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Abstract: We propose a functional linear operator quantile regression (FLOQR) framework, which in-

cludes many important and useful functional data models, and devote to the new framework model for

longitudinal data with the typically sparse and irregular designs. The non-smooth quantile loss and

functional linear operator pose new challenges to functional data analysis for longitudinal data in both

computation and theoretical development. To address the challenge, we propose the iterative surrogate

least squares estimation approach for the FLOQR model, which transforms the response trajectories

and establishes a new connection between FLOQR and functional linear operator model. In addition,

we use Karhunen-Loève expansion to alleviate the problem of the nonexistence of the inverse of the

covariance in the infinite-dimensional Hilbert space. Then, the approach is used to classic functional

varying coefficient QR, functional linear QR, and functional varying coefficient QR with history index

function for sparse longitudinal data by using functional principal components analysis through con-

ditional expectation. The resulting technique is flexible and allows the prediction of an unobserved

quantile response trajectory from sparse measurements of a predictor trajectory. Theoretically, we
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show that, after a constant number of iterations, the proposed estimator is asymptotic consistent for

sparse designs. Moreover, asymptotic pointwise confidence bands are obtained for predicted quantile

individual trajectories based on their asymptotic distributions. The proposed algorithms perform well

in simulations, and are illustrated with longitudinal primary biliary liver cirrhosis data.

Key words and phrases: Functional data analysis, Quantile regression, Linear operator, Repeated

measurements, Confidence band, Prediction, Sparse design.

1. Introduction

Functional data analysis has become increasingly useful in various fields. One well-known

application is growth curve analysis in biology, medicine, and chemistry, see, for instance,

Müller (2009), Ramsay and Silverman (2005) and Ferraty and Vieu (2006), and references

therein. In these applications, especially in longitudinal studies, often a few repeated mea-

surements can be obtained for each subject or item, owing to cost or logistical constraints

that limit the number of measurements (Ji and Müller, 2017). Functional data analysis

methodology has been shown useful to infer the general trend and covariance structure of

trajectories, and the prediction of an unobserved response trajectory from some sparse and

irregular functional or longitudinal data (Yao et al., 2005a,b; Li and Hsing, 2010; Jiang and

Wang, 2011; Ji and Müller, 2017). On the other hand, there are some classic estimation

methods and theoretical studies on functional data in reproducing kernel Hilbert space, for

example, Sun et al. (2018); Cui et al. (2020); Lv et al. (2020); Zhang and Lian (2021); Li

et al. (2021); Yang et al. (2021); Liu et al. (2024), but these results are generally not used

for irregular longitudinal data analysis.

Recently, there has been increased interest in extending regression models to functional
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data, where both the predictor and the response are random functions. We can abstract

most functional regression models as functional linear operator model, which has form

E[Y (t)|X(t)] = (LXβ)(t), (1.1)

where Y (·) and X(·) respectively are the square-integrable predictor and response trajectories

on compact interval domain T , and (LXβ) is a functional linear operator. The functional lin-

ear operator model (1.1) has been well studied under various regression models. For instance,

(LXβ)(t) = β(t)X(t), a standard functional varying coefficient model (FVC) (Şentürk and

Müller, 2010; Wu et al., 2010); (LXβ)(t) =
∫
S βτ (s, t)X(s)ds, functional linear regression

model (FLQ) (He et al., 2000; Yao et al., 2005b); (LXβ)(t) = βτ (t)
∫ ∆

0
γτ (s)X(t− s)ds, func-

tional varying coefficient models with history index (FVC-HI) (Şentürk and Müller, 2010),

and so on. The operators (LXβ) in FVC, FLQ, and FVC-HI will be defined in detail in the

next section. The model (1.1) can be regarded as an extension of multivariate data analysis

where observations consist of vectors of finite dimension. That is, it is an extension from

finite dimensions to the infinite-dimensional case. The extension to functional data is not

obvious and requires tools from functional analysis. A basic problem for this extension is the

inversion of linear operators. He et al. (2000) solved the problem well, who derived properties

of functional linear regression modeling for random processes {(X(·), Y (·))} under the appro-

priate conditions. But, it is changeling to our proposed functional linear operator quantile

regression model (FLOQR), because these tools and analysis from functional analysis can

not directly applied to our model.

In the paper, we proposed a FLOQR, that is, given a prespecified quantile τ ∈ (0, 1), the
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conditional τth quantile of Y (·) given X(·),

QY |X(t; τ) = ατ (t) + (LXβτ )(t), (1.2)

where ατ is a varying coefficient intercept function, and LXβτ is a functional linear operator.

A comprehensive survey of the theory of quantile regression and its applications can be found

in Koenker (2005). For the functional linear quantile regression model, Kato (2012) consid-

ered an estimator for the slope function based on the principal component basis. Recently,

Zhang et al. (2022) developed a novel spatial quantile function-on-scalar regression model,

which studies the conditional spatial distribution of a high-dimensional functional response

given scalar predictors. All investigations on functional quantile regression to date are for

the case of completely observed trajectories. Most of these methods face severe challenges

for our FLOQR with sparse and irregular designs.

We know that our FLOQR model falls within the framework of function-on-function

vary-coefficient linear/quantile regression. For function-on-function vary-coefficient linear

regression, Zhang and Chen (2007) constructed local polynomial kernel reconstruction-based

estimators for the covariate effects and the covariance function, and derived their asymp-

totics, and then Zhang (2011) further investigated the F -type test for the general linear

hypothesis and derived its asymptotic power. They are both for dense functional data; From

functional principal component analysis, Yao et al. (2005b), Wu et al. (2010) and Şentürk

and Müller (2010) provided a representation of varying-coefficient functions through suit-

able auto and cross-covariance of the underlying stochastic processes, which is particularly

advantageous for sparse and irregular longitudinal data. In our FLOQR, we adopt the

estimation strategy. In addition, Zhou and Wu (2010) and Gu et al. (2014) considered

the construction of simultaneous confidence corridor for varying coefficient; Luo et al. (2016)
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and Li et al. (2017) explored functional varying coefficient single index model; Recently,

Chen et al. (2019) studied functional regression with random response curve and vector co-

variates by a supervised least squares estimation procedure after utilizing B-spline function

to approximate the unknown functions; Boumahdi et al. (2023) constructed an estimator

for the nonparametric function-on-function models with surrogate responses by kernel; Luo

and Qi (2024) extended linear function-on-function regression to general nonlinear function-

on-function regression, and developed a novel method to fit the model via the functional

universal approximation theorem. But the above works mainly focus on mean regression.

It is nonrobust for the typically skewed distribution of functional response curves or data

containing some outliers. For this scenario, Liu et al. (2020a) performed a function-on-scalar

quantile regression in a Bayesian framework; Beyaztas et al. (2025) introduced a function-on-

function linear quantile regression model to characterize the entire conditional distribution

of a functional response for a given function predictor by tensor cubic B-splines; Battagliola

et al. (2025) considered estimation methodology on quantile regression for longitudinal data

via spline representations, and only applied to feed intake of lactating sows without theo-

retical results; Zhou et al. (2023) proposed a functional response quantile regression model

and developed a data-driven estimation procedure based on a local linear approximation;

and further its empirical likelihood inference is given by Zhou et al. (2024). These function-

on-function quantile regression models are special cases of our FLOQR. They did not study

the function-to-function quantile model from the viewpoint of the intrinsic characteristics of

functions but rather inferred unknown functions by simple kernel or B-spline approximations.

They are generally not suitable for sparse and irregular longitudinal data.

Our proposed FLOQR model is a new framework of function-to-function quantile regres-
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sion models. It includes many important and useful models, for example, functional varying

coefficient QR model (1.2) with (2.3), functional linear QR model (1.2) with (2.4), functional

varying coefficient QR model with history index function (1.2) with (2.5), and so on. In

addition, we also develop a unified estimation strategy motivated by the functional linear

operator model (He et al., 2000). However, We devote to the new framework model for

longitudinal data with typically sparse and irregular designs. It brings us several challenges

in statistical estimation: (a) For estimating the FLOQR model, we need to introduce the

non-smooth quantile loss function. Unlike the squared loss, the non-smooth quantile loss

results in no closed-form solution for the estimate, which also causes some difficulties in both

computation and theoretical development. (b) Under sparse data situations, the key for the

functional approach is to target the covariance structure of X, the cross-covariance structure

of X, and the τth quantile of Y for our FLOQR model. But the cross-covariance structure of

the latter cannot be obtained because there is no data representation of ατ and βτ . (c) One

main obstacle for the operator QR model involves the inversion of covariance operators. The

inversion is not feasible in infinite dimensional Hilbert space. We need to adopt the repre-

sentation of the regression coefficient functions in the functional linear operator model (1.1),

which is outlined in He et al. (2000). However, such a straightforward representation from

the functional linear operator model to the FLOQR model does not exist. To address these

challenges, we propose the iterative surrogate least squares estimation (SLES) approach for

the FLOQR model, which transforms the response trajectories and establishes a new con-

nection between FLOQR (1.2) and functional linear operator model (1.1). However, the

transformation cannot directly deal with heterogeneous error. In FLOQR model, we assume

that the random error of the model is independent of covariates. The technique has also been
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applied to distributed learning under quantile loss function (Chen et al., 2020).

The contributions of the article are as follows. First, we propose a new model framework

for functional data: the FLOQR model, which includes many important functional quantile

regression models. They are versatile and flexible analysis tools for relating longitudinal

responses to longitudinal predictors. Second, we introduce a new technique, SLES with

an iterative algorithm, for the FLOQR model, which transforms the FLOQR model into

functional linear operator model; and then apply principal components analysis through

conditional expectation to handle sparse and irregular longitudinal data for which the pooled

time points are sufficiently dense. Third, theoretically, we show that, after a constant number

of iterations, the proposed estimator is asymptotic consistency. Fourth, we respectively

construct asymptotic pointwise confidence bands for predicted quantile response trajectories

of the three functional QR models based on their asymptotic distribution.

The remainder of the article is organized as follows. In Section 2, we propose FLOQR

model, give its estimation strategy and SLSE algorithm, and establish theoretical guaran-

tees. In Section 3, we discuss the three specific functional quantile regression models under

the framework of the FLOQR model, including the prediction of quantile response trajecto-

ries and the construction of pointwise confidence bands for individual quantile trajectories.

Simulation studies that illustrate the usefulness of the proposed functional QR models and

estimation strategies can be found in Section 4. Applications of the proposed functional QR

models to two longitudinal data are presented in Section 5. Proofs and auxiliary results are

compiled in the Supplementary material (SM).

2. Methodology
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2.1 Functional linear operator quantile regression model

2.1 Functional linear operator quantile regression model

First, we propose our FLOQR model. We know that any random variable Y can be char-

acterized by it cumulative distribution function FY (y) = P (Y ≤ y), or equivalently, by its

quantile function QY (τ) = F−1
Y (τ) = inf{y : F (y) ≥ τ}, where τ is quantile level with

0 < τ < 1. The τ -th quantile QY (τ) minimizes the expected loss

QY (τ) = argminyE{ρτ (Y − y)}, (2.1)

for the asymmetric loss ρτ (u) = u{τ − I(u < 0)}. For quantile regression, besides robust

aspects, it may also help to derive some kind of confidence prediction regions based on

quantiles. When the response trajectory Y is coupled with the predictor trajectory X. One

is interested in studying the conditional quantile QY |X(τ) = F−1
Y |X(τ). Since Y and X are

observed sparsely and irregularly in our setting, we will take full advantage of the functional

nature of the underlying data to model sparse longitudinal data via quantile regression (2.1).

We thus propose the FLOQR model as

QY |X(t; τ) = ατ (t) + (LXβτ )(t), (2.2)

where ατ is a varying coefficient intercept function, and LXβτ is a functional linear operator.

In this article, we consider the following three definitions of the operator LXβτ , but not

limited to them, which are very rich in forms. Our definitions of the operator LXβτ are

(i) functional varying coefficient QR model, LX : L2(T ) → L2(T ) by

(LXβ)(t) = βτ (t)X(t); (2.3)

(ii) functional linear QR model, LX : L2(S × T ) → L2(T ) by

(LXβ)(t) =

∫
S
βτ (s, t)X(s)ds; (2.4)
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2.1 Functional linear operator quantile regression model

(iii) functional varying coefficient QR with history index, LX : L2(T ) → L2(T ) by

(LXβ)(t) = βτ (t)

∫ ∆

0

γτ (s)X(t− s)ds, (2.5)

where ∆ is a length of sliding window, and t ∈ T = [∆, T ] with a suitable T > 0. In section

3, we will focus on considering the three functional quantile regression models.

Second, we give the representations of predict and response functions in our model

through functional principal components. The observed data consist of square integrable

random predictor and response trajectories (Xi, Yi), i = 1, · · · , n, which are the realization

of the underlying smooth random trajectory processes (X,Y ). We usually refer to the ar-

guments of X(·) and Y (·) as time or location, with compact interval domains S and T

respectively. So X ∈ L2(S) and Y ∈ L2(T ).The two smooth random trajectories have

unknown smooth mean functions µX = EX(s), µY = EY (t), and covariance functions

rXX(s, t) = Cov(X(s), X(t)), s, t ∈ S and rY Y (s, t) = Cov(Y (s), Y (t)), s, t ∈ T , respec-

tively. Similarly we can define covariance function rXY (s, t) = Cov(X(s), Y (t)), s ∈ S, t ∈ T .

We have orthogonal expansions of rXX and rY Y in terms of eigenfunctions ϕm and ψk with

nonincreasing eigenvalues ρm and λk, that is,

rXX(s1, s2) =
∞∑

m=1

ρmϕm(s1)ϕm(s2), rY Y (t1, t2) =
∞∑
k=1

λkψk(t1)ψk(t2),

for s1, s2 ∈ S, t1, t2 ∈ T . The Karhunen-Loève L2 representations have

X(s) = µX(s) +
∞∑

m=1

ζmϕm(s), s ∈ S; Y (t) = µY (t) +
∞∑
k=1

ξkψk(t), t ∈ T (2.6)

with a sequence of uncorrelated (independent in the Gaussian case) functional principal

components ζm, (resp. ξk) with E[ζm] = 0 and Var[ζm] = ρm for all m (resp. E[ξk] = 0

and Var[ξk] = λk for all k). The {(ρm, ϕm)} and {(λk, ψk)} respectively are the pairs of

eigenvalues and eigenfunctions of the covariance operators of X and Y .
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2.2 Estimation strategy

2.2 Estimation strategy

Without loss of generality, assuming that ατ (t) = 0 for all t, one may simplify the proposed

FLOQR (1.2) to

Y (t) = (LXβτ )(t) + ε(t), (2.7)

where we assume that P (ε(t) < 0) = τ for each t ∈ T , and ε is independent of the X.

Otherwise, we can shift the ε(t) to be ε(t)−F−1
t (τ), so that this assumption holds, where Ft

is the cumulative distribution function of ε(t). By the way, denote ft to be the density of the

noise ε(t). In addition, if ατ (t) ̸= 0, we have a new functional operator (LX̃ β̃τ )(t) such that

Y (t) = ατ (t) + (LXβτ )(t) + ε(t) = (LX̃ β̃τ )(t) + ε(t), where X̃ = (1, X) and β̃τ = (ατ , βτ )
T .

Notice that LX̃ = (LI ,LX), where LI is identity operator. Obviously, LX̃ is a linear operator.

For FLOQR model (2.7), the estimation of the common slope function βτ can be transformed

into the following stochastic optimization problem:

β∗
τ = argmimβτ

E

∫
T
ρτ {Y (t)− (LXβτ )(t)} dt. (2.8)

Our motivation is to translate the quantile regression optimization to least squares esti-

mation, and then take full advantage of least squares estimation. We know that there is a

classic prediction method in a functional linear regression by estimating E(Y |X) (Draper and

Smith, 1998; Yao et al., 2005b). An important step is to estimate the regression coefficient

function β. In the section, we explore the estimation strategy of FLOQR (1.2) by inves-

tigating the population least squares for functional linear operator mean regression model

E[Y (t)|X(t)] = (LXβ)(t).We seek the solution of the functional linear operator model by find-

ing the function β∗ which minimizes the squared distance, that is, β∗ = argminβE∥Y −LXβ∥2.

Let L∗
X is the adjoint operator of LX , ΓXX = E[L∗

XLX ], and denote the range of the ΓXX
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2.2 Estimation strategy

as R(ΓXX). Then, β = Γ−1
XXE[L∗

XY ] exists and is the unique solution of the score equation

ΓXXβ = E[L∗
XY ] in R(ΓXX), and β∗ can be expanded in the eigenbasis representation (He

et al., 2000). For example, if LXβ is (2.4), β has the representation (He et al., 2000; Yao

et al., 2005b), with convergence under mild regularity conditions:

β(s, t) =
∞∑

m=1

∞∑
k=1

E[ζmξk]

E[ζm]
ϕm(s)ψk(t). (2.9)

This novel result, the eigenbasis representation of β∗, makes it possible to handle the sparsity

and irregularity of the longitudinal data, and also to incorporate additional information that

is inherent in the underlying covariance structure in the pivotal estimation step.

But the non-smooth quantile loss ρτ poses new challenges to the estimation of the quan-

tile regression model because of its diamond-shaped polyhedral contours (Koenker, 2005).

We do not obtain an elegant “closed-form” solution such as β = Γ−1
XXE[L∗

XY ] for mean re-

gression E[Y (t)|X(t)] = (LXβ)(t). Thus, we cannot obtain the eigenbasis representation of

β∗. Moreover, some optimization algorithms are proposed to solve the estimation of quantile

regression. As discussed in (Chen and Wei, 2005; Koenker, 2005), the optimization problem

(2.1) can be written as a linear programming problem and solved by the simplex method

or the interior point method. It is well-known that the simplex method is computationally

demanding where the worst-case complexity increases exponentially with the data size. And

while the interior point method also has shortcomings in dealing with modern scale data

(Yang et al., 2014). These methods are mainly difficult to obtain the eigenbasis represen-

tation of β, so we cannot use the technical advantages of functional nature to model sparse

longitudinal data.

Motivated by the connection between quantile regression and ordinary linear regression

(Chen et al., 2020), we develop a unified estimation strategy for FLOQR based on the mean
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2.2 Estimation strategy

regression. Let G(βτ ;X,Y ) =
∫
T ρτ {Y (t)− (LXβτ )(t)} dt. The subgradient and Hessian-

type functions take the form of

g(βτ ;X,Y ) =
∂G(βτ ;X,Y )

∂βτ
= L∗

X

∫
T
{I[Y (t)− (LXβτ )(t) ≤ 0]− τ}dt,

H(βτ ) =
∂Eg(βτ ;X,Y )

∂βτ
= E

[∫
T
L∗

XLXft(LX(βτ − β∗
τ ))dt

]
.

To solve the stochastic optimization (2.8), we begin with the Newton-Raphson iteration

algorithm. Its population version is

β̃(1)
τ = β(0)

τ −H−1(β(0)
τ )E[g(β(0)

τ ;X,Y )], (2.10)

where β(0)
τ is an initial estimation. The algorithm (2.10) is not feasible because it contains

βτ in H that needs to be estimated. When β
(0)
τ is close to the true slope βτ , we have

H(β(0)
τ ) ≈ H(βτ ) = E

[∫
T
L∗

XLXft(0)dt

]
=

∫
T
ΓXXft(0)dt,

which is estimable. It impels the following iteration

β(1)
τ = β(0)

τ −H−1(βτ )E[g(β
(0)
τ ;X,Y )]. (2.11)

Under some regularity conditions, the Taylor expansion of E[g(β(0)
τ ;X,Y )] at βτ , E[g(β(0)

τ ;X,Y )] =

H(βτ )(β
(0)
τ − βτ ) +O(∥β(0)

τ − βτ∥22). Thus, it is easy to see that

∥β(1)
τ − βτ∥2 =

∥∥β(0)
τ −H−1(βτ )

[
H(βτ )(β

(0)
τ − βτ ) +O(∥β(0)

τ − βτ∥22)
]
− βτ

∥∥
= O(∥β(0)

τ − βτ∥22),

which implies that we can refine β
(1)
τ closer to the true βτ by one step Newton-Raphson

iteration (2.11) if β(0)
τ is a consistent estimator of βτ . But we find it is complex to com-

pute H−1(β
(0)
τ ) because of inverse operation

(∫
T ΓXXf

(0)
t (0)dt

)−1

. From (2.11), we find that
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2.2 Estimation strategy

the algorithm is similar to gradient descent. The H−1(β
(0)
τ ) can be regarded as the learn-

ing rate of the gradient descent iterative algorithm. Therefore, for constructing our SLSE

algorithm of FLOQR and computational simplicity, we replace
(∫

T ΓXXf
(0)
t (0)dt

)−1

with

Γ−1
XX

(∫
T f

(0)
t (0)dt

)−1

. Thus, it facilitates our algorithm. Therefore, the iteration (2.11) can

be written as

β(1)
τ = Γ−1

XX

[
ΓXXβ

(0)
τ −

(∫
T
f
(0)
t (0)dt

)−1

E[g(β(0)
τ ;X,Y )]

]

= Γ−1
XXE

{
L∗

X

[
LXβ

(0)
τ −

(∫
T
f
(0)
t (0)dt

)−1 ∫
T
{I[Y (t)− (LXβ

(0)
τ )(t) ≤ 0]− τ}dt

]}
.

Define a new response trajectory

Ỹ = LXβ
(0)
τ −

(∫
T
f
(0)
t (0)dt

)−1 ∫
T
{I[Y (t)− (LXβ

(0)
τ )(t) ≤ 0]− τ}dt,

then get

β(1)
τ = Γ−1

XXE[L
∗
X Ỹ ], (2.12)

which is the linear operator regression coefficient (He et al., 2000). It can be regarded as a

surrogate least squares estimation (SLSE)

β(1)
τ = argminβτ

E∥Ỹ − LXβτ∥22. (2.13)

Further, we have the eigenbasis representation of β(1)
τ such as (2.9) based on functional

principal components analysis. In the estimation strategy, there are still two issues: the

initial estimation β
(0)
τ and the density ft(0). From a population perspective, we address

the two issues. For β(0)
τ , we can take β(0)

τ = β∗ = Γ−1
XXE[L∗

XY ], a function linear operator

regression estimator. In practice, it works well. Kernel density estimator can be used to get

ft(0), since E[Kh{Y (t) − LXβ
∗
τ (t)}] − ft(0) =

1
2
h2µ2(K)f ′′

t (0) + o(h2) under mild regularity
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2.3 Theoretical guarantees

conditions, where K(·) is a kernel function, Kh(·) = h−1K(·/h) with bandwidth h, and

µ2(K) =
∫
z2K(z)dz. See Fan and Gijbels (1996).

We present the entire estimation procedure in Algorithm 1 from a population viewpoint.

Algorithm 1: SLSE algorithm for functional linear operator QR model (2.7).
Input: Initialize estimator β(0)

τ = Γ−1
XXE[L∗

XY ], kernel function K(·), bandwidth h,

quantile level τ and the number of iterations K.

for k = 1, 2, · · · ,K do
Estimate f (k)

t (0) = E[Kh{Y (t)− LXβ
(k−1)
τ (t)}] by kernel density estimation.

Compute

Ỹ (k)(t) = LXβ
(k−1)
τ −

(∫
T f

(k)
t (0)dt

)−1 ∫
T {I[Y (t)− (LXβ

(0)
τ )(t) ≤ 0]− τ}dt.

Obtain β
(k)
τ = Γ−1

XXE[L∗
X Ỹ

(k)].

end

Output: The final estimator β(K)
τ .

2.3 Theoretical guarantees

In the paper, the random processes we consider are square integrable, i.e., are in the L2

space of square-integrable functions. For a compact interval T , L2(T ) is a Hilbert space

when equipped with the inner product ⟨f, g⟩ =
∫
T f(t)g(t)dt for f, g ∈ L2(T ) where dt

is the Lebesgue measure, which generates the norm ∥ · ∥. If β ∈ L2(S × T ), we define

∥β∥2 =
∫
T

∫
S β

2(s, t)dsdt. Note that our results can be easily extended to cover more general

measures ν and scalar products in spaces L2(T ; ν). In our FLOQR model (2.7), assume that

X and ε are uncorrelated.

In multivariate analysis, the unique minimizer of a linear regression model can be found

when the covariance matrix of covariate is invertible, by classical least squares theory. How-
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2.3 Theoretical guarantees

ever, the theory cannot be simply extended to the functional setting. For (2.13), the solution

is not unique even if Ỹ is Y because there is a problem of the nonexistence of the inverse

of covariance (operator) of X in the infinite-dimensional setting. The problem can be al-

leviated by a suited generalized inverse under the following conditions, which refers to the

Karhunen-Loève decomposition (2.6).

Condition 1. The eigenvalues ρm of the covariance operator of X are positive, and X

is square integrable (i.e. E ∥X∥2 = E
∫
X2(t)dt <∞).

Condition 2. The linear operator regression coefficient βτ satisfies ∥βτ∥ <∞.

Condition 3. The density function of the noise ft(·) is bounded and Lipschitz contin-

uous (that is, |ft(x)− ft(y) ≤ CL|x− y| for any x, y ∈ R and some constant CL > 0) for any

t ∈ T . Moreover, assume ft(0) > c > 0 for some constant c and for any t ∈ T .

Remark 2.1. For Condition 1, ρm > 0 for m ≥ 1 implies the inverse of the linear op-

erator ΓXX exists. A square integrable X guarantees
∑∞

m=1 ρm < ∞. Let the covariance

operator of X to be G, and EX = 0. Indeed, by the relation Gϕm = ρmϕm, we have

ρm = ⟨Gϕm, ϕm⟩ = ⟨E[⟨X,ϕm⟩], ϕm⟩ = E [⟨X,ϕm⟩2] . The eigenfunctions ϕm are orthogo-

nal.By Parseval’s equality,

∞∑
m=1

ρm =
∞∑

m=1

E
[
⟨X,ϕm⟩2

]
= E ∥X∥2 <∞.

Also see the definition of X on page 4 of He et al. (2000), or the random elements in L2 and

the covariance operator in Subsection 2.3 in Horváth and Kokoszka (2012). In Condition 2,

∥βτ∥ < ∞ means βτ is integrable in L2 space. The condition ensures that βτ in (2.13) has

a representation similar to (2.9), and the representation converges uniformly. The condition
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has been used in Şentürk and Müller (2010); Yao et al. (2005b); He et al. (2000). Condition

3 is a regular condition on the smoothness of the density function ft. The condition about

density function of the noise is required in quantile regression (Koenker, 2005; Kato, 2012;

Liu et al., 2020b). For example, Kato (2012) and Liu et al. (2020b) assumed that density

function is continuously differentiable and bounded; Zhou et al. (2023) required that density

function is uniformly bounded away from zero and ∞, and has a continuous second-order

derivative at t. These assumptions are stronger than Condition 3.

Theorem 2.1. Assume that Conditions 1-3 hold. Then

(a) β(1)
τ = Γ−1

XXL∗
X Ỹ exists and is the unique solution of (2.13) in R(ΓXX);

(b)
∥∥∥β(1)

τ − βτ

∥∥∥ = O

(∥∥∥[E1/2(LXL∗
XLX)

]
(β

(0)
τ − β∗

τ )
∥∥∥2);

(c)
∥∥∥β(k)

τ − βτ

∥∥∥ = O

(
∥E(LXL∗

XLX)∥2k−1
∥∥∥β(0)

τ − β∗
τ

∥∥∥2k).

Remark 2.2. From the perspective of population, we give the closed-form solution of quantile

regression as ordinary linear regression by transforming the response trajectory Y to Ỹ . If

we have a consistent estimator β(0)
τ , we can refine it by multiple rounds of iteration. In fact,

we do not require good initialization since quantile loss is convex and Algorithm 1 is based

on Newton-Raphson optimization, which enjoys quadratic converge guarantees under general

conditions.

3. Specific functional quantile regression for sparse longitudinal data

In this section, we will propose three specific functional quantile regression models for ana-

lyzing sparse and irregular data. The LXβ in FLOQR model (1.2) corresponds to (2.3)-(2.5)

respectively. We call them functional varying coefficient QR model, functional linear QR
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model, and functional varying coefficient QR model with history index. The following sub-

sections will give their estimates, predictions, inferences, and asymptotic properties.

Although the population methodology was derived in the previous section, in practice

they must be estimated from available observed data. Our observed predictor and response

trajectories Xi and Yi are measured at sparse and irregularly spaced locations or time points,

and contaminated with additional measurement errors (Staniswalis and Lee, 1998; Rice and

Wu, 2001; Yao et al., 2005b; Wu et al., 2010). To adequately reflect the sparse and irregular

measurements, we assume that the random measurements of Xi (resp. Yi) for the ith subject

are at locations Si1, · · · , SiLi
(resp. Ti1, · · · , TiNi

), where Li and Ni are assumed to be i.i.d.

as L and N (which may be correlated, but are independent of all other random variables),

respectively. Let Uil (resp. Vij) be the observation of the random trajectory Xi (resp. Yi)

made at a random location Sil (resp. Tij), contaminated with measurement errors ϵX,il (resp.

ϵY,ij). Based on the Karhunen-Loève L2 representations (2.6) of the trajectories X and Y , we

may represent predictor and response observations for the subjects i = 1, · · · , n as follows:

Uil = Xi(Sil) + ϵX,il = µX(Sil) +
∞∑

m=1

ζimϕm(Sil) + ϵX,il, 1 ≤ l ≤ Li, (3.1)

Vij = Yi(Tij) + ϵY,ij = µY (Tij) +
∞∑
k=1

ξikψk(Tij) + ϵY,ij , 1 ≤ j ≤ Ni, (3.2)

where the errors ϵX,il and ϵY,ij are assumed to be i.i.d. with mean zero and variance σ2
X and

σ2
Y , and independent of component scores ζim (resp ξik) which have Eζim = 0, Eζ2im = ρmρ

and E[ζimζim′ ] = 0 for m ̸= m′ (resp. Eξik = 0, Eξ2ik = λkρ and E[ξikξik′ ] = 0 for k ̸= k′).
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3.1 Functional varying coefficient QR model for sparse longitudinal data

3.1 Functional varying coefficient QR model for sparse longitudinal data

In the subsection, we consider the scenario (LXβτ )(t) = βτ (t)X(t) for t ∈ T . The func-

tional/longitudinal varying coefficient QR model is

QY |X(t; τ) = ατ (t) + βτ (t)X(t), (3.3)

where it is assumed that the varying coefficient functions ατ and βτ are smooth for a given

quantile level τ . We should optimize a QR problem via check function ρτ (·). But it may be

biased or inefficient in case of sparse, irregular, noise-corrupted measurements Uij and Vij.

3.1.1 Functional approach

Based on the estimation strategy in Section 2.2, given initial estimators α(0)
τ and β(0)

τ , we can

translate the model (3.3) into the following functional linear operator regression

E[Ỹ (t)|X(t)] = ατ (t) + (LXβτ )(t), (3.4)

where (LXβτ )(t) = βτ (t)X(t) and

Ỹ (t) = Q
(0)
Y |X(t; τ)−

(∫
T
f
(k)
t (0)dt

)−1 ∫
T
{I[Y (t)−Q

(0)
Y |X(τ ; t) ≤ 0]− τ}dt

with Q
(0)
Y |X(t; τ) = α

(0)
τ (t) + β

(0)
τ (t)X(t). Similarly, we have the covariance expansion of Ỹ

rỸ Ỹ (t1, t2) = Cov
(
Ỹ (t1), Ỹ (t2)

)
=

∞∑
l=1

κlφl(t1)φl(t2), t1, t2 ∈ T , (3.5)

where the eigenvalues κl of the covariance operator are positive and ordered, κ1 > κ2 > · · · ;

φl is the corresponding eigenfunction of κl; and the function principal components ςl satisfy

E[ςl] = 0 and Var[ςl] = κl for all l. Let Ỹ c(t) = Ỹ (t) − E[Ỹ (t)] and Xc(t) = X(t) − µX(t).

The model (3.4) can be written as

E[Ỹ c(t)|X(t)] = βτ (t)X
c(t) (3.6)
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3.1 Functional varying coefficient QR model for sparse longitudinal data

with α(t) = E[Ỹ (t)] − βτ (t)µX(t). By our result (2.12), one gets the following population

least squares representation

β(1)
τ (t) = argminβτ

E∥Ỹ c(t)− βτ (t)X
c(t)∥22 = Γ−1

XcXcE
(
L∗

XcỸ c
)

=
Cov(Xc(t), Y c(t))

Var(Xc(t))
=

Cov(X(t), Ỹ (t))

Var(X(t))
=
rXỸ (t, t)

rXX(t)
, (3.7)

with the cross-covariance function between X and Ỹ ,

rXỸ (s, t) =
∞∑

m=1

∞∑
l=1

E[ζmςl]ϕm(s)φl(t). (3.8)

Some details about the estimate for α(1)
τ (t) and β

(1)
τ (t) are given in Appendix S1.1 of

Supplementary Material. We sketch the functional estimation approach for functional varying

coefficient QR model (3.3) in Algorithm 2 by combining the above steps. Thus, the final

estimators α̂(K)
τ and β̂

(K)
τ are obtained via Algorithm 2.

Algorithm 2: SLSE algorithm for functional linear operator QR model (3.3).
Input: Kernel function K(·), bandwidth h, quantile level τ and the number of

iterations K.

Calculate mean function µ̂X and µ̂Y , covariance surface r̂XX , cross-covariance

surface r̂XY , eigenfunctions ϕ̂k andψ̂k, and eigenvalues ρ̂k and λ̂k by Steps 1-2.

Initialize estimators α̂(0)
τ and β̂

(0)
τ by Step 3.

for k = 1, 2, · · · ,K do
Estimate f̂ (k)

t (0), ω̂i, Ûi and V̂i for obtaining Ṽij by Step 4.

Compute mean function µ̂Ỹ via Step 5, cross-covariance surface r̂XỸ by Step 6.

Obtain α̂
(k)
τ and β̂

(k)
τ by Step 7.

end

Output: The final estimators α̂(K)
τ and β̂

(K)
τ .
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3.1 Functional varying coefficient QR model for sparse longitudinal data

3.1.2 Uniform consistency and prediction

Some assumptions and proofs are provided in Appendix S5 of SM. We first present the

convergence rate for α̂(1)
τ and β̂

(1)
τ after one iteration.

Theorem 3.1. Let supt∈T |α̂(0)
τ (t) − ατ (t)| = Op(an) and supt∈T |β̂(0)

τ (t) − βτ (t)| = Op(an).

Under Conditions 1-3, and Assumptions (A1)-(A6) in Appendix S5 of SM, we have

sup
t∈T

|α̂(1)
τ (t)− ατ (t)| = Op

{
1√
n

[
1

bX
+

1

bY
+

1

h2X
+

1

h2Y
+

1

h1h2

]
+ a2n

}
,

sup
t∈T

∥β̂(1)
τ (t)− βτ (t)| = Op

{
1√
n

[
1

bX
+

1

bY
+

1

h2X
+

1

h2Y
+

1

h1h2

]
+ a2n

}
.

Theorem 3.2. Let supt∈T |α̂(0)
τ (t) − ατ (t)| = Op(an) and supt∈T |β̂(0)

τ (t) − βτ (t)| = Op(an).

Under Conditions 1-3, and Assumptions (A1)-(A6) in Appendix S5 in SM, we have for k

iterations of Algorithm 2,

sup
t∈T

|α̂(k)
τ (t)− ατ (t)| = Op

{
1√
n

[
1

bX
+

1

bY
+

1

h2X
+

1

h2Y
+

1

h1h2

]
+ ak+1

n

}
,

sup
t∈T

∥β̂(k)
τ (t)− βτ (t)| = Op

{
1√
n

[
1

bX
+

1

bY
+

1

h2X
+

1

h2Y
+

1

h1h2

]
+ ak+1

n

}
.

(3.9)

Remark 3.1. The bandwidths h1, h2, bX , and hX are used in estimation for mean and (cross)-

covariance functions as described explicitly in Appendixes S1 and S5. It can be shown that

when the iteration number k is sufficiently large, that is, k ≥ log(c0bn)

log an
− 1, for some c0 > 0,

where bn =
1√
n

[
1

bX
+

1

bY
+

1

h2X
+

1

h2Y
+

1

h1h2

]
, which match the convergence rate of least

square estimator (see Şentürk and Müller (2010)).

Remark 3.2. In fact, the estimation of quantile regression is a convex optimization problem

because the check function ρτ (·) is a convex loss. Therefore, its optimization solution is essen-

tially independent of the initial value. Therefore, we adopt the typical initial estimator β̂(0)
τ =

Γ−1
XXE[L∗

XY ] in practice. Due to technical limitations, we obtain the results such as Theorem
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3.1 Functional varying coefficient QR model for sparse longitudinal data

3.2, which depends on the accuracy of the initial estimate Op (an). For functional varying

coefficient QR model (3.3), we observe the data {(Tij, Uij, Vij) : i = 1, · · · , n, j = 1, · · · , Ni}.

We can obtain β̂
(0)
τ by minimizing the following locally weighted quantile regression loss func-

tion
n∑

i=1

Ni∑
j=1

ρτ

(
Vij − Uij

(
a+ b

(
Tij − t

h

)))
K

(
Tij − t

hk

)
,

where K is a kernel function, and h is a bandwidth. Thus, we have β̂(0)
τ (t) = â. By Theorem

1 Yao (2007), we have |β̂(0)
τ (t) − βτ (t)| = Op(an) → 0 with an = (h

∑n
i=1Ni)

−1/2 under

a suitable conditions. So, we can also take the above locally weighted quantile regression

estimation β̂
(0)
τ (t) as an alternative initial value, which meets the theoretical consistency

condition.

One of our central tasks is to predict the tth quantile trajectory QY ∗|X∗(t; τ) of the

response Y ∗ for a new subject from a sparse predictor trajectory X∗, we get from (3.3),

QY ∗|X∗(t; τ) = ατ (t) + βτ (t)

(
µX(t) +

∞∑
m=1

ζ∗mϕm(t)

)
, (3.10)

where ζ∗m =
∫
T (X∗(t)− µX(t))ϕm(t) is the mth functional principal component of X∗. These

quantities µX , ϕm, ατ and βτ in (3.10) can be estimated based on the data. Details can be

found in Algorithm 2 and Appendix S1.1. The FPC scores ζ∗m can be estimated by the

traditional numerical integration, but the estimate can’t provide reasonable approximations

to ζ∗m because of our sparse longitudinal data. For example, when one has only two obser-

vations per subject. Following (Yao et al., 2005b), we invoke Gaussian assumptions for the

estimation of ζ∗m to handle sparsity of data.

Let U∗
j be the jth measurement at location T ∗

j made for the predictor function X∗
j ,

j = 1, · · · , N∗, with a random number N∗. The observed data U∗
j = X∗

j + ϵ∗X,j . Assume
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3.1 Functional varying coefficient QR model for sparse longitudinal data

that the FPC scores ζ∗m and the measurement errors ϵ∗X,j are jointly Gaussian. From Yao

et al. (2005b,a), the best predictor of the scores ζ∗m, given U ∗ = (U∗
1 , · · · , U∗

N∗)T , T ∗ =

(T ∗
1 , · · · , T ∗

N∗)T and their number N∗, is

ζ̃∗m = ρmϕ
∗T
m Σ−1

U∗(U ∗ − µ∗
X), (3.11)

where µ∗
X = (µX(T

∗
1 ), · · · , µX(T

∗
N∗))

T , ϕ∗
m = (ϕm(T

∗
1 ), · · · , ϕm(T

∗
N∗))

T , ΣU∗ = Cov(U ∗|T ∗, N ∗) =

Cov(X∗|T ∗, N ∗)+σ2
XIN∗ , IN∗ being the N∗×N∗ identity matrix. Further, the (j, l)th entry

(ΣU∗)j,l = rXX(Tj, Tl) + σ2
Xδjl with δjl = 1 if j = l and 0 if j ̸= l. By (3.11), we have FPC

scores

ζ̂∗m = ρ̂mϕ̂
∗T
m Σ̂

−1

U∗(U ∗ − µ̂∗
X), (3.12)

where Σ̂U∗ = r̂XX(Tj, Tl) + σ̂2
Xδjl. The details on obtaining σ̂2

X , see Appendix S1.1. The

predicted tth quantile trajectories are

Q̂K,M
Y ∗|X∗(t; τ) = α̂K

τ (t) + β̂K
τ (t)

(
µ̂X(t) +

M∑
m=1

ζ̂∗mϕ̂m(t)

)
. (3.13)

The Gaussian assumption, which is crucial in the sparse situation, allows us to obtain

the best linear predictors (3.13) via the conditional expectation. The functional approach

borrows strength from the entire observations and thus makes up the sparseness of individual

trajectories.

Theorem 3.3. Let supt∈T |α̂(0)
τ (t) − ατ (t)| = Op(an) and supt∈T |β̂(0)

τ (t) − βτ (t)| = Op(an),

with 0 ≤ an < 1. Under Conditions 1-3, and Assumptions (A1)-(A7) in the Appendix S5,

given N∗ and T ∗, for all t ∈ T , the predicted τ th quantile response trajectories in the FVCQR

model (3.3) satisfy

lim
n→∞

Q̂K,M
Y ∗|X∗(t; τ) = Q̃Y ∗|X∗(t; τ), in proabaility,
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3.1 Functional varying coefficient QR model for sparse longitudinal data

for the target trajectory Q̃Y ∗|X∗(t; τ) = ατ (t) + βτ (t)
(
µX(t) +

∑∞
m=1 ζ̃

∗
mϕm(t)

)
, with M =

M(n) → ∞ as n→ ∞, and the iteration number K enough large.

3.1.3 Asymptotic pointwise confidence bands for quantile response trajectories

We next construct asymptotic confidence bands for the τ -th quantile response trajectories

QY ∗|X∗ of a new subject, conditional on the sparse, irregular noisy measurements of X∗.

With ζ∗
M = (ζ∗1 , · · · , ζ∗M), ζ̃∗

M =
(
ζ̃∗1 , · · · , ζ̃∗M

)
, where ζ̃∗m is as in (3.11), the M × N∗ ma-

trix H = Cov(ζ∗
M ,U

∗|N∗,T ∗) = (ρ1ϕ
∗
1, · · · , ρMϕ∗

M)T , and thus covariance matrix of ζ̃∗
M is

Cov(ζ̃
∗
M |N∗,T ∗) = HΣ−1

U ∗HT . We observe that ζ̃
∗
m = E [ζ∗

M |U ∗, N ∗,T ∗], which implies

that ζ̃
∗
M is the project of ζ∗

M on the space spanned by the linear functions of U ∗ given N∗

and T ∗. Hence,

Cov
(
ζ̃
∗
M − ζ∗

M |N∗,T ∗
)

= Cov (ζ∗
M |N∗,T ∗)− Cov

(
ζ̃
∗
M |N∗,T ∗

)
= D −HΣ−1

U ∗HT ≡ ΩM ,

where D = diag(ρ1, · · · , ρM). Under Gaussian assumptions and conditional on N∗ and T ∗,

ζ̃
∗
M − ζ∗

M ∼ N(0,ΩM).

Denote Ω̂M = D̂−ĤΣ̂−1

U ∗Ĥ
T , where D̂ = diag(ρ̂1, · · · , ρ̂M) and Ĥ = (ρ̂1ϕ̂

∗
1, · · · , ρ̂M ϕ̂∗

M)T .

Define ϕτ (t) = (βτ (t)ϕ1(t), · · · , βτ (t)ϕM(t))T , and ϕ̂
K,M

τ (t) =
(
β̂K
τ (t)ϕ̂1(t), · · · , β̂K

τ (t)ϕ̂M(t)
)T

as the estimate of ϕτ (t), for t ∈ T . Write the prediction (3.13) in the vector form Q̂K,M
Y ∗|X∗(t; τ) =

α̂K
τ (t) + ζ̂

∗T
M ϕ̂

K,M

t . The following result facilitates the construction of pointwise confidence

intervals for the τth quantile response QY ∗|X∗(t; τ) at predictor level X∗.

Theorem 3.4. Let supt∈T |α̂(0)
τ (t) − ατ (t)| = Op(an) and supt∈T |β̂(0)

τ (t) − βτ (t)| = Op(an),

with 0 ≤ an < 1. Under Conditions 1-3, and Assumptions (A1)-(A8)(i) in the Appendix S5,
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3.2 Functional linear QR model

given N∗ and T ∗, for a given τ ∈ (0, 1), all t ∈ T , x ∈ R, predicted response trajectories

lim
n→∞

P

Q̂K,M
Y ∗|X∗(t; τ)−QY ∗|X∗(t; τ)√

ω̂K,M
τ (t)

≤ x

 = Φ(x),

where ω̂K,M
τ (t) =

(
ϕ̂

K,M

τ (t)
)T

Ω̂M ϕ̂
K,M

τ (t), which is a estimate of ωM
τ (t) =

(
ϕM

τ (t)
)T

ΩMϕM
τ (t),

and Φ(·) denotes Gaussian cumulative distribution function and M(n) → ∞ as n→ ∞.

It follows from Theorem 3.4 that, ignoring truncation bias resulting from truncation at M

and negligible optimization error by K iterations of Algorithm 2, the (1−α)100% asymptotic

pointwise confidence interval for the τth quantile response at predictor level X∗ is given by

Q̂K,M
Y ∗|X∗(t; τ)± Φ(1− α/2)

√
ω̂K,M
τ (t).

3.2 Functional linear QR model

In the subsection, we consider the scenario (LXβ)(t) =
∫
S βτ (s, t)X(s)ds for s ∈ S and t ∈ T .

Thus, the functional linear QR model is

QY |X(t; τ) = ατ (t) +

∫
S
βτ (s, t)X(s)ds, (3.14)

where the bivariate regression function βτ (s, t) is smooth and square integrable, that is,∫
T

∫
S βτ (s, t)dsdt < ∞. From the definition of the operator LX , it is easy to see that the

adjoint of L∗
X : L2(S) → L2(T ,S), given by

(L∗
Xz)(s, t) = X(s)z(t), for all z ∈ L2(S).

For this model (3.14), we have a linear integral operator ΓXX : L2(S, T ) → L2(S × T ) as

(ΓXXβτ )(s, t) =
∫
S rXX(s, w)βτ (w, t)dw. It is easy to see that ΓXX = E[L∗

XLX ]. Notice that

the observations of the model (3.14) are (Sil, Uil) and (Tij, Vij), l = 1, ·, Li, j = 1, · · · , Ni,

i = 1, · · · , n. Herein after, we still use symbols of Subsection 3.1.
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3.2 Functional linear QR model

3.2.1 Functional Approach

From the estimation strategy in Section 2.2, the functional linear QR model (3.14) can be

translated into the following functional linear operator regression model

E[Ỹ (t)|X(t)] = ατ (t) + (LXβ)(t), (3.15)

where (LXβ)(t) =
∫
S βτ (s, t)X(s)ds

Ỹ (t) = Q
(0)
Y |X(t; τ)−

(∫
T
f
(k)
t (0)dt

)−1 ∫
T
{I[Y (t)−Q

(0)
Y |X(t; τ) ≤ 0]− τ}dt,

Q
(0)
Y |X(t; τ) = α(0)

τ (t) +

∫
S
β(0)
τ (s, t)X(s)ds.

The model (3.15) can be rewritten as

E[Ỹ (t)|X(t)] = µỸ (t) +

∫
S
βτ (s, t)X

c(s)ds,

where E[Ỹ (t)] = µỸ (t) = ατ (t) +
∫
S βτ (s, t)µX(s)ds. By our result (2.12), one gets

β(1)
τ (s, t) = Γ−1

XcXcE
(
L∗

XcỸ c
)

=
∞∑

m=1

∞∑
l=1

E[ζmςl]

E[ζ2m]
ϕm(s)φl(t), (3.16)

where ςl and φl are defined in (3.5), and ζm and ϕm are given in Section 2.1. rỸ Ỹ and rXỸ

are defined in (3.5) and (3.8), respectively.

Here, we present some main results of the model. Its function approach similar to sub-

section 3.1.1, and some detains including subsections 3.2.2 and 3.2.3 are given in Appendix

S1.2 of SM.

3.2.2 Uniform consistency and prediction

We first present the consistency of the regression function estimates α̂(K)
τ and β̂(K)

τ , and then

the prediction of the τth quantile response function QY |X(t; τ).
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3.2 Functional linear QR model

Theorem 3.5. Let supt∈T |α̂(0)
τ (t)− ατ (t)| = Op(an) and sup(s,t)∈S×T |β̂(0)

τ (s, t)− βτ (s, t)| =

Op(an). Under Conditions 1-3, and Assumptions (A1)-(A6) and (B1)-(B2) in Appendix S5

of SM, we have for k iterations of Algorithm 2 in SM,

sup
(s,t)∈S×T

∣∣α̂(k)
τ (s, t)− α̂τ (s, t)

∣∣ = Op

(
δ1n + δ2n + ak+1

n

)
,

sup
(s,t)∈S×T

∣∣∣β̂(k)
τ (s, t)− β̂τ (s, t)

∣∣∣ = Op

(
δ1n + δ2n + ak+1

n

)
,

(3.17)

where δ1n and δ2n are defined in Assumptions (B1)-(B2) in Appendix S5, respectively.

Remark 3.3. The rate of convergence in 3.5 depends on special properties of processes X

and Ỹ . The rates δ1n and δ2n are similar to the ςn in (B) and ϑn in (41) of Yao et al.

(2005b), respectively. As Yao et al. (2005b) said, due to the sparsity of the data, fast rates of

convergence cannot be expected in this ambient, in contrast to the case where entire trajectories

are measured or are densely sampled.

We establish the consistency of the τth quantile prediction Q̂K,M,K
Y ∗|X∗ (t; τ), which is defined

in S1.2.3 of SM.

Theorem 3.6. Let supt∈T |α̂(0)
τ (t)− ατ (t)| = Op(an) and sup(s,t)∈S×T |β̂(0)

τ (s, t)− βτ (s, t)| =

Op(an) with 0 ≤ an < 1. Under Conditions 1-3, and Assumptions (A1)-(A7) and (B1)-(B2)

in the Appendix S5, given L∗ and S∗, for all t ∈ T , the predicted τ th quantile response

trajectories in the functional linear QR model (3.14) satisfy

lim
n→∞

Q̂K,M,K
Y ∗|X∗ (t; τ) = Q̃Y ∗|X∗(t; τ), in proabaility,

for the target trajectory Q̃Y ∗|X∗(t; τ) = ατ (t)+
∑∞

m=1

∑∞
k=1

σ̃mk

ρm
ζ̃∗mφk(t), with M =M(n) → ∞

and K = K(n) as n→ ∞, and the iteration number K enough large .
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3.2 Functional linear QR model

3.2.3 Asymptotic pointwise confidence bands for quantile response trajectories

We here construct asymptotic confidence bands for the τth quantile response trajectory

QY ∗|X∗(t; τ) of a new subject. We can construct the pointwise confidence bands for the τth

quantile response QY ∗|X∗(t; τ) at predictor level X∗ by the following theorem.

Theorem 3.7. Let supt∈T |α̂(0)
τ (t)− ατ (t)| = Op(an) and sup(s,t)∈S×T |β̂(0)

τ (s, t)− βτ (s, t)| =

Op(an) with 0 ≤ an < 1. Under Conditions 1-3, and Assumptions (A1)-(A7), (A8)(ii) and

(B1)-(B2) in Appendix S5 of SM, given N∗ and T ∗, for a given τ ∈ (0, 1), all t ∈ T , x ∈ R,

lim
n→∞

P

Q̂K,M,K
Y ∗|X∗ (t; τ)−QY ∗|X∗(t; τ)√

ω̂K,M,K
τ (t)

≤ x

 = Φ(x),

where ω̂K,M,K
τ (t) is a estimate of ωM,K

τ (t) =
(
φK

t

)T
P T

M,KΩMPM,Kφ
K
t and M(n) → ∞ as

n→ ∞.

Theorem 3.7 shows that asymptotic distribution of Q̂K,M,K
Y ∗|X∗ (t; τ)−QY ∗|X∗(t; τ) conditional

on L∗ and S∗ can be approximated by N
(
0, (φ̂K

t )
T P̂

T

M,KΩ̂M P̂M,Kφ̂
K
t

)
. As a consequence,

the (1 − α)100% asymptotic pointwise confidence interval for the τth quantile response at

predictor level X∗ is given by

Q̂K,M,K
Y ∗|X∗ (t; τ)± Φ(1− α/2)

√
(φ̂K

t )
T (P̂

K

M,K)
T Ω̂M P̂

K

M,Kφ̂
K
t .

For the 3rd specific functional varying coefficient QR model with history in-

dex, its main contents, including models, estimation methods of functional approach and

asymptotic properties, are presented in Appendix S1.3 because of page limitations.
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4. Numerical results

We study the performance of our algorithm in two functional linear operator quantile regres-

sion models: Functional varying coefficient QR model and functional linear QR model. The

main purpose is to illustrate the robustness of the algorithm in dealing with sparse and irreg-

ular longitudinal data, overcoming non-smooth optimization, and in the face of heavy-tailed

and outlier data. The following examples respectively come from Şentürk and Müller (2010);

Yao et al. (2005b), and some modifications have been made to fit our model.

For each example, we employ 200 Monte Carlo runs. The average mean squared error

(MSE) is used to demonstrate superior performance, which is defined as MSE =
∫
T

(
β̂(t)− β(t)

)2
dt

for the estimator of β(t) on T , and MSE =
∫
T

∫
S

(
β̂(s, t)− β(s, t)

)2
dsdt. for the estimator

of bivariate function β(s, t) on S × T . In our simulation, take T = S.

Example 1. Functional varying coefficient QR model The response trajectories

are generated from the model

Yi(t) = β0(t) + β1(t)Xi(t) +Wτ,i(t), t ∈ T , i = 1, · · · , n,

for a given quantile level τ ; β0(t) = t, β1(t) = sin(πt); The predictor trajectories Xi are

generated from mean function µX(t) = t + sin(t), covariance function constructed from two

eigenfunctions ϕ1(t) =
1√
2
cos(πt) and ϕ2(t) =

1√
2
sin(πt) with two corresponding eigenvalues

ρ1 = 2 and ρ2 = 1, and its functional principal components ζim ∼ N(0, ρm) for m = 1, 2;

Wτ,i(t) = ϕ1(t)(Wi − qτ (Wi)), where Wi with three different settings of random errors: Wi ∼

0.5N(0, 1) for normal data, Wi ∼ 0.01Cauchy(0, 1) for symmetric heavy-tailed data, and

Wi ∼ 0.01χ2(2) (Chi-square distribution with 2 degrees of freedom) for skewed heavy-tailed

data, and qτ (Wi) is the τ -th quantile of the distribution of Wi; So that P (Wτ,i(t) ≤ 0) = τ
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Figure 1: Simulation results of Example 1 for the estimators of cross-sectional mean varying

coefficient functions and 95% pointwise bands when τ = 0.5 and n = 50 with normal errors.

under the setting of Wτ,i(t). In addition, Wτ,i(t) is independent of Xi(t). The predictor

and response trajectories are observable at Tij and are contaminated with measurement

errors, that is, Uij = Xi (Tij) + εij, Vij = Yi (Tij) + ϵij, where εij, ϵij are i.i.d. errors with

εij ∼ N(0, 0.12), ϵij ∼ N(0, 0.12).

The sample sizes n = 50 and 100, and quantile levels τ = 0.10, 0.25, 0.5, 0.75 and 0.90

are considered in the simulation. We randomly sample the number of measurements of each

subject from {3, 4, 5} with equal probability, and then the locations of the measurements

Tij ∼ U [0, 1]. This is a very sparse design because there are at most five observations available

for each subject. We choose some suitable bandwidths for smoothing mean and auto(cross)-

covariance surfaces after a large-scale cross-validation experiment based on a generalized

cross-validation procedure. We compare our method (FVC-QR) with the method proposed

in Şentürk and Müller (2010), denoted as FVC, and the PQR proposed by Andriyana et al.
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Table 1: MSEs (SEs) of estimation of FVC, PQR and FVC-QR for Example 1.

Scenario size τ FVC PQR FVC-QR FVC PQR FVC-QR
β0 β1

Normal 50 0.10 1.1273 (3.96) 0.3180 (0.03) 0.3228 (0.13) 0.7190 (2.12) 0.2643 (0.02) 0.0933 (0.04)
0.25 0.7067 (1.62) 0.2716 (0.03) 0.1695 (0.07) 0.6524 (2.01) 0.2687 (0.02) 0.0927 (0.04)
0.50 0.8013 (3.21) 0.2209 (0.03) 0.1029 (0.03) 0.7184 (4.20) 0.2743 (0.02) 0.0879 (0.03)
0.75 0.6736 (1.37) 0.1939 (0.03) 0.2280 (0.06) 0.4818 (0.80) 0.2815 (0.02) 0.0906 (0.03)
0.90 0.6036 (0.89) 0.1980 (0.03) 0.4044 (0.14) 0.4319 (0.56) 0.2843 (0.02) 0.0911 (0.04)

100 0.10 0.5518 (2.44) 0.3371 (0.02) 0.3287 (0.11) 0.2622 (1.32) 0.2342 (0.01) 0.0635 (0.01)
0.25 0.3660 (0.98) 0.2898 (0.02) 0.1627 (0.05) 0.2788 (1.25) 0.2332 (0.01) 0.0628 (0.02)
0.50 0.3648 (0.76) 0.2481 (0.02) 0.0770 (0.02) 0.2124 (0.48) 0.2352 (0.01) 0.0641 (0.01)
0.75 0.3156 (0.37) 0.2247 (0.02) 0.2090 (0.05) 0.1779 (0.38) 0.2382 (0.01) 0.0637 (0.02)
0.90 0.4097 (1.04) 0.2330 (0.02) 0.3843 (0.13) 0.1907 (0.54) 0.2393 (0.01) 0.0673 (0.02)

Cauchy 50 0.10 0.5279 (1.71) 0.2249 (0.03) 0.3425 (0.87) 0.5603 (2.65) 0.2696 (0.02) 0.0740 (0.09)
0.25 0.3791 (0.99) 0.2209 (0.02) 0.1524 (0.14) 0.4649 (2.49) 0.2685 (0.02) 0.0738 (0.08)
0.50 0.6629 (3.86) 0.2178 (0.02) 0.1435 (0.67) 0.5322 (2.92) 0.2691 (0.02) 0.0882 (0.37)
0.75 0.3322 (0.62) 0.2165 (0.03) 0.1953 (0.17) 0.2977 (0.53) 0.2701 (0.02) 0.0786 (0.16)
0.90 0.3041 (0.58) 0.2107 (0.02) 0.3094 (0.18) 0.2924 (0.64) 0.2706 (0.02) 0.0579 (0.06)

100 0.10 0.3803 (0.27) 0.2500 (0.02) 0.2423 (0.12) 0.2050 (0.22) 0.2329 (0.01) 0.1912 (0.07)
0.25 0.4486 (0.56) 0.2452 (0.02) 0.1478 (0.16) 0.2392 (0.38) 0.2353 (0.01) 0.0743 (0.18)
0.50 6.4763 (85.45) 0.2418 (0.02) 1.6133 (21.59) 5.6255 (76.37) 0.2337 (0.01) 1.4449 (19.65)
0.75 0.4871 (0.63) 0.2431 (0.02) 0.1975 (0.21) 0.2737 (0.44) 0.2347 (0.01) 0.0864 (0.21)
0.90 0.3734 (0.17) 0.2400 (0.02) 0.3133 (0.18) 0.1921 (0.18) 0.2335 (0.01) 0.0505 (0.07)

χ2(2) 50 0.10 1.6821 (11.06) 0.2247 (0.02) 0.2172 (0.12) 1.1342 (7.00) 0.2688 (0.02) 0.0798 (0.03)
0.25 0.5056 (0.65) 0.2220 (0.02) 0.1128 (0.04) 0.3612 (0.48) 0.2659 (0.02) 0.0783 (0.03)
0.50 1.1587 (6.58) 0.2206 (0.02) 0.0994 (0.03) 0.8679 (5.46) 0.2679 (0.02) 0.0765 (0.03)
0.75 0.5978 (0.94) 0.2201 (0.02) 0.1838 (0.05) 0.5430 (1.61) 0.2665 (0.02) 0.0772 (0.04)
0.90 0.5653 (0.85) 0.2166 (0.02) 0.3028 (0.12) 0.4946 (1.57) 0.2666 (0.02) 0.0804 (0.04)

100 0.10 0.3272 (0.74) 0.2477 (0.02) 0.2060 (0.12) 0.1980 (0.65) 0.2322 (0.01) 0.0514 (0.02)
0.25 0.3455 (1.12) 0.2475 (0.02) 0.1019 (0.04) 0.1820 (0.64) 0.2333 (0.01) 0.0515 (0.02)
0.50 0.2539 (0.10) 0.2452 (0.02) 0.0683 (0.02) 0.1291 (0.07) 0.2345 (0.01) 0.0498 (0.01)
0.75 0.2444 (0.05) 0.2427 (0.02) 0.1569 (0.04) 0.1202 (0.04) 0.2342 (0.01) 0.0530 (0.02)
0.90 0.4102 (1.22) 0.2389 (0.02) 0.2638 (0.13) 0.2140 (0.70) 0.2320 (0.01) 0.0518 (0.02)

(2014), which applied P-splines method to quantile regression in varying coefficient models

for longitudinal data. The FVC and PQR are implemented by the FCReg function in R

package fdapace and the AHeVT function in R package QRegVCM, respectively. MSEs and

standard errors (SEs) of estimation are listed in Table 1. The estimators of cross-sectional
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mean varying coefficient functions and 95% pointwise bands are presented in Figure 1 when

τ = 0.5 and n = 100 with normal errors. From Table 1 and Figure 1, we observe that our

FVC-QR performs better in almost all the scenarios because of smaller MSEs, and FVC-QR

and PQR are more robust because of smaller SEs than FVC; By constrast, PQR is more

robust than our FVC-QR, but the MSEs of PQR is poor, especially for β1.

Example 2. Functional linear QR model The response trajectories are generated

from the model

Yi(t) =

∫ 10

0

β(s, t)Xi(s)ds+Wτ,i(t), t ∈ [0, 10], i = 1, · · · , n,

for a given quantile level τ , where the regression function is β(s, t) =
∑2

k=1

∑2
m=1 bkmϕm(s)ϕk(t),

t, s ∈ [0, 10], with pre-given b11 = 2, b12 = 2, b21 = 1 and b22 = 2; The predictor tra-

jectories Xi, are also generated from mean µX(t) = t + sin(t), covariance function con-

structed from two eigenfunctions ϕ1(t) = 1√
5
cos(πt/10) and ϕ2(t) = 1√

5
sin(πt/10) with

two corresponding functional principal components ζ1 ∼ 0.5N(1, 1) + 0.5N(−1, 1) and ζ2 ∼

0.5N(1/
√
2, 1/2)+0.5N(−1/

√
2, 1/2); It implies that the corresponding eigenvalues ρ1 = 0.5

and ρ2 = 0.25; Wτ,i(t) = ϕ1(t)(Wi − qτ (Wi)), where Wi with three different settings of

random errors: Wi ∼ N(0, 0.1) for normal data, Wi ∼ 0.5Cauchy(0, 1) for symmetric heavy-

tailed data and Wi ∼ 0.5χ2(2) for skewed heavy-tailed data, so that P (Wτ,i(t) ≤ 0) = τ

under the setting of Wτ,i(t); Wτ,i(t) is independent of Xi(t). The predictor and response

trajectories are observable at Tij and are contaminated with measurement errors, that is,

Uij = Xi (Tij)+ εij, Vij = Yi (Tij)+ ϵij, where εij, ϵij are i.i.d. errors with εij, ϵij ∼ N(0, 0.12).

The settings on sample size, quantile levels, and sparsity measurements are the same as

the ones of Example 1, including the choice of bandwidths for smoothing mean and auto

(cross)-covariance surfaces. We compare our method (FL-QR) with the approach proposed
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Table 2: MSEs (SEs) of estimations based on FLR, RFL-QR and our FL-QR for Example 2.

Scenario size τ FLR RFL-QR FL-QR (our)
Normal 50 0.10 0.3241 (0.19) 0.3628 (0.06) 0.3273 (0.08)

0.25 0.3193 (0.08) 0.3679 (0.04) 0.3265 (0.04)
0.50 0.3101 (0.07) 0.3622 (0.05) 0.3224 (0.04)
0.75 0.3188 (0.10) 0.3621 (0.04) 0.3238 (0.06)
0.90 0.3079 (0.06) 0.3614 (0.05) 0.3184 (0.04)

100 0.10 0.3058 (0.07) 0.3539 (0.03) 0.3152 (0.05)
0.25 0.2991 (0.04) 0.3543 (0.04) 0.3122 (0.03)
0.50 0.3078 (0.05) 0.3610 (0.04) 0.3187 (0.04)
0.75 0.3020 (0.05) 0.3537 (0.04) 0.3150 (0.05)
0.90 0.3035 (0.08) 0.3552 (0.03) 0.3139 (0.06)

Cauchy 50 0.10 0.6548 (1.75) 0.4247 (0.07) 0.4141 (0.49)
0.25 0.7077 (2.51) 0.4431 (0.20) 0.4406 (0.61)
0.50 1.9190 (14.44) 0.6068 (1.95) 0.5879 (2.42)
0.75 0.5016 (0.50) 0.4180 (0.03) 0.3928 (0.21)
0.90 0.7006 (1.52) 0.4275 (0.08) 0.4269 (0.35)

100 0.10 0.5666 (1.13) 0.4171 (0.02) 0.3993 (0.28)
0.25 0.5516 (0.98) 0.4200 (0.06) 0.4375 (0.60)
0.50 0.7418 (3.90) 0.4332 (0.17) 0.4405 (0.91)
0.75 0.9880 (4.54) 0.4281 (0.14) 0.5322 (1.34)
0.90 0.4696 (0.36) 0.4163 (0.02) 0.3780 (0.09)

χ2(2) 50 0.10 0.3311 (0.03) 0.3698 (0.03) 0.3267 (0.02)
0.25 0.3363 (0.04) 0.3757 (0.04) 0.3323 (0.03)
0.50 0.3339 (0.04) 0.3716 (0.03) 0.3284 (0.03)
0.75 0.3347 (0.04) 0.3711 (0.03) 0.3294 (0.04)
0.90 0.3353 (0.04) 0.3733 (0.04) 0.3304 (0.03)

100 0.10 0.3302 (0.04) 0.3624 (0.03) 0.3246 (0.04)
0.25 0.3320 (0.04) 0.3657 (0.03) 0.3241 (0.03)
0.50 0.3258 (0.03) 0.3631 (0.03) 0.3195 (0.02)
0.75 0.3330 (0.04) 0.3674 (0.04) 0.3231 (0.03)
0.90 0.3291 (0.04) 0.3639 (0.03) 0.3222 (0.03)

in Yao et al. (2005b), called FLR, and RFL-QR in Beyaztas and Shang (2023), which used

robust functional principal components (Bali et al. (2011)) for function-on-function linear

quantile regression. The FLR and RFL-QR are implemented by the FLM1 in R package
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fdapace and rob.ff.reg function in R package robflreg, respectively. MSEs (SEs) of estimation

based on FLR, RFL-QR and FL-QR are listed in Table 5, and boxplots of MSEs are presented

in Figures S1 and S2 in S6 of SM. We see that our FL-QR is more accurate and robust for

the errors of Cauchy distribution and χ2(2) distribution, and it is not bad for the errors of

normal distribution.

Based on Examples 1 and 2, our algorithms work well for typically sparse and irregular

designs in longitudinal data, which provide more accurate and robust statistical results.

5. Applications to Longitudinal Primary biliary cirrhosis data

The Mayo Clinic established a database of primary biliary cirrhosis (PBC), which was col-

lected between January 1974 and May 1984. A complete follow up to July 1986, was at-

tempted on all patients. By this data, 125 of the 312 had died, only 11 deaths were not

attributable to PBC; only 19 had undergone liver transplantation and 8 were lost to follow

up. Appendix D of Fleming and Harrington (1991) contains this survival data. Fleming and

Harrington (1991) puts down in writing that PBC is a rare but fatal chronic liver disease of

unknown cause because the prevalence of the disease has been estimated to be 50 cases-per-

million population. Physiological and demographic characteristics of the patients, such as

platelet count, albumin, prothrombin time, age, and sex, were measured at six months, one

year, and annually thereafter post-diagnosis. In addition, measurement times Tij per indi-

vidual are different, and measurement values are sparse and irregular with unequal numbers

of measurements per patient because some patients missed some of their scheduled visits.

This database is a valuable resource to liver specialists, which also has been studied by Yao

et al. (2005b). We will compare our method with the one of Yao et al. (2005b) based on the
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Figure 2: Patients’ trajectories of albumin and prothrombin time. Thick solid line is the

corresponding smooth estimate of mean function.

PBC dataset.

As Yao et al. (2005b), the longitudinal measurements albumin (mg/dl) and prothrombin

times (seconds) are regarded as predictor and response trajectories, respectively. In the

experiment, our data includes 222 female patients (while data in Yao et al. (2005b) includes

137 female patients), and the measurements of albumin level and prothrombin time before

2500 days. The number of measurements of the albumin and prothrombin time ranged

from 1 to 10, and their medians are 5 for each patient. Patients’ trajectories of albumin

and prothrombin time are presented in Figure 2. From the smooth estimators of two mean

functions, we observe that albumin level is generally relatively stable with a slight decrease

over late measurement time; However, the prothrombin time is relatively stable in the early

stage and monotonically increases in the later stage. It indicates that albumin level and

prothrombin time have an opposite tendency, especially in the later measurement time. We

also explore the dynamic relationship of the sparse longitudinal albumin and prothrombin
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Figure 3: Estimated regression function for PBC data where the predictor (albumin) time

is s (in days), and the response ( prothrombin) time is t (in days). (a) FLR method; (b)

FL-QR method with τ = 0.5.

times by functional linear QR model (FL-QR): LX : L2(S × T ) → L2(T ) by

(LXβ)(t) =

∫
S
βτ (s, t)X(s)ds, S, T = [0, 2500],

compared with function linear regression model (FLR) (Yao et al., 2005b). The estimates of

the regression function β based FLR, and FL-QR with τ = 0.50 (that is, Function Linear

Median Regression, FL-MR) are displayed in Figure 3. The cases of τ = 0.1 and τ = 0.9

are similar to that of that FL-MR model. The shapes of these two figures are basically

the same, but the interval changes are different, −4.62e − 3 ≤ β̂ ≤ 5.42e − 3 for FLR and

−4.24e − 3 ≤ β̂ ≤ 2.03e − 3 for FL-MR. It shows the fluctuation of estimated regression
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function β̂ of our FL-MR is smaller than that of FLR, because of robustness of FL-MR. It

sees that the information inherent in these two figures about β̂ is similar, but the obtained

information of Y based on estimators of FLR and FL-QR are completely different. Even

for the FL-QR method, they also are different, such as the quantiles of Y of the high (e.g.

τ = 0.9) and/or low (e.g. τ = 0.1) levels; See Figure S4. Their shapes of Figure 3 imply

that, for the prediction of early prothrombin times, the negative effect of early albumin

levels continues to weaken as time t increases in about 0 ≤ t ≤ 1000; when t > 1000, it

becomes a positive effect and continues to increase until about t = 1500; afterwards, its

effect continues to decline until about t = 2000 and then rebounds, but late albumin levels

in about 1500 ≤ t ≤ 2500 substantially contribute positively; whereas the prediction of late

prothrombin times generally contributes positively, but with highly positive weighting of

early and later levels and negligible positive weighting of intermediate levels. These findings

are different from the ones in Yao et al. (2005b), which only used 137 female patients.

For evaluating performance of our FL-QR and FLR, we also give the curve of estimated

pointwise functional coefficients of determination R2
Q(t) based on FL-QR with the definition

R2
Q(t) =

Var[QY |X(Y (t; τ) | X)]

Var[Y (t)]
,

and compare with that of determination R2
M(t) based on FLR with the similar definition

R2
M(t) =

Var(E[Y (t) | X])

Var(Y (t))
.

They are displayed in Figure S3 in S7 of SM, indicating that the dynamics of albumin in

FL-QR are more capable of explaining the total variation of prothrombin time trajectories

over a more time range (from 0 to 1975 days), than the one in FLQ. In addition, it indicates

generally stronger linear association at intermediate days (1000 to 2000 days) compared to
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the earlier days (0 to 500 days) and later days (2250 to 2500 days).

Last, we reconstruct mean trajectories of prothrombin times by using FLR and quantile

trajectories of prothrombin times by applying FL-QR with the levels of quantile τ = 0.1, 0.5

and 0.9, which is presented in Figure S4 in S7 of SM. We see that these trajectories have the

same growth mode; mean and quantile with τ = 0.5 trajectories of prothrombin times are

almost identical, which implies that the conditional distributions of prothrombin time given

albumin at each day don’t skew; our FL-QR can capture lower (e.g. τ = 0.1) and upper

(e.g. τ = 0.9) conditional quantiles of the trajectories of prothrombin time, which cannot be

characterized by analyzing the conditional mean of FLR model alone.

6. Concluding remarks

The proposed method mainly faces two practical problems: one is that the longitudinal data

is a sparse and irregular measurement, and the number of repeated measurements of each

subject is relatively small or even two or three; the other is that many important features

of the jointly distribution of the response and predictor trajectories cannot be captured with

conditional mean models alone, especially mean models cannot depict lower and higher con-

ditional quantile of the response trajectories, or the longitudinal data are typically skewed

or data contain some outliers. This type of data is very common in practice, and we give a

unified methodological framework: functional linear operator quantile regression for sparse

longitudinal data.For functional linear operator quantile regression, we need to obtain the

estimation of the model in an infinite-dimensional Hilbert space and deal with non-smooth

quantile loss, which brings some new challenges in both computation and theoretical devel-

opment. We develop an iterative surrogate least squares estimation via functional principal
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components analysis through conditional expectation. The technique is flexible and allows

the prediction of an unobserved quantile response trajectory from sparse measurements of a

predictor trajectory. However, our proposed iterative SLES method exists a major limitation

for the FLOQR model. That is, our transformation from the FLOQR model into functional

linear operator model cannot directly deal the FLOQR model with heterogeneous error. In

addition, we also assume that the random error of the FLOQR model is independent of co-

variates. In future, we will further explore the FLOQR with heterogeneous errors depending

on covariates of interest.

Supplementary Material

The online Supplementary Material includes all proofs, technical details and additional ex-
perimental results.
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