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Abstract:

In areal surveys, one-per-stratum sampling is commonly used since it achieves

spatial balance and improves estimation efficiency. The downside of such a de-

sign is that it is challenging to have a good variance estimator. In this paper,

we propose a generalized one-per-stratum sampling design to generate a spatially

balanced sample. The sample is used to get an M -estimator of the parameters in

a spatial linear regression model, and the corresponding variance is estimated by

a resampling method. Asymptotic properties of the M -estimator are investigated

under the proposed one-per-stratum sampling design. Simulation studies show

that the proposed one-per-stratum sampling design achieves good spatial bal-

ance, and the M -estimator is more efficient compared with existing designs. The

resampling method is applied to investigate the relationship between soil erosion

and slope in Iowa using a recent sample from the National Resources Inventory

survey.

Key words and phrases: Asymptotics, M -estimator, Spatially balanced sampling,

Spatial block bootstrap, Survey variance estimation.
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1. Introduction

In environmental studies, observations are spatially dependent in the sense

that the correlation is a decreasing function of distance, so it is desirable to

obtain a spatially balanced sample, which spread over the sampling domain

well, to make efficient inference (Cochran, 1946; Stevens and Olsen, 2004;

Grafström et al., 2012). For example, stratified sampling is conducted to

obtain well-spread samples to study soil erosion by the National Resources

Inventory survey (Nusser and Goebel, 1997; Nusser et al., 1998); also see

the land surveys by the Bureau of Lang Management and the June Area

survey by the National Agricultural Statistics Service. Even though various

spatially balanced sampling designs are applied in practice, how to make

valid statistical inference is still an open problem (Stevens and Olsen, 2004;

Grafström et al., 2012). In this paper, our goal is to propose a general

one-per-stratum sampling design and rigorously prove that inference can

be made through a resampling method.

Different spatially balanced sampling designs have been proposed. Bartholdi

and Platzman (1988) and Lister and Scott (2009) used space-filling curves

to obtain spatially balanced samples. Munholland and Borkowski (1996)

applied a simple Latin square to draw a spatially balanced sample and

demonstrated that estimators under the proposed design are generally more
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efficient than those under simple random sampling. Breidt (1995) general-

ized the one-per-stratum sampling design by introducing dependence in the

sampling of neighboring subregions through a Markov structure to achieve

better spatial balance. Stevens and Olsen (2004) introduced a generalized

random tessellation stratified design to guarantee spatial balance. Graf-

ström et al. (2012) proposed two local pivotal methods both performing

better than the generalized random tessellation stratified design. Wang and

Zhu (2019) proposed a spatio-temporal balanced sampling design based on

the local pivotal method. Tillé et al. (2018) proposed to use renewal chains

and multivariate discrete distributions to tune the joint selection probability

of neighboring units to achieve better spatial balance. Although spatially

balanced samples can be generated by the above designs, unbiased variance

estimators are not available.

For spatial analysis, resampling methods are widely used for variance

estimation and statistical inference. Nordman and Lahiri (2004) and Nord-

man et al. (2007) discussed a block-based bootstrap method to estimate the

variance when observations are regularly spaced. Politis et al. (1998) pro-

posed a subsampling approach for observations generated by a homogeneous

Poisson process. Lahiri and Zhu (2006) discussed both fixed and stochastic

sampling designs, and a block resampling method was theoretically inves-

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0001



tigated. Also see Lahiri (2018), Hala et al. (2020), Chan et al. (2022) and

Zhang et al. (2023). Although valid inference can be made through resam-

pling methods, existing works assumed a fixed sampling density function to

generate samples, leading to unsatisfactory spatial balance.

We are not aware of any work guaranteeing both spatial balance and

valid inference. In this paper, a generalized one-per-stratum sampling de-

sign is proposed, and asymptotic properties are investigated under a weak

dependent setup (Grenander, 1954; Koul, 1992; Yajima, 1991). The pro-

posed one-per-stratum sampling design has several appealing features. It

is flexible and easy to be implemented in practice. For example, an area

can be over-sampled by forming more strata. Besides, different sampling

density functions can be specified for different strata, and better spatial bal-

ance can be achieved using a more concentrated sampling density function

within each stratum; see Section 5 for details. Furthermore, a model-based

variance estimator can be obtained using a resampling method under the

proposed one-per-stratum sampling designs.

The rest of the paper is organized as follows. The one-per-stratum

sampling design is proposed in Section 2. An M -estimator under a spatial

setting is discussed in Section 3. Section 4 shows the asymptotic properties

of the M -estimator under the proposed design. Simulations are conducted
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to test the performance of the proposed method in Section 5. Application

to the soil erosion analysis for the National Resources Inventory program

is presented in Section 6. Section 7 consists of some final discussion.

2. Model setup

2.1 Generalized one-per-stratum sampling design

One-per-stratum sampling is commonly used in area sampling to ensure

the spatial balance of the sample, and it partitions a sampling domain into

congruent subregions and randomly samples one point from each subregion

independently. In this paper, we propose a generalization of the one-per-

stratum sampling design, which keeps the independent sampling feature of

each subregion, while allows arbitrary spatial sampling distribution within

each subregion.

LetR0 ⊂ (−1/2, 1/2]d be a d-dimensional Borel set containing the origin

as its interior point. A sampling domain is obtained by Rn = λnR0, where

n is the sample size, λn ≍ n1/d, and an ≍ bn is equivalent to an = O(bn)

and bn = O(an). That is, we consider a pure increasing domain asymptotic

framework (Cressie, 2015, Section 2.6.3). Denote An = {Ai : i = 1, . . . , n}

to be a non-random partition set such that Rn = ∪n
i=1Ai and Ai ∩ Aj =

∅ (i ̸= j). We propose to generate si from Ai independently for i = 1, . . . , n,
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2.1 Generalized one-per-stratum sampling design

and denote Sn = {s1, . . . , sn} to be a sample of size n. The spatial balance

of Sn is determined by the shape of Ai (i = 1, . . . , n) as well as the sampling

densities to generate Sn; see Section 5 for details.

Remark 1. By selecting a sampling density to be more concentrated in

the center of each subregion, we can achieve better spatial balance, with

the limiting case being the spatial systematic sampling. The traditional

one-per-stratum sampling design corresponds to the special case using a

uniform sampling distribution within each subregion. Similar to system-

atic sampling, we need to introduce a random shift (Stevens and Olsen,

2004) of the subregion boundary to achieve equal sampling rate, and the

mathematical details will be presented in a separate paper.

Figure 1, for example, shows a comparison of the proposed one-per-

stratum sampling design with the stochastic design discussed by Lahiri

and Zhu (2006), where R0 = (−1/2, 1/2)2, λn = 6 and n = 25. For the

proposed one-per-stratum sampling design, we partition the sampling region

into n = 25 squares with equal size, and a uniform or truncated normal

sampling density with mean at its center and 0.252I as the covariance

matrix is used within each partition. We also consider the same sampling

densities for the stochastic design of Lahiri and Zhu (2006); see Section S1 of

the Supplementary Material for its brief introduction. From Figure 1, the
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2.1 Generalized one-per-stratum sampling design
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Figure 1: Comparison of the proposed one-per-stratum sampling design

(GOPS) with the one of Lahiri and Zhu (2006) (L-Z) under (a) uniform

sampling density and (b) truncated bivariate normal sampling density. The

subregions are highlighted using dashed lines.

proposed one-per-stratum sampling design generates samples with better

spatial balance compared with the stochastic design (Lahiri and Zhu, 2006),

especially when a more concentrated sampling density is used.

Remark 2. When sampling trees or housing units, there only exist finite

possible locations. Then, we can partition a stratum into Voronoi polygons

(Stevens and Olsen, 2004) each centered at one measurable unit, and select

one unit within each stratum at random with probability proportional to

the integral of the sampling density over the polygon that unit represent.

Alternatively, we can pick a random location in each stratum based on the
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2.2 M -estimator in spatial linear regression models

sampling density and select the unit which is closest to the selected location.

2.2 M-estimator in spatial linear regression models

Consider the following spatial linear regression model (Yajima, 1991; Lahiri

and Zhu, 2006):

Y (s) = x(s)⊤β0 + Z(s) (s ∈ Rd), (2.1)

where x(s) is a known p-dimensional real-valued function of the location s,

β0 ∈ Rp is the regression parameter, {Z(s) : s ∈ Rd} is a one-dimensional

zero-mean stationary random field independent of the proposed one-per-

stratum sampling design, and A⊤ is the transpose of a matrix A. Under

the proposed one-per-stratum sampling design, we observe {(x(si), Y (si)) :

si ∈ Sn}, and we are interested in making inference for the regression

parameter β0. An M -estimator β̂n solves

Mn(β) = 0, (2.2)

where Mn(β) =
∑n

i=1 x(si)Ψ{Y (si)−x(si)
⊤β}, and Ψ : R → R is a known

one-dimensional Borel-measurable function satisfying E[Ψ{Z(0)}] = 0.

Before investigating theoretical properties of β̂n, consider the strong

mixing condition for the stationary random field {Z(s) : s ∈ Rd}. For

s = (s1, . . . , sd), let ∥s∥1 =
∑d

i=1 |si| and ∥s∥2 = (s21 + · · ·+ s2d)
1/2. Denote
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2.2 M -estimator in spatial linear regression models

vol.(A) and |A| to be the volume and the cardinality of a set A ⊂ Rd, respec-

tively. For two sets T1 and T2 of Rd, denote d(T1, T2) = inf{∥s1 − s2∥2 : si ∈

Ti, i = 1, 2}. Denote R(b) = {∪k
i=1Di :

∑k
i=1 vol.(Di) ≤ b, k ≥ 1}, where

{Di : i = 1, . . . , k} is a finite set of pairwise disjoint hypercubes in Rd for

k ≥ 1. The strong-mixing coefficient for the random field {Z(s) : s ∈ Rd}

is defined as

α(a; b) = sup{α̃(T1, T2); d(T1, T2) ≥ a, T1 ∈ R(b), T2 ∈ R(b)}

for a > 0 and b > 0, where α̃(T1, T2) = sup{|P (A ∩ B) − P (A)P (B)| :

A ∈ FZ(T1), B ∈ FZ(T2)}, FZ(A) = σ⟨Z(s) : s ∈ A⟩ is the sigma-

algebra generated by the stationary random field on A ⊂ Rd. Assume

α(a; b) ≤ α1(a)g1(b), where α1(·) is a nonincreasing left continuous function

satisfying lima→∞ α1(a) = 0, and g1(·) is a nondecreasing function satisfying

limb→∞ g1(b) = ∞. Similar definitions were used by Lahiri (2003), Lahiri

and Mukherjee (2004) and Lahiri and Zhu (2006).

Remark 3. Rubin-Bleuer and Schiopu-Kratina (2005) considered a finite-

population parameter, and its design-based estimator was investigated by

treating the finite population as fixed. Thus, they proposed a product

probability space, including both the design space and the model space.

However, we do not consider finite populations in this paper, and the pa-

rameter of interest is β0 in (2.1) above. Besides, theoretical properties are
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studied with respect to almost every Sn. Thus, we only concentrate on the

design space in the preceding paragraph.

3. Asymptotic properties

We generalize the conditions of Lahiri (2003) and Lahiri and Zhu (2006) to

study the asymptotic properties of β̂n under the proposed one-per-stratum

sampling design.

1. The prototype R0 satisfies vol.(R0) > 0 and vol.(Rϵn
0 ) → 0 as ϵn → 0,

where Rϵ
0 = {x ∈ R0 : (x + ϵ[−1, 1]d) ∩ RC

0 ̸= ∅}, and AC is the

complement of a set A.

2. There exists MA > 0 such that vol.(Ai) ≤ MA (i = 1, 2, . . .).

3. There exists C1 > 0 such that |{Ai : Ai ∩ B ̸= ∅, i = 1, . . . , n}| ≤

C1vol.(B) for any ball B ⊂ Rn.

4. There exists Mf > 0 such that fi(s) ≤ Mf for s ∈ supp(fi) ⊂ Ai (i =

1, 2, . . .), where supp(f) = {x : f(x) > 0} is the support of a function

f(x).

5. There exists a sequence of nonsingular matrices {Λn : n ≥ 1} such

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0001



that

Λ−1
n

{∑n
i=1

∫
x(s)x(s)⊤fi(s)ds

}
Λ−1

n → H,

Λ−1
n

{∑n
i=1

∑
j ̸=i

∫
x(s+ h)x(s)⊤fi(s+ h)fj(s)ds

}
Λ−1

n → Q(h)

as n → ∞, where H is positive definitive, and Q(h) is a p×p matrix-

valued function of h ∈ Rd.

6.
∫
Q(h)σΨ(h)dh is positive definite, where σΨ(h) = E[Ψ{Z(0)}Ψ{Z(h)}].

7. m0n = sup{∥Λ−1
n x(s)∥ : s ∈ Rn} = o(n−3/8). Recall that ∥s∥ is the

l2 norm defined in Section 2.2.

8. There exists δ ∈ (0,∞) such that E|Ψ{Z(0)}|2+δ < ∞, E|Ψ′{Z(0)}|2+δ <

∞ and χ0 = E[Ψ′{Z(0)}] ̸= 0, where Ψ′(x) is the derivative of Ψ(x).

α1(a) = O(a−τ ) and g1(b) = o(b(τ−d)/(4d)), where τ > d(2 + δ)/δ.

9. Function Ψ′(x) satisfies a Lipschitz condition of order γ ∈ (2/3, 1]

with C2 > 0,

|Ψ′(x1)−Ψ′(x2)| ≤ C2|x1 − x2|γ, (x1 ∈ R, x2 ∈ R).

Condition 1 is a mild restriction on the boundary of the prototype R0,

and Lahiri (2003) used a similar condition to avoid pathological boundaries
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of R0. Conditions 2–3 regulate the partition regions, such that a sample,

generated by the proposed one-per-stratum sampling design, is spatially

balanced. In Condition 2, we only assume that the maximum volume of

the partition regions is bounded, but we do not assume that all parti-

tion regions have the same volume. By Condition 1 and Condition 3, the

number of partition regions on the “boundary” part of Rn is negligible

compared with that in its “interior” part, and this result is used to de-

rive the asymptotic properties for the resampling method. Condition 4 is a

mild restriction on the sampling density function within each stratum. We

do not require supp(fi) = Ai (i = 1, 2, . . .), so a more spatially balanced

sample can be generated using a more concentrated sampling density func-

tion fi(s). Condition 5 is the Grenader condition for the linear regression

model (Grenander, 1954) under the proposed one-per-stratum sampling de-

sign. Condition 6 guarantees the existence of the variance matrix for the

M -estimator β̂n. Condition 7 regulates the covariate x(s) and is used to

show the convergence of relevant statistics. Condition 8 is needed to show

a central limit theorem for the stationary spatial process. Condition 9 is

used for the Taylor’s expansion when deriving the asymptotic distribution

of Mn(β0).
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Theorem 1. Suppose Conditions 2–9 hold. Then, we have

Λn(β̂n − β0) → N(0, χ−2
0 Σβ)

in distribution (P·|S) almost surely (PS), where

Σβ = H−1σΨ(0) +H−1

{∫
σΨ(h)Q(h)dh

}
H−1,

PS is the probability measure with respect to the propoased one-per-stratum

sampling design, and P·|S is the conditional probability measure with respect

to (2.1) given the sampled locations.

The proof of Theorem 1 is given in Section S3 of the Supplementary

Material; see Section S2 of the Supplementary Material for the construction

of PS. Even though Theorem 1 appears similar to Theorem 1 of Lahiri and

Zhu (2006), we consider a totally different setups, and the corresponding

proof is also different. Specifically, Lahiri and Zhu (2006) assumed that

the sampled locations are scaled based on independent and identically dis-

tributed random variables generated on the prototype. In this paper, we

first scale the prototype to obtain Rn, and generated sampled locations

from the partition regions of Rn independently. Futhermore, different sam-

pling densities can be assigned to different partition regions. Theorem 1

shows that the limiting distribution of β̂n. For the case that there are more

than one solutions to (2.2), Lahiri and Zhu (2006) gave a comprehensive
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consideration, which is also applicable under the proposed one-per-stratum

sampling design. However, Σβ is usually intractable due to the lack of

information on the sampling density functions as well as the spatial pro-

cess, so we generalize a resampling method (Lahiri and Zhu, 2006) to make

inference in next section.

Before closing this section, we compare the estimation efficiency of the

proposed one-per-stratum sampling design with that considered by Lahiri

and Zhu (2006). Denote g(s) to be a density function on R0. Assume that

{S†
i : i = 1, 2, . . .} are independently generated from R0 using g(s), and

{S†
i : i = 1, 2, . . .} are independent of the spatial process {Z(s) : s ∈ Rd}.

A sample for Rn is obtained by si = λns
†
i , where s†i is a realization of S†

i .

Such a sampling design is also considered by Shao (2010) and Menezes et al.

(2010). Specifically, consider g(s) = {vol.(R0)}−1 (s ∈ R0), and denote

β̂n,iid to be the M -estimator under this design. For the proposed one-per-

stratum sampling design, the partition regions satisfy Conditions 2–3 and

have the same volume. Since a sample of size n is selected from Rn, let λ
d
n =

nc with a positive constant c, so vol.(Ai) = λd
nvol.(R0)/n = vol.(R0)/c. Let

fi(s) = n{λd
nvol.(R0)}−1

1(s ∈ Ai) (i = 1, . . . , n) be the sampling density

functions, so Condition 4 is also satisfied. Then, we have the following

result.
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Theorem 2. Consider g(s) = {vol.(R0)}−1 (s ∈ R0) for the stochastic

design (Lahiri and Zhu, 2006), and fi(s) = n{λd
nvol.(R0)}−1

1(s ∈ Ai) for

Ai (i = 1, . . . , n) of the proposed one-per-stratum sampling design, where

the partition regions have the same volume. Suppose Conditions 7–9 hold,

and there exists a sequence of nonsingular matrices {Λn,iid} such that

Λ−1
n,iid

[
{vol.(R0)}−1

∫
R0

x(λns)x(λns)
⊤ds

]
Λ−1

n,iid → Hiid, (3.1)

Λ−1
n,iid

[
{vol.(R0)}−2

∫
R0

x(λns+ h)x(λns)
⊤ds

]
Λ−1

n,iid → Qiid(h) (3.2)

as n → ∞, where Hiid is a positive definite matrix, Qiid(h) is a p × p

matrix-valued function such that
∫
Qiid(h)σΨ(h)dh is positive definite, and

x(s) = 0 if s /∈ Rn. Then, we have

√
nΛn,iid(β̂n,iid − β)→N(0, cχ−2

0 Σβ,iid),
√
nΛn,iid(β̂n − β)→N(0, χ−2

0 Σβ)

in distribution (P·|S) almost surely (PS), where

Σβ,iid = c−1H−1
iid σΨ(0) +H−1

iid {
∫
σΨ(h)Qiid(h)dh}H−1

iid ,

Σβ = H−1
iid σΨ(0) +H−1

iid {
∫
σΨ(h){cQiid(h)−Q1(h)}dh}H−1

iid ,

Q1(h) = lim
n→∞

Λ−1
n,iid

[{
n2λ−2d

n vol.(R0)
−2
} ∫

∪n
i=1{Ai∩(Ai−h)} x(y + h)x(y)⊤dy

]
Λ−1

n,iid.

If the limit of
∫
σΨ(h)Q1(h)dy is positive definitive, then β̂n is asymp-

totically more efficient than β̂n,iid in the sense that cΣβ,iid − Σβ is positive

definitive.
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The proof of Theorem 2 is given in Section S4 of the Supplemen-

tary Material. Under generality conditions, Theorem 2 shows that β̂n is

asymptotically more efficient than β̂n,iid. The reduction of Σβ − cΣβ,iid

is H−1
iid

∫
σΨ(h)Q1(h)dyH

−1
iid , and such reduction is made possible due to

the fact that the proposed one-per-stratum sampling design prevents two

sampled locations from being too close to each other, which reduces the

redundancy in the data.

4. Resampling method

We implement a resampling method (Lahiri and Zhu, 2006) to make in-

ference for the M -estimator β̂n under the proposed one-per-stratum sam-

pling design, and its validity is established in Theorem 3. Let Kn = {k ∈

Zd : (kbn + [0, 1)dbn) ∩ Rn ̸= ∅} = K1n ∪ K2n, where bn is the block size

satisfying certain conditions, K1n = {k ∈ Zd : (kbn + [0, 1)dbn) ⊂ Rn},

and K2n = Kn ∩ KC
1n. The sampling region Rn can be partitioned by

{Rn(k) : k ∈ Kn}, where Rn(k) = Rn ∩ {kbn + [0, 1)dbn} for k ∈ Kn.

That is, each Rn(k) is an intersection area of Rn and a certain block. Thus,

we have Rn =
⋃

k∈Kn
Rn(k). The shape of Rn(k) may vary for k ∈ K2n.

Let ln = {l ∈ Zd : (l + [0, 1)dbn) ⊂ Rn} be the index set of hypercubes

(l+[0, 1)dbn) that lie in Rn. Denote {Ik : k ∈ Kn} to be a set of independent
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and identically distributed random variables with

P∗(Ik = l) =
1

|ln|
(l ∈ ln), (4.1)

where P∗ is the conditional distribution for the resampling method given

Sn and Y (si) (si ∈ Sn).

Let Bn(l;k) = Rn(k)−kbn+l (k ∈ Kn, l ∈ ln), so Bn(l;k) is congruent

with Rn(k). Denote Dn(Rn) = {(x(si), Y (si)) : si ∈ Sn} to be the original

sample, and a resample is

D∗
n(Rn) = {(x(s∗i ), Y (s∗i )) : s

∗
i ∈ ∪k∈KnBn(Ik;k)}. (4.2)

Let n∗ be the sample size of the resampled observations, and it may be

different from n by the resampling method. The resampled version of β̂n,

denoted as β∗
n, is obtained by solving

∑
k∈Kn

{S∗
n(β;x)− ĉn(k)} = 0 (4.3)

with respect to β ∈ Rp, where

S∗
n(k;x) =

∑n∗

i=1 x(s
∗
i )Ψ{Y (s∗i )− x(s∗i )

⊤x}1{s∗i ∈ Bn(Ik;k)},

ĉn(k) = E∗

[∑n∗

i=1 x(s
∗
i )Ψ{Ẑ(s∗i )}1(s∗i ∈ Bn(Ik;k))

]
,

Ẑn(si) = Y (si)− x(si)
⊤β̂n, and E∗ is the conditional expectation with re-

spect to the distribution P∗ in (4.1). The calibration factor ĉn(k) guarantees
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that β∗
n is an unbiased estimator of β̂n under the conditional distribution

P∗.

Denote P·|S to be the conditional probability given Sn = {s1, . . . , sn}

and E·|S and V·|S to be the corresponding conditional mean and variance,

respectively. For the resampling method, we have the following result under

the proposed one-per-stratum sampling design.

Theorem 3. Suppose Conditions 1–9 hold and

b−1
n + bn/λn = o(1) (n → ∞). (4.4)

Then,

sup
B∈B(Rp)

∣∣P∗(T
∗
1n ∈ B)− P·|S(T1n ∈ B)

∣∣→0 in P·|S-probability (4.5)

almost surely (PS), where B(Rp) is the Borel σ-algebra on Rp, T ∗
1n = Λ−1

n (β∗
n−

β̂n), and T1n = Λ−1
n (β̂n − β0).

The proof of Theorem 3 is given in Section S5 of the Supplementary

Material. Theorem 3 shows that β∗
n can be used to make inference for β0

under the proposed one-per-stratum sampling design.

Remark 4. It is worthy pointing out that block bootstrap is commonly

used to make statistical inference for dependent data (Lahiri, 2018; Hala

et al., 2020; Chan et al., 2022; Zhang et al., 2023). In this paper, our goal is
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not to propose a new resampling method. Instead, we would to show that

valid inference can be achieved by a block bootstrap under the proposed

sampling design. Other than the resampling method in Lahiri and Zhu

(2006), we conjecture that other bootstrap methods (Das and Lahiri, 2019;

Kurisu et al., 2023) are also valid for the proposed sampling design, but the

associated verification is beyond our scope.

However, the choice of the block size bn remains an open problem

under the proposed one-per-stratum sampling design. We use an empir-

ical method (Hall et al., 1995) to choose the optimal block size. Denote

Bn = {bn,1, . . . , bn,K} to be a set of K valid block sizes satisfying (4.4),

where K ≥ 1 is a user-specified number. Let {R(h)
n : h = 1, . . . , H}

be a set of pairwise distinct subregions of Rn. For each bn ∈ Bn, let

b
(h)
n = bn{vol.(R(h)

n )/vol.(Rn)}1/d (h = 1, . . . , H). Based on R
(h)
n and b

(h)
n ,

obtain the variance estimator of β̂
(h)

n by the resampling method, say V
∗(h)
n ,

where β̂
(h)

n solves (2.2) using the observations inR
(h)
n . The optimal block size

is chosen to be the one that minimizes Ξ(bn) =
∑p

i=1

∑H
h=1(V

∗(h)
n,i − V ∗

n,i)
2,

where V ∗
n is the estimated variance of β̂n by the resampling method us-

ing block size bn and the original observations, and V
∗(h)
n,i and V ∗

n,i are the

i-th diagonal element of V
∗(h)
n and V ∗

n , respectively. Notice that the block

size bn applies as long as it satisfies (4.4). Intuitively, if we scale both the
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sampling region and the block size simultaneously, the bootstrap variance

estimators should perform similarly, and we can use this intuition to choose

an “optimal” block size empirically. That is, we would like to choose an

optimal one, which guarantees that the squared difference between the two

variance estimators, including V ∗
n,i and V

∗(h)
n,i , are minimized; see Hall et al.

(1995) for details.

5. Simulation studies

5.1 Spatial balance test

In this section, the spatial balance of the proposed one-per-stratum sam-

pling design is compared with the generalized random tessellation stratified

design (Stevens and Olsen, 2004) and a local pivotal method (Grafström

et al., 2012). One finite population consists of 100 × 100 equally spaced

points on the unit square [0, 1] × [0, 1], and inclusion probability, which

is the probability a specific point is sampled, is the same for each point.

For the proposed one-per-stratum sampling design, the sampling region is

evenly partitioned, and a uniform sampling density function is used within

each partition region. Three designs are conducted to generate a sample of

size n, and consider n = 25, n = 100, and n = 400.

The Voronoi polygon method (Stevens and Olsen, 2004) is modified to
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5.1 Spatial balance test

measure the spatial balance of a given sample. For a sampled location si,

the Voronoi polygon associated with si, say Vi, is the set of points that

are closer to si than other sampled elements. If the sample is spatially

balanced, we expect that nai ≈ 1 (i = 1, . . . , n), where ai = vol.(Vi). Thus,

ζ = n−1
∑n

i=1(nai− 1)2 is a good measure of the spatial balance for a given

sample. Denote ηgops = ζgops/ζgrts and ηlpm = ζlpm/ζgrts, and Grafström

et al. (2012) showed that ηlpm < 1, where ζgops, ζgrts and ζlpm are associated

with the proposed one-per-stratum sampling design, the generalized random

tessellation stratified design and the local pivotal method, respectively.

We conduct 1 000 Monte Carlo simulations for each sample size and

design, and Table 1 shows the Monte Carlo mean and standard error of

statistics ηgops and ηlpm. Compared with the generalized random tessella-

tion stratified design, the sample from the proposed one-per-stratum sam-

pling design is more spatially balanced when the sample size is larger. Even

though the sample generated by the proposed one-per-stratum sampling de-

sign is not as spatially balanced as that by the local pivotal method under

the simulation setup, we can use a more concentrated sampling density

function within each partial region to get a sample with better spatial bal-

ance.

Remark 5. As noted by Grafström et al. (2012), the expected computation
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5.1 Spatial balance test

Table 1: Monte Carlo mean (outside of the parenthesis) and standard error

(inside of the parenthesis) of the spatial balance statistics.

Sample size ηgops ηlpm

n = 25 0.896 (0.069) 0.887 (0.078)

n = 100 0.748 (0.017) 0.701 (0.016)

n = 400 0.716 (0.005) 0.645 (0.004)

complexity for the local pivotal method is O(N2), where N is size of the

finite population. The algorithm for generating a sample by the generalized

random tessellation stratified design is even slower than the local pivotal

method. Once the partition regions are given, the computation complexity

for the proposed one-per-stratum sampling design is O(n), which is much

smaller than its two competitors. Furthermore, since the sample is inde-

pendently obtained within each partition region, the proposed sampling

design can be further accelerated by trivial parallelization, while the other

two cannot. Another advantage of the proposed one-per-stratum sampling

design is that it can generate sample from an infinite population, which is

the case in many spatial area sampling problems.
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5.2 Spatial linear regression model

5.2 Spatial linear regression model

In this section, the resampling method is tested under the proposed one-

per-stratum sampling design. The prototype area is R0 = (−1/2, 1/2] ×

(−1/2, 1/2]. The spatial linear regression model is

Y (s) = β0 + β1 log(1 + |s1|) + Z(s) (s ∈ Rn), (5.1)

where (β0, β1) = (1, 1), and Z(s) is a zero-mean stationary process with

spherical semivariogram that has unit sill and range r; see (Cressie, 2015,

Section 2.3.1) for details. Consider r ∈ {1, 2}, n ∈ {400, 900}, and set the

sampling rate as n/λ2
n = 25/36. For the proposed one-per-stratum sampling

design, squares with 1.2 on a side are used to partition the sampling region,

and the sampling density function within each partition region is uniform

or a truncated bivariate normal distribution with mean at the center and

0.152I as the covariance matrix, where I is the 2 × 2 identity matrix.

Thus, the sampling design with truncated bivariate normal sampling density

functions can generate a sample with better spatial balance compared with

the one using uniform sampling density functions.

First, the relative efficiency of the proposed one-per-stratum sampling

design is compared with a stochastic design (Lahiri and Zhu, 2006), and a

uniform distribution is used for the latter. For i = 0, 1, denote eff(βi) =
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5.2 Spatial linear regression model

Vgops(β̂n,i)/Viid(β̂n,i), where (β̂n,0, β̂n,1) solves (2.2), and Vgops(β̂n,i) and Viid(β̂n,i)

are the variances of β̂n,i under the proposed one-per-stratum sampling de-

sign and the stochastic design (Lahiri and Zhu, 2006), respectively. We

conduct 1 000 Monte Carlo simulations to estimate eff(β0) and eff(β1),

and Table 2 shows the comparison results. Values of the relative efficiency

are less than one for all scenarios, indicating that the proposed one-per-

stratum sampling design has a better estimation efficiency. Specifically,

under uniform sampling, since the sampling rate nλ−2
n does not change for

n = 400 and n = 900, eff(βi) is almost the same regardless of the sample

size when the spatial dependence is fixed, where i = 0, 1. Besides, as the

spatial dependence becomes stronger, the proposed one-per-stratum sam-

pling design has better estimation efficiency compared with the stochastic

design (Lahiri and Zhu, 2006) since σΨ(h) decays to 0 slower. Refer to

Theorem 2 for the theoretical justification of the two finding under uniform

sampling. When the truncated bivariate normal sampling density is used,

the estimation efficiency of the proposed one-per-stratum sampling design

becomes better as the sample size increases. In addition, as the spatial

dependence becomes stronger, the efficiency gain of the proposed one-per-

stratum sampling design is compromised since the “effective sample size”

decreases.
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5.2 Spatial linear regression model

Table 2: Summary statistic for the relative efficiency of the M -estimator

by the sample generated by the proposed one-per-stratum sampling design

and the stochastic design (Lahiri and Zhu, 2006).

Density Dependence
n = 400 n = 900

eff(β0) eff(β1) eff(β0) eff(β1)

Uniform
r = 1 0.87 0.86 0.83 0.82

r = 2 0.81 0.79 0.83 0.83

Normal
r = 1 0.70 0.73 0.74 0.78

r = 2 0.73 0.74 0.76 0.78

Uniform: uniform sampling design function; Normal: bivariate normal sampling density.

Next, we generate 1 000 Monte Carlo samples to obtain theM -estimator

of β, and 1 000 resamplings are conducted for each sample. The set of valid

block sizes is Bn,1 = {2, 3} when λn = 24, and Bn,2 = {3, 4} when λn = 36.

The subregions are chosen to be the four conjugate halves of the original

sampling region for choosing an optimal block size. To test the performance

of the resampling method, we consider the square root of mean square er-

ror, the relative bias for the variance estimator and the coverage rate of

the 90% confidence interval constructed by the resampling method under

the proposed one-per-stratum sampling design. Table 3 summarizes the
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5.2 Spatial linear regression model

estimation results. As the sample size increases, the square root of mean

square error and the absolute value of relative bias for the variance estima-

tor decrease for both sampling designs. For a fixed sample size and block

size, the square root of mean square error and the absolute value of relative

bias increase as the spatial dependence becomes stronger since the number

of effective sampling size decreases; see (Cressie, 2015, Section 4.6.2) for de-

tails. Besides, the coverage rate gets closer to 90% as the sample increases.

Please notice that even when n = 900, the coverage rates are far less than

the nominal truth 0.9 for the case r = 2. There are two main reasons for

this unfavorable result. First, the effective sample size is small even when

n = 900. More importantly, even when the block size bn equals to 4, the

spatial correlation cannot be captured well. In an additional simulation

study, we have increased the sample size to n = 6400 and the block size to

bn = 10 for the case r = 2. When uniform sampling density functions are

used, the coverage rates for β0 and β1 are 0.91 and 0.91, respectively. They

are 0.88 and 0.89 when truncated normal sampling density functions are

applied. Thus, as the sample size and block size diverge, we can get better

coverage rates, and this observation is exactly what we have required in

Theorem 3. From Table 3, we can conclude that the selected optimal block

sizes are reasonable, and a design with bivariate normal density functions
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performs better since samples with better spatial balance are generated.

For comparison, we also consider a naive method using simple linear re-

gression to make inference for the regression parameters. When the spatial

dependence is strong, the relative bias of the variance estimator is less than

-0.5 and the corresponding coverage rate of the 90% confidence interval is

only around 0.7; see Section S6 of the Supplementary Material for details.

Thus, simple linear regression can lead to erroneous statistical inference for

the regression parameters if the spatial dependence is ignored.

6. Soil erosion analysis

We investigate the relationship between the soil erosion and slope for the

cropland of Iowa based on the most recent sample from the National Re-

sources Inventory program. The National Resources Inventory was initially

mandated by the Rural Development Act of 1972 , and it is a longitudinal

survey to provide scientific information about natural resources, such as

soil, water and other related resources, on the Nation’s non-federal land;

see https://www.nrcs.usda.gov for details.

In order to guarantee spatial balance, a two-stage stratified area sam-

ple is generated from the 49 continental States (exclude Alaska), Puerto

Rico, and the Virgin Islands. Small political areas or geographic units are
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doi:10.5705/ss.202024.0001

https://www.nrcs.usda.gov


used to stratify the sampling region. In Iowa, for example, the size of each

stratum is about 2 × 6 miles. The primary sampling units are segments

of land of size 0.5 × 0.5 miles. The original sampling design selects 1–4

primary sampling units within each stratum, and 1–3 points are selected

within each primary sampling units. In order to achieve better spatial bal-

ance, restricted randomization is used to select primary sampling units and

points; see Nusser and Goebel (1997) and Nusser et al. (1998) for details.

In this study, we treat the primary sampling units as sample elements by

averaging information of the points within each of them. The most recent

survey was conducted in 2017, and there are 5981 primary sampling unites

selected in Iowa. The left panel of Figure 2 shows the locations of the

corresponding primary sampling units. The sample is spatially balanced,

and the sampling rates differ for different counties. For example, Lyon, the

county on the northwest, was over-sampled.

The soil erosion of the cropland is a critical issue when we consider

effectiveness of soil and water conservation practices, and we are interested

in investigating the relationship between the soil erosion and slope of crop-

land in Iowa. The right panel of Figure 2 shows the relationship between

the log soil erosion and log slope, so it is reasonable to consider the spatial

linear regression model in log scale. Berg and Chandra (2014) considered
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Figure 2: The left panel (a) shows locations of the primary sampling units,

and the right panel (b) shows the relationship between the log soil erosion

and log slope. Due to the confidential restriction, the real locations are

randomly shifted.

the following model:

log yi = β0 + β1 log xi + Zi, (6.1)

where (xi, yi) represents the slope and soil erosion of the ith primary sam-

pling units, and Zi corresponds to a zero mean spatial process. Notice that

the slope is bounded by a constant for each location, so the conditions in

Section 3 are satisfied. We adopt the same model, and our goal is to provide

a valid confidence interval for the regression parameters in (6.1) using the

resampling method developed in this paper. For comparison, a simple linear

regression analysis is conducted by assuming that {Zi : i = 1, . . . , n} are
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independently generated, and such an assumption is often used in survey

sampling; see (Breidt and Fuller, 1999, Section 2.3) for details.

Hall’s method (Hall et al., 1995) is used to select an optimal block size,

and let Bn = {0.15, . . . , 0.9} be a set of block sizes with step size 0.05; see

the last paragraph of Section 4 for details about Hall’s method. Figure 3

shows values of Ξ(bn) (bn ∈ Bn), and we conclude that the target function

Ξ(bn) is minimized with bn = 0.35. Thus, bn = 0.35 is used as the optimal

block size for the following analysis.
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Figure 3: Values of Ξb for different valid block sizes.

We have repeated the resampling method 1 000 times to obtain the

90% confidence interval for the estimated regression parameters in (6.1),

and Table 4 shows the estimation results. Compared with the simple linear
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regression, we get larger variance estimators and wider confidence intervals

since spatial dependence reduces the amount of information. The slope has

a significant positive effect in estimating the soil erosion. Thus, a cropland

with larger slope suffers more from the soil erosion, so policy makers should

pay more attention on such croplands. The estimated value for β1 is 0.97,

which is close to the theoretical value in the universal soil loss equation

(Wischmeier and Smith, 1978).

7. Discussion

The proposed one-per-stratum sampling design is a special case of the one

discussed by Krewski and Rao (1981). The difference between these two is

that we are interested in making inference for the parameters in the super-

population model (2.1), while Krewski and Rao (1981) focused on the finite

population. Since the spatial balance of the sample is emphasized, only one

element is selected from each stratum. Generally, more than one elements

can be selected from each stratum, and the theoretical properties of the

resampling method still apply under certain conditions; also see Zhang and

Fuller (2019).

In this paper, one basic assumption is that the sampling design is ig-

norable in the sense that the sampling mechanism only depends on the
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covariate x(s) (Pfeffermann, 1993). It is an interesting topic to investigate

the theoretical properties of the resampling method under non-ignorable

one-per-stratum sampling designs in the future.

Supplementary Material

The online supplementary material contains a brief description of the Stochas-

tic sampling design of Lahiri and Zhu (2006) (S1), the proofs of Theorem 1

(S3), Theorem 2 (S4) and Theorem 3 (S5), and an additional simulation

result for a simple linear regression (S6).

Acknowledgments

We are grateful for Dr. Xiaotong Shen, an anonymous associated editor

and two referees for the constructive comments to improve the accessibility

of this paper. Wang is partially supported by National Key R&D Program

of China 2022YFA1003800, NSFC (No.: 72033002,12231011, 71988101),

Humanities and Social Sciences Foundation of the Ministry of Education

of China Grant (23YJA910005) and NSSFC (No. 23CMZ005). Zhu is

partially supported by NSF SES 1952007 and NSF AST 2232461.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0001



REFERENCES

References

Bartholdi, J. J. and L. K. Platzman (1988). Heuristics based on spacefilling curves for combi-

natorial problems in Euclidean space. Manag. Sci. 34 (3), 291–305.

Berg, E. and H. Chandra (2014). Small area prediction for a unit-level lognormal model.

Comput. Stat. Data. Anal. 78, 159–175.

Breidt, F. J. (1995). Markov chain designs for one-per-stratum spatial sampling. In Proceedings

of the Section on Survey Research Methods, American Statistical Association, Washington,

DC, pp. 356–361.

Breidt, F. J. and W. A. Fuller (1999). Design of supplemented panel surveys with application

to the national resources inventory. Journal of Agricultural, Biological, and Environmental

Statistics 4 (4), pp. 391–403.

Chan, N. H., R. Zhang, and C. Y. Yau (2022). Inference for structural breaks in spatial models.

Statistica Sinica 32 (4), 1961–1981.

Cochran, W. G. (1946). Relative accuracy of systematic and stratified random samples for a

certain class of populations. Ann. Math. Stat. 17 (2), 164–177.

Cressie, N. A. C. (2015). Statistics for Spatial Data (Revised ed.). New York: John Wiley.

Das, D. and S. Lahiri (2019). Second order correctness of perturbation bootstrap M-estimator

of multiple linear regression parameter. Bernoulli 25 (1), 654 – 682.

Grafström, A., N. L. P. Lundström, and L. Schelin (2012). Spatially balanced sampling through

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0001



REFERENCES

the pivotal method. Biometrics 68 (2), 514–520.

Grenander, U. (1954). On the estimation of regression coefficients in the case of an autocorre-

lated disturbance. Ann. Math. Stat. 25 (2), 252–272.

Hala, M. V., S. Bandyopadhyay, S. N. Lahiri, and D. J. Nordman (2020). A general frequency

domain method for assessing spatial covariance structures. Bernoulli 26 (4), 2463 – 2487.

Hall, P., J. L. Horowitz, and B.-Y. Jing (1995). On blocking rules for the bootstrap with

dependent data. Biometrika 82 (3), 561–574.

Koul, H. L. (1992). M-estimators in linear models with long range dependent errors. Statist.

Probab. Lett. 14 (2), 153–164.

Krewski, D. and J. N. K. Rao (1981). Inference from stratified samples: properties of the

linearization, jackknife and balanced repeated replication methods. Ann. Statist. 9 (5),

1010–1019.

Kurisu, D., K. Kato, and X. Shao (2023). Gaussian approximation and spatially dependent

wild bootstrap for high-dimensional spatial data. Journal of the American Statistical As-

sociation 119 (547), 1820–1832.

Lahiri, S. N. (2003). Central limit theorems for weighted sums of a spatial process under a class

of stochastic and fixed designs. Sankhya (2003–2007) 65 (2), 356–388.

Lahiri, S. N. (2018). Uncertainty quantification in robust inference for irregularly spaced spatial

data using block bootstrap. Sankhya A 80, 173–221.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0001



REFERENCES

Lahiri, S. N. and K. Mukherjee (2004). Asymptotic distributions of M-estimators in a spatial

regression model under some fixed and stochastic spatial sampling designs. Ann. Inst.

Statist. Math. 56 (2), 225–250.

Lahiri, S. N. and J. Zhu (2006). Resampling methods for spatial regression models under a class

of stochastic designs. Ann. Statist. 34 (4), 1774–1813.

Lister, A. J. and C. T. Scott (2009). Use of space-filling curves to select sample locations in

natural resource monitoring studies. Environ. Monit. Assess. 149 (1), 71–80.
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Tillé, Y., L. Qualité, and M. Wilhelm (2018). Sampling designs on finite populations with

spreading control parameters. Statist. Sinica 28, 471–504.

Wang, Z. and Z. Zhu (2019). Spatiotemporal balanced sampling design for longitudinal area

surveys. J. Agric. Biol. Environ. Stat. 24 (2), 245–263.

Wischmeier, W. H. and D. D. Smith (1978). Predicting rainfall erosion losses: A

guide to conservation planning. Department of Agriculture, Science and Education

Administration. https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/AH_537%

20Predicting%20Rainfall%20Soil%20Losses.pdf.

Yajima, Y. (1991). Asymptotic properties of the LSE in a regression model with long-memory

stationary errors. Ann. Statist. 19 (1), 158–177.

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0001

https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/AH_537%20Predicting%20Rainfall%20Soil%20Losses.pdf
https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/AH_537%20Predicting%20Rainfall%20Soil%20Losses.pdf


REFERENCES

Zhang, R., N. H. Chan, and C. Chi (2023). Nonparametric testing for the specification of spatial

trend functions. Journal of Multivariate Analysis 196, 105180.

Zhang, X. and W. A. Fuller (2019, 12). A Sampling Design for Ordered Populations. J. Surv.

Stat. Methodol. 9 (1), 121–140.

Wang Yanan Institute for Studies in Economics and School of Economics, Xiamen University

E-mail: wangzl@xmu.edu.cn

Department of Statistics, Iowa State University

E-mail: zhuz@iastate.edu

Statistica Sinica: Preprint 
doi:10.5705/ss.202024.0001



REFERENCES

Table 3: Summary statistics for the resampling method under the proposed

one-per-stratum sampling design for different scenarios using different sam-

pling densities.

Stat r

Uniform sampling density Truncated normal sampling density

n = 400 n = 900 n = 400 n = 900

bn β0 β1 bn β0 β1 bn β0 β1 bn β0 β1

RMSE

1
2 0.63† 0.14† 3 0.25† 0.04† 2 0.52† 0.12† 3 0.21† 0.04†

3 0.73 0.16 4 0.30 0.05 3 0.65 0.14 4 0.26 0.05

2
2 1.79† 0.44† 3 0.68† 0.11† 2 1.88† 0.44† 3 0.65† 0.12†

3 1.67 0.38 4 0.69 0.11 3 1.76 0.37 4 0.66 0.12

RB

1
2 -0.14† -0.10† 3 -0.09† -0.03† 2 -0.12† -0.06† 3 -0.04† -0.02†

3 -0.15 -0.07 4 -0.10 -0.02 3 -0.14 -0.04 4 -0.05 -0.02

2
2 -0.34† -0.31† 3 -0.24† -0.18† 2 -0.37† -0.32† 3 -0.24† -0.22†

3 -0.28 -0.22 4 -0.22 -0.13 3 -0.31 -0.22 4 -0.21 -0.17

CR

1
2 0.86† 0.88† 3 0.89† 0.89† 2 0.88† 0.88† 3 0.89† 0.90†

3 0.87 0.88 4 0.88 0.90 3 0.87 0.88 4 0.89 0.90

2
2 0.81† 0.83† 3 0.85† 0.86† 2 0.82† 0.82† 3 0.85† 0.85†

3 0.83 0.86 4 0.85 0.88 3 0.83 0.84 4 0.84 0.86

RMSE: square root of the mean square error; RB: relative bias; CR: coverage rate; †: optimal block

size.
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Table 4: Estimation results for the regression parameters in (6.1) based on

the proposed method (Proposed) and simple linear regression (SLR).

Par Est
Proposed SLR

SE 90%CI SE 90%CI

β0 0.172 0.025 (0.129, 0.214) 0.021 (0.138, 0.207)

β0 0.966 0.017 (0.936, 1.000) 0.013 (0.944, 0.988)

Est: estimated parameter; SE: estimated standard error; 90% CI: 90% confidence interval.
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