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Abstract: Supervised learning under measurement constraints is a common chal-

lenge in statistical and machine learning. In many applications, despite extensive

design points, acquiring responses for all points is often impractical due to re-

source limitations. Subsampling algorithms o�er a solution by selecting a subset

from the design points for observing the response. Existing subsampling meth-

ods primarily assume numerical predictors, neglecting the prevalent occurrence

of big data with categorical predictors across various disciplines. This paper pro-

poses a novel balanced subsampling approach tailored for data with categorical

predictors. A balanced subsample signi�cantly reduces the cost of observing the

response and possesses three desired merits. First, it is nonsingular and, there-

fore, allows linear regression with all dummy variables encoded from categorical

predictors. Second, it o�ers optimal parameter estimation by minimizing the

generalized variance of the estimated parameters. Third, it allows robust predic-

tion in the sense of minimizing the worst-case prediction error. We demonstrate

the superiority of balanced subsampling over existing methods through extensive

simulation studies and a real-world application.
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1. Introduction

Supervised learning under measurement constraints is a common challenge

in statistical and machine learning (Wang et al., 2017; Meng et al., 2021).

In many applications, despite the availability of extensive predictor obser-

vations (design points), acquiring the observations of the response variable

for all design points is frequently impractical due to resource limitations.

For example, consider a scenario in healthcare where researchers aim to

develop a predictive model for patient outcomes based on a diverse set of

health-related predictors. A large set of predictor observations, such as

patient demographics, medical history, and genetic information, is readily

available. However, obtaining the corresponding response variable, such as

a medical condition or treatment outcome, may involve invasive procedures

or expensive diagnostic tests. Given the constraints of limited resources,

observing the response of every individual in the dataset becomes practi-

cally impossible. Consequently, selecting an informative subsample from

the set of design points to observe becomes crucial and challenging.

In recent years, there has been a growing interest in developing design-
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based optimal subsampling methods. Most existing methods focus on nu-

merical predictors in various learning models, such as linear regression

(Wang et al., 2019; Ma et al., 2015; Wang et al., 2021), generalized lin-

ear models (Wang et al., 2018; Ai et al., 2021; Cheng et al., 2020), linear

mixed models (Zhu et al., 2024), quantile regression (Wang and Ma, 2021;

Ai et al., 2021), nonparametric regression (Meng et al., 2020; Zhang et al.,

2024), Gaussian process modeling (He and Hung, 2022), and model-free

scenarios (Mak and Joseph, 2018; Shi and Tang, 2021; Song et al., 2022).

Big data with categorical predictors are frequently encountered in many

scienti�c research areas (Huang et al., 2014; Zuccolotto et al., 2018; Johnson

et al., 2018). Numerical predictors may also be binned into categorical ones

for better modeling and interpretation (Kanda, 2013; Yu et al., 2022). De-

spite numerous studies on subsampling methods, they do not apply to data

with categorical predictors, so researchers have no choice but to use simple

random subsamples, for example, see Maronna and Yohai (2000) and Yu

et al. (2022). However, simple random subsamples may bring signi�cant is-

sues, especially for data with categorical predictors. To illustrate, consider

that categorical predictors are commonly encoded using dummy variables

in regression models. In a dataset with p categorical predictors, each having

qj levels, j = 1, . . . , p, these predictors are coded to
∑p

j=1(qj − 1) dummy
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variables, which substantially increases the dimensionality of the regres-

sion task. Thus, as pointed out by Maronna and Yohai (2000) and Koller

and Stahel (2017), singular subsamples (or more accurately, subsamples

with singular information matrices) are frequently encountered when deal-

ing with categorical predictors due to the high dimensionality of the dummy

variables. Consequently, a simple random subsample cannot facilitate the

estimation of the e�ect for every dummy variable, even though the full

data allows for such estimation. This de�ciency arises because the subsam-

ple lacks crucial information in the full data, and avoiding such substantial

information loss is paramount. Furthermore, even among nonsingular sub-

samples, there can be signi�cant variations in the accuracy of parameter

estimation. Identifying the subsample that enables optimal parameter es-

timation is also important.

This paper proposes a novel method named �balanced subsampling�

designed speci�cally for subsampling data with categorical predictors. The

selected subsample achieves a combinatorial balance between values (lev-

els) of the predictors and, therefore, enjoys three desired merits. First, a

balanced subsample is generally nonsingular and thus allows the estima-

tion of all parameters in linear (ANOVA) regression. Second, a balanced

subsample provides the optimal parameter estimation in the sense of mini-
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mizing the generalized variance of the estimated parameters. Third, when

the established model is used for prediction, the model trained on a bal-

anced subsample provides robust predictions in the sense of minimizing

the worst-case prediction error. For practical use, we develop an algorithm

that sequentially selects data points from the full data to obtain a balanced

subsample.

The remainder of the paper is organized as follows. Section 2 presents

the issues of simple random subsampling for data with categorical predic-

tors, which motivates us to develop a new subsampling method. Section

3 proposes the balanced subsampling method and develops an e�cient al-

gorithm for sequentially subsampling from big data. Section 4 examines

the performance of balanced subsampling through extensive simulations,

and Section 5 demonstrates the utility of using balanced subsamples in a

real-world application. Section 6 o�ers concluding remarks. Supplementary

Materials provide proof of technical results and discuss the computational

complexity of the proposed algorithm.

2. Motivations

Let X = (x1, . . . , xN)
T denote the design matrix of the full data, where

xi = (xi1, . . . , xip)
T consists of the values of p categorical predictors, each
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2.1 Nonsingularity

with qj levels for j = 1, . . . , p and is coded to qj−1 binary dummy variables.

Let zi,jk be the value of the kth dummy variable for xij and Z the matrix

formed by zi,jk. Linear regression on the dummy variables is given by:

yi = β0 +

q1−1∑
k=1

β1kzi,1k + · · ·+
qp−1∑
k=1

βpkzi,pk + εi, (2.1)

where βjk are parameters to be estimated and εi is the independent random

error with mean 0 and variance σ2. It is intuitive to assume thatM = ZTZ

is nonsingular, enabling linear regression on the full data if all responses

can be observed.

We consider taking a subsample of size n from the full data X, denoted

asXs, and observe its corresponding response vector ys. The OLS estimator

for β = (β0, β11, . . . , βp(qp−1))
T based on the subsample is given by

β̂s = (ZT
s Zs)

−1(ZT
s ys), (2.2)

where Zs = (z∗1 , . . . , z
∗
n)

T are the rows in Z corresponding to points in Xs.

We have three concerns regarding the subsample Xs.

2.1 Nonsingularity

The subsample should allow the estimation of all parameters in β, which is

possible only if the information matrix, Ms = ZT
s Zs, is nonsingular. How-

ever, singular subsamples (subsamples with a singular information matrix)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0434



2.1 Nonsingularity

are frequently encountered when dealing with categorical predictors, which

can be illustrated by the following two toy examples.

Example 1. Assume the full data contain a single categorical predictor

with 2 repetitions of 5 levels, that is, X = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5)T . Use

dummy variables, then

Z =



1 1 1 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0



T

.

Consider choosing a subsample Xs with 5 points, then Ms is nonsingular

only if Xs contains at least one observation of each level. Out of the
(
10
5

)
=

252 possible subsamples, only 25 of them are good in this way, and the

probability of obtaining such a subsample with simple random sampling is

25/252 = 12.7%.

Example 2. Suppose the full data have N = 1000 points and p = 2 predic-

tors. We generate data from an independent bivariate normal distribution

with mean 0 and variance 1, divide the range of either predictor into 5

equal-sized intervals, and code the values according to which interval they

fall. Then each predictor includes 5 levels, and the two predictors have
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2.2 Optimal estimation

25 possible pairs of levels. We select a subsample of size n = 25. There

are
(
1000
25

)
≈ 1049 possible subsamples from simple random sampling. An

exhaustive examination of all those subsamples is infeasible. Therefore, we

randomly investigate 105 of them, and only 4.81% have nonsingular infor-

mation matrices. It is not easy to obtain a nonsingular subsample from

simple random sampling.

2.2 Optimal estimation

Even among the nonsingular subsamples, the accuracy of parameter esti-

mation varies greatly across di�erent subsamples.

Example 3. We continue Example 2. For all the nonsingular subsamples

with n = 25 (out of the 105 investigated random subsamples), we generate

the response variable y through the model

yi = 1 + zi,11 + · · ·+ zi,14 + zi,21 + · · ·+ zi,24 + εi, (2.3)

where εi ∼ N(0, 1), and train the model in (2.1) on each of the nonsingular

subsamples. We repeat this process T = 1000 times and examine the

empirical mean squared error (MSE):

MSE = T−1

T∑
t=1

∥β̂(t) − β∥2, (2.4)
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2.3 Robust prediction
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Figure 1: Histograms of log10(MSE) and log10(WSPE) of the trained model

on each subsample with a nonsingular information.

where β̂(t) is the OLS estimate of β via a subsample in the tth repetition,

t = 1, . . . , 1000. Figure 1 (left) shows the histogram of log10(MSE) for all

nonsingular subsamples. The MSE varies dramatically, with the minimum

as low as 100.85 = 7.1 achieved by only a couple of subsamples. Recall that

we examined 105 random subsamples, and only a couple of them allows the

�optimal� estimation. It is very hard to obtain such �optimal� subsamples

from simple random sampling.

2.3 Robust prediction

We hope the trained model on a subsample provides �robust� prediction,

where the terminology �robust� can be understood in the sense of performing
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well in the worst-case scenario.

Example 4. We continue Example 3 and examine the empirical worst-case

squared prediction error (WSPE) for all nonsingular subsamples:

WSPE = max
x∈X

{
T−1

T∑
t=1

(y(t) − zT β̂(t))2

}
(2.5)

where X includes all the 25 possible pairs of levels for the two predictors,

z is the vector of dummy variables for any x ∈ X , y(t) is the response

in the tth repetition, and β̂(t) is the OLS estimate of β via a subsample,

for t = 1, . . . , 1000. Figure 1 (right) shows the histogram of log10(WSPE)

for all the nonsingular subsamples. The minimum of WSPE is 100.31 = 2.0

achieved by a single subsample, which is, again, almost impossible to obtain

from simple random sampling.

3. Balanced Subsampling

In this section, we propose the balanced subsampling method and develop a

computationally e�cient algorithm to implement it. The proposed method

targets the above three concerns: providing a nonsingular subsample, en-

abling optimal parameter estimation, and ensuring robust prediction.
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3.1 The method

3.1 The method

We �rst consider the nonsingularity of a subsample and provide the follow-

ing important result.

Theorem 1. Let λmin(Ms) be the smallest eigenvalue of Ms. For a sub-

sample Xs,

λmin(Ms) ≥ nν(1− f(Xs))

where n is the subsample size of Xs, ν is a positive constant independent of

Xs,

f(Xs) =

√√√√ p∑
j=1

qj∑
u=1

q2j

[
1

qj
− nj(u)

n

]2
+

p∑
j=1

p∑
k=1,k ̸=j

qj∑
u=1

qk∑
v=1

qjqk

[
1

qjqk
− njk(u, v)

n

]2
,

(3.1)

nj(u) is the number of times that the uth level of the jth predictor is observed

in Xs, and njk(u, v) is the number of times that the pair of levels (u, v) is

observed for the jth and kth predictors in Xs. Therefore, Ms is nonsingular

if f(Xs) < 1.

Theorem 1 indicates that we can search for the subsample that min-

imizes f(Xs) to ensure that the Ms is nonsingular. By (3.1), f(Xs) has

two critical components: (a) fj =
∑qj

u=1[1/qj−nj(u)/n]
2 that measures the

balance of levels for the jth predictor, and (b) fjk =
∑qj

u=1

∑qk
v=1[1/(qjqk)−

njk(u, v)/n]
2 that measures the balance of level combinations for the jth
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3.1 The method

and kth predictors. Clearly, if fj = 0, all levels of the jth predictor are

observed the same number of times in Xs so that they achieve the perfect

balance; if fjk = 0, all pairs of levels for the jth and kth predictors are

observed the same number of times in Xs. Such balance is called combina-

torial orthogonality, and a matrix possessing combinatorial orthogonality is

called an orthogonal array.

Generally, an orthogonal array of strength t is a matrix where entries

of each column of the matrix come from a �xed �nite set of qj levels for

j = 1, . . . , p, arranged in such a way that all ordered t-tuples of levels appear

equally often in every selection of t columns of the matrix. The t is called

the strength of the orthogonal array. Readers are referred to Hedayat et al.

(1999) for a comprehensive introduction to orthogonal arrays. Here is an

example of an orthogonal array with p = 3 predictors, each having 3 levels,

and strength t = 2: 
1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3

1 2 3 2 3 1 3 1 2



T

.

Each pair of levels in any two columns of the orthogonal array appears once.

Clearly, we have the following lemma.

Lemma 1. A subsample Xs forms an orthogonal array of strength two if
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3.1 The method

and only if f(Xs) = 0.

Now we show that the subsample minimizing f(Xs) also allows the

optimal estimation of parameters. To see this, note that β̂s in (2.2) is an

unbiased estimator of β with

Var(β̂s|Xs) = σ2M−1
s = σ2(ZT

s Zs)
−1. (3.2)

The Var(β̂s|Xs) is a function of Xs (in the form of Zs), which indicates

again that the subsampling strategy is critical in reducing the variance of

β̂s. To minimize Var(β̂s|Xs), we seek theXs which, in some sense, minimizes

M−1
s . This is typically done, in experimental design strategy, by minimizing

an optimality function ψ(M−1
s ) of the matrix M−1

s (Kiefer, 1959; Atkinson

et al., 2007). A common choice for ψ is the determinant, which is akin

to the criterion of D-optimality for the selection of optimal experimental

designs.

Theorem 2. A subsample Xs is D-optimal for the model in (2.1) if f(Xs) =

0.

Cheng (1980) showed that an orthogonal array of strength two is uni-

versally optimal, i.e., optimal under a wide variety of criteria by minimizing

the sum of a convex function of coe�cient matrices for the reduced normal

equations. However, Cheng's result does not apply to the dummy coding
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3.1 The method

system, so his result does not include Theorem 2. To the best of our knowl-

edge, Theorem 2 originally shows the optimality of orthogonal arrays for

the commonly used dummy coding for categorical predictors.

Next, we show that minimizing f(Xs) also allows robust prediction. Let

X denote the set of all possible level combinations of predictors, that is,

X = {x = (x1, . . . , xp) : xj = 1, . . . , qj, j = 1, . . . , p}, then #X =
∏p

j=1 qj.

For any x ∈ X , let z be the coded vector of x and Y the random variable

of its response with E(Y ) = zβ and Var(Y ) = σ2. The WSPE is given by

maxx∈X E[(Y − zT β̂s)2|Xs], where

E[(Y−zT β̂s)2|Xs] = E[(Y−zTβ)2]+E[(zTβ−zT β̂s)2|Xs] = σ2(1+zTM−1
s z).

(3.3)

The WSPE is a function of Xs (in the form of Ms), which indicates again

that the subsampling strategy is critical in reducing WSPE. The following

theorem shows that the WSPE is minimized when f(Xs) = 0.

Theorem 3. Let Q = 1 +
∑p

j=1(qj − 1). For a subsample Xs of size n,

max
x∈X

E[(Y − zT β̂s)2|Xs] ≥ σ2(1 +Q/n). (3.4)

The equality in (3.4) holds if f(Xs) = 0.

Theorems 1�3 indicate that f(Xs) = 0 ensures model estimability as

well as optimal estimation and robust prediction. Considering that a full
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3.2 A sequential algorithm

dataset may generally do not contain a subset with exact zero f(Xs), the

objective of the balanced subsampling is to achieve an approximate balance

via the optimization problem:

X∗
s = arg min

Xs⊆X
f(Xs) (3.5)

s.t. Xs contains n points.

The optimization problem in (3.5) is not easy to solve. The computation

of f(Xs) requires the examination of balance for every single predictor and

every pair of predictors in Xs, so it requires O(np
2) operations to compute

f(Xs) for any Xs. In addition, an exhaustive search for all possible Xs

requires O(Nn) operations, making it infeasible for even moderate sizes of

the full data. There are many types of algorithms for �nding optimal designs

and among them, exchange algorithms are among the most popular. For

the reasons argued in Wang et al. (2021), these algorithms are cumbersome

in solving the subsampling problem in (3.5). We will propose a sequential

selection algorithm to e�ciently select subsample points.

3.2 A sequential algorithm

The following result is critical in developing the algorithm.
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3.2 A sequential algorithm

Theorem 4. For a subsample Xs = (x∗ij), i = 1, . . . , n and j = 1, . . . , p,

f 2(Xs) = 2n−2
∑

1≤i<l≤n

[δ(x∗i , x
∗
l )]

2 + C, (3.6)

where

δ(x∗i , x
∗
l ) =

p∑
j=1

qjδ1(x
∗
ij, x

∗
lj), (3.7)

δ1(x
∗
ij, x

∗
lj) is 1 if x∗ij = x∗lj and 0 otherwise, and C = n−1(

∑p
j=1 qj)

2 + p −∑p
j=1 qj − p2.

By Theorem 4, the optimization in (3.5) can be achieved by minimizing∑
1≤i<l≤n[δ(x

∗
i , x

∗
l )]

2. To select an n-point subsample, we start with a ran-

dom point x∗1 and select x∗2, . . . , x
∗
n sequentially. Suppose we have already

selected m points, then the (m+ 1)th point is selected by

x∗m+1 = argmin
x

{
m−1∑
i=1

m∑
l=i+1

[δ(x∗i , x
∗
l )]

2 +
m∑
i=1

[δ(x∗i , x)]
2

}
= argmin

x
∆(x)

where

∆(x) =
m∑
i=1

[δ(x∗i , x)]
2, (3.8)

and the minimization is over x ∈ X\{x∗1, . . . , x∗m}. Since

∆(x) =
m−1∑
i=1

[δ(x∗i , x)]
2 + [δ(x∗m, x)]

2,

we only need to compute δ(x∗m, x) to update ∆(x) in the (m+1)th iteration.

Each iteration has a complexity of O(Np), and the overall complexity of
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3.2 A sequential algorithm

Algorithm 1 Balanced Subsampling (Sequential Selection)

Input: a sample (dataset) X, a required subsample size n

Output: a subsample Xs

Set m = 1 and randomly select x∗1 from X

for each x ∈ X\{x∗1} do

Compute ∆(x) via (3.8)

end for

while m < n do

Find x∗m+1 = argminx∆(x) and include x∗m+1 in Xs

for each x ∈ X\{x∗1, . . . , x∗m+1} do

Update ∆(x)← ∆(x) + [δ(x∗m+1, x)]
2

end for

m← m+ 1

end while

the algorithm is O(Npn). Algorithm 1 outlines this sequential selection

algorithm.

Example 5. We continue Examples 2�4 to demonstrate the e�ectiveness of

Algorithm 1 by comparing it with existing popular subsampling methods,

including simple random sampling (denoted as UNI for consistency with the

literature, as it assigns a uniform weight to all observations), information-
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3.2 A sequential algorithm
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Figure 2: The values of f(Xs), proportion of nonsingular subsamples, MSE,

and WSPE for subsamples generated using various methods.

based optimal subdata selection (IBOSS, Wang et al. (2019)), and lever-

aging subsampling (LEV, Ma and Sun (2015)). We generate the full data

following the procedure outlined in Example 2 and select subsamples of

size n = 25 using di�erent methods. We repeat this process 1000 times.

The left two panels of Figure 2 plot the values of f(Xs) and proportions

of nonsingular subsamples for each method. UNI often misses many pairs

of levels, resulting in high f(Xs) values and a low proportion of nonsingu-

lar subsamples. IBOSS and LEV, applied to the dummy variables, o�er

better balance than UNI, resulting in higher proportions of nonsingular

subsamples. Balanced subsamples obtained from Algorithm 1 consistently

exhibit smaller f(Xs) values, indicating a higher degree of balance compared

to other subsamples, and are consistently nonsingular. For each subsam-
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3.2 A sequential algorithm
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Figure 3: The proportions of nonsingular subsamples (left), MSEs of esti-

mated parameters (middle), and WSPEs (right) for di�erent subsampling

methods in Example 5.

ple, we repeatedly generate the response for T = 1000 times through the

model in (2.3) and examine the empirical MSE in (2.4) and WSPE in (2.5),

displayed in the right two panels of Figure 2. The balanced subsamples

demonstrate signi�cantly smaller MSEs and WSPEs, clearly outperforming

other subsampling methods.

We further explore the performance of subsampling methods across

di�erent subsample sizes n = 25, 50, 100, 250. For each subsample size,

we repeatedly generate the full data and the response for T = 1000 times

and select a subsample of size n using di�erent methods. Figure 3 plots

the proportions of nonsingular subsamples, the empirical MSE (2.4), and
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the empirical WSPE (2.5). The balanced subsamples always signi�cantly

outperform other approaches for any subsample size due to their balance

on levels of predictors. Speci�cally, a balanced subsample is consistently

nonsingular. Increasing the subsample size may enhance the nonsingularity

of other subsamples, but they still provide much worse parameter estimation

and response prediction than a balanced subsample.

4. Simulation studies

We conduct simulation studies to assess the merits of the balanced subsam-

pling method relative to existing subsampling schemes. Consider p = 20

predictors each with qj = j + 1 levels for j = 1, . . . , p. The simulation is

replicated T = 1000 times. In each replication, we generate values of the

predictors under three structures:

Case 1. Covariates are independent, and each follows a discrete uniform dis-

tribution with qj levels.

Case 2. Covariates are independent, and for each predictor, the qj levels have

probabilities proportional to 1, . . . , qj.

Case 3. Generate each point xi from multivariate normal distribution: xi ∼
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N(0,Σ) with

Σ =
(
0.5ξ(j,k)

)
, (4.1)

where ξ(j, k) is equal to 0 if j = k and 1 otherwise. Discretize [−3, 3]

to qj intervals of equal length, and let xij = u if xij falls into the uth

interval. Let xij = 1 if xij < −3 and xij = qj if xij > 3.

The response data are generated from the linear model in (2.1) with the

true value of β being a vector of unity and σ = 1. We investigate four

settings of the full data size N = 5 × 103, 104, 5 × 104, and 105, and two

settings of the subsample size n = 500 and 2000. Four subsampling ap-

proaches, UNI, IBOSS, LEV, and the balanced subsampling, are evaluated

by comparing the proportions of nonsingular subsamples, MSEs (2.4), and

WSPEs (2.5). To accelerate LEV, we use a fast Singular Value Decompo-

sition method implemented in the R package �corpcor�. Since the set of

all level combinations X contains
∏p

j=1 qj = 5× 1019 points, it is infeasible

to evaluate predictive performance across the entire set X . Instead, we

randomly sample 106 points in X to compute WSPE. Note that the com-

parisons of subsampling approaches on MSE and WSPE are independent

of the settings of the true parameters β or σ, as can be seen from (3.2) and

(3.3).

Figure 4 compares the subsampling methods for the full data gener-
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Figure 4: The proportions of nonsingular subsamples (left), MSEs of esti-

mated parameters (middle), and WSPEs (right) for di�erent subsampling

methods for predictors in Case 1.

ated in Case 1. In this case, predictor levels in the full data are highly

balanced, so all subsamples closely resemble balance and are nonsingular.

Even so, the balanced subsamples consistently provide more accurate pa-

rameter estimation and slightly better prediction than other methods. Note

that when the full data are highly balanced, the increase in the full data

size does not have a substantial contribution to the balance of subsamples.
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Figure 5: The proportions of nonsingular subsamples (left), MSEs of esti-

mated parameters (middle), and WSPEs (right) for di�erent subsampling

methods for predictors in Case 2.

Therefore, balanced subsampling exhibits only a slight improvement in pa-

rameter estimation and relatively �at WSPE as the full data size increases.

Considering that we can only examine a subset of X , the WSPE may even

slightly �uctuate as the full data size increases.

Figure 5 plots results for Case 2, where levels of predictors are unbal-

anced, which is typically the case in real practice. We observe that, when
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the subsample size is n = 500, only around 60% of UNI and IBOSS sub-

samples are nonsingular, 90% of LEV subsamples are nonsingular, whereas

all balanced subsamples are nonsingular. With just 500 observations, it

becomes possible to estimate a model that includes all dummy variables,

indicating that a balanced subsample enables signi�cant cost savings in

observing the response. Increasing the subsample size to n = 2000 may

improve the proportions of nonsingularity for other methods, but the esti-

mation and prediction obtained from those subsamples are still much worse

than the balanced subsamples. Notably, a balanced subsample with n = 500

exhibits better accuracy in parameter estimation when compared with UNI

and IBOSS subsamples with n = 2000 (around 1.6 on log10(MSE)). This

observation once again underscores the signi�cant savings achieved by uti-

lizing a balanced subsample. More importantly, the MSEs and WSPEs from

the balanced subsamples decrease fast as the full data size N increases, even

though the subsample size is �xed at n = 500 or 2000. This trend demon-

strates that the balanced subsampling extracts more information from the

full data with a �xed subsample size when the full data are more informa-

tive. IBOSS has this nice property for continuous predictors (Wang et al.,

2019), but not for categorical predictors because of the high association

between dummy variables.
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Figure 6: The proportions of nonsingular subsamples (left), MSEs of esti-

mated parameters (middle), and WSPEs (right) for di�erent subsampling

methods for predictors in Case 3.

Figure 6 examines Case 3, where predictors are correlated in the full

data. For n = 500, almost all UNI subsamples are singular, and only less

than 40% of IBOSS subsamples are nonsingular. LEV performs well in

terms of nonsingularity but has worse MSE and WSPE compared to bal-

anced subsampling. For either setting of the subsample size, we observe a

more signi�cant superiority of the balanced subsamples and a decreasing
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trend of MSEs and WSPEs as the full data size increases. This is because

the balanced subsamples have reduced correlation and enhanced combina-

torial orthogonality between predictors, which helps reduce the collinearity

between predictors and therefore allows a more accurate estimate of param-

eters. Notably, a balanced subsample with n = 500 exhibits comparable

accuracy in parameter estimation and worst-case prediction when compared

with UNI and IBOSS subsamples with n = 2000, which again demonstrates

the signi�cant savings achieved by a balanced subsample in observing the

response.

5. Real data application

We consider the application to an online store o�ering clothing for preg-

nant women. The data are from �ve months of 2008 and include, among

others, product category (4 levels), product code (217 levels), color (14 lev-

els), model photography (2 levels), location of the photo on the page (6

levels), page number (5 levels), country of origin of the IP address of cus-

tomers clicking the page (47 levels), month (5 levels), and product price

in US dollars (continuous). The data contain more predictors to study the

behavior patterns of customers. We are only using the above predictors to

predict the product price and demonstrate the superiority of balanced sub-
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Figure 7: The MSPEs and WSPEs over the full data for di�erent subsam-

pling methods with n = 500 (top) and 2000 (bottom).

samples. Further information on the dataset can be found in �apczy«ski

and Biaªow¡s (2013).

The full dataset has n = 165, 474 data points. All predictors are cat-

egorical and are coded to dummy variables, which results in 293 dummy

variables in total (intercept included). The response variable, product price,

is accessible for the full data, facilitating the observation of responses for

each subsample and allowing for comparison of their predictive performance.
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We consider subsample sizes n = 500 and 2000 and select subsamples from

the data with di�erent methods. Considering that some of the dummy vari-

ables may not be signi�cant in real-world data, we use LASSO regression

(Tibshirani, 1996) to select important ones and train a predictive model.

On each subsample, a LASSO regression model is trained via the R package

�glmnet� (Friedman et al., 2010) with the parameter λ selected by cross-

validation. The trained model is then used to predict the product price

over the full data. We expect that a balanced subsample should outper-

form other subsamples in a penalized regression due to its linear nature. To

investigate this, we do 500 repetitions of this process and plot the MSPE

(mean squared prediction error) and WSPE of the trained models over

the full data in Figure 7. Balanced subsamples consistently yield superior

predictions compared to other subsamples. In particular, UNI subsamples

exhibit the poorest predictive performance of the full dataset. Their se-

lection of markedly di�erent points and subsequent divergent predictions

result in unstable performance. In contrast, IBOSS and LEV subsamples

demonstrate greater stability and improved performance due to their more

balanced predictors. Overall, balanced subsamples consistently outperform

others across both settings of subsample size.
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6. Discussion

In this paper, we propose the balanced subsampling method for big data

with categorical predictors. The selected subsample achieves a balance

among the predictor levels, maximizing the overall information provided

by the subsample. A balanced subsample is typically nonsingular and al-

lows more accurate parameter estimation and prediction. Simulations and

a real-world application con�rm the improved performance of the subsam-

ple selected by the balanced subsampling over other available subsampling

methods. A balanced subsample o�ers substantial cost savings when ob-

serving the response. Although this paper assumes binary dummy variables

for coding the categorical predictors, all theoretical results work if any non-

singular coding system (for example, an orthogonal coding framework such

as the orthogonal polynomial) is used for coding the predictors. The supe-

riority of a balanced subsample does not depend on the coding system.

We adopt Algorithm 1 to minimize f(Xs) (alternatively,
∑

1≤i<l≤n[δ(x
∗
i , x

∗
l )]

2)

due to its straightforward implementation and e�ciency. A primary draw-

back of Algorithm 1 is its lack of guaranteed optimization of f(Xs). If

an optimal solution is imperative, various optimization algorithms, such

as the simulated annealing algorithm (Morris and Mitchell, 1995), can be

employed. Convergence is ensured for these algorithms with su�cient iter-
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ations. Nonetheless, when dealing with extensive datasets, computational

challenges may impede the e�cacy of such algorithms. Although the current

Algorithm 1 does not guarantee the minimization of f(Xs), our extensive

numerical results are strong evidence that the algorithm tends to e�ciently

produce a dramatically improved subsample relative to those found by other

methods.

Balanced subsampling can be combined with robust regression, such as

the S estimator (Rousseeuw and Yohai, 1984), to improve the robustness

of the trained model to possible outliers. Training the estimator involves

repeatedly selecting small and nonsingular subsamples from the full data,

which, as discussed in this paper and in (Koller and Stahel, 2017), is in-

feasible via simple random sampling. The randomness and nonsingularity

of balanced subsamples make them applicable to training such estimators,

although their performance for this purpose requires further study.

Balanced subsampling can be extended to accommodate numerical or

mixed-type predictors. To do so, we may �rst discretize the numerical

predictors and then apply Algorithm 1. The selected subsample will cover

the region of the full data evenly and uniformly, thereby fostering a fair

study and enabling robust predictions.
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Supplementary Material

The online supplementary material provides proofs of the theoretical results

and discusses the computational complexity of the proposed algorithm.
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