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Abstract: Understanding the dependence structure between response variables is an im-

portant component in the analysis of correlated multivariate data. This article focuses on

modeling dependence structures in multivariate binary data, motivated by a study aiming

to understand how patterns in different U.S. senators’ votes are determined by similari-

ties (or lack thereof) in their attributes, e.g., political parties and social network profiles.

To address such a research question, we propose a new Ising similarity regression model

which regresses pairwise interaction coefficients in the Ising model against a set of simi-

larity measures available/constructed from covariates. Model selection approaches are fur-

ther developed through regularizing the pseudo-likelihood function with an adaptive lasso

penalty to enable the selection of relevant similarity measures. We establish estimation and

selection consistency of the proposed estimator under a general setting where the number

of similarity measures and responses tend to infinity. Simulation study demonstrates the

strong finite sample performance of the proposed estimator, particularly compared with

several existing Ising model estimators in estimating the matrix of pairwise interaction co-

efficients. Applying the Ising similarity regression model to a dataset of roll call voting
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records of 100 U.S. senators, we are able to quantify how similarities in senators’ parties,

businessman occupations and social network profiles drive their voting associations.

Key words and phrases: Conditional dependence, Ising model, Lasso, Model selection,

Multivariate data, Pseudo-likelihood

1. Introduction

The study of the dependence structure in correlated multivariate data has drawn

much attention in recent years, due to the increasing accessibility of multi-

response data across many disciplines such as finance (Tsay, 2013), economics

(McElroy and Trimbur, 2023) and ecology (Hui, Müller, and Welsh, 2023).

For a multivariate response vector y = (y1, · · · , yp)⊤, the dependencies across

any set of two components yj and yj′ for j, j′ = 1, · · · , p can be modeled by

specifying a joint probabilistic distribution for y. Two prominent examples are

Gaussian graphical models (Whittaker, 1990) and Ising models (Ising, 1925),

which specify a probability density function (pdf) and a probability mass func-

tion (pmf) for a continuous and binary response vector y, respectively, where

the pdf and pmf of these two models both contain a component of the form∑
1≤j<j′≤p exp(θjj′yjyj′) with θjj′ denoting a coefficient for the interaction term

between yj and yj′ . Accordingly, the set of {θjj′ : j, j′ = 1, · · · , p} are re-

ferred to as pairwise interaction coefficients in these joint models. Moreover,
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in both models each θjj′ is directly tied to the conditional dependence relation-

ship between yj and yj′ given the remaining elements in the response vector

y (Hammersley-Clifford equivalence, Hammersley and Clifford, 1971): if θjj′

is close to/far away from zero, the conditional dependence between yj and yj′

is weak/strong, with the limiting case of θjj′ = 0 implying conditional inde-

pendence. This interpretation of the pairwise interaction coefficient θjj′ has con-

tributed to the popularity of Gaussian graphical models and Ising models for cor-

related multivariate data analysis; see for instance Meinshausen and Bühlmann

(2006), Yuan and Lin (2007) and Friedman, Hastie, and Tibshirani (2007) for

the Gaussian graphical models, and Majewski, Li, and Ott (2001), Guo et al.

(2015) and Bhattacharya and Mukherjee (2018) for the Ising models, among

many others.

In this article, we focus on modeling the dependence relationships for a mul-

tivariate binary response vector y through, or equivalently, modeling the pair-

wise interaction coefficients θjj′ in, the Ising model. As demonstrated above,

the conditional dependence of multivariate binary responses in the Ising model

is captured by the pairwise interaction coefficients θjj′ , which can be collected

into a symmetric interaction matrix Θ = (θjj′)p×p where θj′j = θjj′ . A variety

of approaches have been proposed to estimate and regularize Θ. For example,
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Banerjee, El Ghaoui, and d’ Aspremont (2008) proposed a block-coordinate de-

scent algorithm to solve an approximate sparse maximum likelihood problem for

the estimation of Θ. Ravikumar, Wainwright, and Lafferty (2010) considered a

neighborhood estimation method based on fitting a separate regularized logistic

regression with the lasso penalty to each binary response, while Höfling and Tib-

shirani (2009) and Guo et al. (2010) used a pseudo-likelihood function coupled

with a lasso-type penalty to simultaneously estimate and regularize all pairwise

interaction coefficients in Θ. Further penalized likelihood approaches for sparse

Θ estimation have been developed by Lee, Ganapathi, and Koller (2006) and

Xue, Zou, and Cai (2012), among others.

In contrast to estimating and regularizing the elements of the interaction

matrix Θ, this article proposes a novel Ising similarity regression model which

regresses the pairwise interaction coefficients θjj′ against a set of pairwise simi-

larity measures w(k)
jj′ ; that is,

θjj′ =
K∑
k=1

αkw
(k)
jj′ , for j ̸= j′, (1.1)

where αk denotes the regression coefficient associated with the k-th similarity

measure w
(k)
jj′ for k = 1, · · · , K. It is worth noting w

(k)
jj′ measures the similarity
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between j and j′, which can be either observed directly as part of the data collec-

tion process, or induced from available auxiliary information. As a motivating

example, we consider U.S. Senate roll call voting data where the binary response

yj represents the j-th senator’s voting record (Yea or Nay) to a particular piece

of legislation or bill, and w
(k)
jj′ are constructed based on additional attributes of

the j-th and j′-th senators, such as political parties and occupations. In such

an example, the regression coefficients αk in model (1.1) offer a clear, explicit

quantification of how the k-th similarity measure between the j-th and j′-th sen-

ators affects their conditional dependence when it comes to voting patterns.

At this point, it is important to acknowledge the work of Cheng et al. (2014),

who proposed an Ising regression model to regress the pairwise interaction co-

efficients θjj′ on a covariate vector x. Such a model with θjj′ = θjj′(x) does

not provide the same interpretation for our motivating example however, as their

interaction coefficients θjj′ for different pairs (j, j′) only depend on the same

covariate vector x instead of the pairwise similarity measures w
(k)
jj′ considered

in model (1.1). Also, in a parallel line of research, several studies have con-

sidered using covariates to model the precision matrix encoding the dependence

structure in Gaussian graphical models. Liu et al. (2010) partitioned the covari-

ate space based on classification and regression trees into multiple subspaces

that can have different precision matrices, while Lee and Xue (2018) proposed a
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nonparametric mixture of Gaussian graphical models with mixture probabilities

and precision matrices that are both covariate-dependent. More recently, Wang

et al. (2022) and Ni, Stingo, and Baladandayuthapani (2022) proposed Bayesian

approaches to model the elements of the precision matrix as linear functions of

covariates. As these studies focus on precision matrices of Gaussian graphi-

cal models, they are not directly applicable to the multivariate binary response

setting which we focus on in this article.

Apart from the aforementioned example in political science, the proposed

Ising similarity regression model has a multitude of applications across finance

and ecology. For example, in the study of capital markets, yj can be an indica-

tor denoting whether the j-th firm has distributed dividends to its shareholders,

and w
(k)
jj′ can be the similarity between the j-th and j′-th firms’ financial funda-

mentals such as market value, cash flow, and leverage. Also, in ecology, yj can

be a binary variable indicating the presence or absence of the j-th species, and

w
(k)
jj′ can be the similarity between the j-th and j′-th species’ trait values; see an

application of the proposed model to such an ecology dataset in Section S9 of

the supplementary material, to illustrate the wide applicability of the proposed

method. More broadly, the use of similarity measures in regression is also mo-

tivated by recent developments in covariance regression modeling (Zou et al.,
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2017, 2020, 2022), where the covariance between continuous responses is mod-

eled as a linear combination of similarity measures. Indeed, the proposed model

can be written in a matrix regression form, and this connects to the wider litera-

ture linking (functions of) matrix parameters to a linear combination of matrices;

see for example Anderson (1973), Pourahmadi (1999) and Bonat and Jørgensen

(2016). To the best of our knowledge though, the proposed Ising similarity re-

gression model is the first to establish such an idea for the Ising model specifi-

cally, by explicitly linking similarity matrices Wk = (w
(k)
jj′ )p×p to the interaction

matrix Θ that captures the conditional dependence of binary responses.

To estimate the proposed model, we study a regularized pseudo-likelihood

approach which augments the pseudo-likelihood function of model (1.1) with an

adaptive lasso penalty (Zou, 2006). Doing so induces sparse estimation of the

regression coefficients {αk : k = 1, · · · , K}, which allows us to recover simi-

larity measures that are truly relevant in explaining the conditional dependence

relationships between the binary responses. It is important here to highlight that

this article differs from the aforementioned studies on Ising model estimation,

as our main focus is to induce sparsity on the regression coefficients αk as op-

posed to the similarity measures w(k)
jj′ and the resulting interaction matrix Θ. Put

another way, we aim to identify important drivers of the conditional dependence

relationships i.e., similarity selection rather than edge selection, by treating the
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similarity measures as given covariates.

Under a setting where the number of regression coefficients K and responses

p tend to infinity, we establish estimation and selection consistency for the regu-

larized pseudo-likelihood estimator. To select the tuning parameter in the adap-

tive lasso penalty, we employ a cross-validation approach which preserves the

dependencies between the elements of y. Simulation results support the theo-

retical findings of the proposed estimator, demonstrating its strong finite sample

estimation and model selection performance. Specifically, the proposed estima-

tor not only outperforms other estimators such as the unpenalized estimator and

the lasso-penalized estimator in estimating the parameters of the Ising similar-

ity regression model, but also performs much better than the traditional Ising

model estimators that ignore the additional information from similarity mea-

sures in estimating the Ising model interaction matrix Θ. Additionally, we carry

out simulation studies to compare the similarity selection performance of our

cross-validation approach to the use of AIC (Akaike, 1998) and BIC (Schwarz,

1978) criteria for choosing the tuning parameter, with results showing that BIC

has a comparable performance to cross-validation approach while AIC tends

to suffer from overfitting. We apply the Ising similarity regression model to

roll call voting records of 100 U.S. senators from the 117-th Congress, with re-

sults demonstrating how similarities of senators’ attributes and social network
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activities drive the association between their voting patterns. In particular, aside

from the expected findings such as senators from the same state or party being

more likely to vote similarly, we find that senators who are businessmen or share

certain follower-followee relationships on Twitter tend to exhibit more similar

voting patterns.

The rest of this article is organized as follows. Section 2 introduces the

Ising similarity regression model along with the proposed regularized pseudo-

likelihood estimator. Section 3 discusses the theoretical properties of the reg-

ularized estimator. Section 4 presents simulation studies, while an application

to U.S. roll call voting dataset is provided in Section 5. Section 6 offers some

concluding remarks. All theoretical proofs of the theorems developed in this ar-

ticle, along with detailed empirical comparisons to other estimation approaches,

as well as an additional application to Scotland Carabidae ground beetle dataset,

are presented in the supplementary material.

2. An Ising Similarity Regression Model

2.1 Model Set-Up

Let u = (u1, · · · , up)
⊤ be any vector in the space {0, 1}p. The Ising model

(Ising, 1925) specifies the following pmf for the p-dimensional binary response
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2.1 Model Set-Up

vector y,

f(u;θ) = P (y = u;θ) =
1

Z(θ)
exp

(
p∑

j=1

θjjuj +
∑

1≤j<j′≤p

θjj′ujuj′

)
, (2.1)

where θ = (θ11, · · · , θ1p, · · · , θp−1,p−1, θp−1,p, θpp)
⊤ is a p(p+1)/2-dimensional

parameter vector, and the partition function Z(θ) =
∑

u∈{0,1}p exp(
∑p

j=1 θjjuj+∑
1≤j<j′≤p θjj′ujuj′) is an intractable normalization constant in the pmf. The

main effect parameters in (2.1) are given by θjj for j = 1, · · · , p, while the

pairwise interaction coefficients in the pmf are given by θjj′ for j, j′ = 1, · · · , p

and θj′j = θjj′ . As discussed in Section 1, the symmetric interaction matrix

Θ = (θjj′)p×p is useful for studying the conditional dependence structure among

binary responses.

Suppose now that, in addition to observing the binary response vector y, we

also record a set of p × p symmetric similarity matrices Wk = (w
(k)
jj′ )p×p for

k = 1, · · · , K, which may be available directly as part of the data collection

process or constructed from auxiliary information variables zj1, · · · , zjK associ-

ated to the j-th response for j = 1, · · · , p. In the latter, each element w(k)
jj′ of the

similarity matrix Wk measures the similarity between zjk and zj′k for j ̸= j′.

For instance, if zjk is quantitative, then we can set w(k)
jj′ = exp(−|zjk − zj′k|2),

whereas if zjk is qualitative then we set w(k)
jj′ = 1 if zjk and zj′k have the same
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2.1 Model Set-Up

categorical level, and w
(k)
jj′ = 0 otherwise (see also Johnson and Wichern, 1992).

For completeness and reasons of parameter identifiability, the diagonals w(k)
jj are

set to be zeros for all j = 1, · · · , p and k = 1, · · · , K.

Given a set of similarity matrices Wk for k = 1, · · · , K, the Ising similarity

regression model as introduced in equation (1.1) can be equivalently formulated

as modeling the interaction matrix Θ via the form

Θ =

p∑
j=1

θjj∆jj +
K∑
k=1

αkWk, (2.2)

where ∆jj is a p × p matrix with the (j, j)-th element being one and other

elements being zeros for j = 1, · · · , p. This model re-parameterizes the vector

θ in equation (2.1) by a new parameter vector ϑ = (θ11, · · · , θpp,α⊤)⊤ with

α = (α1, · · · , αK)
⊤, such that the re-parameterized pmf for y can be written as

f(u;ϑ) =
1

Z(ϑ)
exp

{
p∑

j=1

θjjuj +
∑

1≤j<j′≤p

(
K∑
k=1

αkw
(k)
jj′

)
ujuj′

}
, (2.3)

where Z(ϑ) =
∑

u∈{0,1}p exp{
∑p

j=1 θjjuj +
∑

1≤j<j′≤p(
∑K

k=1 αkw
(k)
jj′ )ujuj′}.

In equation (2.2), the vector of regression coefficients α describes how sim-

ilarities directly affect the pairwise interaction coefficients (conditional depen-

dence relationships) of the binary responses. Note also by utilizing similarity
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2.2 Estimation and Similarity Selection

matrices to model the interaction matrix Θ, model (2.3) involves a substantially

smaller number of parameters (p+K parameters) compared to the standard Ising

model in (2.1), which has (p+ 1)p/2 parameters. The proposed Ising similarity

regression model is thus particularly useful when the dimension of the binary re-

sponse vector p is large: even when the number of similarity matrices K grows

at the same rate as the dimension p, the number of parameters in model (2.3)

only grows linearly in p compared to O(p2) parameters in model (2.1).

2.2 Estimation and Similarity Selection

Suppose we have observations of p-dimensional response vectors yi = (yi1, · · · ,

yip)
⊤ ∈ {0, 1}p for i = 1, · · · , n, where y1, · · · ,yn

i.i.d.∼ f(·;ϑ) follows the

Ising similarity regression model in equation (2.3), and i.i.d. denotes indepen-

dent and identically distributed. Recall the pmf f(·;ϑ) involves the normaliza-

tion constant Z(ϑ), which is a sum of 2p terms. As a result, maximum likeli-

hood estimation based on
∏n

i=1 f(yi;ϑ) is computationally not feasible when

the dimension p is large. To overcome this problem, we adapt the existing liter-

ature (e.g., Höfling and Tibshirani, 2009; Ravikumar, Wainwright, and Lafferty,

2010) and propose a pseudo-likelihood estimation approach to fit the Ising sim-

ilarity regression model. Let yi\j = (yi1, · · · , yi,j−1, yi,j+1, · · · , yip)⊤ denote
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2.2 Estimation and Similarity Selection

the i-th observed response vector without the j-th element, and fj(·|yi\j;ϑ) de-

note the corresponding conditional pmf of yij given yi\j for i = 1, · · · , n and

j = 1, · · · , p. Then the (unregularized) pseudo-likelihood estimator can be ob-

tained by maximizing the pseudo-likelihood function
∏n

i=1

∏p
j=1 fj(yij|yi\j;ϑ).

In particular, the conditional pmf fj(·|yi\j;ϑ) can be derived based on f(·;ϑ) in

equation (2.3), and takes the simple form below,

fj(u|yi\j;ϑ) =
exp

{
u
(
θjj +

∑K
k=1 αk

∑
j′ ̸=j w

(k)
jj′ yij′

)}
1 + exp

(
θjj +

∑K
k=1 αk

∑
j′ ̸=j w

(k)
jj′ yij′

) , (2.4)

for u ∈ {0, 1}, i = 1, · · · , n and j = 1, · · · , p. It follows that the conditional

log-odds is given by

log

{
P(yij = 1|yi\j;ϑ)

1− P(yij = 1|yi\j;ϑ)

}
= θjj +

K∑
k=1

αk

∑
j′ ̸=j

w
(k)
jj′ yij′ , (2.5)

for i = 1, · · · , n and j = 1, · · · , p, from which we observe that the conditional

pmf fj(·|yi\j;ϑ) and thus pseudo-likelihood estimation no longer involve the

intractable normalization constant Z(ϑ). In fact, equation (2.5) bears a similar

form to fitting a logistic regression for the conditional log-odds of yij = 1 against

the set of K covariates {
∑

j′ ̸=j w
(k)
jj′ yij′ = W

(k)⊤
j· yi : k = 1, · · · , K}, with

an intercept term θjj and regression coefficients α = (α1, · · · , αK)
⊤, where
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2.2 Estimation and Similarity Selection

W
(k)⊤
j· ∈ R1×p denotes the j-th row of Wk.

We can further augment the above pseudo-likelihood estimator with a penalty

to perform variable selection on the elements of α. This is useful in practice

when there are a non-negligible number of similarity matrices available for data

analysis, but only a subset of them are anticipated to be relevant in equation (2.2).

To perform simultaneous estimation and regularization on the coefficient vec-

tor α, we augment the log pseudo-likelihood function based on equation (2.4)

with an adaptive lasso penalty (Zou, 2006), resulting in a regularized pseudo-

likelihood estimator that minimizes the objective function

− 1

np

n∑
i=1

p∑
j=1

log{fj(yij|yi\j;ϑ)}+ λ
K∑
k=1

wk |αk|

=− 1

np

n∑
i=1

p∑
j=1

[
yij

(
θjj +

K∑
k=1

αkW
(k)⊤
j· yi

)

− log

{
1 + exp

(
θjj +

K∑
k=1

αkW
(k)⊤
j· yi

)}]
+ λ

K∑
k=1

wk |αk| , (2.6)

given a tuning parameter λ > 0. Following Zou (2006) and Huang, Ma, and

Zhang (2008) among others, we set the adaptive weights as wk = 1/|ᾱk| for

k = 1, · · · , K, where ᾱ = (ᾱ1, · · · , ᾱK)
⊤ denotes the unregularized pseudo-

likelihood estimator i.e., the estimator of α which minimizes the objective func-

tion (2.6) with λ = 0. It is worth noting that θjj , the j-specific intercepts for
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2.2 Estimation and Similarity Selection

j = 1, · · · , p, are not regularized; this is similar to the literature of sparse Ising

models (Guo et al., 2010; Ravikumar, Wainwright, and Lafferty, 2010) as well

as other regularized regression settings in general (e.g, Hui, Müller, and Welsh,

2017b, 2018). Regarding the choice of the penalty function, in this article we fo-

cus our developments on the adaptive lasso penalty λ
∑K

k=1wk |αk|; see Section

6 for a discussion on alternative penalty functions. In particular, with adaptive

weights there is only a single regularization parameter λ in the penalty, and the

whole objective function (2.6) remains convex for optimization. Moreover, the

incorporation of adaptive weights wk allows for varying degrees of regulariza-

tion on the coefficients αk across k = 1, · · · , K, and facilitates selection con-

sistency for a sparse coefficient vector α which we theoretically examine in the

next section. We also emphasize that the adaptive lasso penalty here is used for

the selection of regression coefficients associated with similarity matrices i.e.,

similarity selection, and not for the selection of edges in Θ. This is apparent

when we see that the penalty induces sparsity in the regression coefficients, but

not the similarity matrices and the resulting Θ. The details of implementing the

regularized pseudo-likelihood estimation by minimizing (2.6) are discussed in

Section 4.
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3. Theoretical Results

In this section, we establish asymptotic properties for the regularized pseudo-

likelihood estimator of the Ising similarity regression model (2.3). Since our

main interest lies in estimating similarity regression coefficients α that only de-

pend on the pairwise interaction coefficients in equation (1.1), then we focus on

a variant of the model with no main effects, giving rise to the criterion

α̂ = argmin
α

{
−l(α) + λ

K∑
k=1

wk |αk|

}
, (3.1)

where l(α) =
∑n

i=1 li(α)/(np), li(α) =
∑p

j=1[yij(
∑K

k=1 αkW
(k)⊤
j· yi)−log{1+

exp(
∑K

k=1 αk W
(k)⊤
j· yi)}], wk = 1/|ᾱk| and ᾱ = (ᾱ1, · · · , ᾱK)

⊤ = argminα{

− l(α)}; see Guo et al. (2010, 2015) for a similar theoretical treatment. It is

worth noting that while the pseudo-likelihood function is used in criterion (3.1)

to overcome the issue of intractable normalization constant, theoretical results in

this section are still obtained under the joint probability distribution of the Ising

similarity regression model.

Let α(0) = (α
(0)
1 , · · · , α(0)

K )⊤ denote the true value of the coefficient vector

α, S = {k : α
(0)
k ̸= 0, for k = 1, · · · , K} denote the set indexing all truly non-

zero coefficients, Sc = {1, · · · , K}\S, and let the cardinality of S be denoted
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by |S| = K0, where K0 is assumed to be finite. Furthermore, we construct

X (i) =


X (i,1)⊤

...

X (i,p)⊤

 =


W

(1)⊤
1· yi · · · W

(K)⊤
1· yi

... . . . ...

W
(1)⊤
p· yi · · · W

(K)⊤
p· yi

 , for i = 1, · · · , n, (3.2)

and define the K × K matrices U 0 = E{
∑n

i=1X
(i)⊤X (i)/(np)} and M 0 =

E{−∇2l(α(0))}. Finally, for a generic m×r matrix H = (htv)m×r, and subsets

of row and column indices T ⊆ {1, · · · ,m} and V ⊆ {1, · · · , r}, let HT ,V

denote the submatrix of H consisting of rows and columns indexed by T and V ,

respectively, ∥H∥1 = max1≤v≤r{
∑m

t=1 |htv|} denote the matrix 1-norm of H ,

and Λmin(H) and Λmax(H) denote the smallest and largest eigenvalues of H ,

respectively, when H is a square matrix (i.e., m = r). We also refer the reader

to Table S1 in Section S1 of the supplementary material for a list of important

notations used throughout this article along with their definitions.

We introduce the following technical conditions.

Condition 1. There exist finite positive constants Cmin and Cmax such that Λmin(M
0)

≥ Cmin and Λmax(U
0) ≤ Cmax, where M 0 and U 0 are defined below equation

(3.2).

Condition 2. There exists a finite positive constant CW such that ∥Wk∥1 ≤ CW
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for all symmetric similarity matrices {Wk : k = 1, · · · , K}.

By the Cauchy Interlacing Theorem (Parlett, 1980, p. 186) and Condition

1, similar conditions hold for the submatrices M 0
S,S and U 0

S,S; in particular,

Λmin(M
0
S,S) ≥ Cmin and Λmax(U

0
S,S) ≤ Cmax. Condition 2 is a bounded ma-

trix norm assumption which is similar to the conditions imposed on the similar-

ity matrices Wk in the literature (see for instance, Condition C8 in Zou et al.,

2022). For example, when Wk is a symmetric adjacency matrix with elements

w
(k)
jj′ ∈ {0, 1} capturing the neighborhood relationship among p nodes, the con-

dition is equivalent to a column-sparsity (and row-sparsity since Wk are sym-

metric) condition that requires the number of neighbors for each node to be finite

even when the total number of nodes p diverges. Other classes of similarity ma-

trices such as those with bounded elements |w(k)
jj′ | ≤ C and s-sparse column

(and row) vectors (e.g., Wainwright, 2019, p. 156) i.e.,
∑p

j=1 1{|w(k)

jj′ |>0} ≤ s,

where C and s are finite positive constants and 1{·} is the indicator function, also

satisfy Condition 2 with CW = sC. Together with the above assumed sparsity

on the true coefficient vector α(0), Condition 2 implies similar bounded matrix

norm condition for the true interaction matrix Θ(0) =
∑K

k=1 α
(0)
k Wk; that is,

∥Θ(0)∥1 ≤ CW

∑
k∈S |α

(0)
k |.

We first establish the estimation consistency for the unregularized pseudo-

likelihood estimator that is used to construct the adaptive weights.
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Theorem 1. Assume Conditions 1 – 2 are satisfied. If K
√

log(p)/n = o(1)

and there exists a finite positive constant C∇ such that K = o(pC
2
∇/(8C2

W )) as

n, p → ∞, then with probability tending to one it holds that ∥ᾱ − α(0)∥2 ≤

M̄
√
K log(p)/n, for a finite positive constant M̄ > 4C∇/Cmin.

The proofs of Theorem 1 along with all other theoretical results are pro-

vided in the supplementary material. The above convergence rate bears a simi-

lar form to the convergence rate of many lasso-penalized estimators (e.g., Guo

et al., 2010; Nghiem et al., 2022), where the factor of K, instead of K0, in

the numerator is expected given this is the unregularized estimator. In addition,

Theorem 1 is valid under both cases of fixed K and diverging K, so long as

K
√

log(p)/n → 0 and K/pC
2
∇/(8C2

W ) → 0.

To study the asymptotic properties of the regularized pseudo-likelihood es-

timator, we introduce two additional technical conditions.

Condition 3. There exists a constant CM ∈ (0, 1) such that ∥M 0
Sc,S(M

0
S,S)

−1∥∞ ≤

1− CM .

Condition 4. λ
√
n/[min{|α(0)

k | : k ∈ S}
√

log(p)] → 0 and λn/{
√
K log(p)} →

∞.

Condition 3 is commonly known as the mutual incoherence or irrepresentabil-

ity condition (Hastie, Tibshirani, and Wainwright, 2015), and, together with the
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conditions on M 0
S,S and U 0

S,S implied by Condition 1, are similar to those as-

sumed by Meinshausen and Bühlmann (2006) and Guo et al. (2010) among oth-

ers. Condition 4 is similar to existing conditions in the literature regarding the

rates of the tuning parameters for adaptive lasso regression (e.g., Wang, Li, and

Leng, 2009; Hui, Müller, and Welsh, 2018).

We now state the main results of this paper for the regularized pseudo-

likelihood estimator α̂ = (α̂1, · · · , α̂K)
⊤ of the Ising similarity regression model.

Theorem 2. Assume Conditions 1 – 4 are satisfied. If K
√

log(p)/n = o(1)

and there exists a finite positive constant C∇ such that K = o(pC
2
∇/(8C2

W )) as

n, p → ∞, then with probability tending to one it holds that

(a)
∥∥α̂−α(0)

∥∥
2
≤ M

√
K0 log(p)/n for a finite positive constant M > 4/Cmin;

(b) α̂k ̸= 0 for all k ∈ S and α̂k = 0 for all k ∈ Sc.

Theorem 2(a) establishes estimation consistency of the regularized pseudo-

likelihood estimator, noting its convergence rate can be faster than that of the

unregularized estimator. Theorem 2(b) establishes selection consistency of the

regularized pseudo-likelihood estimator i.e., it can recover the underlying spar-

sity pattern of α(0). This is attractive when the Ising similarity regression model

is applied to datasets where the dimension of responses and number of similarity

matrices may be large.
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To conclude this section, we remark Condition 4 provides requirements on

the rate of the tuning parameter λ based on the smallest truly non-zero coefficient

min{|α(0)
k | : k ∈ S}, as the basis for establishing the results in Theorem 2. For

instance, if min{|α(0)
k | : k ∈ S} is bounded away from zero, then it can be

verified that λ = {n/ log(p)}−tKv for some t ∈ (1/2, 1) and v ∈ [2t−3/2, 2t−

1] suffices for Condition 4 to hold. If this is relaxed and we permit min{|α(0)
k | :

k ∈ S} to tend to zero at a rate satisfying min{|α(0)
k | : k ∈ S}{n/ log(p)}m →

∞ for some m ∈ (0, 1/4], then λ = O({log(p)/n}q) for some q ∈ [m+1/2, 3/4]

will satisfy the requirements. In practice, since min{|α(0)
k | : k ∈ S} is unknown,

we adopt a data-driven approach to select λ as discussed in the next section.

4. Simulation Study

We conduct a numerical study to evaluate the finite sample performance of the

proposed regularized pseudo-likelihood estimator for the Ising similarity regres-

sion model (2.3). Briefly, we consider sample sizes n ∈ {50, 100, 200, 400},

numbers of binary responses p ∈ {10, 25, 50, 100, 200}, and K = 20 similarity

matrices with only the first K0 = 5 of them having non-zero true regression co-

efficients i.e., S = {1, · · · , 5}. A total of 1000 datasets are simulated from the

Ising similarity regression model (2.3) for each combination of n and p. Details
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of the simulation settings, including the true values of the main effect parame-

ters {θ(0)jj : j = 1, · · · , p} and regression coefficients {α(0)
k : k = 1, · · · , K} are

provided in Section S7.1 of the supplementary material.

We employ a two-step algorithm to compute the regularized pseudo-likelihood

estimator. First, from the discussion below equations (2.5) – (2.6), the unregu-

larized estimator is obtained by fitting a logistic regression model with y1:n =

(y11, · · · , yn1, · · · , y1p, · · · , ynp)⊤ as the response and (Ip⊗1n,X ) as the model

matrix, where 1n is an n-dimensional vector of ones, ⊗ is the Kronecker prod-

uct operator, X = (X (1,1), · · · ,X (n,1), · · · ,X (1,p), · · · ,X (n,p))⊤, and X (i,j) de-

notes the j-th row of the matrix X (i) given in equation (3.2). In the second step,

we compute the regularized pseudo-likelihood estimator by fitting an adaptive

lasso regularized logistic regression to y1:n and (Ip ⊗ 1n,X ) via the R package

glmnet (Friedman, Hastie, and Tibshirani, 2010), where the adaptive regular-

ization weights in (2.6) are constructed based on the unregularized estimator.

To select the tuning parameter λ in (2.6), we utilize a ten-fold cross-validation

approach, where the observations in each dataset are grouped at the level indexed

by i = 1, · · · , n. That is, we split the data {(y1,X (1)), · · · , (yn,X (n))} ran-

domly into ten folds and select an optimal λ that gives the largest mean pseudo-

likelihood (averaged across ten test sets), noting that the same set of adaptive

weights constructed based on the unregularized estimator from the full dataset is

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0021



used throughout the cross-validation. The grouping of the observations is done

to preserve the dependence structure of the data, since yij are independent in the

index i but dependent in the response index j through the Ising model (see also

Warton, Thibaut, and Wang, 2017).

We compare our proposed regularized pseudo-likelihood estimator (Reg-

ularized) with three basic approaches: the lasso-regularized estimator (Lasso)

based on (2.6) with wk = 1 for k = 1, · · · , K and λ selected using a similar

ten-fold cross-validation approach, the unregularized estimator (Unregularized)

based on (2.6) with λ = 0, and the oracle estimator (Oracle) based on minimiz-

ing an alternative to (2.6) where λ = 0 and αk are set to be zeros for k ∈ Sc. The

lasso-regularized estimator is considered to study the effect of penalty choice on

the empirical performance of the estimator, the unregularized estimator is in-

cluded to examine whether regularization could lead to better overall estimation

performance, and the oracle estimator is used as a benchmark since it incor-

porates additional information regarding the index set S = {1, · · · , 5}. We

compare point estimation performance for all four estimators of the regression

coefficients and main effect parameters using their mean square error (MSE),

MSEα and MSEθ, respectively, and the model selection performance of the pro-

posed estimator and lasso-regularized estimator of the regression coefficients us-

ing the true positive rate (TPR) and false positive rate (FPR); see Section S7.1 of
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Table 1: MSE for the Oracle, Regularized, Lasso, and Unregularized estimators of the
regression coefficients (MSEα) and main effect parameters (MSEθ) in the simulation
study involving the Ising similarity regression model. MSEα is multiplied by 1000 for
clarity.

1000× MSEα MSEθ

p n Oracle Regularized Lasso Unregularized Oracle Regularized Lasso Unregularized

10

50 45.791 68.420 37.524 351.622 0.350 0.402 0.346 0.896
100 21.544 44.121 28.569 147.225 0.167 0.207 0.193 0.370
200 10.755 27.506 19.048 68.262 0.082 0.111 0.099 0.172
400 5.390 16.298 11.717 33.021 0.038 0.057 0.052 0.080

25

50 5.858 14.717 13.474 25.985 0.298 0.391 0.351 0.546
100 2.846 6.817 6.992 12.089 0.137 0.184 0.171 0.242
200 1.434 3.025 3.546 5.996 0.068 0.088 0.087 0.118
400 0.710 1.356 1.780 2.950 0.033 0.041 0.043 0.057

50

50 2.100 5.901 5.908 8.368 0.550 0.788 0.719 0.737
100 0.969 1.924 2.537 3.967 0.120 0.156 0.166 0.205
200 0.469 0.860 1.266 1.935 0.053 0.067 0.074 0.093
400 0.232 0.386 0.625 0.939 0.027 0.033 0.038 0.047

100

50 0.765 4.517 3.282 3.065 2.314 1.551 2.201 2.444
100 0.362 1.390 1.609 1.441 0.500 0.559 0.512 0.567
200 0.175 0.367 0.510 0.709 0.099 0.111 0.113 0.132
400 0.089 0.119 0.227 0.355 0.033 0.034 0.041 0.049

200

50 0.351 5.493 2.406 1.282 1.971 2.180 2.420 2.073
100 0.169 0.376 0.422 0.614 0.290 0.350 0.395 0.343
200 0.079 0.108 0.197 0.295 0.073 0.076 0.089 0.102
400 0.039 0.061 0.096 0.148 0.030 0.031 0.035 0.044

the supplementary material for details on the computation of these performance

measures.

Table 1 shows the MSEα for all four estimators decrease as n and p increase,

while their MSEθ exhibit a clear decreasing trend when n increases but no ob-

vious patterns when p increases; this is to be expected given the main effect

parameter θjj is specific to each of the responses in the Ising similarity regres-

sion model for j = 1, · · · , p. The MSEα and MSEθ for the proposed regularized

pseudo-likelihood estimators are typically much smaller than the unregularized

estimators, and in fact similar to the oracle estimators especially when n and p

are large. This is consistent with the notion that the proposed estimators take
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Table 2: TPR and FPR for the Regularized (top panel) and Lasso (bottom panel) estima-
tors of the regression coefficients in the simulation study involving the Ising similarity
regression model.

Regularized
TPR FPR

p\n 50 100 200 400 50 100 200 400
10 0.337 0.490 0.654 0.824 0.167 0.202 0.225 0.235
25 0.835 0.970 0.999 1 0.218 0.218 0.197 0.167
50 0.954 0.999 1 1 0.186 0.174 0.154 0.102
100 0.976 0.998 0.999 1 0.043 0.105 0.076 0.009
200 0.925 0.998 1 1 0.043 0.058 0.005 0

Lasso
TPR FPR

p\n 50 100 200 400 50 100 200 400
10 0.307 0.500 0.711 0.888 0.124 0.185 0.237 0.290
25 0.859 0.980 1 1 0.298 0.356 0.392 0.395
50 0.982 0.999 1 1 0.403 0.412 0.426 0.428
100 0.999 1 1 1 0.294 0.327 0.405 0.429
200 0.996 1 1 1 0.254 0.354 0.392 0.433

advantage of the underlying sparsity in the model, resulting in better overall es-

timation performance than the unregularized estimators. Furthermore, the MSEs

of the proposed estimators tend to be smaller than the lasso-regularized estima-

tors when n and p are large.

Turning to the model selection performance of the proposed estimator in Ta-

ble 2, while there is slight underfitting as reflected by the comparably low TPR

for the case of smallest p = 10, both the TPR and FPR tend to one and zero,

respectively, as n and p increase. This is consistent with Theorem 2(b), empiri-

cally demonstrating that the proposed method is able to recover the underlying

sparsity in the Ising similarity regression model. The lasso-regularized estimator

suffers from overfitting as seen from its FPR not converging towards zero, thus

supporting the use of the adaptive lasso penalty in our proposed estimator.
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Results from comparing our ten-fold cross-validation approach to the use of

AIC and BIC criteria for choosing the tuning parameter are provided in Table S2

of the supplementary material. Overall, results show the BIC performs similarly

well as our cross-validation approach, while the AIC suffers from clear overfit-

ting when p is small due to its weaker model complexity penalty. These results

provide empirical support for using the cross-validation approach to choose λ.

Next, we compare the proposed estimator to other traditional estimators of

the Ising model in the literature that involve direct estimation of the Ising model

interaction matrix Θ, without considering the similarity matrices Wk (e.g., Sec-

tion 3 of Höfling and Tibshirani, 2009). From Table S3 in the supplementary

material, we see that the proposed estimator greatly outperforms the traditional

Ising model estimators in recovering the true Θ matrix, since it incorporates the

additional information from the similarity measures.

Finally, we conduct simulation studies with varying number of similarity

matrices K ∈ {10, 20, 40, 80, 200} while keeping the same number of truly non-

zero regression coefficients K0 = 5, as a further investigation on the effect of K

on the empirical performance of various estimators. Unsurprisingly, the estima-

tion and model selection performance of all methods decline as more irrelevant

similarity matrices are being added, noting the proposed estimator still performs

reasonably well relative to other estimators under different settings of K; see
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Tables S4 – S6 in the supplementary material for full results.

5. Application to U.S. Senate Roll Call Voting Data

We apply the Ising similarity regression model (2.3) to roll call voting data from

the U.S. Senate as part of the 117-th Congress, covering the period from 6

January 2021 to 20 May 2021 (date of data collection). Roll call voting data

has previously been studied using a variety of statistical techniques including

undirected graphical models (Banerjee, El Ghaoui, and d’ Aspremont, 2008).

Here, we use our model to study how voting associations between senators

are associated with their similarities in various demographic attributes and so-

cial network profiles. The dataset is obtained from the U.S. Senate’s website

(https://www.senate.gov/), which originally consists of binary voting

records, coded as one for ‘Yea’ and zero for ‘Nay’, on 199 bills by 100 sena-

tors of the 117-th Congress. After performing some preliminary data wrangling

procedures (see Section S8 of the supplementary material), the final dataset an-

alyzed consists of n = 138 bills voted by p = 100 senators, where all bills are

treated as independent (e.g., Banerjee, El Ghaoui, and d’ Aspremont, 2008; Guo

et al., 2010).

We obtain several attributes for each senator, including their state, political
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party, class, and age from the U.S. Senate website, along with gender and occu-

pation from Wikipedia. Additionally, each senator’s Twitter handle is obtained

from the ‘us-senate’ GitHub project of ‘CivilServiceUSA’, and used to compute

the number of tweets and number of followers for each senator. Each of these

attributes is then converted into a similarity matrix Wk following the procedure

described in Section 2.1, depending on whether it is a qualitative (state, party,

class, gender and occupation) or quantitative (age, number of tweets, number of

Twitter followers) attribute. We refer the reader to Section S8 of the supplemen-

tary material for detailed construction of these similarity matrices, as well as a

descriptive analysis for the above attributes and the binary votes of the senators.

Note that a symmetric adjacency matrix Wk is also constructed to summarize the

Twitter follower-followee relationship among the senators, such that w(k)
jj′ = 1

if the j-th senator follows the j′-th senator on Twitter or vice versa, and zero

otherwise. As a result, the analysis consists of K = 15 similarity matrices.

We fit the Ising similarity regression model using the regularized pseudo-

likelihood estimator to identify and quantify truly important attributes driving the

voting associations between senators, where λ is selected using ten-fold cross-

validation with the groupings being done at the bill level. After performing vari-

able selection and obtaining the estimated non-zero regression coefficients, we

construct 95% Wald confidence intervals for each coefficient based on standard
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errors from the empirical sandwich covariance matrix obtained by deriving the

score and Hessian matrix of the log pseudo-likelihood for each observation with

respect to the set of chosen similarity measures; see Section S6 of the supple-

mentary material for details of its derivation.

Table 3 shows only 7 of the 15 regression coefficients are estimated to be

non-zero using the adaptive lasso penalty; estimation results for the main effect

parameters are given in the supplementary material. Of these, unsurprisingly

there is statistically clear evidence that senators from the same state and/or party

are more likely to vote similarly on the bills (analogous state and party effects

are found in Banerjee, El Ghaoui, and d’ Aspremont, 2008; Guo et al., 2010,

among others), although the former exhibits a much stronger effect. Most oc-

cupations are found to be uninformative for the conditional dependence rela-

tionships between senator voting patterns, except for businessman and lawyer,

although the confidence interval corresponding to the effect of lawyer contains

zero. The presence of a positive effect for the businessman similarity matrix

could be attributed to senators who are businessmen tending to vote similarly on

bills related to the economy.

There is statistically clear evidence of a positive association between the

Twitter follower-followee relationship adjacency matrix and senator voting pat-

terns. A possible explanation is that one senator who follows the other senator
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Table 3: Point estimates and 95% confidence intervals (in parentheses) for the regression
coefficients corresponding to the K = 15 similarity matrices, based on fitting the Ising
similarity regression model (2.3) to the U.S. Senate roll call voting data using regular-
ized pseudo-likelihood estimation. Estimates whose corresponding confidence interval
excludes zero are bolded.

Estimation of αk

State Party Class Age Gender Lawyer
2.342 0.167 0.021 0 0 0.018

(1.846,2.838) (0.153,0.181) (-0.034,0.075) 0 0 (-0.047,0.083)
Executive Businessman Farmer Army Teacher Professor

0 0.451 0 0 0 0
0 (0.018,0.884) 0 0 0 0

Tweets Followers Twitter Follower-Followee Relationship
-0.091 0 0.144

(-0.136,-0.046) 0 (0.110,0.177)

on Twitter has more exposure to their advocated ideologies, and hence is more

likely to vote similarly. It is also possible that the senator who follows the other

senator on Twitter already agrees with their ideologies in the first place, while

their interactions on Twitter further reinforce such agreement, leading to positive

associations in their voting patterns. The similarity in terms of senators’ popular-

ity on Twitter, as measured by the number of followers, does not have any effect

on the association between senators’ votes. Interestingly, although the effect of

the senators’ number of tweets is found to be negative, when we run a separate

analysis based on fitting an Ising similarity regression model with only this sim-

ilarity matrix, its associated coefficient becomes positive: α̂Tweets = 0.083 with

95% confidence interval being (0.080, 0.087). Therefore, the negative coeffi-

cient found in Table 3 is conjectured to be due to a large amount of information

contained within this similarity matrix that could be explained by other similar-

ity matrices i.e., a form of matrix multicollinearity.
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Figure 1: Graphs of weighted similarity/adjacency matrices α̂kWk associated with state,
party and Twitter follower-followee relationship for a subset of 20 senators, where the
edge width is proportional to the estimated α̂k. The bottom right plot presents the
weighted graph based on the estimated interaction matrix Θ̂, where the edge width is
proportional to its associated θ̂jj′ and edges between senators with different states and
parties are represented as dashed lines. Nodes are labeled with the state abbreviation of
each senator. The four nodes on the left, labeled ‘TN’ or ‘TX’, are Republicans, while
the remaining nodes are Democrats.

Figure 1 presents graphs of the weighted similarity/adjacency matrices α̂kWk

for selected attributes, together with the estimated interaction matrix Θ̂ describ-

ing the voting associations for a subset of 20 senators, where Θ̂ =
∑100

j=1 θ̂jj∆jj+∑15
k=1 α̂kWk based on equation (2.2), and α̂k and θ̂jj are the regularized pseudo-

likelihood estimators. The choice of senators to be included is made by begin-

ning with an empty set, and sequentially adding pairs of senators who have the

largest off-diagonal elements θ̂jj′ in Θ̂ until the set contains the top 20 senators.
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To further improve clarity of the graph based on the estimated Θ̂, we remove

all edges with θ̂jj′ ≤ 0.1297 (the median of {θ̂jj′ : j ̸= j′}); this explains the

visually denser graph of Twitter follower-followee relationship compared to that

of Θ̂ in Figure 1. We emphasize that the removal of edges here is purely to im-

prove the visualization and interpretability of the graph, noting our focus is on

similarity selection and not edge selection as discussed earlier in Sections 1 and

2.2. The corresponding graph without such removal of edges can be found in

Figure S5 in the supplementary material, and provides qualitatively similar con-

clusions as above. It can be seen that the estimated strong voting associations

(i.e., large estimated values of θjj′) between senators are being driven heavily

not only by similarities in senators’ state and party affiliations, but also their

relationships on Twitter as indicated by the dashed edges in the graph of Θ̂. In-

deed, the fitted Ising similarity regression model yields a log pseudo-likelihood

of -1125.28, compared to -9441.01 for a null model with only the main effect

parameters. This corresponds to a pseudo R2 (Cohen et al., 2013) of approx-

imately 0.88, indicating the selected model provides a much better fit than the

null model through the inclusion of the available Wk matrices to explain the

dependence structure.
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6. Conclusion

We develop an Ising similarity regression model to study the effect of predictor

information, arising in the form of similarity matrices, on conditional depen-

dence relationships among binary responses. A computationally efficient regu-

larized pseudo-likelihood estimator using the adaptive lasso penalty is proposed,

which we demonstrate to be estimation and model selection consistent under a

general setting where the number of similarity matrices K and responses p grow

with sample size n. Simulations demonstrate the strong finite sample point es-

timation and selection performance of the proposed estimator, especially com-

pared with several traditional Ising model estimators in recovering the interac-

tion matrix, as it incorporates additional information from relevant similarity

matrices. The cross-validation approach for choosing the tuning parameter is

shown to have comparable performance to the BIC in terms of model selec-

tion. Applying the proposed model to the U.S. Senate roll call voting data not

only identifies well-documented state and party effects in driving senator vot-

ing patterns, but also establishes new insights into the importance of senators’

similarities in businessman occupation and social network relationships on their

voting dependence. These findings are new and differ from those obtained from

the graphical structure analyses using standard Ising models (Guo et al., 2010,

2015). In particular, while graphical structure analyses aim to reveal dependency
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structures among responses (senators) through edge selection, our method seeks

to recover and quantify how different auxiliary information (senator’s attributes)

influence this structure via similarity selection. While various methods have

been developed for the former problem, our approach is one of the first to have

been developed for addressing the latter.

A logical next step would be to extend the proposed model to incorporate

predictor information from both observations and responses, thus forming a sort

of “double Ising similarity regression model”. This may involve relaxing the

assumption of y1, · · · ,yn
i.i.d.∼ f(·;ϑ) to consider correlated data such as spa-

tial and/or temporal data, where similarity matrices could be built up based on

knowledge of spatial or temporal distance (e.g., Bonat and Jørgensen, 2016) to

account for spatial or temporal dependence between observations. The assump-

tion could also be relaxed by extending the Ising similarity regression model to

allow for heterogeneous interaction matrices Θ(i) for different yi vectors, e.g. by

considering W
(i)
k that are heterogeneous across i = 1, · · · , n; see for instance,

Zou et al. (2022) who model heterogeneous covariance matrices of continuous

response vectors based on linear combination of heterogeneous similarity matri-

ces.

While this article focuses on the estimation and selection of the regression

coefficients α, future research would involve rigorous theoretical study of the
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inferential component of our method e.g., by establishing asymptotic normality

results for the regularized pseudo-likelihood estimator. Given the comparable

model selection performance of the BIC to our cross-validation method, it would

also be useful to extend this investigation to consider other types of information

criterion in selecting λ (e.g., Zhang, Li, and Tsai, 2010; Fan and Tang, 2013).

On a related note, other penalty functions could be used to replace the adap-

tive lasso penalty for similarity selection, including the use of group or fusion

penalties when the set of similarity matrices exhibits some sort of hierarchy or

ordering (Hui, Müller, and Welsh, 2017a; Zhang et al., 2023). Finally, while this

work focuses on binary responses using the Ising model, similar modeling idea

could be extended to quadratic exponential families (Gourieroux, Monfort, and

Trognon, 1984) to allow for other response types.

Supplementary Material

The Supplementary Material contains sample versions of Conditions 1 and 3,

proofs of the theorems, inference method, additional simulation results, along

with supplementary details of application to the U.S. Senate roll call voting data,

as well as an additional application to the Scotland Carabidae ground beetle data.
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