap of relative phosphorylation levels at high confidence phosphorylation sites

with validated evidence of signaling by three or more kinases. Phosphorylation is uniquely

elevated in these sites for the samples of the proliferative subtype. The black and white color

bar to the far right side of the figure shows whether each phosphorylation site was above the

threshold by each method (black = null hypothesis rejected, and white = not rejected).
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Table 4: The number and the rate (%) of rejected hypotheses are shown for five molecular

subtypes: differentiated subtype(A), immunoreactive subtype(B), proliferative subtype(C),

mesenchymal subtype(D), and stromal subtype(E).

Case

Method A B C D E

DAB-P-PFA 25 (0.44) 257 (4.47) 741 (12.90) 485 (8.44) 512 (8.91)

P-PFA 16 (0.28) 176 (3.06) 537 (9.35) 437 (7.61) 314 (5.46)

DAB-S-PFA 18 (0.31) 220 (3.83) 730 (12.70) 479 (8.34) 501 (8.72)

S-PFA 14 (0.24) 174 (3.03) 533 (9.28) 437 (7.61) 300 (5.22)

EB 1 (0.02) 253 (4.40) 202 (3.52) 200 (3.48) 73 (1.27)

BH 3 (0.05) 272 (4.73) 354 (6.16) 269 (4.68) 147 (2.56)

data (Zhang et al., 2016). Comparison of protein phosphorylation levels is a representative

example of multiple one-sided tests since there is an implicit dependence structure among

multiple phosphorylation sites on an identical substrate protein and the substrates phospho-

rylated by the same kinases. Moreover, mass spectrometry-based proteomics experiments do

not always detect the same phosphopeptides because each experiment has an uncontrollable

degree of variability. As a result, the dependence structure across the phosphorylation site is

unique in each dataset, and multiple testing procedures that are robust against an arbitrary

degree of dependence are of the utmost importance.

There are five molecular subtypes: differentiated (A), immunoreactive (B), proliferative

(C), mesenchymal (D), and stromal (E). Each molecular subtype has (nA, nB, nC , nD, nE) =

(21, 10, 7, 21, 8) samples. The protein phosphorylation level at the j-th site in the i-th sample

of subtype g is denoted by {Xg,ij}, where g ∈ G = {A,B,C,D,E}, i = 1, ..., ng and
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j = 1, ..., 5746. In this section, we investigate whether the proliferative (C) molecular subtype

samples have larger phosphorylation levels than others. Comparisons between other groups

are given in the supplementary material. For each phosphorylation site j = 1, ..., 5746, we

consider the hypotheses

H0j : µC,j ≤ µ−C,j vs. H1j : µC,j > µ−C,j.

where µC,j is the mean phosphorylation level at site j of proliferative samples and µ−C,j is

the mean phosphorylation level at site j of other subtype samples. Then, the test statistic

corresponding to phosphorylation site j is

Tj =
X̄C,j − X̄−C,j

sj
√

(1/nC + 1/n−C)

where X̄C,j =
1
nC

∑nC

i=1XC,ij is the sample mean of phosphorylation levels at site j of prolifera-

tive samples, X̄−C,j =
1

n−nC

∑
g∈G\{C}

∑ng

i=1Xg,ij is the sample mean of phosphorylation levels

at site j of other subtype samples, and n−C = n−nC and s2j =
1

n−5

∑
g∈G

∑ng

i=1(Xg,ij−X̄g,j)
2.

Under the null hypothesis H0j, Tj follows the t distribution with degrees of freedom n − 5.

Therefore, the p-value of the j-th test is Pj = F−1
n−5(−Tj), where Fn−5 is the cumulative

distribution function of tn−5. The BH procedure and the empirical Bayes method are ap-

plied to these p-values {Pj}pj=1. To apply the DAB-PFA, we need to estimate the covariance

structure of Z = (Z1, . . . , Zp)
⊤ in which

Zj =
X̄C,j − X̄−C,j√
(1/nC + 1/n−C)

.

Under the homogeneous Gaussian assumption, Xg,i = (Xg,i1, . . . , Xg,ip)
⊤ ∼ Np(µg,Σ), where

µg = µC if g = C, and µg = µ−C otherwise. As a result, we have Cov(Z) = Σ.

When estimating Σ, we propose using POET or S-POET. In one sample test case, we

apply POET and S-POET to the sample covariance matrix S = (n− 1)−1
∑

i(Xi− X̄)(Xi−
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X̄)⊤. However, in this case, we estimate Σ by applying POET and S-POET to the pooled

sample covariance matrix Spooled = (n − 5)−1
∑

g∈G
∑ng

i=1(Xg,i − X̄g)(Xg,i − X̄g)
⊤ instead.

Using this covariance estimator, we implement our method for the FDP estimation and

obtain the threshold.

In the following section, we compare the following six methods: DAB-P-PFA, P-PFA,

DAB-S-PFA, S-PFA, EB, and BH. We set the FDR level α = 0.1 and threshold parameters

(λ, τ, ϵ) = (0.1, 0.5, 0.01). Table 4 shows that the FDP estimation methods (DAB-P-PFA,

P-PFA, DAB-S-PFA, and S-PFA) reject more hypotheses than the other methods (EB and

BH). In particular, across the results for the five subtypes, the DAB methods consistently

identify the largest number of phosphorylation sites as uniquely elevated in each subtype.

To examine whether the additionally rejected hypotheses lead to biologically meaningful

phosphorylation, we prioritize the substrate proteins known to be phosphorylated by at least

three kinases in each comparison, selected by at least one of the six methods. These sites are

most likely to be true positives in the sense that the activity of corresponding kinases on the

exact sites has been validated in independent experiments of human cells (Hornbeck et al.,

2015; Hu et al., 2014; Corwin et al., 2017). As expected, excluding the differentiated subtype

with a low number of rejected hypotheses, the PFA procedures select a comparable number

of phosphosites (see the supplementary material for the other heatmaps), often surpassing

the number of rejections in both the Benjamini-Hochberg procedure and empirical Bayes

method.

However, for the proliferative subtype, we observe that the DAB-PFA methods substan-

tially improve the detection of additional true phosphosites, especially in the same substrates

with other phosphosites detected by the original PFA methods. Figure 3 shows the trans-
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formed phosphorylation levels (Z-scores) for the sites, with consistently increased phospho-

rylation levels in the proliferative subtype (n = 7). For the heatmaps of other subtypes, see

Figures S1, S2 and S3. It is evident that the DAB methods considerably improve the power

to detect these sites, with adjacent phosphosites already detected by other methods.

5. Discussion

We have proposed a new multiple one-sided hypotheses testing procedure called the DAB-

PFA to control the FDR under the general dependency of test statistics. We use a principal

factor model to approximate the test statistics with a general dependency structure. As a

result, we can express an approximation of the FDP as a function of the eigenvalues and

eigenvectors of the covariance matrix of the test statistics. To account for the conservative

null p-values from one-sided hypotheses, we suggest discarding p-values close to 0 or 1 by

introducing an indicator I(λ < Pj ≤ τ). We then use the upper bound of the FDP esti-

mator to avoid estimating µj. In practice, we plug in the estimates of the eigenvalues and

eigenvectors to obtain the approximation of the FDP. In our simulation studies, the pro-

posed approximation shows an excellent approximation to the true FDP. We also show the

FDR control of the proposed procedure and compare its power with other multiple testing

procedures.

Instead of using the upper bound by removing µjs, we can consider a plug-in estimator

of µjs to construct the upper bound. If we estimate µjs consistently or accurately, we may

obtain an upper bound with a smaller gap and a better approximation of the FDP. Here,

we have a large number of parameters to be estimated, and no doubt need some structural

assumptions to estimate them all consistently. It would be interesting to find the conditions

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0022



REFERENCES

and propose an improved FDP approximation procedure.

Supplementary Material

The online Supplementary Material contains proofs of the main theorems, details of simula-

tion results and the heatmaps from the case study.
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