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Abstract: The one-sided hypotheses in a multiple testing problem make the empirical null distribution
(or p-values) conservative. Furthermore, it introduces a significant loss of power if not appropriately
considered. We propose a multiple testing procedure named discarding adaptively with bounding on
principal factor approximation (DAB-PFA) to simultaneously test a number of one-sided hypotheses
under the general dependency of test statistics. Specifically, we use the principal factor approximation
(PFA) by Fan and Han (2017) to account for the dependence structure among test statistics and
adaptively discard small or large p-values when estimating the realized false discovery proportion
(FDP). We derive the convergence rate of the proposed estimator and numerically compare the false
discovery rate (FDR) and the true positive rate (TPR) of our method to many existing procedures,
including those from Benjamini and Hochberg (1995), Efron (2004), and Wang and Fan (2017). We
demonstrate our method through simulation studies and analysis of protein phosphorylation levels for

serous ovarian adenocarcinoma samples.
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1. Introduction

1.1 Multiple testing

In the last two decades, multiple testing, in which many hypotheses are tested simultane-
ously, has been one of the few central topics of statistics. The multiple testing problem arises
in various applications, which include microarray analysis in genetics, functional magnetic
resonance imaging (fMRI) studies of the brain, clinical trials with multiple endpoints, and
tens of thousands of A/B tests performed by major internet companies. Early works on
this topic introduced various type I errors, including the family-wise error rate (FWER),
the generalized FWER, the false discovery rate (FDR), the positive FDR, and proposed
procedures to control the aforementioned errors at the nominal level. Researchers mostly
assumed that test statistics used for each hypothesis test are independent or weakly depen-
dent. However, the independence assumption of test statistics is easily broken in practice,
which makes the control of the multiple testing error rate inaccurate. Great efforts have
been made to construct procedures that consider the dependency of test statistics. Some
early works in this area focused on studying the validity of the proposed procedures, meaning

that the FDR is controlled at a nominal level under some classes of dependence structure

among the tests(Benjamini and Yekutieli, [2001; Finner and Roters, 2002; [Efron, 2004, 2007}

\Owenl, 2005} Sarkar, 2006; Romano et al., 2008; Wu, 2008)). However, it was suggested that

efficiency in terms of the false negative rate (FNR) should be considered in multiple testing

(Genovese and Wasserman, 2002; |Sarkar, 2004)), and some works showed that efficiency im-

provements could be made by taking into account the dependence structure (Sun and Cai,

2009; [Wei et al., 2009; Xiao et al.,|2013; Liu et al.,|2016; |Fan et al., 2012 Fan and Han| [2017)).

The procedure proposed by [Sun and Cai (2009)) and its extensions (Wei et al.l 2009} Xiaol
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et al., 2013) were based on a hidden Markov model (HMM), which only allows sequential
dependence. Liu et al. (2016) replaced the HMM with a Markov-random-field-coupled mix-
ture model, which can be applied to more general dependence structures. |Fan et al.| (2012)
proposed the principal factor approximation (PFA) to estimate the realized false discovery
proportion (FDP) under an arbitrary but known dependence structure, and Fan and Han

(2017) extended the PFA method under an unknown dependence structure.

1.2 One-sided hypothesis

The main goal of this study is to develop a multiple testing procedure of one-sided hypothe-
ses for the FDR control under unknown dependence. There are many applications where
testing a number of one-sided hypotheses is of primary interest. For instance, researchers
aim to identify protein modification levels that are uniquely elevated in a specific group
of subjects compared to other groups in protein phosphorylation analysis. In clinical trials,
noninferiority and superiority tests are commonly required to assess the benefit of new drugs.
Another example of multiple one-sided hypotheses testing is the tens of thousands of A/B
tests that major internet companies perform. For more detailed examples, refer to |Cohen
and Sackrowitz (2005); [Tian and Ramdas (Tian and Ramdas) and the references therein.
The main difficulty in multiple testing of one-sided hypotheses results from the conser-
vative null p-value. When performing hypothesis testing, one of the standard assumptions
is that the p-value P is wvalid, which means that if the null hypothesis is true, then we have
Pr(P < u) < u for all w € [0,1]. If the inequality is strict for some v € [0, 1], then the
null p-value P is said to be conservative. In a one-sided hypothesis test, the null p-value is

typically conservative since the true parameter of interest is rarely exactly at the boundary
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Figure 1: Histogram of p-values {P; = ®(—Z2;) j=1, where Z;s are independently generated

from N(p;,1) and p; ~ U[—1,0].

1000

of the null set. Figure |1| presents a histogram of p-values {P; = ®(—Z;)};27,

where Z;s
are independently generated from N (g, 1) with p; ~ U[—1,0]. If we apply existing multi-
ple testing procedures such as Fan et al. (2012)); Fan and Han| (2017) for the FDR control
without considering the conservativeness of the null p-values, we will overestimate the real-
ized false discovery proportion (FDP). This leads to a significant loss of power despite those
procedures remaining valid for FDR control.

One general solution for the conservative null p-values is to discard p-values close to 1
(Zhao et al., 2019)). This approach was also used in the online FDR control setting, which
assumes an infinite sequence of p-values. Tian and Ramdas| (Tian and Ramdas) proposed
an adaptive algorithm that discards conservative nulls. By discarding overly conservative
p-values, a power increase was achieved. However, these current procedures for conservative
nulls are based on the independence assumption among test statistics. In this paper, we

propose a procedure to control the FDR in testing multiple one-sided hypotheses under

general unknown dependence.
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Our main interest is to test p one-sided hypotheses
7‘[0]' o <0 ws. Hlj Dy > 0 (11)

for each j = 1,2,...,p based on a test statistic Z;, where the vector Z = (Z1,...,Z,)" of
test statistics follows a multivariate normal distribution N,(p,X) with mean vector p =
(pt1, .-, pp) " and covariance matrix . Here, we assume that ¥ is an unknown correlation
matrix, which implies that the marginal variance of each test statistic is known, while the
dependence structure among the test statistics is unknown. Then, for each j = 1,...,p,
the p-value for the j-th hypothesis is calculated as P; = ®(—Z;), where ® is the cumulative
density function of the standard normal distribution. We use a common threshold value
t € (0,1). We reject the j-th hypothesis H; if and only if the corresponding p-value P; does
not exceed the threshold value t. Define R(t) = #{j : P; < t} as the number of rejections
(or discoveries), and V (t) = #{j € Ho : P; < t} as the number of false rejections, where H,
is the set of indices of true nulls. Under these definitions, we aim to control the FDR, which
is defined by

FDR(f) — E {FDP(t)} :E{%}, (12)

under a predetermined level a € (0, 1).

To control the FDR, we need to estimate the realized false discovery proportion FDP (%)
for a given threshold level ¢ € (0,1) and find an optimal level ¢ such that Fﬁ(f) < . Since
the number of rejections R(t) is observable, we only need to approxomate the number of

false rejections V (¢).
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To approximate V(t) under the unknown dependence of test statistics {Z;}}_,,

we use an
approximated factor model as in [Fan and Han| (2017). Let {()\;,7;)};=; be the eigenvalues

and the corresponding eigenvectors of 3 with the ordering A; > --- > \,. For a fixed integer

K satisfying

(C1) _1\/)\K+1—|— -+ A2 = O(p™®) for some 6 > 0,
the correlation matrix X is decomposed by
>=BB'+3%,, (1.3)

where B = (VA1 .., VAxkYk) € RPN and 2, = Y0 MYy - Then, the vector
of test statistics Z ~ N,(p, X) is stochastically decomposed by Z = p + BW + u. Here
W = (Wy,...,Wg)" ~ Ng(0,Ig) are common factors and u = (uy,...,u,)" ~ N,(0,%,)
are the errors, independent of W.

We note that the condition (C1) implies that the errors {uy, ..., u,} are weakly dependent,

that is,

2
Jim p~ Z O gua| = (1.4)

J1.J2=1
where o, j,;, denotes the (ji, j2)-th element of 3,,.

Define a; = (1—|/b;||3)""/? and n; = b] W, and b/ is the j-th row of B. Using a similar

argument as one used in Fan et al.| (2012), we can show that

Vore(t) = E{V(0)[W} = Y ®(a;(n; + 2 +1;)) (1.5)

J€Ho

approximates the number of false rejections

=3 I(P<t)=> I(Z>-z) (1.6)

Jj€Ho Jj€Ho

where z; = ®71(¢) is the t-quantile of the standard normal distribution.
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Since V(t) can not be used in practice, we may consider the following upper bound of

‘/orc (t)

p

Vimaive(t) = > ®(a;(z +1;)) (1.7)

J=1

However, the difference between Vo, (t) and Vi naive(t) is not small and results in a significant
loss of power. There are two sources that make the difference large; the first source is
conservative null p values, and the other source is a nonignorable proportion of nonnulls.
Both are directly related to the way that the upper bound is built, where p; is replaced with
0 and the summation is expanded over the true null index set Hy to the entire index set
{1,2,...,p}.

To have a precise upper bound of V,,.(t), we propose discarding p values close to 0 or 1,
following the idea by Tian and Ramdas (Tian and Ramdas). This can be simply done by
introducing an indicator I(A < P; < 1) for A\,7 € (0,1) as done in Tian and Ramdas| (Tian
and Ramdas)). However, to consistently approximate Vg (¢) under the general dependency
(among the statistics), we require much more delicate terms in the upper bound that is
obtainable. For example, under the independence assumption, we may consider the naive
truncated term )37, ®(a;(2 + n;))[(A < P; < 7)/(7 — A). However, under the unknown
dependency, the denominator of the naive truncated term should be replaced with a function
of cumulative probabilities of the standard normal distribution with an estimated mean and

variance.
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1.5 Structure of this paper

In the following, we summarize major theoretical developments of this paper and a road
map to show how we build a precise upper bound of V;,.(t) and summarize its theoretical
properties. Note that there is no sparsity assumption of the nonnull, which is common in
existing literature, including Fan et al.| (2012) and |Fan and Han| (2017)), to make the difference

of the sum over H, and over the entire index set {1,2,...,p} small.
Proposition [I] The term we would like to estimate in (1.2)) is

V()= I1(®(-Z) <t). (1.8)

In Proposition [I}, we will show that V/(£) ~ Vi..(t) where

Vorc(t) = Z @(aj(uj + z; + 7]]')), (19)

J€Ho
and compute the convergence rate between FDP (1) := V() /{R(t)V1} and FDP(¢),
which is the same rate shown by Fan and Han| (2017)) for multiple testing of two-sided
hypotheses. We notice that we can set p; to 0 under the two-sided null hypothesis
Ho; : 1r; = 0 while we still need to estimate p; since it can be a negative value under

the one-sided null hypothesis Ho; : p; < 0.

Lemma [I] We note that the indicator I(P; < t) is approximated by ®(a;(u;+ 2 +n;)) in Proposi-
tion . Similarly, one may expect that the indicator I(A < P; < 7) can be approximated
by ®(a;(p; + zr +1;)) — ®(a;(1; + 25 +n;)). Lemma (1] shows that Vi,.(t) ~ V.DA(#)

where
D(aj(py + 2+ ) I[N < Py <7)
w2 ©(a;(py + 2 + 1)) = Pla;(py + 23 +15))

VPA®R) =

orc

(1.10)

JE
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Theorem 2] In practice, we find that the denominator of VPA(¢) often becomes very small and

VDA(t) has high variability. To address this issue, we round up the denominators in

orc

VDPA(t) by € in Theorem [2] and approximate them as V.PA(t) ~ VPAB(¢) where
O(a;(p + 2+ ) IA <Py <7)

DAB
Vo () = 2 Tt 4 20 T ) — By (g + 2 L))} Ve

orc
Jj€Ho

(1.11)

In Theorem , we find the asymptotic decay rate of the difference between VPA(¢) and

orc

VDAB

'DAB(#) with e. The results recommend choosing a small value of e for V2AB(¢).

orc

Lemma 2] V.PAB(#) still can not be used in practice without knowing the true null set Hy and the

mean value j;s. To address the true null set issue, a easy solution is to use an upper

bound of VPAB(#) by extending the summation over the true null set H, to the entire

index set. However, it is not straightforward to show that the inequality can still hold

after removing the true mean values {y; : j € Ho} from V2AB(¢), Lemma show that

this is the case, and we have an upper bound of V.PAB(¢) as VDPAB(t) < VPAB(3) where

orc orc

DAB D(aj(z+n)I(N< P <)
Z {®(a;(zr +n;)) — Paj(en + 1)) Ve (1.12)

Theorem B To use VPAB(t) in practice, we need to estimate the unknown values a; and 7;. Fol-
lowing Fan and Han (2017)), we estimate these unknown values using the eigenvalue
and eigenvector estimators {(Xj,‘)\/j) : 7 =1,...,p} of ¥. In Theorem [3| we show
that the plug-in estimator VDAB( ) converges to realized VPAB(¢) and computes the
convergence rate in terms of the estimation accuracy of the eigenvalues and eigenvec-
tors. The rate obtained is similar to that for the two-sided multiple hypothesis in [Fan
and Han (2017). The only difference between our rate and the rate for the two-sided
multiple hypothesis is that our rate is inversely proportional to €, which encourages us

not to take € to too small a value, which is the opposite of Theorem [2] Thus, there
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VDAB

'DAB(#) may not approximate V2A(¢) well

exists a trade-off in choosing a proper € as e

if it is too large, and if it is too small, a higher accuracy in estimating eigenvalues and

eigenvectors to approximate VPAB(#) is required.

Theorem M From Weyl’s inequality, the estimation accuracy of eigenvalues and eigenvectors can
be represented by a correlation matrix. In Theorem [} we rewrite the convergence rate
of VDAB( ) to realized VPAB(#) in terms of the estimation accuracy of the correlation

matrix of test statistics under the assumption that the leading eigenvalues are distinct.

In short, we derive an upper bound of the approximation of V (¢) and estimate the realized

upper bound with ‘7UDAB(t).

V(1) & Vore(t) & Voger (1) = Vore (1) < VPP (8)

orc orc

All aforementioned theoretical results for the approximation of V(t) can be applied to
the approximation of FDP(t) = V' (¢)/(R(t) V 1) and we propose the following estimator to

approximate realized FDP(¢) to control FDR.

———DAB

FDPy () = VPAB(0)/{R(t) v 1}.

The remainder of the paper is organized as follows. In Section [2| we show the theoretical
properties of the proposed method. In Section [3, we numerically investigate the theoretical
results, provide performance comparisons of the proposed method with other methods, and
present sensitivity analysis regarding the choice of thresholding parameters. In Section [4]
we demonstrate the methodology via an application to the protein phosphorylation analysis
of ovarian serous adenocarcinoma samples to identify protein modification levels that are
uniquely elevated in each of the five molecular subtypes. In Section [5, we conclude with a

discussion.



2. Approximation of false discovery proportion

2.1 Principal factor approximation under known dependence

Suppose that we wish to test p one-sided hypotheses

Hoj o <0 ws. Hlj > 0 (21)

for j =1,2,...,p. We have a test statistic Z; with mean p; for each hypothesis. We assume

that the p-dimensional vector Z = (Zy,...,7Z,)" of test statistics follows a multivariate
normal distribution with mean vector g = (p, ..., u,)" and Cov(Z) = X. Since we assume
that the test statistics are normalized, Var(Z;) =1 for j = 1,...,n and X is the correlation
matrix.

Let Ho = {j : p;j < 0} be the set of indices of true nulls. For each j € {1,2,...,p},
the j-th test statistic Z; marginally follows the standard normal distribution N(0,1), so
the p-value for the j-th hypothesis is calculated as P; = ®(—Z;). We let t € (0,1) be a
common threshold value for the multiple tests. That is, we reject the j-th null hypothesis
Ho; if the corresponding p-value does not exceed the threshold value t. Define R(t) = #{; :
P; < t} as the number of discoveries, and V(t) = #{j € Ho : P; < t} as the number
of false discoveries. We are interested in controlling the false discovery rate (FDR) under
a predetermined level « € (0,1). To do this, we need to approximate the realized false
discovery proportion FDP(t) = V'(t)/{R(t) V1}. We note that R(t) is observable, while V' (¢)
is a realized but unobservable random variable. The number of falsely rejected hypotheses

V(t) can be expressed as

V() =Vs(t) = > I(P;<t)= > I(Z; > —=). (2.2)
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Here, the subscript “os” stands for “one-sided”. It is worth noting that this representation of
V(t) is different from that of multiple two-sided tests. When testing two-sided hypotheses,
p-values are calculated by P; = 2®(—|Z;|) (j = 1,...,p), and thus the number of false

rejections Vis(t) is represented as

VW)= ST <) = 3 {12 < o) +1(Z; = —2p2)} (2.3)

JjEHo Jj€Ho

in which Ho = {j : #; = 0} and the subscript “ts” stands for “two-sided”.
Based on the principal factor approximation (PFA) method, Fan et al. (2012) proposed

approximating Vis(t) by

Visore(t) = Y {®(a; (212 +my)) + D(aj(z12 — ;) } - (2.4)

J€Ho

where a; and 7; are defined in (1.5).

The PFA method can be applied to the multiple one-sided tests scheme. However, there
is a critical difference between one-sided tests and two-sided tests. The mean value p; is fixed
at zero for the two-sided null hypothesis Ho; : ; = 0 (i.e. Ho; is simple), while the mean
f; is not determined in the one-sided null hypothesis Ho; : p; < 0 (i.e. Ho; is complex). To

reflect this difference, we show that the approximation of Vs(¢) in (2.2)) is given as

‘/os,orc(t) S ‘/orc(t) = Z CD(CLj(/Lj + 2+ 773)) (25)

J€Ho

Compared to the approximation ([2.4), the true mean values {y; : j € Ho} remain in the
approximation ([2.5). As in Proposition 1 of Fan and Han|(2017)), we obtain the same conver-

gence rate result for FDP . (t) = Vie(t)/(R(t) V 1) under the weak dependence assumption
on ¥, in (1.3).

Proposition 1. If condition (C1) is satisfied, we have

IFDPoy(t) — FDP(t)] = O, (p~ />,
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on the event & = {pilR(t) > cpfe} for some ¢ >0 and 6 > 0.

Sketch of proof. Similar to the proof of Theorem 1 by |Fan et al.| (2012)), we can show that
P Vore(t) = V()] = O, (p~°7),

where pg = #{j : p1; < 0} is the number of true nulls. Hence, the desired result holds for

the event & = {p‘lR(t) > cp‘e}. ]

2.2 Discarding adaptively with bounding

In the previous section, we showed that FDP,.(t) approximates FDP(¢). In practice, how-
ever, we cannot observe FDP.(¢) directly for the following three reasons: we have no
information about (i) the true null set H,, (ii) the true mean values {1, : j € Ho}, and (iii)
the other unknown (or unobserved) values {(a;,n;) : j = 1,...,p}, which are functions of
the eigenvalues and eigenvectors of 3.
To address the first problem, [Fan et al. (2012) suggested using

p
Vo(t) =Y {@(aj(ze/2 + 1)) + (aj(ze2 — ) } (2.6)

j=1
as a conservative surrogate for Vis ore(t) in . Since they assumed that the mean vector p
is sparse, the extra terms in are negligible. However, in a multiple one-sided test scheme
without the negligible non-null assumption, the additional terms are nonignorable. We note
that the original method dropped the indicator terms I(j € Hy). Instead, we propose using
alternative indicator terms /(A < P; < 1) for some fixed values A, 7 € (0,1). This indicator
has two purposes. One purpose is to adaptively estimate the proportion of true nulls, which
was originally proposed by Storey| (2002)) in an offline FDR control setting and later utilized

by |Ramdas et al. (2018) in an online FDR control setting. The other purpose is to discard
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obvious conservative nulls, which was suggested by Tian and Ramdas| (Tian and Ramdas|)
to enhance the power in an online FDR control setting under conservative nulls. We note
that the candidate threshold A adaptively chooses whether Hy; is a candidate for rejection,
and the discarding parameter 7 determines whether H; is selected for testing. In Tian and
Ramdas (Tian and Ramdas), the indicator terms I(A < P; < 7) were divided by (7 — ) to
make the estimator unbiased. Likewise, we also need to multiply the indicator terms by a
proper weight to make our estimator approximate the realized FDP. The modified version,
which we call the discarding adaptively with principal factor approximation (DA-PFA), is

given as follows:

VDA<t A 7_) Z (I)( (I)(aj(:uj + 2+ WJ))I(A < PJ < 7_) (27)

S @(a( + 2+ 1)) = Plag( + 21+ 1))

Practically, the denominator terms in (2.7) might be unstable, so we put a fixed positive
number ¢ as a lower bound of the denominator. Finally, the discarding adaptively with

bounding on the principal factor approximation (DAB-PFA) is given as

Z CLJ N3+Zt+773>>l()‘<Pj§T)

VDAB AT, 6 .
{@(as(py + 2 + 1)) — Play(py + 20 +15))} V€

orc

(2.8)

The following lemma shows the convergence rate of V.LAB(2) to V. (t).

Lemma 1. For fized constants A\, 7 € (0,1) with A < 7, define
G(t; A\, T) Z g (W)I(A < P; <)
J€Ho

where g; : RE — R is a continuous function for all j € Hy. Assume that condition (C1) is

satisfied. Then,

7o |GUEAT) = D 0 (W) {2y + 20 + 1)) = Blay(s + 21+ m))} | = Oplo"7).
Jj€Ho
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Let
®(a;(p; + 2 + b/ w))
D(aj(p; + 2 + bij)) — B(a;(p; + 2 + bij))'

gi(w) =

Then, the above lemma leads to the convergence rate of V.PA(t) to Vi (t).

In the following theorem, we show the convergence rate of FDPP2(¢; A\, 7), which is a

generalized version of Proposition [I}

Theorem 1. Assume that condition (C1) holds. Then, for fived values \,7 € (0,1) with
A < T, 1t holds that

Po VA (8 A, T) — Vire ()] = Op(p~*7?),

orc

and thus,

po Ve (50, 7) = V()] = O, (™).

orc

Furthermore, on the event & = {p‘lR(t) > cp‘e} for some constants ¢ > 0 and 0 > 0, it
holds that

IFDP2A(t; A, 7) — FDP(t)| = O, (p~*/*%).

orc

The next theorem shows that the DAB-PFA estimator VPAB(#; A\ 7, ¢€) is close to the

orc

DA-PFA estimator VPA(¢; \, 7).

orc

Theorem 2. Assume that condition (C1) holds,
(C2) a; < C,Vj=1,2,...,p for some finite constant C, > 1, and
(C3) e =O(p~®) for a positive constant c.

Then,

Do WVore P(BA 7€) = Vo (A, )] = O, (p777) (2.9)

orc
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for a positive constant 5 < 1, and therefore, we have

Do WVore D(BA, 7€) = V(E)] = Op(p™°" +p~27).

orc

Furthermore, on the event & = {p‘lR(t) > cp‘e} for some ¢ >0 and 8 > 0, it holds that

[FDPOCP (1A, 7,€) — FDP(t)| = O, (9" (p™°"* +p~)). (2.10)

orc

Remark 1. In the proof of Theorem , we show that the equation holds for a positive
constant 8 = C3/C? < 1. Here, C3 € (0,1) does not depend on any parameters. Hence,
the magnitude of f is only affected by C,, which is an upper bound of {a; : j =1,...,p}.
We note that a smaller value of C, makes condition (C2) stronger, resulting in a guaranteed
faster convergence rate. Recall the definition of a;s: a; = (1—||by||?)~*/2 foreach j = 1,...,p
where bjT is the j-th row of B = (v A1y, - .., VAkYr) € RP*E. Since we assume that X is
a correlation matrix, we have Y} \yy3 = 1. By definition, |[b[|* = Zszl kY- We can
expect a small value of C;; when the ratio of Zi(:l Ak t0 D oh_y Ak, is small. Tt is related
to the choice of K, which is the number of factors. If we take a larger value of K, we can
obtain an advantage in the convergence rate through a larger value of 9. However, a larger
value of K makes a;s larger, resulting in a slower convergence rate. Thus, there is a kind of

trade-off between the first and second terms in the convergence rate ([2.10)).

There are a few issues to use FDPPAB(#) in practice. First, we have no information for true
null set Hy. To address this issue, We replace the indicator 1(j € Hy) with I(A < P; < 7).
We note that changing the summation over the true null set to the summation over the

entire index set does not affect the overall summed value since the set of indices of non-nulls

has a negligible intersection with {j: A < P; < 7}. i.e.

IjeHop, A< P <71)~I(A<P; <)
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Another issue is due to the unknown true mean p;s. One naive approach to solve this issue
is to replace p; with any plug estimator fi;. However, this approach has a structural problem.
Instead, we suggest using the discarding parameter 7. Using 7 enforces the discarding of test
statistics less than —z,. For example, hypotheses with negative Z values are discarded when
7 = 0.5. Based on the positive value of the test statistic, a reasonable estimate of the true
mean value p; under the null hypothesis Ho; : ¢t; < 0 is zero. It is equivalent to ignoring p;

terms in (2.8). Now, we consider the following upper bound.

DAB(1. \ 7 ¢) — - P(a;(z +m) (A< P <)
VAT ) = 2 B ag(er + 77) = Blaror T DTV

(2.11)

Here, the subscript “U” stands for “upper”. We note that it is not trivial that VPAB(t; A\ 7, €)

VDAB

B (t; A\, 7, €). To show the increment by removing i, we introduce

is always larger than

the following lemma.

Lemma 2. For any x <0 and A > B > C, we have

P(x+C) y o(C)
P(x+A)—P(x+ B) ~ ®(A) —P(B)

Typically, we take a candidate threshold A larger than threshold ¢. This implies that if
we let © = ajp;, A = aj(z +n;), B = a;(2x+ 1), and C = a;(z + n;), then z < 0 and

A > B> (C. By Lemma|2]

P(a;(p) + 2 +ny)) < ®(a;(z +n;))
D(a;(pj + 2z +15)) — Plaj(py +2x +15)) = Plaj(zr +m5)) — Plaj(zn + ;)

for all j € Ho, and thus VPAB(; A\, 7, €) is larger than VPAB(¢: X, 7, €). We consider FDPDAB (4 \, 7, ¢) =
VEPAB(t: X, 7,€)/{R(t) V 1} as a conservative surrogate.

Finally, it should be noted that we still cannot directly use FDPE*®(#) due to unknown

quantities {(a;,n;) : 7 = 1,...,p}, which are functions of the eigenvalues and eigenvectors
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of the unknown covariance matrix ¥. As in [Fan and Han| (2017), we plug-in the eigenvalue
and eigenvector estimators. The next section discusses the accuracy of the eigenvalue and

eigenvector estimation.

2.3 Estimation accuracy of unknown dependence structure

Practically, the dependence structure is unknown; hence, it is necessary to estimate X to
obtain the proposed FDP approximation. To obtain an optimal convergence rate in the
approximation of the realized FDP, we need some requirements on 3. In this section, we
discuss the relationship between the accuracy of 3 and the convergence rate of the proposed
FDP approximation.

Let 3 be an estimator of Y, and let {(Xj,‘)\/j) :j=1,...,p} be the eigenvalues and the

eigenvectors of f], respectively. Analogous to the decomposition (1.3, S is decomposed by

~

where B = (/):1/2'?1,...,)\%2'?[() € RPK and 3, = > k41 /):J'T/J'ij Here, K denotes
the number of factors satisfying condition (C1). Commonly, K is unknown and should be
estimated. Following |[Fan and Han (2017), we apply the eigenvalue ratio (ER) estimator

proposed by /Ahn and Horenstein| (2013). The ER estimator is defined as

~ K
K = argmax = ,
1<K <Kmax )\K+1

where S\j is the j-th largest eigenvalue of the sample correlation matrix and K. is a prede-
termined maximum possible number of factors. Other methods for estimating the number
of factors can also be used. See Dobriban (2020)) and the references therein. In the rest of

this work, we assume that the number of factors K is known.
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Based on the correlation matrix estimate, we need to estimate the realized common
factors W. Practically, we use the least square method. That is, we use the least squares

estimate W = (BTB)~'BTZ. This also simplifies the technical arguments.

/{R yV1l o (2.12)

where @; = (1 —||b;||2) "2, 7j; = B]T\/K\f, and EJT is the j-th row of B. The following theorem

Define the DAB-PFA estimator as

_——DAB I )\ P <
FDP (L \, T, €) = Z P(@;(z +m)) IA < 7)
{®(a a] Zr + 7]])) q)(aj<z>\ + 77] )} Ve

shows how the accuracy of the eigenvalue and eigenvector estimators affects the proposed

FDP estimator.

Theorem 3. On the event £ that
(C2) a; <C, anda; < C, Vj=1,2,...,p for a finite constant C, > 1,
(C3) e = O(p~®) for a positive constant c,

(C4) max{|n;|, |n;|,|7;] : X < P; < 7} < C, for a finite constant C,, > 0 where

ii; =b]W and W = (BTB)"'BTZ,
(C5) maxi<p<r |75 — il = Op(p™*) for v1 >0,
(C6) Z,If:l |/):k — M| = O,(p'™2) for vy > 0,
(C7) p~'R(t) > cp™*,
we have
=—~=DAB DAB a0 —v1 —vy -1/2
[FDP (t) — FDP*P(t)] = O, {p**(Kp™ +p " +p '?||ul)) } (2.13)

where FDPRAB(t;\, 7, €) = VIPAB( N, 7, €) J{R(t) V 1} with VPAB(t; A\, 7, €) defined in (2.11)).
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Remark 2. As opposed to the effect of € on the convergence rate results in Theorem [2] using
a small € is not beneficial to the overall convergence rate in the above theorem. According to
the convergence rate in , if the eigenvalues and eigenvectors of the correlation matrix
are not precisely estimated, which is equivalent to small values of v; and 15, then we have to
use € = O(p~®) with small . In other words, poor estimation of eigenvalues and eigenvectors
may result in large values of @;s, which make the denominator in very small. Therefore,
we need a bounding parameter € = O(p~®) with a small a to prevent the denominator from

being too large.

Remark 3. In practice, the normality assumption is often violated for various reasons. |Fan
and Han (2017)) addressed this issue by providing both theoretical and numerical analyses
of cases where the normality assumption is violated. They derived theoretical results for
test statistics that are heavy-tailed due to the estimation of marginal variances and reported
numerical simulation results with data drawn from a t-distribution. A similar theoretical
extension can be applied to our problem. Assume that the marginal variances sz of the
statistics Z; are unknown, but we have estimates 8\]2-, where each estimate 8]2 is independent
of Z; and follows a x? distribution with degrees of freedom d. In this case, the standardized
test statistics T; = Z;/5; follow a ¢ distribution with degrees of freedom d. The p-values are

calculated as Pr; = Fy(—1T}), where F; denotes the cumulative distribution function of a ¢,

random variable, and the subscript ‘T’ indicates the use of t; test statistics. In this setting,

/{R )V 1}, (2.14)

where 7 ; = BJTWT and WT = (]§T]§)*1]§TT. One might follow the theoretical approach

we define the DAB-PFA estimator as:

FDPy (A7, €) = Z (@, (z + 7)) (A < Pry < 7)
: . ‘ {@(@;(zr +7r3)) — P(a;(za +7r,5))} Ve

_—_DAB
of |[Fan and Han| (2017) to analyze the asymptotic properties of FDP,  (¢; A, 7, €). However,
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we leave this problem for future research. Additionally, we evaluated the performance of the
proposed method when the normality condition is violated. For more details, see Model 3

of the simulation studies in Section 3.

Remark 4. Compared to previous works (Fan et al., [2012; [Fan and Han| 2017)), our theo-
retical results do not explicitly require sparsity of the non-nulls. However, the term ||p| in
equation can be interpreted as a regulation on the signal strength of both the non-nulls
and true nulls. For simplicity, assume that each non-null mean value p; is equal to pa > 0
and each true null mean value p; is equal to pux < 0. Then, ||p| = O(p}/2|pA| +p(1)/2|pN|).
Theorem (3| implies that a sufficient condition for the right-hand side of equation to
converge to zero is ||u| = O(p*/?>~*=?%). Now, we consider two scenarios: strong and sparse
signals, and weak and dense signals. In the first scenario, we assume p; = O(p") for some
0 < r < 1, implying py = O(p). If |ua| = O(p1=7/272=%) and |ux| = O(p~®~?), we have
|| = O(pY/?>72=%). In the second scenario, we assume p; = O(p) and py = O(p). If
lpal = O(p~@7%) and |ux| = O(p~®~?), we again obtain ||u| = O(p'/>=*=?). From this ob-
servation, we note that the proposed method can accommodate a broader range of scenarios

compared to previous works, which only cover the strong and sparse case.

Following Fan and Han (2017)), we now study sufficient conditions under which (C5) and

(C6) are satisfied. The following lemma is a restatement of Lemma 1 of |Fan and Han| (2017)).

Lemma 3. For any matrices ¥ and &, we have |X] -\ < I - 3| and

V2|E - 3|
min(| A1 — Ajl, |Aj — Ajpal)

||;)\’j - ’Yj” <

where ||M|| = max;<j<, Aj(M) is the operator norm for a p X p positive-definite matriz M.
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Table 1: Some literature on covariance matrix estimation and their convergence rate results,
where « is the rate of decay of a banded matrix, ¢ is a constant between 0 and 1 that
determines the class of sparse covariance matrices, co(p) and so(p) are sparsity parameters

of a sparse covariance matrix.

Paper Estimator Convergence rate
Bickel and Levina, (2008b) st ||§]BL‘er — 3| =0, ((1o§p)a/(2a+2)>
Bickel and Levina (2008a) ~ £° 577 = 2] = 0, (wolp) (222)"7""?)
Cai and Liu/ (2011) s Hf}CL — 3 =0, (So(p) (10%>(1—q)/2>

The above lemma implies that the errors in terms of eigenvalues and eigenvectors are

directly bounded by the operator norm error of the correlation estimator.

Theorem 4. If minj<p<x (A — A\ey1) > d, for a sequence {d,} of positive numbers, then on

the event €N {||§] — 3| = O,(dpp™)} with a constant v > 0, we have

——DAB
IFDP  (t; A, 7,€) — FDPOAB(£: A 7, €)|

= Op {p™*" (K(dy/p + )p™" +p?|luill) } (2.15)
where the event £ is defined in Theorem [3

Many studies on estimating the structured covariance matrix have been proposed over
the last two decades. We list some representative works in Table[I] As noted in[Fan and Han
(2017)), if we combine the convergence rates proved by these papers with some assumptions
on the relation between the sample size n and the number of variables p, we can obtain the

condition || — || = O,(d,p~") in Theorem .
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In this section, we numerically investigate the performance of the proposed FDP approxima-
tion method. We mainly perform two simulation studies. One simulation study checks the
validity of the DAB-PFA by comparing the finite sample behavior of the true FDP and the
proposed FDP estimator for a fixed threshold level ¢t = 0.01. This threshold level is chosen
because it yields an average FDR close to 0.1 in our simulation setting. The other simula-
tion study checks the performance of the proposed FDR control method with comparisons to
other multiple testing procedures. For each method, we choose a threshold level te (0,1) so
that the corresponding FDP estimate is controlled under the predetermined level &« = 0.1. In
addition, we conduct a sensitivity analysis of the choice of the threshold parameters (A, 7, €).

In the simulation studies, we consider the following scenarios: sample size n = 100,
dimensionality p = 1,000, the number of false null hypotheses p; = p — pg € {100, 300, 500},
the threshold parameters (A, 7,¢) = (0.1,0.5,0.01), and the number of simulation rounds
R = 200. We note that [Tian and Ramdas| (Tian and Ramdas|) used (A, 7) = (0.25,0.5)
as their default choice. In our studies, we adopt the same 7 = 0.5 but choose a smaller
A = 0.1, enabling the use of more samples when estimating the upper bound F/DTDDAB
We randomly set p; elements of mean vector p as puay = 3 and the other py elements as
pun € {0,—0.1, —0.2}. Unlike Tian and Ramdas| (Tian and Ramdas), who considered pa = 3
and pun € {0,—0.5,—1,—1.5}, we use smaller uy values, as larger negative values make
the testing problem easier, making it harder to compare the performance of the considered
methods. We consider six data generation models, referring to the covariance structures
used in [Fan and Hanl (2017)). We generate the simulation data as follows. First, we generate

a covariance matrix Xy according to each model. Since we assume that X is a correlation
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matrix, we consider ¥ = D73 D!, where D = diag(aé{ji- :j=1,...,p). We decompose

the correlation matrix ¥ as ¥ = BB +MM ', where B = ()&/271, e )\}(/QVK) € RP*K and
M = ()‘%1171(“7 ey )\,1,/27p) € RP*(P=K)  Then, we independently generate K-dimensional
random vectors {w;}" ; from Nk(0,Ix) and (p — K)-dimensional random vectors {v;}?
from N,_k(0,I,_k), except in Model 3. In Model 3, we generate each element of w; and
v; independently from \/2/_3 - tg, where tg is the t distribution with degrees of freedom 6.
We note that the covariance matrices of w; and v; are Ix and I, g, respectively, as in the
other models. Finally, we obtain the p-dimensional random vector X; = 1+ D(Bw; + Mv;)
where fi = n~'/2u. Based on this data, we calculate the test statistics Z; = n=1/23" | Xj;
(7 =1,...,p). It is easy to see that E(Z) = p and Cov(Z) = Xy. In the following section,

we describe each of the six dependent structures in detail.

3.1 Dependence structures
e [Model 1: Strict factor model] We consider a factor model with three factors,
X;=p+Lf +¢

where f; ~ N3(0,I5) and €; ~ N,(0, X.) are independent. Entries of the factor loading
matrix L are independently generated from the uniform distribution U(—1,1). The
covariance matrix 3. of error vectors is set as I,,. Note that the covariance matrix of

X; is Cov(X;) = LL" +I,. We use ¥y = LL" 4+ I, with K = 3.

e [Model 2: Approximate factor model] We consider a factor model with three
factors, as in Model 1. The difference between Model 1 and Model 2 is the covariance
matrix 3. of error vectors. Unlike Model 1, the covariance matrix used in Model 2

is the same as the one used in the numerical study by [Fan and Han| (2017). In other
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words, in Model 2, we set ¥, as the nearest positive definite matrix of 0.5(3%; + ),

where 3 is a symmetric sparse matrix and X, is a symmetric banded matrix.

[Model 3: Non-normal model] We consider a covariance matrix 3y = LLT + I,
with K = 5, where entries of p x 5 matrix L are independently generated from the
uniform distribution U(—1,1). As previously explained, we decompose ¥y as ¥y =
D(BB' +MM")D, generate each element of w; and v; independently from \/ﬂ g,
and obtain an p-dimensional random vector X; = 1 + D(Bw; + Mv;). The normality
assumption is violated in this model; thus, we can check how important the normality

assumption is for the performance of the proposed method.

[Model 4: Cluster model] In this model, the covariance matrix 3 is constructed

as follows. First, we generate a p-dimensional vector A = (Iy,...,1,)", where

)
U(150,170) for j =1,2,3,4,

l; ~ 4 U(3,6) for j =5,6,...,14,

| U(0.1,0.3) for j =15,16,...,p,

and generate a p X p matrix Q in which each element is generated independently from
N(0,1). Let T be the orthonormal matrix that consists of eigenvectors of QAQ".
Finally, we let ¥y = TAT'" with K = 4. We set the number of factors as K = 4

since the eigengap between {ly,...,l4} and {l5,...,l14} is larger than the gap between

{l5, ceey l14} and {115, ey lp}

[Model 5: Sparse precision matrix model I] We consider a precision matrix
Q = diag(A4, Ay) with Ay =B +c-1,)2.p2 and Ay =4-1,5,,/5. Here, B is a sparse

symmetric matrix in which each element takes a value of 0.5 with a probability of 0.1
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and takes a value of 0 with a probability of 0.9, and ¢ = max{—Ani(B),0} +0.01 is a

constant that makes A; positive definite. Finally, 3y = Q.

e [Model 6: Sparse precision matrix model II] Similar to Model 5, we consider a
precision matrix € = diag(A;, Ay). However, in this model, B is a sparse symmetric
matrix of which each element takes a value uniformly in [0.3,0.8] with probability 0.2

and takes value 0 with probability 0.8, and 3y = Q7.

3.2 Comparison with other multiple testing procedures

In this section, we introduce two existing methods that address multiple testing problems.
The first method is the BH procedure proposed by Benjamini and Hochbergl (1995)), and
the second method is the empirical Bayes method introduced by Efron| (2004)). Unlike our
procedure, the empirical Bayes method controls the local false discovery rate.

First, we briefly review the BH procedure. Based on the uniformity of p-values under
null hypotheses, it is proved that the BH procedure controls the FDR at a prespecified
level a € (0,1). Let {Py}}_, be sorted p-values obtained from p tests in ascending order.

Assuming the independence of p-values, the threshold of the BH procedure is defined as

tpy = max {P(j) 1 Py < la} : (3.1)

1<j<p P

The j-th hypothesis H,; is rejected if P; < tgy. As shown in Benjamini and Hochberg

(1995)), the BH procedure controls FDR at . The BH procedure still works well if the test
statistics have positive regression dependency (Benjamini and Yekutieli, 2001)).

Next, we introduce Efron’s empirical Bayes method. Let {Z;}/_; be the test statistics

from p tests, and let myp and m; = 1 — my be the prior probability of null and non-null
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hypotheses, respectively. In addition, let fo(z) and fi(z) be the density from null and non-
null hypotheses, respectively. Then, the marginal density f can be written as a mixture

density f(z) = mofo(z) + m1 f1(z). The local FDR is defined as

7Tofo(z)'

fdr(z) = )

(3.2)

Therefore, the local FDR can be interpreted as a posterior probability of being null, given
test statistic z. We need to estimate mo, fo(z) and f(z) to control the local FDR. Efron/ (2004))
used the zero-assumption technique to estimate the null density fy(z) and a nonparametric
estimator for estimating the marginal density f(z). See |[Efron| (2004) for details. We note
that the local FDR controlling method for a given level is typically more conservative than
the FDR controlling method with the same level. Hence, controlling the local FDR at the

predetermined level o guarantees the FDR control at level a.

3.3 Fixed threshold level t setting

In this simulation study, we numerically compare the performance of the original PFA
method and the proposed DAB-PFA method. For the comparison, we fix the threshold
level t = 0.01, and consider the relative error of the approximation methods and the relative

gap of the conservative surrogates. Here, the relative errors of the original PFA method and

the proposed DAB-PFA method are defined by

FDP,.(t) — FDP(t)

RE rg — )
o8 FDP(t)
FDPPAB(t: X\ 7,¢) — FDP(¢
REpan — ore ) (t)

FDP(¢) ’
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Figure 2: Box plots of relative errors (left column) and relative gaps (right column). Each
row shows the result from each dependence structure (Model 1~6). For each row, there are
six panels: first three panels contains box plots of the relative errors and the next three
panels contains box plots of the relative gaps for each uy € {0,—0.1,—0.2}. Each panel

shows the box plots for p; € {100,300, 500}.
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respectively. The above relative error measures how much accurately each method approxi-

mates the FDP. Similarly, the relative gaps are defined by

_ FDPy(t) — FDPyy(t)
RGor = FDP oy (t) ’

FDPDAB(t; N, 7,¢) — FDPPAB(¢: A, 7€)

orc

FDPPAB(1: )\ 7, ¢) ’

orc

RGpag =

respectively. A smaller relative gap implies a closer conservative surrogate to the approx-
imation. Figure [2| shows the box plots of the relative errors and the relative gaps. The
left column of Figure [2| shows that there is not much difference between the original PFA
method and the proposed method in terms of the relative error. However, the right column
of Figure [2] shows that the relative gap of the proposed method is much smaller than that
of the original method. In addition, as ux decreases, the relative gap of the original method
increases rapidly while that of the proposed method is barely increased, implying that the

proposed method is robust against the null mean value.

3.4 Practical setting

We compare the DAB-PFA method with the original PFA method, the BH procedure, and
the empirical Bayes (EB) method in a practical setting. When applying the DAB-PFA
method or the original PFA method, a covariance matrix estimator is required. We consider
two covariance matrix estimators: POET (Fan et al., 2013) and S-POET (Wang and Fan),
2017)). We denote two covariance matrix estimators by “P” and “S”, respectively. We set the
level @ = 0.1. For each FDP estimation method, we find the largest threshold ¢ € (0,1) that
makes the estimated FDP value less than the level «. The threshold of the BH procedure is
defined as (3.1), and the threshold of the EB method is set as the corresponding p-value of

the smallest z-value that controls the estimated local FDR under level a. Then, we compute
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Table 2: The averages of the FDP values over 200 repetition are calculated with their

standard error in parentheses for Model 1.

Method

Model | pun s P-PFA DAB-P-PFA S-PFA DAB-S-PFA EB BH

0.1 | 0.095 (0.038) | 0.107 (0.046) | 0.092 (0.037) | 0.104 (0.045) | 0.022 (0.052) | 0.073 (0.091)
0 | 0.3 | 0.072(0.019) | 0.104 (0.030) | 0.071 (0.019) | 0.103 (0.030) | 0.019 (0.027) | 0.062 (0.053)

0.5 | 0.052 (0.014) | 0.103 (0.023) | 0.052 (0.013) | 0.102 (0.023) | 0.016 (0.020) | 0.046 (0.032)

0.1 | 0.068 (0.031) | 0.077 (0.034) | 0.066 (0.029) | 0.074 (0.033) | 0.015 (0.041) | 0.054 (0.076)
M1 | -0.1 | 0.3 | 0.056 (0.018) | 0.080 (0.023) | 0.054 (0.018) | 0.078 (0.023) | 0.013 (0.023) | 0.048 (0.046)

0.5 | 0.041 (0.012) | 0.085 (0.020) | 0.040 (0.012) | 0.084 (0.019) | 0.012 (0.015) | 0.037 (0.028)

0.1 | 0.050 (0.026) | 0.056 (0.028) | 0.049 (0.026) | 0.053 (0.028) | 0.011 (0.036) | 0.041 (0.064)

-0.2 | 0.3 | 0.042 (0.015) | 0.061 (0.022) | 0.041 (0.015) | 0.060 (0.022) | 0.009 (0.018) | 0.037 (0.041)

0.5 | 0.032 (0.010) | 0.070 (0.018) | 0.031 (0.010) | 0.069 (0.018) | 0.008 (0.013) | 0.029 (0.025)

the false discovery proportion

FP
FDP = ———
TP + FP
and the true positive proportion
TP
TPP = —————
TP + FN’

where TP, FP, and FN are the numbers of true positives, false positives, and false negatives,
respectively.

This scenario simulates a situation we encounter in a real-world research problem. Prac-
tically, we cannot obtain information about the FDP or the TPP of a multiple testing
procedure since we do not know which hypotheses are true nulls. Through the simulation
study in this practical setting for various data-generating models, we expect the performance
comparison of the presented methods to represent the results in a real-world analysis well.
The results of two measurements for Model 1 are summarized in Tables 2 and [3l The results

for the other models are summarized in Tables S1, S2, S3, and S4, which can be found in
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Table 3: The averages of the TPP values over 200 repetition are calculated with their

standard error in parentheses for Model 1.

Method

Model | pn T P-PFA DAB-P-PFA S-PFA DAB-S-PFA EB BH
0.1 | 0.786 (0.134) | 0.797 (0.129) | 0.781 (0.134) | 0.793 (0.130) | 0.519 (0.088) | 0.711 (0.064)
0 0.3 | 0.874 (0.107) | 0.903 (0.091) | 0.872 (0.107) | 0.901 (0.092) | 0.698 (0.064) | 0.860 (0.051)
0.5 | 0.909 (0.089) | 0.953 (0.056) | 0.908 (0.089) | 0.952 (0.057) | 0.791 (0.060) | 0.911 (0.043)
0.1 | 0.782 (0.134) | 0.791 (0.139) | 0.779 (0.135) | 0.786 (0.140) | 0.437 (0.134) | 0.707 (0.066)
M1 -0.1 | 0.3 | 0.872 (0.107) | 0.897 (0.100) | 0.870 (0.108) | 0.896 (0.101) | 0.679 (0.053) | 0.858 (0.052)
0.5 | 0.909 (0.089) | 0.949 (0.065) | 0.908 (0.089) | 0.948 (0.065) | 0.777 (0.053) | 0.909 (0.044)
0.1 | 0.781 (0.135) | 0.787 (0.146) | 0.777 (0.136) | 0.783 (0.147) | 0.423 (0.120) | 0.705 (0.066)
-0.2 | 0.3 | 0.871 (0.108) | 0.892 (0.108) | 0.869 (0.109) | 0.891 (0.109) | 0.671 (0.056) | 0.856 (0.053)
0.5 | 0.908 (0.089) | 0.945 (0.072) | 0.907 (0.090) | 0.945 (0.073) | 0.771 (0.053) | 0.909 (0.044)

the supplementary material.

We note that all compared methods control the FDR well under the prespecified level
a = 0.1 in most cases. However, the proposed method exhibits inflated FDR values when
pn = 0 and m; = 100 for Models 2, 3, and 4. This phenomenon can be explained by Figure
2l In Figure 2 when pux = 0 and m; = 100, the relative errors of the proposed DAB-PFA
method show a negative bias for Models 2, 3, and 4, while the relative gaps are nearly zero.
This illustrates that although the discarding adaptively with bounding (DAB) approach
significantly reduces the relative gap, it also introduces instability in the approximation of
the FDP. When the underlying dependence structure satisfies the required conditions—weak
dependence (condition (C1)) and the existence of a reliable covariance matrix estimator
(conditions (C5) and (C6))-the proposed method outperforms the original PFA method.
However, in Models 2, 3, and 4, where these conditions are not satisfied, a large relative gap

can act as a buffer against the instability of the PFA method’s approximation, whereas a
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small relative gap may lead to an underestimation of the upper bound, resulting in slightly
inflated FDR. Importantly, this inflation is not observed when puy takes negative values.
Since the true parameter of interest is rarely exactly at the boundary of the null set in
practical scenarios, we conclude that the DAB-PFA method demonstrates robustly better

performance compared to other methods in terms of true positive rate (TPR).

3.5 Sensitivity analysis

In the previous simulation studies and the following case study, we use fixed threshold
parameters (A, 7,€) = (0.1,0.5,0.01). We numerically investigate how sensitive the perfor-
mance of the DAB-PFA method is when we change the threshold parameters. We consider
¢ =M1 €{0.1,0.2,0.3}, 7 € {0.4,0.5,0.6}, and € € {0.001,0.01,0.1}. Since the number
of all possible combinations of threshold parameters is considerably large, we only take into
consideration the combinations that are different from the standard combination of threshold
parameters ((, 7, €) = (0.2,0.5,0.01) for only one parameter. The averages of the FDP and
TPP values from 200 Monte Carlo simulations are summarized in Tables S5, S6, and S7 in
the supplementary material.

We first focus on the effect of the selection of ( = A/7. This parameter decides which
proportion of hypotheses we regard as true nulls. From Table S5, we can find that using
a smaller ¢ yields a larger controlled FDR and a larger TPR when the null distribution is
conservative. We note that as the null distribution becomes more conservative, the number
of true null hypotheses used in approximating the FDP decreases. Then, using a small (
value can increase the inclusion of true null hypotheses in approximating the FDP, which

makes the approximation more accurate. However, using too small ( may include some



non-null hypotheses in approximating the number of false rejections, so we suggest to use
¢=0.2.

We then focus on the sensitivity of the proposed method with respect to the value of 7.
We note that 7 is the essential parameter that makes our method robust when the true null
distribution is conservative. From Table S6, we notice that using a smaller 7 is advantageous
because it prevents too conservative true nulls to be included in approximating the FDP.
However, if we use too small 7, we have to approximate the FDP only with a small number
of hypotheses. For these reasons, we propose to use 7 = 0.5 in general.

Finally, we examine the sensitivity analysis of €. As mentioned in the remark following
Theorem [3, The inclusion of € prevents the denominators in the DAB-PFA estimator from
becoming excessively small, a situation that may arise when estimates of {(a;,7;)};-; pop
out. In this sensitivity analysis, however, the estimations of Y and its eigenvalues and
eigenvectors are precisely conducted because the simulation data are generated from a well
structured factor model. Hence, Table S7 shows that the selection of € is not sensitive to
the performance of the DAB-PFA method. Here, we provide ¢ = 0.01 as a standard, but
depending on the accuracy of the covariance matrix estimation, we need to choose a proper

value of € in practice.

4. Case study: Protein phosphorylation analysis

In this section, we demonstrate the proposed method for the protein phosphorylation analysis
of ovarian serous adenocarcinoma samples compared with the other aforementioned proce-
dures. Here, we aim to identify uniquely elevated protein modification levels in each of the

five molecular subtypes, as defined by clustering analysis of mRNA-based gene expression
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Figure 3: Heatmap of relative phosphorylation levels at high confidence phosphorylation sites
with validated evidence of signaling by three or more kinases. Phosphorylation is uniquely
elevated in these sites for the samples of the proliferative subtype. The black and white color
bar to the far right side of the figure shows whether each phosphorylation site was above the

threshold by each method (black = null hypothesis rejected, and white = not rejected).



Table 4: The number and the rate (%) of rejected hypotheses are shown for five molecular
subtypes: differentiated subtype(A), immunoreactive subtype(B), proliferative subtype(C'),

mesenchymal subtype(D), and stromal subtype(E).

Case

Method A B C D FE

DAB-P-PFA | 25 (0.44) 257 (4.47) 741 (12.90) 485 (8.44) 512 (8.91)
P-PFA | 16 (0.28) 176 (3.06) 537 (9.35) 437 (7.61) 314 (5.46)
DAB-S-PFA | 18 (0.31) 220 (3.83) 730 (12.70) 479 (8.34) 501 (8.72)
S-PFA 14 (0.24) 174 (3.03) 533 (9.28) 437 (7.61) 300 (5.22)

EB 1(0.02) 253 (4.40) 202 (3.52) 200 (3.48) 73 (1.27)

BH 3(0.05) 272 (4.73) 354 (6.16) 269 (4.68) 147 (2.56)

data (Zhang et al.l 2016). Comparison of protein phosphorylation levels is a representative
example of multiple one-sided tests since there is an implicit dependence structure among
multiple phosphorylation sites on an identical substrate protein and the substrates phospho-
rylated by the same kinases. Moreover, mass spectrometry-based proteomics experiments do
not always detect the same phosphopeptides because each experiment has an uncontrollable
degree of variability. As a result, the dependence structure across the phosphorylation site is
unique in each dataset, and multiple testing procedures that are robust against an arbitrary
degree of dependence are of the utmost importance.

There are five molecular subtypes: differentiated (A), immunoreactive (B), proliferative
(C), mesenchymal (D), and stromal (E). Each molecular subtype has (na,ng,nc, np,ng) =
(21,10,7,21, 8) samples. The protein phosphorylation level at the j-th site in the i-th sample

of subtype ¢ is denoted by {X,;;}, where ¢ € G = {A,B,C,D,E}, i = 1,...,n, and



j =1,...,5746. In this section, we investigate whether the proliferative (C) molecular subtype
samples have larger phosphorylation levels than others. Comparisons between other groups
are given in the supplementary material. For each phosphorylation site j = 1,...,5746, we

consider the hypotheses
Hoj : pey < p-cy vs. Haj:piey > p-c-

where pic ; is the mean phosphorylation level at site j of proliferative samples and p_c ; is
the mean phosphorylation level at site j of other subtype samples. Then, the test statistic
corresponding to phosphorylation site 7 is

T XC,j X—C,j
J
Sj \/(1/710 + 1/71,0)

where X¢ ; = % > ¢ Xe,ij is the sample mean of phosphorylation levels at site j of prolifera-

tive samples, X _¢; = ﬁ > 4eG\(C) Sore, X, is the sample mean of phosphorylation levels

at site j of other subtype samples, and n_- = n—n¢ and 5? = %_5 deG St (X —Xgi)2

Under the null hypothesis Ho;, 7 follows the ¢ distribution with degrees of freedom n — 5.
Therefore, the p-value of the j-th test is P; = F,';(~T}), where F,_5 is the cumulative
distribution function of ¢, 5. The BH procedure and the empirical Bayes method are ap-
plied to these p-values {Pj}gzl. To apply the DAB-PFA, we need to estimate the covariance
structure of Z = (Zy,...,Z,)" in which

N e &
i = .
V(1/ne+1/n_¢)

Under the homogeneous Gaussian assumption, X, ; = (Xg1, ..., Xgp

)T~ Ny(p,, X), where
p, = pc if g =C, and p, = p_ otherwise. As a result, we have Cov(Z) = .
When estimating 32, we propose using POET or S-POET. In one sample test case, we

apply POET and S-POET to the sample covariance matrix S = (n—1)71 Y (X; — X)(X; —



X)T. However, in this case, we estimate ¥ by applying POET and S-POET to the pooled
sample covariance matrix Spocled = (1 = 5) 7" Y o D (X — X) (X — X) T instead.
Using this covariance estimator, we implement our method for the FDP estimation and
obtain the threshold.

In the following section, we compare the following six methods: DAB-P-PFA, P-PFA,
DAB-S-PFA, S-PFA, EB, and BH. We set the FDR level a = 0.1 and threshold parameters
(A, 7€) = (0.1,0.5,0.01). Table 4| shows that the FDP estimation methods (DAB-P-PFA,
P-PFA, DAB-S-PFA, and S-PFA) reject more hypotheses than the other methods (EB and
BH). In particular, across the results for the five subtypes, the DAB methods consistently
identify the largest number of phosphorylation sites as uniquely elevated in each subtype.
To examine whether the additionally rejected hypotheses lead to biologically meaningful
phosphorylation, we prioritize the substrate proteins known to be phosphorylated by at least
three kinases in each comparison, selected by at least one of the six methods. These sites are
most likely to be true positives in the sense that the activity of corresponding kinases on the
exact sites has been validated in independent experiments of human cells (Hornbeck et al.|
2015; Hu et al.} [2014; |Corwin et al. [2017). As expected, excluding the differentiated subtype
with a low number of rejected hypotheses, the PFA procedures select a comparable number
of phosphosites (see the supplementary material for the other heatmaps), often surpassing
the number of rejections in both the Benjamini-Hochberg procedure and empirical Bayes
method.

However, for the proliferative subtype, we observe that the DAB-PFA methods substan-
tially improve the detection of additional true phosphosites, especially in the same substrates

with other phosphosites detected by the original PFA methods. Figure [3| shows the trans-



formed phosphorylation levels (Z-scores) for the sites, with consistently increased phospho-
rylation levels in the proliferative subtype (n = 7). For the heatmaps of other subtypes, see
Figures S1, S2 and S3. It is evident that the DAB methods considerably improve the power

to detect these sites, with adjacent phosphosites already detected by other methods.

5. Discussion

We have proposed a new multiple one-sided hypotheses testing procedure called the DAB-
PFA to control the FDR under the general dependency of test statistics. We use a principal
factor model to approximate the test statistics with a general dependency structure. As a
result, we can express an approximation of the FDP as a function of the eigenvalues and
eigenvectors of the covariance matrix of the test statistics. To account for the conservative
null p-values from one-sided hypotheses, we suggest discarding p-values close to 0 or 1 by
introducing an indicator I(A < P; < 7). We then use the upper bound of the FDP esti-
mator to avoid estimating p;. In practice, we plug in the estimates of the eigenvalues and
eigenvectors to obtain the approximation of the FDP. In our simulation studies, the pro-
posed approximation shows an excellent approximation to the true FDP. We also show the
FDR control of the proposed procedure and compare its power with other multiple testing
procedures.

Instead of using the upper bound by removing 1;s, we can consider a plug-in estimator
of u;s to construct the upper bound. If we estimate ;s consistently or accurately, we may
obtain an upper bound with a smaller gap and a better approximation of the FDP. Here,
we have a large number of parameters to be estimated, and no doubt need some structural

assumptions to estimate them all consistently. It would be interesting to find the conditions
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and propose an improved FDP approximation procedure.

Supplementary Material

The online Supplementary Material contains proofs of the main theorems, details of simula-

tion results and the heatmaps from the case study.
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