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Abstract:

In policy learning, the goal is typically to optimize a primary performance metric,
but other subsidiary metrics often also warrant attention. This paper presents
two strategies for evaluating these subsidiary metrics under a policy that is op-
timal for the primary one. The first relies on a novel margin condition that
facilitates Wald-type inference. Under this and other regularity conditions, we
show that the one-step corrected estimator is efficient. Despite the utility of this
margin condition, it places strong restrictions on how the subsidiary metric be-
haves for nearly-optimal policies, which may not hold in practice. We therefore
introduce alternative, two-stage strategies that do not require a margin condi-
tion. The first stage constructs a set of candidate policies and the second builds
a uniform confidence interval over this set. We provide numerical simulations to

evaluate the performance of these methods in different scenarios.
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1. Introduction

1.1 Literature Review

Many fields are interested in learning policies that map from individual-
level characteristics to a set of actions. The policies that result in the best

possible mean of a subsequent outcome are often referred to as optimal

policies [Athey and Wager, 2021]. For example, in biomedical sciences the

action may take the form of a treatment allocation and the outcome may be

disease remission [Ling et al.,|2023], whereas in digital marketing the action

and outcome may be a recommendation and click-through rate, respectively

[Fiez et al., 2024]. Various methods have been developed to estimate opti-

mal policies. Examples include Q-learning, which uses regression modeling

of the expected outcome to guide policy decisions [Qian and Murphy, 2011],

outcome-weighted learning [Zhao et al., 2012], and doubly robust methods

[Murphy, 2003, Robins, 2004, Dudik et al., 2011} [Zhang et al., [2013]. Per-

formance guarantees for these methods have been established by several

authors |Qian and Murphy, 2011, Zhao et al., 2012, Luedtke and Chambaz,

2020, |Athey and Wager, [2021].

An estimated policy is unlikely to be implemented unless confidence

intervals characterizing its performance are available [Shi et al., 2021, Weltz
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@, . These performance metrics may take the form of the remission
rate of all patients or the click-through rate of all customers. In both
of these examples, the metric is the value of the optimal policy in the
population, better known as the optimal value. Inference about the optimal

value is well-studied when there is only one outcome of interest |[Luedtke

and Chambaz, 2020, |Liu et al., 2021]. Several works have shown that one-

step estimators and targeted minimum loss-based estimators are efficient

under certain conditions [van der Laan and Luedtke, 2015, Chambaz et al.

2017]. In particular, these works require a non-exceptional law condition

that states that the conditional average action effect does not concentrate

mass at zero |Robins, 2004]. Alternative strategies have been developed

for constructing confidence intervals for the optimal value even when this

condition fails |[Chakraborty et al., 2013, Luedtke and Van Der Laan, 2016,

Shi et al., [2021].

Though most existing methodological works on policy learning focus on
optimizing for a single performance metric, in real-world settings there are

often multiple other subsidiary performance metrics that are also of interest

[Boominathan et al., 2020, Bica et al.,|2021]. These metrics may correspond

to different summaries of the outcome, such as the median, rather than the

mean, and time to disease remission [Phillips et al., 2020]. Alternatively,
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they may summarize several different outcomes rather than just a single
one. For example, when learning a treatment allocation, symptom reduc-
tion may be considered alongside prognosis [Freemantle et al., [2003]. Most
existing approaches for incorporating multiple outcomes involve combining
them into a composite outcome and then using policy learning methods
designed for single-outcome settings [Butler et al., 2018|. In settings where
the actions recommended by experts are recorded in the dataset, Murray
et al. provided a means to construct a composite outcome in an automated
fashion [Murray et al., 2016]. However, when expert recommendations are
not available, composite-outcome-based approaches require investigators to
construct the composite outcome in some other way, which often ends up be-
ing somewhat arbitrary [Luckett et al.,[2021]. Some alternative approaches
do not require the construction of a composite outcome. One such approach
involves learning a policy that returns a set of recommended actions, rather
than a single one [Laber et al., 2014]. Each of the actions in this set should
yield a desirable result for at least some of the outcomes.

In cases where a single outcome is of primary interest and others are
only of secondary interest, a preferred approach may be to optimize only
for this one outcome, while still making inferences about the effect of the

policy on the subsidiary outcomes. For example, if a company optimizes a
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policy for customer acquisition, it must also consider the impact the policy
will have on customer retention [Afeche et al., [2017]. As another example,
just as the side effects of any new medical intervention must be assessed
along with its effect on the primary outcome of interest [FDA, 2006, the
side effects of a new treatment policy should be assessed as well [Linn et al.,
2015]. This problem has been studied in precision medicine where methods
have been proposed to learn optimal dynamic treatment regimens with risk
constraints [Wang et al., [2018, |Liu et al. |2024]. Instead of putting hard
constraints on the subsidiary outcomes, this work provides a systematic
approach for assessing the impact of a policy that is optimized for some

primary outcome, on other subsidiary outcomes.

1.2 Notation and objectives

Let X € X be a feature, A € {0,1} a binary action, and Y € ) an outcome
that is observed after the action. This outcome may be multivariate. Let
M be a nonparametric model consisting of possible joint distributions P of
(X, A,Y). We focus on the offline policy learning setting where the sample
consists of n independent and identically distributed draws (X;, A;, Y;)™
from Py € M. Let II be a set of policies X — {0, 1} that take as input a

feature and take action 0 or 1. For a given policy 7 € II, let 2, (P) be a real-
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valued primary performance metric for the policy 7 under sampling from
P, where we assume that larger values of this metric are considered prefer-
able. Further let U, (P) be a real-valued subsidiary performance metric
for m under P. For example, when Y is a primary-subsidiary outcome pair
(Y*,YT) € R%, these metrics could be the covariate-adjusted means of these
two outcomes [Luedtke and Chambaz, 2020, |[Luedtke and Van Der Laan,
2016]. That is, Q-(P) = [Ep[Y*|A = 7(z), X = z]dP(z), and ¥, (P) =
[Ep[YT|A = n(x),X = z]dP(z). In this case, let ¢ : {0,1} x X = R such
that gp(a,x) = Ep[Y*|A = a, X = x| denotes the value function for the
primary metric; and s : {0,1} x X — R such that sp(a,z) = Ep[YT|A =
a, X = z] denotes the value function for the subsidiary metric. Alter-
natively, the outcome Y may be univariate and the primary performance
metric may be equal to the mean Q,(P) = [Ep[Y|A = n(x), X = x]dP(z),
while the subsidiary metric may be equal to the covariate-adjusted probabil-
ity that the outcome exceeds a specified value ¢, namely U, (P) = [ P{Y >
t|A = 7(x),X = x}dP(x). We refer to Q.(F) and ¥, (P,) as the Q-
performance and W-performance of the policy 7. For P € P, let II}, denote
the set of optimal policy with respect to the primary performance metric,
that is, I}, := {7 € I : Q. (P) = sup .y 2w (P)}. We denote a generic

element of this set by 7. We refer to elements of II* := I}, as Q-optimal
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policies and denote a generic element by 7*. We assume throughout that
IT* is nonempty, and in general, this set may contain more than one policy.

We are interested in making inferences about the subsidiary perfor-
mance metric W, (Fy) for Q-optimal policies. Letting ¢§ = inf e Ur(Pp)
and ¢§ = sup,c- V= (Fo), our objective is to construct a confidence interval
for the range of possible U-performances under an 2-optimal policy, that is,
develop a confidence interval that is a superset of [1§, ¥¢] with a specified
asymptotic probability.

When there is only one (2-optimal policy, our objective is to determine
the W-performance of this policy, denoted by g := 9§ = 1%. When there
are multiple Q-optimal policies, 1§ may be less than 1Y, and the upper and
lower bounds of our interval inform on the most extreme W-performances
that can be attained from an §2-optimal policy. For example, if larger values
of ¥ are preferable, then the upper confidence bound on % informs about
the best achievable W-performance by an Q-optimal policy. Such a policy
can be shown to be one of several policies that fall along the Pareto front
of the two-objective optimization problem that seeks to maximize {2 and
V. The Pareto front denotes the set of policies for which there is not a
policy that performs better with respect to one of the two metrics and no

worse with respect to the other. The difference between inferring about



1§ and multi-objective optimization is that the policy with the best ¥
performance is primarily optimized with respect to one performance metric
2, while multi-objective optimization optimizes several performance metrics
simultaneously |Gunantara, 2018, Deb) 2014].

Our main contributions—the first available confidence intervals for sub-
sidiary performance metrics—are presented in the next two sections. When
presenting these, we consider two separate cases. In Section [2] we begin
with a more specialized case, where the performance metrics €2, and ¥,
are assumed to be the covariate-adjusted means of a primary outcome (Y*)
and subsidiary outcome (YT). We also assume a unique Q-optimal policy 7*
over an unrestricted policy class 11, and that a margin condition holds. In
Section [3] we move to a more general case, where (), and W, are arbitrary

smooth parameters and there may be multiple (2-optimal policies.

2. Wald-type inference under a margin assumption

In this section, we focus on the case where Q. (P) = [Ep[Y*|A = (), X =
2]dP(z), and U (P) = [Ep[YT|A = n(x),X = z]dP(z), for a primary-
subsidiary outcome pair (Y*,YT). Moreover, the policy class II is unre-
stricted. We aim to build on existing works that evaluate the (2-performance
of an Q-optimal policy [van der Laan and Luedtke, 2015, Luedtke and Van

Der Laan, 2016]. These works have shown that a simple estimation strat-



egy is efficient under a non-exceptional law condition that makes the -
optimal rule unique [Robins, 2004]. In this case, ¥ = ¢ and we write
Yo = Y5 = ¥, This strategy first obtains an estimate 7 of the Q-optimal
rule, and then constructs a standard one-step estimator of 2z(Fy). Heuris-
tically speaking, pursuing estimation of Q=(F;), rather than Q. (F), intro-
duces only negligible bias because 7 should be a near-maximizer of Q. (F).
Hence, similarly to the fact that f(z) — f(z*) = O(|z* — x|?) for a differen-
tiable function f : R — R with maximizer z*, the error induced by replacing
7 by 7 in the functional 7 — ,(F,) should be of the second-order. In
this section, we study the extent to which a standard one-step estimator of
U= (Fy) will yield an asymptotically normal and efficient estimator of ¥( 7).
This study is important since, if the standard one-step estimator satisfies
these properties under only mild conditions, then there is little reason to
develop alternative methods.

We now discuss a key condition that we will require to establish the
efficiency of a standard one-step estimator for ¥(F,), along with the va-
lidity of corresponding Wald-type confidence intervals. Define the function
@w(P)(x) == Ep[Y*|]A =1,X = 2] — Ep[Y*|]A = 0,X = z] to be the con-
ditional average treatment effect on the primary outcome, and s,(P)(x) :=

Ep[YT|A=1,X = 2] —Ep[YT|A =0, X = z] to be the conditional average



treatment effect on the subsidiary outcome. We refer to these functions as
the primary CATE and subsidiary CATE, respectively. We use the short-

hand notation g0 := g,(Fp) and spo := sp(Fo).

Condition 1 (Margin condition between YT and Y*). For some C; > 0

and ¢ > 2,
Py (|86.0(X)| > Cit|gpo(X)|) < 75, for all ¢ > 1. (2.1)

When this condition holds, |g,o(X)| # 0 with Py-probability one. Hence,
this condition is a strengthening of the usual non-exceptional law condition
[Robins, 2004] that is required when the ¥ and € performance metrics coin-
cide. To ensure the validity of the standard one-step estimator, some form
of strengthening appears to be needed to make up for the fact that 7* is
defined as a maximizer in 7 of Q. (Fp), rather than W, (F). Indeed, the

estimation error of this estimator {Z)\% can be decomposed as
br = U (R) = [0r = Wa(B)| + [W2(Ro) = U (R)] .

The fact that ¢z is a one-step estimator of U=(Fy) should imply that the
first term will be small. However, since 7* is not necessarily an optimizer
for W, it is possible that Q= (Fp) is close to Q.+ (Fy) while Uz (Fp) is far from
U« (Py) — see Figure|[l|for an illustration of this possibility. Therefore, we

need a condition to characterize the flatness of the ¥ performance surface
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Figure 1: Plot of primary and subsidiary performance metrics for an esti-
mated policy given the threshold policy class IT = {1(x > a) : a € R}. The
estimator 7 performs well in the sense that the Q-regret .« (FPy) — Qz(F)
is small, which is to be expected since 7 is defined to be an Q-optimal rule.
Nevertheless, in principle the W-regret W, (Fy) — V= (Fy) could still be large,
since the W-value function 7 — W, (Fy) may be markedly different from the
2-value function. Though a similar phenomenon can occur for unrestricted
policy classes, which are our focus in this section, the infinite-dimensional

nature of these classes precludes their visualization.

relative to that of 2. This flatness can be characterized by studying the
absolute CATE ratio |q,0(X)| / |s6,0(X)|, where we use the convention that
b/0 = +oo for b > 0 and we recall that |g,o(X)| = 0 with probability zero

under (2.1). Condition (1| imposes that the absolute CATE ratio can only

R



concentrate vanishingly little mass near zero when X ~ Fy. This certainly
holds in the extreme case where, within each level x of the covariates, the
magnitude of the expected effect of the action on the primary outcome,
namely |gso(x)|, is at least as large as the magnitude of its effect on the
subsidiary outcome, namely |spo(x)|. It also allows for scenarios where
the magnitude |s; ()| is much larger than |g,o(x)| for certain features x
with a sufficiently small probability of occurrence. However, it can fail to
hold when there are some feature levels where the action does not affect
the primary outcome and yet affects the subsidiary outcomes. This can
occur, for example, if the primary outcome is cancer remission and the
subsidiary outcome captures side effects induced by chemotherapy. Though
Condition [1| may be strong, we were unable to show the validity of the
standard one-step estimator without it. Therefore, in the remainder of this
section, we assume that this condition holds, and we refer the reader to the
next section for a method that is valid even when it does not.

In the special case where YT = Y* a.s., the asymptotic normality and
efficiency of the one-step estimator have previously been justified by estab-
lishing the pathwise differentiability of the 2-performance of an 2-optimal
policy [van der Laan and Luedtke, 2015]. We follow a similar approach

here when considering cases where YT and Y* may differ. In particular, we



establish the pathwise differentiability of U* : P+ sup ey Wr(P) in what
follows. When doing this, we will need to impose Condition [I} along with
an additional margin condition that is inspired by ones previously assumed
in policy learning [Qian and Murphy, 2011, |Luedtke and Van Der Laan,

2016] and classification [Audibert and Tsybakov, [2007] literature.

Condition 2 (Margin condition for Y*). For some v > %,
Fo (0 <|go(X)| <t) St7 Vt>0. (2.2)

This condition imposes that the unique -optimal policy can be es-
timated well via a plug-in estimator [Qian and Murphy, [2011, [Luedtke
and Van Der Laan, [2016]. For some generic P € P and 7 € II, de-
fine pp(alr) := P(A = a|X = z) and D(7, P)(z,a,y") = %[gﬂ —
sp(a,x)] + sp(m(x),z) — V.(P). We use the shorthand py := pp, and

Pn = pp,. The following result characterizes the pathwise differentiability

of U*(-) at F.

Lemma 1. Suppose that ¥, and ), are covariate-adjusted means for each
7 € I1, the policy class 11 is unrestricted, and conditions[1] and |3 are satis-
fied. Then, U* s pathwise differentiable at Py relative to a nonparametric

model with canonical gradient D(7*, F).

We use the above result to argue that a one-step corrected estimator



is efficient provided its influence function is equal to D(II*, ). Consider
some estimate ]3n of the true distribution F,. The one-step corrected esti-
mator takes the form 9pg, = \Ilg(ﬁn) + P,D(m, ﬁn) For simplicity, when
studying this estimator, we focus on the case where 7 is a plug-in estima-
tor of the Q2-optimal policy, namely 7T}k3n. In principle, the policy estimator
could be constructed using some other approach, such as outcome-weighted
learning |Zhao et al., 2012]. Let gy ,(x) and sp,(z) be some estimates for
the conditional average treatment effects g, o(x) and spo(x) respectively.
Also, let s,(a,z) be some estimate for so(a,z). Define the L,(P) norm of
a generic function f : D — R as ||f|,.p := [[p | f(t)["dP(t)]"/". We first

present some consistency conditions on these estimates.

Condition 3 (Consistent estimator of conditional average treatment effect

4+v/2 _ (n*1/2).

on the primary outcome). [|gn — @ollo p,” = or,

Condition 4 (Consistent estimator of conditional average treatment effect

on the subsidiary outcome). We have

max {‘ po(a )
ac{0,1}

-1
palal )
Condition 5 (Donsker function class). D(T, ﬁn) falls in a fixed Py-Donsker

ACPRENC ->||2,Po} = on,(n"2)

27P0

class with probability tending to 1.

Condition 6. || D(7, ﬁn) — D(7*, Py)ll2,p, = 0.



Condition [3| guarantees consistency of the conditional average treatment
effect estimator and the rate of convergence is slower than the parametric
rate when v > 0, so this holds as long as we have smoothness and sparsity of
the CATE function [Nie and Wager, [2021, |[Kennedy, 2023]. Condition 4] is
standard in the semiparametric inference literature. It is often referred to as
an n~'/4 rate condition, since it holds if each of two nuisances—in this case
po(a | -) and sp,—are estimated at that rate [Van Der Laan and Rubin,
2006, Chernozhukov et al., 2018, Kennedy, [2024]; this necessarily holds
in regular parametric models, but also holds under enough smoothness in
larger models. Condition [5|imposes that the nuisance estimators not be too
flexible. This holds, for example, if the inverse propensity and subsidiary
outcome regression function estimators fall in function classes of uniformly
bounded Hardy-Krause variation with probability one [Benkeser and Van
Der Laan, 2016, Fang et al., [2021], since the permanence properties of
Donsker classes ensure that this condition is satisfied [Van Der Vaart and
Wellner, 2013, Theorem 2.10.6]. Condition [f] requires convergence of the
estimated influence functions used for debiasing. Usually, it needs the non-
exceptional law condition to hold [Robins, 2004, Luedtke and Van Der Laan,

2016]. The following theorem states that the one-step estimator is efficient.

Theorem 1. Under Conditions @ the one-step estimator Yos,, for T =



5 1S an asymptotically linear estimator of V*(P,) with influence function

D(n*, By), in the sense that

1 n
Yosn — U (Fo) = > D(x*, Po)(Xi, A, V) + op, (n ).

i=1

Moreover, 1Yos. is an asymptotically efficient estimator of 1.

The above can be used to construct Wald-type confidence intervals for
1y of the form 1ogn % 21-a/20,/+/n, Where 21,5 is the 1 — /2 quantile of a
standard normal random variable and o2 := £ 3°" | D(T, P (X:, Ay, Y2,

The Donsker condition required by Theorem (1| can be removed if cross-
fitting is used [Schick, |1986]. A 2-fold version of this approach first par-
titions the data in two halves. Then, it uses the first half of the data to
learn 7 and uses the remaining data to construct an estimator for Wx(Fp).
The roles of the halves are then swapped and the two estimators are sub-

sequently averaged. Multi-fold versions of cross-fitting could also be used.

3. Inference of a general functional without margin assumption

3.1 Overview of the methods

The methods we present in this section are agnostic to whether Condition
holds and, more generally, whether there are multiple 2-optimal policies.

Because the parameter U* considered in the previous section may not even
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be well-defined when there are multiple such policies, we instead focus on
inferring about the range [0}, 1¢] of possible U-performances of Q-optimal
policies. Unlike those in the previous section, the methods developed here
critically rely on the policy class II being restricted — in particular, being
Py-Donsker [Van Der Vaart and Wellner} 2013] — and this condition cannot
be removed even if cross-fitting is employed (see Section for a discus-
sion). Also, in this section, we do not assume our performance criteria are
covariate-adjusted means. Rather, they could take some other form, such
as that of a covariate-adjusted median. In what follows we give an overview
of our approach for inferring about [§, 1y].

Our proposed method consists of two stages. The first spends § < «
error probability to construct a confidence set ﬁg that contains the set of
optimal policies IT* with probability tending to at least 1 — 3. The second
infers about the WU-performance of each remaining policy in this confidence
set, returning a confidence interval for [, ¥¢] of the form

. > . //{\ﬂ'za,ﬂ > /K\;ﬂ'zaﬁ
ool o

7T€ﬁ5

where 1, is some estimate for U, (Fp), za,s corresponds to the 1 — (v —f3)/2
quantile of the normal distribution, and %2 is an estimate of the asymp-
totic efficiency bound for estimating V. (F,). We provide a union bounding

argument that shows that, under conditions, this confidence interval will
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cover [, 1¢] with asymptotic probability 1 — a.

The first-stage confidence set ﬁg is constructed so that policies that
perform poorly in terms of the primary performance metric are eliminated.
In other words, we maintain policies 7 whose uniform upper confidence
bound for U, (Fp) is greater than the largest non-uniform lower confidence
bound across all policies in the set. Figure [2| shows an example of how the
first-stage elimination is performed. More specifically, we define this set ﬁg

after the first-stage filtration as

ﬁﬁ = {WGH:Lng@r—i—iﬁg}, (3.2)
where W, is some estimate for 0, (P), 02 is an estimator of the asymptotic
efficiency bound for estimating Q. (Fp), L, is an asymptotically valid 1 —
£/2 lower bound for sup, . Q:(F) (e.g., obtained via [Luedtke and Van
Der Laan, 2016]), and ¢4 is selected in such a way that {@, + G,ts/n/? :
7 € 11} is an asymptotically valid 1 — /2 uniform upper confidence bound
for {Q,(P) : © € I}, in the sense that Q. (Py) < Gy + Gxts/n/? for all
7 € II with probability tending to at least 1 — 3/2 as n goes to infinity.
Note that L, exists and a simple lower bound for L,, is sup,.cy [@W — i’{%} .
It may at first be surprising that, in constructing the confidence in-

terval for [¢§,¥Y], the only place a uniform confidence bound is used is in

the upper bound of (3.2). Indeed, when we began studying this problem,
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Q,(Py)
largCSt lower uniform UCB
confidence bound : — non-uniform UCB

Figure 2: Example of first-stage elimination. Each black dot represents an
estimate of (2.(Fy) and the horizontal bars denote the confidence bounds.
Policies whose uniform upper confidence bound (UCB) is below the largest

lower confidence bound (LCB) get eliminated.

the first approach that we considered was the same as that previously de-
scribed, except with all confidence bounds replaced by uniform ones. In
particular, L, was defined as the maximum over 7 € II of a uniform lower
confidence bound for the (2-value function and the minimal and maximal
marginal confidence bounds in were also replaced by minimal and max-
imal uniform confidence bounds. However, after analyzing this method, we
discovered that less uniformity was needed than we initially expected. In-
deed, the uniformity in defining L, can be dropped since a simple union
bounding argument shows that L, only needs to satisfy that it falls below

the optimal (-value with asymptotic probability at least 1 — [3/2; while
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selecting the maximum of a uniform confidence band for the value function
does satisfy such a property, developing such a lower bound is now a well-
studied problem, and so less conservative approaches have been developed
[Luedtke and Van Der Laan, 2016]. The uniformity in can be dropped
via an intersection-union method argument [Theorem 1 of Berger and Hsu,
1996], which we show can be applied since our interest concerns parameters
defined as the maxima and minima over a set.

As mentioned earlier, justifying the above approach relies on a union-
bounding argument across the [ coverage error that is made by the first-
stage confidence interval in and the 1 — o — 8 coverage error that is
made by the second-stage confidence interval in . Relying on this union
bound could result in unnecessarily wide confidence intervals, so we present
another two-stage method whose justification does not require a union
bound. In the first stage, we choose the quantiles s, ¢!, and u], derived as
extreme values of the joint distributions of estimators of (2,(F))renr and
(Vo (Fp))ren — see Section 3.3| for details. Then we construct ﬁg and the

asymptotic interval the same ways as in (3.2)) and (3.1)), while replacing ¢z

respectively. Given that s, ¢/, and uf, are con-

(a2

and 2,5 with ¢! and s,

structed based on a joint distribution, we refer to this approach as the joint

approach. Because of the avoidance of the union bound, the joint approach
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is expected to provide tighter confidence intervals in scenarios when the

primary and subsidiary outcomes are strongly correlated.

3.2 A union bounding approach

In this subsection, we provide additional details and theoretical results
about the union bounding approach. We first need the following condi-
tion for an estimator of {Q;(Py) : 7 € I}. In what follows, we let D,
be the canonical gradient of W, relative to a locally nonparametric model,

0x(Py) = [PD,(Py)*"/?, and ki (Pp) := [PD(Py)?]"/2.

Condition 7 (Uniform asymptotic linearity of estimators of {2-value and

U-value functions). The estimators {&, : m € II} of {Q,(F) : m € II} and

~

{1y : m € I1} of {U,(F) : € I1} satisty

ilelg [Wr — Qr(Po) — PuDA(Ry)] = Op(n_1/2)7 (3.3)
sup [@ ~U.(R) - PnDW(PO)} = o0,(n"2). (3.4)

These asymptotic linearity conditions can be established via consistency
requirements similar to those in Condition 4| and a Donsker condition (see
Section 2.1 of |[Luedtke and Chambaz, [2020]). Note that only requires
uniformity over IT*, rather than all of II. Estimators satisfying and

(3.4) can be derived via one-step estimation [Pfanzagl, [1982], targeted min-
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imum loss-based estimation [Van Der Laan and Rubin, 2006], or double
machine learning |Chernozhukov et al.; 2018]. We now provide some condi-
tions on the W-value function, the policy class I, and necessary conditions

for standard deviations and the primary outcome.

Condition 8 (Restricted policy class). The policy class II satisfies the

following:

(1) IT has a bounded uniform entropy integral (Chapter 2.5.1 of [Van

Der Vaart and Wellner| 2013]), i.e. [;* supg v/log N (¢, 11, L?(Q))de <

oo, where the sup is over all finitely supported measures ) on X’;

(2) I is closed in L*(P), in the sense that, for all 7 : X — {0,1}, a

[I-valued sequence (7;)%2, converges to 7 in L*(F) only if w € IT;
(3) II* is non-empty.

Examples of such policy class IT in L?(P,) include classes of binary de-
cision trees with fixed depths while noting that Condition |8 applies to more
complicated and general policy classes. We then provide some conditions

for the standard deviations and the smoothness of the U-value function.

Condition 9 (Non-vanishing standard deviations and consistent estima-

tors thereof). The following conditions are satisfied: inf,cqo,(Fy) > 0,
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SUPer 07 (Fo) < 00, infren k-(Fy) > 0, sup,ep £x(Fo) < 0o. In addition,

0. and R, are uniformly consistent estimators of o,(Fy) and k. (Fp).

Condition 10 (Smoothness of performance metric in policy). The map
T — V() is continuous and, for all 7,7" € II, [[Dr — Dyllo(p,) <

Co || — 7'|| 12y for some constant Cs.

When €2 and ¥ are covariate-adjusted mean functionals as in Section
and the primary and subsidiary outcomes are bounded, Condition is
necessarily true. Let F 1= {D;(Py)/o(P) : © € II} and F = {f, =
D(Py)/kr(Py) : m € T1} denote the collections of canonical gradients that
are standardized to have unit variance. Conditions [J] and [10] play a crucial
role in showing that F and F are Py-Donsker, which is required to validate
the uniform confidence bands utilized in our union bounding approach.

We now show that the confidence set ﬁg defined in contains the
set of Q-optimal policies II* with high probability asymptotically. Let
{Gf : f € F} be a mean-zero Gaussian process with a covariance function

(f1, f2) = Pfifa. Then, tg in (3.2) is defined to be the 1 — 3/2 quantile of

supscx G f and Lemma {f in the appendix shows that {@ﬂ + zqf‘; T E H}
is an asymptotically valid uniform f-level confidence band for {w, : m € IT}.

Lemma 2 (Asymptotic coverage of ﬁg) If Conditions @ @ and@ hold,

then lim sup,, P{I1* £ ﬁg} < B.
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The interval in (3.1)) uses the remaining o — § level of error proba-
bility to construct a confidence interval for the random quantity fg =
[inf

U, (Fy),sup V. (Fy)]. On the event that IT* C ﬁg, it is true

ﬂ'Eﬁﬁ Weﬁlg

that Zs D [1¢, 4], and so any interval that covers Zs also covers [t0¢, 1],

A union bound then gives our result, which is summarized in Theorem [2]

Theorem 2 (Asymptotic coverage of Cl,). Under Conditions[7, [8 [4 and

for a fized o € (0,1) and any choice of 5 € (0, ), the confidence interval

Cl,, as defined in (3.1) satisfies liminf, . P({[¢)¢,v4] C CL,}) > 1 —a.

Also, as indicated in , the width of CI, is determined by a quantile
of a standard normal random variable — for example, when a = 0.06
and B = 0.01, 2,3 ~ 1.96. At first, this may seem surprising, given that
developing a uniform confidence band for {¥, : 7= € II*} would require
using a strictly larger scaling of the standard error of 1@. However, our
proof of Theorem [2| shows that using this larger scaling is not necessary for
the sake of developing a confidence interval for [¢f,9%]. The key to this
argument involves showing that, under Condition [8] there exist 7* and 7%
in IT* that attain the minimum and maximum W-values, respectively. The
existence of 7¢ shows that the event where the lower bound of CI,, fails to

cover ¥f = inf e U, (Fy), intersected with I1* C ﬁﬂ, satisfies
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{ inf U, (P) < inf [JW —Eﬂza,g/nl/ﬂ A C ﬁﬁ}

mwell* WEH[;

c { inf Wo(R) < inf |6y — Frzas/n'’?] |

mell* mell*

= {@/Jﬂz < 7Tieng* [{/J\ﬂ — Eﬂza,ﬁ/nlﬂ] } C {@/Jwe < 1@4 — Eﬂzzaﬁ/nlﬂ}.

The event on the right corresponds to the case where a marginal 1 — (o —
B)/2-1evel lower Wald-type confidence interval fails to cover .., and so
occurs with asymptotic probability (o — $)/2 under reasonable conditions.
In our proof, we establish Theorem [2| using a union bounding argument
that combines this with a similar guarantee for the upper bound of CI,, and
the fact that IT* & ﬁg happens with asymptotic probability at most 5.
Under additional conditions, our confidence interval for [1§, 1)¢] not only
ensures asymptotically valid coverage but also attains an optimal n~'/2 con-
vergence rate. In this part, we restrict the performance metrics to covariate-

adjusted means and propose a boundedness condition on the primary and

subsidiary CATE functions.

Condition 11 (Boundedness condition). There exists some C3 < 0o such

that for any x € X, we have |spo(x)| < Cs|qpo(x)|.

In most ways, Condition is relatively stronger than Condition [1}
Indeed, the limit of Condition [1f as ( — oo corresponds to the condition

that the subsidiary CATE is strictly less than a constant multiple of the
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primary CATE. Since Condition (1| allows for any ¢ > 2, it puts a much
weaker constraint on how the subsidiary outcome behaves for nearly optimal
policies. There is one sense, however, in which Condition is weaker
than Condition it does not generally imply that the Q-optimal policy
is necessarily unique. This is true because it allows for equality between
subsidiary and primary CATEs, and so both could be zero on some set of
positive probability. Though the optimal policy need not be unique when
Condition holds, it must still be true that all Q-optimal policies yield

the same W-value, and so in the following lemma we shall let 1y = 1§ = 1.

Lemma 3 (n~%/? convergence rate of CI,, under conditions). Assume that
the performance metrics are covariate-adjusted means as in Section[d, the

unrestricted Q-optimal policy over all possible maps from X to {0,1} is in

II, and L, = sup,cy [ZJW — f;ﬁg} in (3.2). Then, under Conditionsﬂ, H
[9, and with probability at least 1 — 23 asymptotically, the width of the

confidence interval for 1y is O,(n=1/2).

3.3 A joint approach

We now formally describe our joint approach. Consider the mean-zero
Gaussian process {Gf : f € F U F} with covariance function (fy, fo) —

Pfifs. Our joint approach is the same as the two-stage procedure from



3.3 A joint approach

Section except that we require a particular choice of L,, and use cutoffs

(st tl, ul) satisfying

al) Vo)

ianP’{inf Gf > —t! supGf < st Gf, > —ul,Gf, < uL} >1-—a.
mell fer fer

(3.5)
More specifically, we define the set [t after the first-stage filtration as

~ —~ O—ﬂ—Sa ~ O-ﬂ'ta
HT::{WEH:suplwﬂ—m]Sww+m}. (3.6)

well

Here we choose L,, to be the uppermost point of a uniform lower confidence
band for {Q.(P,) : m € I} with level 7 := P{sup,c; Gfr > 5| } <
a. Note that in the union bounding approach, 87 = /3, while here 37 is
implicitly defined through the joint cutoff . The resulting confidence

interval is stated in Theorem 3

Theorem 3. Under Conditions@ @ @ assuming the cutoffs (s, !, ul)

o) o)

satisfy (3.5)), it holds that lim inf,,_,. P({[¢§, v¥] € CI'}) > 1 — a, where

= ot T
_ ~  Kpul, ~  Kpul
CIL = | inf {wﬂ -~ } , sup {¢7r + vy } .
wellt n refit n

There are many possible choices of (sf, ¢, ul) that satisfy (3.5). To

o) Yo

select among these, we could choose the triple (s!,t! wul) that provides the

) Yo T

tightest confidence interval from this collection, resulting in what we refer to

as an optimized joint method. This optimized (s!, !, ul) is justified since,

) o) o
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for any choice of (s, 1, ul) satisfying , the confidence interval CII has
valid coverage. For any [, this optimized joint method yields a provably
tighter confidence interval than the union bounding method that uses the
same choice of L,, as in the left-hand side of . However, it is possible
that the joint approach could potentially result in a wider confidence band
in the first stage with the use of an alternative lower confidence bound
for the Q-optimal value, such as the one introduced in [Luedtke and Van
Der Laan, [2016]. In practice, the optimized choice of (s, t! , ul ) is unknown,
but it can be approximated via a multiplier bootstrap — see Appendix D] for
details. Though our theorem focuses on a fixed and known triple (s, tI, ul),
adapting it to allow for the use of an estimated triple with an in-probability
limit would be straightforward.

The cutoff in considers the joint event regarding G f and Gf for
f e Fand f € F, thereby avoiding the use of the union bound required
by the approach in Section The tightness of this union bound relies on
whether the event that II* is contained in the first stage policy set, namely
{11* C ﬁg}, and the event that [1§, 1)4] is contained in the second stage con-
fidence interval are disjoint. Of course, when these events are fully disjoint,

the union bound will be tight. When they are independent, the (asymp-

totic) probability that both events occur is f(a — ), which will be small



for choices of @ and  commonly used in practice. Hence, the union bound
will only be slightly loose in these cases. Finally, when the events fully
overlap, the union bound will be as loose as possible. These scenarios can
be better understood by relating them to primary and subsidiary outcomes.
Generally, the dependence or independence between the events is likely to
correlate with the extent to which primary and subsidiary outcomes de-
pend on each other. The events tend to be independent when primary and

subsidiary outcomes are independent, and dependent otherwise.

4. Numerical experiment

We show the performance of our methods on a 1D simulation instance de-
scribed below. Additional results on a 1D instance with larger sample size, a

3D instance, and two high-dimensional linear instances are in Appendix

4.1 A 1D simulation

We conduct simulation studies to evaluate the length and coverage of 1 — «
confidence intervals for bounds on a mean subsidiary outcome, [, ¥¢]. Our
first set of simulations focuses on a 1-dimensional threshold policy class,
denoted as II = {1, ) : @ € [-1,1]}. We compare the confidence intervals

from four approaches. The first and the second are the union bounding and
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the joint approaches described in Section [3.2] and denoted as union and
joint respectively. The third is the one-step estimator approach described
in Section [2| denoted as one-step. To ensure that this approach applies, we
design our scenarios so that the optimal policy for the unrestricted policy
class lies in the threshold class II. Consequently, in our simulation study, an
estimate of the optimal policy in II also estimates the optimal policy in the
unrestricted class. The fourth is a one-step estimator with sample splitting,
denoted as os-split. This approach is the same as one-step, except that we
obtain an estimate 7, of the Q-optimal policy using only half of the data,
and construct a Wald-type confidence interval for Wz (Fy) using the other
half. Last, we present an oracle method, denoted as oracle, that knows the
specific (2-optimal policies that provide the upper and lower bounds,
and 5. The oracle method uses precisely those policies and construct a
Wald-type confidence interval for [1§, 9%]. Since we have no hope of getting
optimal policies a priori, the oracle method cannot be used in practice.
We examine three distinct scenarios with an illustration of the 2 and ¥
values of each policy under various scenarios in the three panels in Figure [3]
The left panel describes the situation where the set of Q-optimal policies,
IT*, is not unique. In this scenario, II* = {1, ) : @ € [-0.5,0]}, and the

margin condition (Condition |1]) is not satisfied for any ¢. The middle panel
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describes the situation where IT* is unique the margin condition is satisfied
for any ¢ > 2, as we see that when 7 is around the optimal policy, gs0(X)
varies much faster than s,o(X). The right panel describes the situation
where II* is unique but the margin condition is not satisfied for any (, as
we can see that as X varies, both ¢,0(X) and s,0(X) vary linearly.

For each scenario, we consider sample sizes n of 500 and 5000. To gener-
ate the set of policies, we construct a fine grid (a;, - -+ ,ay) for N = 10° over
[—1,1] and denote the set of policy as [Iy = {1, c0) : 7 € [N]}. We use 1000
multiplier bootstrap replicates to estimate the supremum and infimum in
generating the cutoffs. We let a = 0.05 when constructing confidence inter-
vals and use 1000 Monte Carlo replications to compute their coverage of the
true interval [¢§, 9¢] and approximate their average widths. We estimate
the conditional probability p(a|z) via a kernel density estimator as imple-
mented in the sklearn package and the conditional probabilities p(y|1, z) and
p(y|0, ) using gradient boosted trees as implemented in the xgboost pack-
age, both with the default settings. The Python code to reproduce the sim-
ulations is available at https://github.com/zhaoqil/EstimationSubsidiary.

Table [1] shows the coverages and the widths of confidence intervals of
[15, 98] for different scenarios and methods. We can see the one-step es-

timator fails to provide a nominal coverage when the margin condition
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nonunique unique non-margin unique margin

2

1 Treated above ’,," Treated above e -
E e 7
= 0 -9 — === value for s(X)
> et > — value for q(X)

- - .
-1 -~ Not treated below -~ Not treated below optimal 1T
-2
1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
X

-=--  value for primary CATE
— value for subsidiary CATE
®  range of optimal policies

Value

Figure 3: The top figure represents {2- and W-value, while the bottom
figure represents s,0(X)- and @ 0(X)-value. 1D threshold policy class
II = {1jg00) : @ € [=1,1]} under different scenarios: 1) the optimal pol-
icy for the primary outcome is non-unique, 2) the optimal policy for the
primary outcome is unique while the primary and subsidiary outcomes are
not correlated, 3) the optimal policy for the primary outcome is unique

while the primary and subsidiary outcomes are correlated.

(Condition [1)) fails. The other two methods produce similar coverages. We
compare the confidence intervals with an oracle confidence interval, which

is a lower bound on the width of any valid 1 — « confidence interval, and



coverage width
union joint one-step os-split union joint one-step os-split oracle
non-unique 1.000 1.000 0.000 0.000 1.549 1.538 0.240 0.317 0.668
unique non-margin 0.980 0.980 0.812 0.751 0.148 0.143 0.068 0.089 0.068
unique margin 0.978 0.981 0.949 0.953 0.149 0.144 0.074 0.108 0.074

Table 1: Coverages and widths of [¢§, ¥¢] with sample size n = 500

calculate the relative widths. We can see that the joint and union bounding
methods generate confidence intervals about 2.3 times and 2.1 times as wide
as the oracle confidence interval when the optimal policy is non-unique and
unique, respectively. These results show that although our methods are
conservative, they are relatively successful in maintaining a narrow confi-
dence interval. In contrast, the one-step estimator produces a confidence
interval that is about the same width as the oracle confidence interval, but

it fails to provide valid coverage when the margin condition fails.

5. Discussion

The problem studied in existing works aiming to infer the optimal value
of an optimal rule can be viewed as a special case of our setup, where the
subsidiary and primary outcomes coincide. In these cases, our two-stage ap-
proaches provide ways to make inferences without the margin condition con-
sidered in such works [Qian and Murphy, 2011, Luedtke and Van Der Laan,

2016]. Instead, we need uniform asymptotic linearity for the value functions



and an appropriately restricted policy class. The margin condition could
fail if the subsidiary metric varies too much across the set of policies that
are nearly optimal for the primary metric |[Luedtke and Chambaz, 2020].
However, if the policy class is Donsker and the estimator is established via
debiased machine learning, the uniform asymptotic linearity condition will
be plausible even when a margin condition does not hold.

In our numerical experiments, our union bounding and joint approaches
produced valid confidence intervals, even if they were somewhat conserva-
tive. Under margin conditions, these intervals attain a parametric n~'/?
rate, matching those based on an efficient one-step estimator, although
with a less favorable leading constant. However, when the margin condi-
tions fail, intervals based on the one-step estimator fail to achieve valid
coverage. In future research, it would be interesting to develop an adaptive
procedure that is leading-constant-optimal under margin conditions and,
even without them, can produce intervals that provide valid coverage.

Another interesting future direction is to extend our framework to more
general constrained policy learning settings, such as risk-constrained or
budget-constrained dynamic treatment regimens (DTRs). In these appli-
cations, one often wishes to optimize a primary performance measure (e.g.,

treatment efficacy) while simultaneously satisfying one or more subsidiary
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constraints (e.g., safety profiles or resource limitations). Our approaches
could be extended to evaluate or make inferences about these risks.

As for other future work, it is worth exploring methods for inferring
subsidiary metrics using observations from adaptive experiments which have
a martingale structure. Observations from longitudinal settings could also
be considered. Additionally, one could examine simultaneous inference for

multiple subsidiary metrics rather than one.
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