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normalities of both the intermediate and extreme estimators are established. The

simulation study shows that our estimator performs comparatively well in view

of both bias and variance. The application to measure the tail variability of
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market index in Hong Kong Stock Exchange provides meaningful results, and

leads to new insights in risk management.
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1. Introduction

Measuring tail risk is crucial in many different fields such as banking, finance

and insurance. The most popular tail-based risk measures in the literature

are Value at Risk (VaR) and Expected Shortfall (ES). See Patton, Ziegel

and Chen (2019), Li and Wang (2023) and Hoga and Demetrescu (2023) for

some recent discussions on VaR and ES in quantitative risk management.

Due to their nature, VaR and ES do not capture the variability of the risk

random variable beyond the high quantile. To incorporate variability in tail

risk analysis, Furman, Wang and Zitikis (2017) extends the (classic) Gini

mean difference to tail Gini functional. The tail Gini functional for X is

defined by

TGp(X) =
4

p
Cov {X,F1(X) | F1(X) > 1− p} ,

where F1 is the cumulative distribution function of random variable X

and p > 0 is a sufficient small value. Obviously, the tail Gini functional

TGp(X) is designed to measure the variability of X on the upper tail region

and quantifies the risk of X solely. In finance, X may be the loss of an

individual asset and tail Gini functional for X indicates the risk measure

of tail variability of that asset.

However, in practice, regulators are concerned not only with measuring
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risks for individual asset or entity, but also with measuring individual risks

given the impact from systemic variables. A series of studies have delved

into modeling and measuring systemic risks, including Cai, Einmahl, de

Haan and Zhou (2015), Adrian and Brunnermeier (2016), Acharya, Ped-

ersen, Philippon, and Richardson (2017), and so on. To extend tail Gini

functional for systemic risk analysis, we consider tail Gini functional for

bivariate random vector (X,Y ), introduced by Hou and Wang (2021) as

TGp(X;Y ) =
4

p
Cov {X,F2(Y ) | F2(Y ) > 1− p} ,

where F2 is the marginal cumulative distribution function of Y . Here, Y

could be a systemic variable indicating the loss of a financial system. By

conditioning on F2(Y ) > 1 − p, we are focusing on the the tail variability

of X under the tail scenarios of the systemic variable Y . In this way,

TGp(X;Y ) is a systemic tail variability measure incorporating both the

marginal risk severity of X and the tail structure of (X,Y ).

Under the assumption that X is in the Fréchet domain of attraction

with the extreme value index γ1 ∈ (0, 1), Hou and Wang (2021) obtains the

asymptotic limit of TGp(X;Y ), that is

lim
p→0

TGp(X;Y )

Q1(1− p)
= θ0 ∈ [0,∞),

where Q1 is the quantile function of X. The condition 0 < γ1 < 1 guarantees
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that E[X] exists. Based on the above limit, Hou and Wang (2021) proposes

an estimator for TGp(X;Y ) with θ0 > 0. Note that the corresponding

θ0 > 0 holds only if X and Y are asymptotically dependent, i.e. the tail

copula is non-degenerate. If X and Y are asymptotically independent, we

have θ0 = 0. In this paper, we will study the estimation of TGp(X;Y )

under asymptotic independence. We refer to Ledford and Tawn (1996) for

the concepts of asymptotic independence and asymptotic dependence.

Although most research articles in bivariate extreme value framework

deal with asymptotic dependence, there is increasing evidence that weaker

dependence actually exists in bivariate tail region in many applications,

for example, significant wave height (Wadsworth and Tawn, 2012), spatial

precipitation (Le, Davison, Engelke, Leonard and Westra, 2018) and daily

stock prices (Lehtomma and Resnick, 2020). Asymptotic independence is

therefore the more appropriate model for such applications. In the field

of quantitative risk management, there is also growing attention on risk

measures for asymptotically independent pairs (see Kulik and Soulier, 2015;

Das and Fasen-Hartmann , 2018; Cai and Musta, 2020; Sun and Chen, 2023,

etc).

Ledford and Tawn (1996) proposes the coefficient of tail dependence,

named η, to measure the severity asymptotic independence. Assume that
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there exists an η ∈ (0, 1] such that the following limit exists and is positive

for all (x, y) ∈ (0,∞)2:

lim
p→0

p−
1
ηP {1− F1(X) < px, 1− F2(Y ) < py} =: τ(x, y) > 0. (1.1)

For either x = 0 or y = 0, we let τ(x, y) = 0. One important property of τ is

that τ is a homogeneous function of order 1/η, i.e., τ(ax, ay) = a1/ητ(x, y)

for a > 0. The coefficient of tail dependence η describes the strength of

extremal dependence in the bivariate tail. If η = 1, we say that X and

Y are asymptotically dependent. If 0 < η < 1, we say that X and Y

are asymptotically independent. Moreover, if 1/2 < η < 1, X and Y are

called asymptotically independent but positively associated; if 0 < η < 1/2,

X and Y are called asymptotically independent but negatively associated.

When X and Y are independent, then η = 1/2. For more details on the

interpretation of η, see Ledford and Tawn (1996).

It is the goal of this paper to estimate TGp(X;Y ) under asymptotic

independence but positive association (1/2 < η < 1). To our best knowl-

edge, there is no literature addressing the estimation problem for tail-based

measure of variability for asymptotically independent structures. Our work

is also of great significance since we consider not only positive loss variables

but also real loss variables in the context of asymptotic independence. For

the case of asymptotic independence but negative association (0 < η < 1/2),

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0426



it is much more technically challenging and we leave it for future research.

Meanwhile, η > 1/2 is more common in real cases, see Table 3 in Section 4.

The rest of the paper is organized as follows. Section 2 studies the

asymptotic normality of the proposed estimator for TGp(X;Y ). The per-

formance of our proposed estimator is illustrated by a simulation study in

Section 3, and a real application to Hong Kong Stock Exchange is given

in Section 4. The proofs of the main theorems are provided in Section 5.

Additional proofs are given in the Supplementary Material.

Throughout the paper, the notation an ∼ bn means that an/bn → 1 as

n → ∞. A Lebesgue measurable function f : R+ → R+ is called regularly

varying (at infinity) with index α ∈ R, if limt→∞ f(tx)/f(t) = xα, for x > 0.

2. Main results

Let (X,Y ) be a pair of random loss variables. We propose estimators of the

tail Gini functional TGp(X;Y ) by a two-step approach. More specifically,

we first estimate TGp(X;Y ) at intermediate level p = k/n, where k =

k(n) → ∞ and k/n → 0 as n → ∞, then extrapolate these estimators to

extreme level p = p(n) → 0 and np = O(1) as n → ∞.

Below we present our assumptions on the tail distribution of X and

the tail dependence between X and Y . Here, any constants, functions, or
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conditions introduced in an assumption are implicitly assumed to hold in

the sequel. Define

τp(x, y) := p−1/ηP {1− F1(X) < px, 1− F2(Y ) < py} .

Throughout the paper, we assume that (1.1) holds, which means that

limp→0 τp(x, y) = τ(x, y), for all (x, y) ∈ (0,∞)2.

Assumption 1. There exist γ1 > 1/η− 1 and a regularly varying function

A1 with index ρ1 <
1
2
− 1

2η
such that

sup
x>1

∣∣∣∣x−γ1
Q1{1− 1/(tx)}
Q1(1− 1/t)

− 1

∣∣∣∣ = O {A1(t)} , as t → ∞.

Assumption 2. There exists δ > 0 such that uniformly for all y ∈ [0, 1],∣∣∣∣∫ 1

0

τ(x, y)dx−(2+δ)γ1

∣∣∣∣ < ∞, and
∣∣∣∣∫ ∞

1

τ(x, y)2dx−γ1

∣∣∣∣ < ∞.

Assumption 3. There exist β1 > (2+δ)γ1 and ξ > max {(1− η)/2η2, 1/(1 + γ1 − 1/η)}

such that as p → 0,

sup
0<x≤1,0<y≤1

|τp(x, y)− τ(x, y)| x−β1 = O
(
pξ
)
.

Assumption 4. There exists 0 < β2 < ξ/ (1− γ1) such that as p → 0,

sup
1<x<∞,0<y≤1

|τp(x, y)− τ(x, y)| x−β2 = O
(
pξ
)
.

Assumption 1 is a second order condition for the distribution of X,

which is commonly assumed in extreme value theory. We refer readers
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2.1 Positive loss

to Section 2 in de Haan and Ferreira (2006) for the explanation of this

assumption. Assumption 2 is a technical condition which imposes some

integrality condition on the function τ . Assumption 2 and the monotonicity

of τ(x, y) imply that for ρ ∈ {1, 2, 2 + δ}, uniformly for all y ∈ [0, 1],

sup
y∈[0,1]

∣∣∣∣∫ ∞

0

τ(x, y)dx−ργ1

∣∣∣∣ < ∞.

We will deal with such integral throughout the proofs. Assumptions 3 and

4 are second order strengthenings of relation (1.1).

2.1 Positive loss

In this subsection we assume the random loss X is positive. To estimate

TGp(X;Y ), we assume that (X1, Y1), . . . , (Xn, Yn) are independent copies of

(X,Y ). A natural nonparametric estimator of TGk/n(X;Y ) at intermediate

level p = k/n → 0 is

θ̂k/n =
4n

k2(k − 1)

∑
i<j

(Xi −Xj){Fn2(Yi)− Fn2(Yj)}I(Yi, Yj > Yn−k,n),

where Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n are the order statistics of {Y1, Y2, · · · , Yn},

and Fn2(y) = 1
n+1

∑n
i=1 I (Yi ≤ y) is the empirical distribution function

based on Y1, . . . , Yn. Moreover, we choose the intermediate sequence k as

follows.
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2.1 Positive loss

Assumption 5. As n → ∞, k/n1−η → ∞, k/na → 0, where 1−η < a < a0

and

a0 = min

(
1−

η

1 + ηγ1
, 1 +

η

1− 2η − 2ηγ1
, 1 +

1

− 1
η
− 2ξ + 2β2 (1− γ1)

, 1 +
1

2ρ1 − 1
,

2ηξ

2ηξ + 1

)
.

Assumption 5 imposes both lower and upper bounds for the choice of

k. We can prove that a0 > 1 − η, so the conditions are compatible. The

upper bound of k is a typical constraint in extreme value theory literature

to control the bias of the estimators, for example see Cai and Musta (2020).

The lower bound is used to guarantee the convergence rate
√
k
(
n
k

)− 1
2η

+ 1
2

goes to infinity in Proposition 1 below.

Let W (·) be a mean zero Gaussian process on [0, 1] with covariance

structure

E {W (y1)W (y2)} = −
∫ ∞

0

τ (x, y1 ∧ y2) dx
−2γ1 , y1, y2 ∈ [0, 1].

The following proposition shows the asymptotic normality of the estimator

θ̂k/n for TGk/n(X;Y ).

Proposition 1. Let {(Xi, Yi)}ni=1 be independent copies of (X,Y ). Under

the condition that X > 0 and Assumptions 1-5, it follows that

√
k
(n
k

)− 1
2η

+ 1
2

{
θ̂k/n

TGk/n(X;Y )
− 1

}
d→ Φ := − 4

ϕ0

{∫ 1

0

W (y)dy +
1

2
W (1)

}
,

where

ϕ0 =
2(1 + γ1 − 1/η)

1− γ1 + 1/η

∫ ∞

0

τ
(
x
− 1

γ1 , 1
)
dx.
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2.1 Positive loss

Note that if η = 1, i.e. asymptotic dependence, the convergence rate
√
k
(
n
k

)− 1
2η

+ 1
2 becomes

√
k. When 1/2 < η < 1, i.e. asymptotic indepen-

dence but positive association, the convergence rate is lower than
√
k.

Proposition 1 states equivalently that

√
k
(n
k

)− 1
2η

+ 1
2
log

{
θ̂k/n

TGk/n(X;Y )

}
d→ Φ. (2.1)

The log-ratio of the estimator to the true risk measure has a centered normal

limit. In the simulation below, we compare the sample quantiles of log-ratios

with the normal quantiles to demonstrate its asymptotic property.

Now we consider the estimation of TGp(X;Y ) at extreme level p → 0

such that np = O(1). Sun and Chen (2023) shows that, for 0 < η ≤ 1, as

n → ∞,

lim
p→0

TGp(X;Y )

p
1
η
−1Q1(1− p)

= ϕ0. (2.2)

By (2.2), we have that, as n → ∞,

TGp(X;Y ) ∼ Q1(1− p)

Q1(1− k/n)

(
k

np

)1−1/η

θk/n ∼
(

k

np

)1−1/η+γ1

TGk/n(X;Y ).

Thus, we estimate TGp(X;Y ) by

θ̂p =

(
k

np

)1−1/η̂+γ̂1

θ̂k/n, (2.3)

where η̂ and γ̂1 are some suitable estimators for η and γ1, respectively.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0426



2.1 Positive loss

Let k1 and k2 be two intermediate sequences for the estimators η̂ and γ̂1,

respectively, i.e. k1 = k1(n) → ∞, k1/n → 0, k2 = k2(n) → ∞, k2/n → 0,

as n → ∞. We estimate γ1 by the Hill estimator

γ̂1 =
1

k1

k1∑
i=1

logXn−i+1,n − logXn−k1,n,

where X1,n ≤ X2,n ≤ · · · ≤ Xn,n are the order statistics of {X1, X2, · · · , Xn},

and estimate η by the estimator proposed by Draisma, Drees, Ferreira and

de Haan (2004)

η̂ =
1

k2

k2∑
i=1

log Tn−i+1,n − log Tn−k2,n,

where T1,n ≤ T2,n ≤ · · · ≤ Tn,n are the order statistics of the non-independent

but identically distributed sequence {T1, T2, · · · , Tn} with

Ti :=
1

{1− Fn1(Xi)} ∨ {1− Fn2(Yi)}
, i = 1, 2, . . . , n,

and Fn1(x) = 1
n+1

∑n
i=1 I (Xi ≤ x) is the empirical distribution function

based on X1, . . . , Xn.

Note that the intermediate sequences k1 and k2 might be different from

k. In the rest of this paper, we choose suitable k1 and k2 such that

√
k (γ̂1 − γ1) = OP(1),

√
k (η̂ − η) = OP(1). (2.4)

Condition (2.4) can be achieved by choosing k1 and k2 at the same order

as k, combining with some mild conditions. We refer to Theorem 3.2.5 and
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2.2 General Loss

Theorem 7.6.1 in de Haan and Ferreira (2006) for the asymptotic behaviors

of γ̂1 and η̂, respectively.

To derive the the asymptotic normality of θ̂p at extreme level p, we

require the following condition on both lower bound and upper bound for

the speed of p → 0.

Assumption 6. limn→∞(n/k)1/2−1/(2η) log dn = 0, where dn = k/(np) ≥ 1.

Theorem 1. Assume the same assumptions as in Proposition 1. Suppose

(2.4) and Assumption 6 hold. Then, as n → ∞,

√
k
(n
k

)− 1
2η

+ 1
2

{
θ̂p

TGp(X;Y )
− 1

}
d→ Φ,

where Φ is the same as in Proposition 1.

2.2 General Loss

In this subsection, we extend the results in Section 2.1 to the case when

the random loss X is real. Denote X+ = max(X, 0) and X− = min(X, 0),

so X = X+ +X− and TGp(X;Y ) = TGp(X
+;Y ) + TGp(X

−;Y ).

For a real random loss X, we need to modify the estimator at interme-

diate level p = k/n in (2.3) as

θ̂k/n :=
4n

k2(k − 1)

∑
i<j

(Xi −Xj) (Fn2 (Yi)− Fn2 (Yj)) I (Xi, Xj > 0, Yi, Yj > Yn−k,n) .

(2.5)
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2.2 General Loss

Notice this is indeed the same estimator in the case of positive random loss

X. Therefore, we do not use another symbol to represent the estimator for

the sake of simplicity.

Under asymptotic dependence, the results for general loss could be eas-

ily derived under some mild conditions on the negative part of the general

loss, see Hou and Wang (2021). But in the case of asymptotic independence,

there is greater probability for X to take negative values given large values

of Y . This is totally different from the case of asymptotic dependence. It

means that the tail variability of a general loss X may not be negligible

as in the case of asymptotic dependence when the level p goes to zero. In

order to render TGp(X
−;Y ) ignorable, we need additional conditions.

Assumption 7. There exists ζ > 1 such that E |X−|ζ < ∞.

Assumption 8. 1− 1/η > ξ − β2 and
√
k
(
n
k

)− 1
2η

+ 1
2 p1−

1
ζ
− 1

η
+γ1 → 0.

Remark 1. Assumption 7 imposes the condition on the left tail of X.

Assumption 8 imposes an upper bound for p. We note that this upper

bound holds as long as p = O
(
nb
)

with b < 1−η−a
2η(1+γ1−1/η)

, with a specified in

Assumption 5, and that it is compatible with the lower bound of p stated

in Assumption 6.

Now we can apply extrapolation techniques to define θ̂p at extreme level
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p based on the same representation (2.3) with using θ̂k/n in (2.5) instead.

The asymptotic normality of θ̂p is also guaranteed.

Theorem 2. Let {(Xi, Yi)}ni=1 be independent copies of (X,Y ). Under the

condition that X is real, Assumptions 1-8 and Condition (2.4), it follows

that
√
k
(n
k

)− 1
2η

+ 1
2

{
θ̂p

TGp(X;Y )
− 1

}
d→ Φ,

where Φ is the same as in Theorem 1.

3. Simulation

In this section, we study the finite sample performance of our estimator θ̂p

by simulation. We simulate the data from the following two models in Cai

and Musta (2020). Let a1, a2 ∈ (0, 1).

Model 1. Let Z1, Z2, and Z3 be independent Pareto random variables

with parameters a1, a2, and a1, respectively. Here, a Pareto distribution

with parameter a > 0 means that the probability density function is f(x) =

a−1x−1/a−1 for x > 1. Define

(X,Y ) = B (Z1, Z3) + (1− B) (Z2, Z2) ,

where B is a Bernoulli(1/2) random variable independent of Zi’s. For this

model, we have γ1 = a1, ρ1 = 1−a1/a2, η = a2/a1, and τ(x, y) = 2a1/a2−1(x∧
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y)a1/a2 . We consider four settings of (a1, a2), see Table 1. Here we can take

ξ = 2a1/a2 − 1, δ = (2 − a42)/a2 − 1/a1 − 2, β1 = a1(2 − a32)/a2 − 1, β2 =

(2a1 − a22)/(a2(1 − a1)) − 1/(1 − a1), and we note that Model 1 satisfies

Assumptions 1 to 6.

Model 2. Define

(X,Y ) =
(
{1− Φ(X̃)}−a1 , Ỹ

)
,

where X̃ and Ỹ are two standard normal random variables with correlation

a2, and Φ is the distribution function of X̃. Thus, X follows from a Pareto

distribution with parameter a1, and (X,Y ) has a Gaussian copula. For this

model, γ1 = a1, ρ1 = 0, η = (1 + a2) /2, and τ(x, y) = (xy)1/(1+a2). Obvi-

ously,
∫∞
0

τ
(
x
− 1

γ1 , 1
)
dx = ∞. Thus Model 2 does not satisfy Assumption

2 and hence Theorem 1 does not hold.

For comparison between the estimators and true values, we evaluate

the true value TGp(X;Y ) by using the true density functions and drawing

200 replications with sample size 1,000,000. The true values are then ap-

proximated by the corresponding median of overall 200 replications. Table

1 shows the parameters for the distributions and the approximated true

values of the tail Gini functional.

Next, we draw m = 2000 replications from each model with sample

sizes n = 1500 and 5000. For each replication, we compute the proposed
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Table 1: Parameters of five models and the approximated true values of the

tail Gini functional.

(a1, a2) γ1 η −1/η + 1 + γ1 p = 0.01 p = 0.001

Model 1(a) (0.35, 0.3) 0.35 6/7 0.183 0.5835 0.8965

Model 1(b) (0.4, 0.35) 0.4 0.875 0.251 1.0923 1.9283

Model 1(c) (0.6,0.5) 0.6 5/6 0.1 4.2418 10.9131

Model 1(d) (0.5, 0.4) 0.5 0.8 0.3 1.3009 2.1104

Model 2 (0.6, 0.9) 0.6 0.95 0.547 24.6808 84.0422

nonparametric estimator θ̂p with p = 0.01 and 0.001. The proper choice of

(k, k1, k2), that is, the number of tail observations used in the estimation

of TGk/n(X;Y ), γ1, and η, respectively, is always a delicate problem in

the extreme value theory. To investigate how sensitive our result is with

respect to the choice of (k, k1, k2) and to see the range of suitable (k, k1, k2),

we compute the scaled mean squared errors (sMSE):

sMSE (k, k1, k2) =
1

m

m∑
i=1

{
θ̂p,i (k, k1, k2)

TGp(X;Y )
− 1

}2

.

Let α = k/n, α1 = k1/n, α2 = k2/n. Figure 1 shows the results for

the five models with n = 5000, where the solid lines denote the results for

p = 0.01 and the dotted lines denote the results for p = 0.001. For each
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Figure 1: sMSE for different choice of intermediate levels (α, α1, α2).

curve, we fix the parameters values of α’s to be 0.05 and let the remaining

α vary. Figure 1 suggests that sMSE is rather stable for a wide range of α1

and α2.

In order to assess the finite sample performance of our estimator, the

ratio θ̂p/TGp(X;Y ) is calculated and the corresponding means and stan-

dard errors are reported in Table 2. Here we compare our proposed method

(denoted by AIE) and the method in Hou and Wang (2021) (denoted by

HW). Note that we also compute the estimated value with the naive esti-

mator by utilizing the order statistics. However, we omit the results here
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due to its relatively poor performance. We set α = 0.09, α1 = α2 = 0.05.

We can make the following conclusions from Table 2. First, in each case,

the means of the ratios for AIE are closer to one than that of the ratios

for HW; the standard errors of the ratios for AIE are smaller than that of

the ratios for HW. Both indicate the accuracy of our proposed estimators

under asymptotic independence. It is worth noting that AIE tends to un-

derestimate by a small margin while HW tends to overestimate by a larger

margin. This is due to the fact that in AIE the η̂ is usually smaller than

the true η. In HW, on the other hand, η is taken as 1 by default. Second,

for both AIE and HW, the estimators at extreme level p = 0.01 perform

better than that at p = 0.001 given the sample size n. Third, in each case,

if we compare the standard errors for different sample sizes n, it is obvious

that those results with a larger sample size have smaller standard errors.

Last but not least, Model 2 exhibits the poorest performance in terms of

both the means of the ratios and the standard errors, which possibly stems

from the fact that Assumption 2 is not satisfied for Model 2.

In addition, we present the boxplots of log
(
θ̂p/TGp(X;Y )

)
. From the

boxplots in Figure 2, we can see that most of the estimated values obtained

through our proposed estimator are distributed symmetrically around 1. In

contrast, the distribution of the estimator in Hou and Wang (2021) mostly
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Table 2: Means of the ratios of the proposed estimators for the tail Gini

functional and the true values for n = 1500, 5000 and p = 0.01, 0.001 are

reported with corresponding standard deviation given in the brackets.

AIE HW

n = 1500 n = 5000 n = 1500 n = 5000

Model 1(a) p = 0.01 0.9136(0.6472) 0.9263(0.3831) 1.4123(0.7436) 1.3955(0.4291)

p = 0.001 0.8087(0.7715) 0.8661(0.4416) 1.8791(1.0801) 1.9696(0.6133)

Model 1(b) p = 0.01 0.8749(0.6171) 0.9028(0.3503) 1.2989(0.7135) 1.3092(0.3940)

p = 0.001 0.8292(0.7900) 0.8583(0.4527) 1.7876(1.1019) 1.7911(0.6174)

Model 1(c) p = 0.01 0.8837(0.8274) 0.9137(0.5278) 1.4439(1.1285) 1.4568(0.7272)

p = 0.001 0.8800(1.3837) 0.7995(0.5506) 2.2123(2.1902) 2.0634(1.0907)

Model 1(d) p = 0.01 0.9444(0.8701) 0.9528(0.4914) 1.6712(1.2342) 1.6627(0.7273)

p = 0.001 0.9591(1.0914) 0.9641(0.6230) 2.9303(2.2103) 2.9681(1.3097)

Model 2 p = 0.01 0.8809(0.9172) 0.9541(3.7531) 1.1608(1.2054) 1.2149(4.4512)

p = 0.001 0.8865(1.1556) 0.8536(0.9595) 1.5029(1.6746) 1.3889(1.5865)
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Figure 2: Boxplots of log ratios log(θ̂p/TGp(X;Y )) with (n, p).

deviates from 1 because it fails to take η into consideration and overesti-

mates the tail Gini functional. Moreover, when the sample size n increases,

the body of the box becomes narrower, which shows the convergence of risk

measures in probability as shown in Theorems 1.

To show the asymptotic property of our proposed estimators, we also

compare the sample quantiles of log-ratios at all levels with the quantiles of

the theoretical limit distribution Φ by using QQ plots. We generate samples

of Φ by simulation, based on its definition in Proposition 1. Figure 3 shows

that most of the scatters line up on the red straight line, which indicates

no big difference from a normal distribution.
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Figure 3: QQ plots of log ratios for AIE estimators for (n, p)
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4. Application

In this section, we employ our estimator for the tail Gini functional on a

dataset encompassing the daily stock price of the Hang Seng Index (HSI)

and 17 companies from December 20, 1992 to December 30, 2022. Our aim

is to examine the impact on individual stocks during the occurrence of an

exceptionally high-risk event associated with the systemic variable, which

is HSI in this application.

Following Hou and Wang (2021), we use “loss” to represent the percent-

age of the negative weekly returns. Upon calculation, we have n = 1565

observations of losses for HSI and the 17 firms. Table 3 shows the tickers,

full names and the summary statistics of the losses for the 17 firms plus

HSI. Figure 4 shows the boxplots of all losses.

Before studying the effect of the extreme loss of HSI, the systemic vari-

able Y , on the losses of individual stocks, denoted by Xi, i = 1, · · · , 17,

we would like to check the asymptotic independence assumption for each

pair of (Xi, Y ), i = 1, · · · , 17. Here, we apply the Tail Quotient Correlation

Coefficient (TQCC)-based test in Zhang, Zhang and Cui (2017) to test the

null hypothesis of asymptotic independence, which corresponds to the case

η ∈ (0, 1).

To conduct the test, we first fit generalized extreme value distribution
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Table 3: Summary statistics, TQCC, p-values and estimated values.

Ticker Firms Mean (%) SD (%) TQCC p-value γ̂1 η̂ θ̂0.01 θ̂0.001

HSI Heng Seng Index -0.1647 3.1101 – – – – – –

X0001.HK CKH Holdings -0.1482 4.2117 0.0001 0.9997 0.3744 0.8597 3.4121 5.5498

X0002.HK CLP Holdings -0.1278 2.5857 0.0000 1.0000 0.4099 0.8214 1.2826 1.9974

X0003.HK HK & China GAS -0.0103 3.2390 0.0000 1.0000 0.5285 0.7501 1.9425 3.0459

X0004.HK Wharf Holdings -0.2317 4.9306 0.0000 1.0000 0.3904 0.8649 3.7878 6.4946

X0005.HK HSBC Holdings -0.4176 9.6040 0.1043 0.0000 – – – –

X0006.HK Power Assets -0.1408 2.6953 0.0000 1.0000 0.4203 0.7591 0.9901 1.2547

X0010.HK Hang Lung Group -0.0650 4.2654 0.0003 0.9985 0.3483 0.8590 2.8533 4.3601

X0011.HK Hang Seng Bank -0.0844 3.2972 0.0207 0.1063 0.4536 0.8824 3.4732 7.2628

X0012.HK Henderson Land -0.1587 4.6614 0.0014 0.9630 0.4031 0.8767 3.2079 5.7107

X0016.HK SHK PPT -0.1871 4.4221 0.0003 0.9970 0.3993 0.8210 2.8891 4.3858

X0017.HK New World Dev -0.3594 9.0423 0.3364 0.0000 – – – –

X0019.HK Swire Pacific A -0.1326 4.3048 0.0001 0.9997 0.4527 0.8805 4.7142 9.7794

X0023.HK Bank of E Asia -0.0510 4.2934 0.0003 0.9985 0.4229 0.7898 2.8040 4.0235

X0083.HK Sino Land -0.4961 11.2818 0.0699 0.0000 – – – –

X0087.HK Swire Pacific B -0.1126 3.8678 0.0001 0.9999 0.4538 0.8948 4.6822 10.1563

X0101.HK Hang Lung PPT -0.0933 4.3302 0.0016 0.9689 0.3646 0.8846 3.2072 5.4987

X0293.HK Cathay Pacific -0.1125 4.1938 0.0048 0.8127 0.3911 0.8371 2.2030 3.4641
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Figure 4: Boxplots of the losses.
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to each series and perform marginal transformations. We apply TQCC to

the transformed data, and choose the threshold as the smaller one of the

two empirical 95th percentiles. For more details on TQCC-test, we refer

to Zhang, Zhang and Cui (2017). The computed TQCC measures and p-

values are summarized in Table 3. We exclude stocks with p-values under

0.05 from consideration. Specifically, HSBC Holdings (Ticker: X0005.HK),

New World Development (Ticker: X0017.HK), and Sino Land (Ticker:

X0083.HK) are removed due to substantial statistical evidence supporting

the rejection of asymptotic independence between these stocks and HSI.

Subsequently, we assess the signs of γ̂1 and η̂ for the remaining set of 14

stocks. From Figures S1 and S2 in the supplementary material, we can see

that γ̂1 > 0 and η̂ ∈ (0.5, 1) for each pair of losses across different α1 and α2.

Choosing α1 = α2 = 0.08, we obtain the corresponding γ̂1 and η̂ in Table

3. Figure 5 plots the values of AIE estimator θ̂0.01 and θ̂0.001 against α for

the 14 stocks, from which we conclude α = 0.09 lying in the interval where

the estimates are stable. We thus report the corresponding estimators for

p = 0.01 and p = 0.001 in Table 3. It is evident that the values generated

by AIE estimators exhibit a consistent pattern. They all remain below 6

when considering the scenario with p = 0.01, and similarly, they remain

below 15 when dealing with p = 0.001. These values are notably smaller
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when contrasted with the findings presented in the reference Hou and Wang

(2021). In essence, this implies that asymptotic independence typically

aligns with reduced tail variability in relation to extreme events within

systemic variables.

5. Proofs

Proof of Theorem 1. Let Mn =
√
k
(
n
k

)− 1
2η

+ 1
2 . Recall that dn = k

np
,

θ̂p = ( k
np
)1−1/η̂+γ̂1 θ̂k/n.

We rewrite

θ̂p
TGp(X;Y )

= dγ̂1−γ1
n × d

1
η
− 1

η̂
n ×

θ̂k/n
TGk/n(X;Y )

×
d
− 1

η
+1

n TGk/n(X;Y )/Q1(1− k/n)

TGp(X;Y )/Q1(1− p)
× dγ1n Q1(1− k/n)

Q1(1− p)
.

=: I1 × I2 × I3 × I4 × I5.

By the assumption that Mn log dn = o(
√
k) and

√
k (γ̂1 − γ1) = OP(1), it

follows that

I1−1 = e(γ̂1−γ1) log dn−1 = (γ̂1 − γ1) log dn+oP ((γ̂1 − γ1) log dn) = OP

(
log dn√

k

)
= oP

(
1

Mn

)
.

In the same way, we get I2 − 1 = oP

(
1

Mn

)
. By Proposition 1 we have

I3 =
θ̂k/n

TGk/n(X;Y )
= 1 +

1

Mn

Φ + oP

(
1

Mn

)
.
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Figure 5: The estimates of TG0.01 and TG0.001 against α for the 14 stocks.
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For I4, by (4), (ii) and (iv) in Lemma 1 in supplementary material, we have

TGk/n(X;Y )

( k
n
)
1
η
−1Q1(1− k/n)

=4

∫ ∞

0

∫ 1

0

τk/n
(
sk/n(x), y

)
dydx−γ1 − 2

∫ ∞

0

τk/n
(
sk/n(x), 1

)
dx−γ1

=ϕ0 + o

(
1

Mn

)
.

Similarly, for p ≤ k/n, we have

TGp(X;Y )

p
1
η
−1Q1(1− p)

= ϕ0 + o

(
1

Mn

)
.

Thus

I4 =
(k/n)1−

1
η TGk/n(X;Y )/Q1(1− k/n)

p1−
1
η TGp(X;Y )/Q1(1− p)

=
ϕ0 + o

(
1

Mn

)
ϕ0 + o

(
1

Mn

) = 1 + o

(
1

Mn

)
.

It follows from Assumptions 1 and 5 that

I5 =
dγ1n Q1(1− k/n)

Q1(1− p)
= 1 +O

{
A1

(n
k

)}
= 1 + o(

1√
k
).

Hence, we finally obtain

θ̂p
TGp(X;Y )

=

{
1 + oP

(
1

Mn

)}2

×
{
1 +

Φ

Mn

+ oP

(
1

Mn

)}
×
{
1 + o

(
1

Mn

)}
×
{
1 + o(

1√
k
)

}
= 1 +

Φ

Mn

+ oP

(
1

Mn

)
,

which implies the statement of Theorem 1.

Proof of Theorem 2. Write

θ̂p
TGp(X;Y )

=
θ̂p

TGp(X+;Y )
× TGp(X

+;Y )

TGp(X;Y )
.
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We first consider θ̂p
TGp(X+;Y )

and show that it has the same the asymptotic

normality as θ̂p
TGp(X;Y )

, which is stated in Theorem 1. In other words, we

need to check that Assumptions 1 to 6 also hold for (X+, Y ). Note that

Assumptions 2, 5 and 6 hold automatically. Thus we only need to show

that (X+, Y ) satisfies Assumptions 1, 3 and 4.

Denote the distribution of X+as F+
1 , the quantile function of X+as Q+

1 ,

and

τ+p (x, y) = p−1/ηP
{
1− F+

1 (X+) < px, 1− F2(Y ) < py
}
, x, y > 0.

As X has a continuous distribution, a simple calculation leads to Q+
1 (1 −

p) = Q1(1−p)I(0 < p ≤ F̄1(0)), which implies that X+ satisfies Assumption

1 and that

P
{
1− F+

1

(
X+
)
< u, 1− F2(Y ) < v

}
=


P {1− F1 (X) < u, 1− F2(Y ) < v} , 0 < u < F̄1(0),

v, u ≥ F̄1(0).

Thus,

τ+p (x, y) =


τp(x, y), 0 < x < F̄1(0)/p,

p1−
1
η y, x ≥ F̄1(0)/p,

which means that Assumption 3 also holds for (X+, Y ).
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For Assumption 4, notice that for suffiently small p > 0,

sup
1<x<F̄1(0)/p

0<y≤1

∣∣τ+p (x, y)− τ(x, y)
∣∣ x−β2 = sup

1<x<F̄1(0)/p
0<y≤1

|τp(x, y)− τ(x, y)| x−β2 = O
(
pξ
)
.

Moreover, by the homogeneity of τ and setting x = 1/p, we have, for

0 < y ≤ 1

p1−1/ηy − y1/ητ

(
1

py
, 1

)
= O(pξ−β2). (5.1)

So for 0 < y ≤ 1, we have

p1−
1
η y − y1/ητ

(
F̄1(0)

py
, 1

)
=


O(p1−1/η), 1− 1/η < ξ − β2,

O(pξ−β2), 1− 1/η > ξ − β2.

Therefore, for x ≥ F̄1(0)/p and p suffiently small, it follows that

x−β2
{
τ+p (x, y)− τ(x, y)

}
= x−β2

{
p1−

1
η y − τ(x, y)

}
≤
{
F̄1(0)

p

}−β2 {
p1−

1
η y − τ(F̄1(0)/p, y)

}
=

{
p

F̄1(0)

}β2
{
p1−

1
η y − y1/ητ

(
F̄1(0)

py
, 1

)}

=


O(pβ2+1−1/η), 1− 1/η < ξ − β2,

O(pξ), 1− 1/η > ξ − β2.

Since 1− 1/η > ξ − β2 (see Assumption 7), it follows that

sup
x≥F̄1(0)/p
0≤y≤1

∣∣τ+p (x, y)− τ(x, y)
∣∣ x−β2 = O

(
pξ
)
,

which means that Assumption 4 also holds for (X+;Y ).
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As a result, Theorem 1 can be applied and we have

√
k
(n
k

)− 1
2η

+ 1
2

(
θ̂p

TGp(X+;Y )
− 1

)
d→ Φ.

Next we show TGp(X;Y )

TGp(X+;Y )
= 1 + o

(
1

Mn

)
. Note that

TGp(X;Y )

TGp(X+;Y )
− 1 =

4

p

Cov (X−, F2(Y ) | F2(Y ) > 1− p)

TGp(X+;Y )
.

Rewrite

∣∣Cov (X−, F2(Y ) | F2(Y ) > 1− p
)∣∣

=
∣∣E{X−F2(Y ) | F2(Y ) > 1− p

}
− E

{
X− | F2(Y ) > 1− p

}
E {F2(Y ) | F2(Y ) > 1− p}

∣∣
=
∣∣E{X−F2(Y ) | F2(Y ) > 1− p

}
− (1− p/2)E

{
X− | F2(Y ) > 1− p

}∣∣
=
∣∣E [X− {F2(Y )− (1− p/2)} | F2(Y ) > 1− p

]∣∣
≤E

{
|X−||F2(Y )− (1− p/2)| | F2(Y ) > 1− p

}
≤p

2
E
{
|X−| | F2(Y ) > 1− p

}
≤1

2

(
E
∣∣X−∣∣ζ)1/ζ [EI {X < 0, F̄2(Y ) < p

}]1−1/ζ

=O(p1−1/ζ),

where the last inequality is guaranteed by Hölder’s inequality, and we have

E |X−|ζ < ∞ by Assumption 7.
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Thus, it follows that

Mn

(
TGp(X;Y )

TGp (X+;Y )
− 1

)
= Mn

4

p

Cov (X−, F2(Y ) | F2(Y ) > 1− p)

TG+
p (X;Y )

= Mn
4

p

Cov (X−, F2(Y ) | F2(Y ) > 1− p)

O (p1/η−1Q1(1− p))

= O
(
Mnp

γ1− 1
ζ
+1− 1

η

)
= o(1),

and the proof is completed.

Supplementary Material

The supplementary material contains the proofs of four auxiliary lemmas

and Proposition 1 as well as some additional figures for the Simulation and

Application.
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