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Abstract: Two-level orthogonal arrays ensure the independent estimations of main effects when

linear models are considered, and thus are popularly used experimental designs. Such arrays

can be classified into regular and nonregular designs (Wu and Hamada, 2021). Regular designs

entertain specific algebraic structures and thus have been well studied in the literature. Their

run sizes, however, are limited to powers of 2. Nonregular designs have a more complicated

structure, but they are more flexible in the run sizes and allow the estimation of more effects.

The construction of nonregular designs remains a challenge. This paper introduces a new class

of nonregular designs called isomorphic foldovers design (IFD). Specifically, it is composed of

several foldovers of an initial design. The goal of our study is to investigate the general theory

of IFDs. We propose a method for obtaining all nonequivalent IFDs with f foldovers for any

initial design. Two algorithms are provided to construct optimal f -IFD in terms of G-aberration

(or G2-aberration) criterion. The IFD structure provides an efficient way to find good designs

in the sense that constructing good IFDs based on a nonregular initial design is often more

successful than doing so with a more granular single flat. Meanwhile, the IFDs have a parallel

flats structure and thus are much easier to understand and analyze than many other nonregular

designs. Moreover, we show that some existing designs can be viewed as special cases of IFDs.
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1. Introduction

Two-level orthogonal arrays can be roughly classified into regular and nonregular

designs according to the aliasing structure (Wu and Hamada, 2021). The estimated

effects of a regular design are either orthogonal or fully aliased. Their run sizes are lim-

ited to a power of 2. Two-level regular designs have been well studied and enumerated,

see e.g. Box and Hunter (1961), Draper and Mitchell (1967), Chen and Lin (1991),

Chen et al. (1993), Mee (2009), Xu (2009), Shrivastava and Ding (2010), Liu et al.

(2011), Wu and Hamada (2021) and the reference therein. In contrast, the estimated

effects in a nonregular design can be partially confounded. Compared with regular

designs, nonregular designs have a more complicated aliasing structure, but they have

more flexible run sizes (a multiple of 4). In addition, nonregular designs allow for

estimating more effects.

While nonregular designs have many advantages, their construction method re-

mains a challenge. Most construction methods for nonregular designs in the literature

are restricted to some specific number of runs. For example, Sun (1993) enumerated

all nonisomorphic nonregular designs with 16 runs and up to 14 factors. Connor and

Young (1961) proposed parallel flats designs (PFDs). A PFD with f flats (f -PFD)

consists of f 2k−p designs in which the fractions are determined by the same p defining

words but different sign assignments. PFDs are a class of nonregular designs that retain

some of the simplicity of regular designs. They enjoy many desirable properties and

thus have received widespread attention, see Wang and Mee (2021) for a comprehensive

review of PFDs. Xu (2005) and Xu and Wong (2007) constructed nonregular designs
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from codes. Their run sizes, however, are limited to a power of 2. Mee (2009, Section

6.3) gave a useful summary of strength 2 designs with up to 48 runs; also see Sections

7.3 and 8.2 for nonregular designs with higher strength. Schoen et al. (2010) specified

an algorithm to enumerate a minimum complete set of combinatorially non-isomorphic

orthogonal arrays. Doković et al. (2014) and Shi and Tang (2018) studied nonregular

designs from Hadamard matrices. Vazquez et al. (2019) constructed strength-three

designs with 64 and 128 runs by concatenating two designs via an effective column

change/variable neighborhood search algorithm. Vazquez et al. (2022) extended this

method for constructing strength-three designs with 80, 96 and 112 runs. Vazquez and

Xu (2019) constructed a class of strength-three nonregular designs, while Wang and

Mee (2021) and Edwards and Mee (2023) constructed low G-aberration PFDs. These

nonregular designs are composed of several isomorphic copies of the initial regular de-

sign. They enjoy a simple structure and desirable properties. The run sizes of the

initial designs, however, are limited to powers of 2.

Here we introduce a new class of nonregular designs, called isomorphic foldovers

designs (IFDs). An IFD with f foldovers (f -IFD) consists of several foldovers of a given

initial design, where the initial design can be either regular or nonregular. Foldover

is a classic technique used to create a follow-up experiment. All foldover designs are

obtained by reversing the sign of columns of the initial design. For more development

on foldover designs, we refer to Webb (1968), Montgomery and Runger (1996), Cheng

(1998), Li and Mee (2002), Fang et al. (2003), Li and Lin (2003), Li et al. (2003),

Cheng et al. (2008) and Elsawah and Qin (2015). When the initial design is regular, a

Statistica Sinica: Preprint 
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f -IFD degenerates into an f -PFD. Moreover, since any initial design can be expressed

as a g-PFD, every f -IFD is essentially a (gf)-PFD for some g ≤ n. That is, IFDs are

subsumed within PFDs. Most importantly, it will be shown that constructing good

IFDs based on a nonregular initial design is often more successful than doing so with

a more granular single flat.

This paper aims to study the general theory of IFDs. For any given initial design,

we propose a method for obtaining all nonequivalent f -IFDs for any f ≥ 2. Two

algorithms are provided to construct the optimal f -IFD in terms of G-aberration (or

G2-aberration) criterion. These algorithms are feasible and straightforward to imple-

ment. The IFD structure provides an efficient way to find good designs. At the same

time, the IFDs can be characterized as PFDs and thus are much easier to understand

and analyze than many other nonregular designs (Edwards and Mee, 2023). Moreover,

we show that IFDs include several existing designs as special cases.

This paper is organized as follows. Section 2 introduces the notation and prelim-

inaries. Section 3 proposes the theoretical results of f -IFDs. A method for obtaining

all nonequivalent f -IFDs is proposed for any given initial design. Two algorithms are

developed in Section 4 to construct optimal f -IFDs in terms of G-aberration (or G2-

aberration) criterion. Concluding remarks and discussion are provided in Section 5.

All proofs are deferred to the Supplementary Material.

2. Definitions and preliminaries

Let D be a two-level orthogonal array with N runs and k factors, where each row

indicates a treatment combination and each column represents a factor with levels ±1.

Statistica Sinica: Preprint 
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There are in total of 2k possible treatment combinations for k factors. We call the set

of these 2k runs a design space for k factors, denoted as A. Then design D can be seen

as a collection of runs in A. Following Fontana et al. (2000), Ye (2003) and Butler

(2008), the indicator function of D is a function defined on A such that F (x) = fx,

where fx is the frequency of run x = (x1, . . . , xk) for x ∈ A. For a unreplicated design

D, F (x) = 0 or 1 for any x ∈ A. Let XV (x) =
∏
v∈V

xv on A for V ∈ P , where P

is the collection of all subset of {1, . . . , k}. Then the indicator function of D has the

following polynomial form

F (x) =
∑
V ∈P

bVXV (x),

where bV = 1/2k
∑
x∈D

XV (x) for V ∈ P . In particular, b∅ = N/2k. For V = {v1, . . . , vq},

an index of q columns of D, the Jq-characteristic is defined as Jq(V ) = |
∑
x∈D

XV (x)|.

If Jq(V ) = N, the corresponding q columns of D form a complete word. If 0 <

Jq(V ) < N, the corresponding q columns form a partial word. Obviously, the complete

word indicates full aliasing among associated factorial effects, while the partial word

represents partial aliasing among them. Following Li et al. (2003), ρ(V ) = Jq(V )/N

measures the aliasing degree of the word XV (x) with the intercept. In the remainder

of the paper, we call ρ(V ) the aliasing index of XV (x) as that in Cheng et al. (2004).

The aliasing index for regular designs is either 0 or 1. For the nonregular design, there

is at least one aliasing index whose value is between 0 and 1. Following Deng and Tang

(1999), the confounding frequency vector (CFV) of design D is defined as

CFV(D) = [(f11, . . . , f1N)1, . . . , (fk1, . . . , fkN)k],

where fqj denotes the frequency of the words with aliasing index (N + 1 − j)/N for

Statistica Sinica: Preprint 
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q = 1, . . . , k and j = 1, . . . , N. Let r be the smallest integer such that max
|V |=r

ρ(V ) > 0,

where |V | denotes the cardinality of set V . The generalized resolution (GR) (Deng and

Tang, 1999) is defined as

GR(D) = r + 1−max
|V |=r

ρ(V ).

The G-aberration criterion is then proposed (Deng and Tang, 1999) to sequentially

minimize the components in the confounding frequency vector from left to right. That

is, if two designs have fq∗j∗ as the first nonequal component in their confounding

frequency vectors, the design with smaller fq∗j∗ is preferred in terms of G-aberration

criterion, and we say it has less G-aberration. A design is called the minimum G-

aberration design if there is no other design with the same size has a less G-aberration.

Tang and Deng (1999) proposed G2-aberration criterion, which is a relaxed version

of G-aberration criterion. For q = 1, . . . , n, define Bq(D) = Σ|V |=q(ρ(V ))2. Design D’s

generalized wordlength pattern is GWLP(D) = [B1(D), . . . , Bn(D)]. Similar to the G-

aberration criterion, the G2-aberration criterion sequentially minimizes the components

of the generalized wordlength pattern from left to right. Following Hedayat et al.

(1999), two two-level designs are called isomorphic if one of them can be obtained

from the other one by row permutations, column permutations, and sign switches

of columns. Two isomorphic designs have the same confounding frequency vector,

while the reverse is not true, see Chen and Lin (1991). For regular designs, both the

confounding frequency vector and generalized wordlength pattern degenerate to the

wordlength pattern, and thus both the minimum G-aberration criterion and minimum

G2-aberration criterion degenerate to the minimum aberration criterion.

Statistica Sinica: Preprint 
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Example 1. Given N = 16 and k = 10, Sun (1993) shows that there are 78 noni-

somorphic 16 × 10 designs, denoted as 10.z for z = 1, . . . , 78. The 78 nonisomorphic

designs can also be found in Schoen et al. (2010). The minimum aberration regular

210−6 design 10.4, has generators

x3 = x1x2, x5 = x1x4, x6 = x2x4, x7 = x1x8, x9 = x1x2x4x8, and xt = x2x4x8,

where t = 10. The indicator function is

F (x1, . . . , xt) =
1

26
(1 + x1x2x3)(1 + x1x4x5) · · · (1 + x6x7x9)

=
1

64
+

1

64
x1x4x5 +

1

64
x1x2x3 +

1

64
x2x3x4x5 + · · ·+ 1

64
x3x5x8xt.

It has 63 terms (besides the constant), corresponding to the defining words. It has

CFV=[(8, 0)3, (18, 0)4, (16, 0)5, (8, 0)6, (8, 0)7, (5, 0)8] and GR=3. Next, consider the

minimum G-aberration nonregular design 10.48. The indicator function is

F (x1, . . . , xt) =
1

210
(16 + 8x1x5x7 + 8x1x5x8 + · · ·+ 16x3x4x5x6x7x8x9xt),

where the complete formula can be found in the Supplementary Material. There are

207 items (besides the constant), of which 15 terms have a coefficient of 16
210

and the re-

maining 192 terms have a coefficient of 8
210

, corresponding to 15 complete words and 192

partial words of aliasing index 1/2 respectively. It has CFV=[(0, 32)3, (10, 32)4, (0, 64)5,

(0, 32)6, (0, 32)7, (5, 0)8] and GR=3.5. Design 10.48 has less G-aberration and a larger

generalized resolution than design 10.4.

For a n × k design D0, denote a foldover plan by a 1 × k row vector γ, in which

each element represents whether the corresponding factor is reversed. For example,

Statistica Sinica: Preprint 
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foldover plan γ = (0, . . . , 0) indicates no factor’s sign is reserved. We call this type

of foldover plan a no-factor foldover plan and the corresponding foldover design a no-

factor foldover. Foldover plan γ = (1, . . . , 1) indicates that the signs of all factors

are reserved. We call this type of foldover plan an all-factor foldover plan and the

corresponding foldover design an all-factor foldover.

Definition 1. Let D0 be a design with n runs and k factors, then there are 2k pos-

sible options for the foldover vector γ, corresponding to 2k foldovers of D0. The row

concatenation of any f distinct foldovers is called an isomorphic foldovers design with

f foldovers (f -IFD).

It is clear that all possible 2k foldovers form the full 2k design (with n repetitions),

while any two distinct foldovers must be isomorphic. The f -IFD can be defined by an

f × k matrix, which is called the foldover matrix of the f -IFD,

Γ = (γT1 , . . . , γ
T
f )T ,

where γi = (γi1, . . . , γik) is the foldover plan of the ith foldover. Then we have the

following result.

Lemma 1. Let F0(x) =
∑
V ∈P

bVXV (x) be the indicator function of the initial design

D0, then the f -IFD defined by foldover matrix Γ, say D, has the indicator function

F (x) =
∑
V ∈P

f∑
i=1

(−1)

∏
v∈V

γiv
bVXV (x).

From Lemma 1, the word XV (x), with aliasing index ρ(V ) in D0, has aliasing index

[ρ(V )/f ]

∣∣∣∣∣
f∑
i=1

(−1)

∏
v∈V

γiv

∣∣∣∣∣
in D. Then we are ready to propose the following result.

Statistica Sinica: Preprint 
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Lemma 2. Let D be an f -IFD based on the initial design D0, then D has the same or

fewer words than D0. For any common word of D and D0, it has the same or smaller

aliasing index as a word in D than that in D0. Particularly, if D0 does not have a

complete word, then neither does D. For the case of f = 2, any word of D0 either is

removed or keeps the aliasing index unchanged in D.

For even f > 2, an f -IFD can sometimes be reduced, in the sense that it is an

f/2-IFD composed of foldovers of size 2n. The following result gives insights into

understanding the structure of IFDs with an even number of foldovers.

Theorem 1. Consider an f -IFD defined by foldover matrix Γ, where Γ = (γij) is an

f ×k matrix for even f > 2. Suppose the rows of Γ can be paired so that the product of

the two rows of each pair is identical. Then the f -IFD can be reduced into an f/2-IFD

with the foldover matrix Γ̂ = (γ̂ij), therein Γ̂ is of size f/2× k and

γ̂ij =


1 i = 1, j = 1, . . . , k,

γ(2i−1)jγ1j i = 2, . . . , f/2, j = 1, . . . , k.

Example 2. Given k = 7, f = 6, let D be the 6-IFD defined by foldover matrix

Γ = (γT1 , . . . , γ
T
f )T =





1 1 1 1 −1 −1 1

1 −1 1 1 1 −1 1

−1 −1 1 −1 1 −1 1

−1 1 1 −1 −1 −1 1

1 −1 −1 −1 −1 1 −1

1 1 −1 −1 1 1 −1

.

Statistica Sinica: Preprint 
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It is easily checked that γ1γ2 = γ3γ4 = γ5γ6. Then each of the two 2 × 7 matrices

(γT3 , γ
T
4 )T and (γT5 , γ

T
6 )T can be obtained from (γT1 , γ

T
2 )T by sign switches of columns,

indicating that these two matrices correspond to two foldovers of the 2-IFD defined by

the foldover matrix (γT1 , γ
T
2 )T . That is, D is a 6-IFD given by a n× 7 design D0, and

the 6-IFD can be reduced into a 3-IFD, where D0 is now a 2n× 7 design given by the

2-IFD obtained from the foldover matrix (γT1 , γ
T
2 )T .

3. General properties of f-IFDs

For any two-level orthogonal array with n runs and k factors D0, let W be the set

of its e words and {w1, . . . , wu} be the basic words of D0. That is, all e words can be

generated by the u words in {w1, . . . , wu}. Obviously, we have u ≤ k and e ≤ 2u−1. It

is clear that u = k − log2 n and e = 2u − 1 for regular D0. Without loss of generality,

suppose the words in W are arranged in Yates order. Note that {w1, . . . , wu} can

generate 2u − 1 words, while not all these words appear in W when e < 2u − 1.

Example 3. Revisit designs 10.4 and 10.48 in Example 1. Design 10.4 is a regular 210−6

design with 63 complete words generated by 6 basic words {x1x2x3, x1x4x5, x1x7x8,

x1x9xt, x2x4x6, x6x7x9}. Here we have u = 6 and e = 2u−1 = 63 for design 10.4. Design

10.48 has 15 complete words and 192 partial words of aliasing index 1/2. It can be easily

confirmed that design 10.48 is an 8-PFD. The single flat is a 210−9 design with 511 com-

plete words generated by X = {x1x5x7, x1x5x8, x1x5x9, x1x5xt, x1x6x7, x2x5x7, x3x5x9,

x3x7x9, x4x5x9}. Among the 511 complete words of the single flat, 192 words become

partial words of aliasing index 1/2, 15 words remain complete words and the remaining

304 words are removed in design 10.48. It is clear that all 207 words of design 10.48

Statistica Sinica: Preprint 
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can be generated by the 9 words in X. Thus, we have u = 9 and e = 207 for design

10.48.

Lemma 3. Let D0 be a design with n runs, k factors and e words. Then D0 has

u = k − log2(n/g) basic words with e ≤ 2u − 1, where g is the number of flats of D0

when it is characterized as a parallel flats design. In particular, if D0 is regular, then

u = k − log2 n and e = 2u − 1; and if D0 is a n-PFD, then u = k.

From Lemma 3, the basic words of design D0 can be easily obtained from its single

flat instead of a comprehensive examination. Example 3 well illustrates this issue.

Another illustrative example of the 12-run Plackett-Burman design is deferred to the

Appendix.

For design D0, each of the 2k foldovers corresponds to a column of a Sylvester

Hadamard matrix of order 2u. We next describe this connection. Let H2u be a Sylvester

Hadamard matrix of order 2u, generated by the recursion

H21 =

1 1

1 −1

 , and H2i =

H2i−1 H2i−1

H2i−1 −H2i−1

 for i ≥ 2.

H2u is symmetrical and H2
2u = 2uE2u , where E2u represents the identity matrix of order

2u. We number the columns of H2u beginning with h0. Then we have

H2u = [h0, h1, . . . , h2u−1].

Therein h0 is the 2u×1 column vector with all elements unity, and columns {h1, h2, . . . ,

h2u−1} are u basic columns. Any other columns can be generated by them, such as

h3 = h1h2, where ab = (a1b1, . . . , azbz)
T for any a = (a1, . . . , az)

T and b = (b1, . . . , bz)
T .

Statistica Sinica: Preprint 
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Each of the 2k foldovers corresponds to a column of H2u , in that hi determines the

sign switch of each basic word in the ith foldover relative to D0. Note that every 2k−u

foldover corresponds to the same column of H2u , and which one of these foldovers to

choose has no effect on the indicator function of the resulting f -IFD. Thus, instead

of choosing f foldovers from 2k foldovers, we need only choose f foldovers from 2u

foldovers that correspond to H2u to obtain all possible relevant f -IFDs. Without loss

of generality, assume that the signs of the first k− u factors that can not be generated

by the words {w1, . . . , wu} keep unchanged in each of the f foldovers. In this way,

to obtain an f -IFD, we choose f foldovers from 2u foldovers, that is, we choose f

columns from H2u . By restricting our attention to unreplicated designs, there are

2u!/{f !(2u − f)!} combinations to be considered.

Without loss of generality, we take the first foldover to be the no-factor foldover,

that is, the column h0. Each of the remaining isomorphic foldovers corresponds to

a column of H∗ = [h1, . . . , h2u−1]. Thus the number of combinations is reduced to

(2u − 1)!/{(f − 1)!(2u − f)!}. Some of these combinations will produce equivalent f -

IFDs, with the following definition.

Definition 2. Two f -IFDs are called equivalent if one f -IFD can be obtained from

the other by row permutations and column sign switches.

It is clear that two equivalent f -IFDs must be isomorphic while the reverse is not

true. For a subset of f−1 columns ofH∗, say z = {hc1 , . . . , hcf−1
}, let z̃ = {h0, z}, which

indicates including the no-factor foldover D0. It is easy to see that z̃ is determined by

the u× f matrix consisting of the rows with index {1, 2, 4, . . . , 2u−1} of z̃, and we call

Statistica Sinica: Preprint 
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it the B matrix of this f -IFD. Thus we have the following result.

Theorem 2. The f -IFD corresponding to z̃ has the foldover matrix Γ = (γi,j)f×k with
∏
v∈wl

γiv = bli i = 1, . . . , f, l = 1, . . . , u,

γiv = 1 i = 1, . . . , f, v ∈ F0,

where {w1, . . . , wu} are the basic words of D0, bli represents the (l, i) element of B for

l = 1, . . . , u, i = 1, . . . , f, and F0 consists of the first k − u factors of D0 that can not

be generated by its basic words.

Theorem 2 illustrates the relationship between the foldover matrix and B matrix

of an f -IFD. It can be easily verified that the u factors not in F0 can be generated by

the u words {w1, . . . , wu}. Combining these with Theorem 1, we have the following

result.

Corollary 1. For an f -IFD based on B with even f > 2, if the columns of B can be

paired so that the product of the two columns of each pair is identical, then the f -IFD

can be reduced into an f/2-IFD.

Following Wang and Mee (2021), let the group of z̃ = {h0, z}, where z is subset of

f − 1 columns of H∗, be

Gz̃ = {hcj · z̃ : j = 0, 1, . . . , f − 1}, with hcj · z̃ = {hcj , hcjhc1 , . . . , hcjhcf−1
},

where c0 = 0. Then the following result provides a basis to identify equivalent IFDs.

Corollary 2. For any initial design, two f -IFDs based on different foldovers, z̃1 =

{h0, z1} and z̃2 = {h0, z2}, are equivalent if and only if z̃1 and z̃2 belong to the same

group.
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For given u and p, denote the number of disjoint groups as gu,f . All nonequivalent

IFDs can be obtained by selecting just one from each of the gu,f groups. The following

results in Propositions 1 and 2 on grouping are taken from Wang and Mee (2021) and

are useful in the paper.

Proposition 1. For odd f , the size of Gz̃ is f . For even f = λ2ν, where λ, u ≥ 1 and

λ is odd, the size of Cz̃ might be λ, 2λ, . . . , λ2ν .

Moreover, the group size indicates the reduction of the f -IFDs. If the size of one

group is m with m < f , then any f -IDF generated from this group can be reduced

into an m-IDF. For any (u, f), let τκi be the frequency of the groups of size κi; then

the group size pattern (GSP) is defined as GSP(u, f) = (τκ1 , . . . , τκς ), with ς different

group sizes.

Proposition 2. For any f ≤ 2u,

GSP (u, f)=

[
tu,f
f

]
f

for odd f

GSP (u, 4)=

[
(2u − 1)(2u − 2)

6

]
1

,

[
(2u − 1)(2u − 2)(2u − 4)

24

]
4

GSP (u, 6)=

[
(2u − 1)(2u − 2)(2u − 4)

24

]
3

,

[
2u(2u − 1)(2u − 2)(2u − 4)(2u − 8)

720

]
6

GSP (u, 8)=

[
(2u − 1)(2u − 2)(2u − 4)

168

]
1

,

[
(2u − 1)(2u − 2)(2u − 4)(2u − 8)

192

]
4

,[
(2u − 1)(2u − 2)(2u − 4)(2u − 8)(8u − 13 ∗ 4u + 57 ∗ 2u − 180)

40320

]
8

GSP (u, 10)=

[
(2u − 1)(2u − 2)(2u − 4)(2u − 6)(2u − 8)

1920

]
5

,

[
2u(2u − 1)(2u − 2)(2u − 4)(2u − 8)

720

]
10

.

For example, given u = 4, f = 3, there are 105 choices for z̃ = {h0, z} with

z = {hc1 , hc2}. According to the property of H16, there does not exist c1 6= c2, such
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that hc1 · z̃ = hc2 · z̃. Thus the 105 choices of z̃ can be partitioned into g4,3 = 35 groups

of size 3.

Example 4. As discussed in Example 3, design 10.4 has 63 words generated by six

basic words. We now consider 6-IFDs based on design 10.4. Given u = 6 and f = 6,

there are (63)!/(5)!(58)! = 7028847 choices for z̃ = {h0, z} with z = {hc1 , . . . , hc5}.

From Proposition 2, there are 1176357 groups in total, 9765 of size 3 and 1166592 of

size 6. That is, GSP (6, 6) = [97653, 11665926]. Similarly, consider 6-IFDs based on

design 10.48, where design 10.48 has 207 words generated by nine basic words. Given

u = 9 and f = 6, there are (511)!/(5)!(506)! = 2.8471 ∗ 1011 choices for z̃, which can be

partitioned into 5516245 groups of size 3 and 4.7449∗1010 groups of size 6. We can see

that there are much more choices to consider for obtaining all nonequivalent 6-IFDs

based on design 10.48 than design 10.4, even if these two designs are of the same size.

Recall that an f -PFD consists of f regular designs from the same family, where the

f fractions are determined by the same defining words but different sign assignments.

An f -IFD consists of f foldovers of an initial design, where the initial design can be

either regular or nonregular. As discussed in Section 1, every f -IFD is essentially a

(gf)-PFD for some g ≤ n. The more general results are summarized in the following

theorem.

Theorem 3. Let D0 be a two-level design with n runs and k factors.

(i) If D0 is regular, then any f -IFD based on D0 is an f -PFD.

(ii) If D0 is a g-IFD, then any f -IFD based on D0 is a (gf)-IFD.
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(iii) If D0 is a g-PFD, then any f -IFD based on D0 is a (gf)-PFD. In particular,

any 2-IFD based on D0 is a (2g)-PFD, and it can be reduced into a g-PFD.

By Theorem 3, any 2-IFD based on a g-PFD is a g-PFD. Obviously, any 2-IFD

based on a regular design is a regular design. On one hand, the IFDs generalize

PFDs in the sense that PFDs correspond to the special case of the initial design being

regular. On the other hand, since any initial design D0 can be characterized as a

g-PFD, every f -IFD is essentially a (gf)-PFD for some g ≤ n. Moreover Theorem 3

reveals a potential advantage of IFDs, which is to find a lower G-aberration f -IFD

instead of searching for a (gf)-PFD. This is especially useful when f is large, where it

becomes computationally infeasible to search for a (gf)-PFD.

4. Construction of optimal f-IFD

As mentioned in Section 2, the G-aberration criterion is a popular criterion for

ranking designs. Section 3 proposes a method for obtaining all nonequivalent f -IFDs

for any given initial design. In this section, two algorithms are developed to search for

the optimal f -IFD in terms of G-aberration criterion: 1) an exhaustive search for the

minimum G-aberration f -IFD when it is feasible to obtain all nonequivalent f -IFDs;

2) a short-cut to find a low G-aberration f -IFD by iteratively optimizing a random

f -IFD, when it is infeasible to obtain all nonequivalent f -IFDs. Examples are provided

to show that constructing good IFDs based on a nonregular initial design is often more

successful than doing so with a more granular single flat.

We now illustrate how the f columns of H2u determine the J-characteristics of

the f -IFD and present a method for finding the f -IFD with minimum G-aberration
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for any initial design D0. For any z̃ = {h0, z}, where {hc1 , . . . , hcf−1
}, define Zf (z) =

12u +
∑f−1

j=1 hcj and truncate Zf (z) at e positions corresponding to the words W of D0,

then obtain an e×1 vector Zf (z)|W . According to Lemma 1, if we multiply |Zf (z)|W | by

the J-characteristics of words W , then we can obtain the J-characteristics of the f -IFD

corresponding to z̃. For simplicity, we call Zf (z)|W and its absolute value |Zf (z)|W | the

Z-vector and absolute Z-vector, respectively, of the f -IFD. We now present Algorithm

1 for determining the minimum G-aberration f -IFD based on D0.

Algorithm 1 (An exhaustive search for the minimum G-aberration f -IFD).

Input : A design with n runs and k factors called D0, and an integer f ≥ 2.

Output : The minimum G-aberration f -IFD constructed from D0.

Step 1. For an initial n-run and k-factor design D0, let L = (L1, . . . , Le) and J =

(J1, . . . , Je) be the lengths and J-characteristics of words W arranged in Yates

order, respectively.

Step 2. Determine |Zf (z)|W | for a representative z̃ from each of the gu,f equivalent

groups. Remove duplicate absolute Z-vectors to obtain an e × ru,f matrix Zu,f

where ru,f is the number of the unique absolute Z-vectors.

Step 3. From Zu,f and design D0’s L, we obtain the confounding frequency vectors

of all gu,f nonequivalent f -IFDs; the minimum G-aberration f -IFD constructed

from D0 then can be identified.

In Step 1, we only consider the 1×e vector L rather than the complete 1× (2u−1)

vector of length of words from the basic word when e < 2u−1. This makes the algorithm
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more efficient. In Step 2, we consider just one representative z̃ from each group, since

the f -IFDs based on the same group must be equivalent. Next, we illustrate Algorithm

1 with the case of u = 6 and f = 5.

Example 5 (Example 4 continued). To obtain the minimum G-aberration 6-IFD

based on design 10.4, we need to consider 1176357 nonequivalent IFDs from different

groups. We calculate Z-vectors of all these nonequivalent IFDs and obtain the unique

absolute Z-vectors. Matching them to the lengths and J-characteristics of design 10.4’s

words, and obtain the confounding frequency vectors of all these nonequivalent IFDs.

In this way, we obtain the minimum G-aberration 6-IFD based on design 10.4, defined

by the foldover matrix

Γ =





1 1 1 1 1 1 1 1 1 1

1 1 −1 1 −1 −1 1 1 −1 1

1 1 1 1 1 −1 1 −1 1 1

1 1 −1 1 1 1 1 −1 −1 1

1 1 1 1 −1 −1 1 1 1 −1

1 1 −1 1 −1 1 1 −1 1 1

.

It is easily checked the column (1, 1, 1, 1, 1, 1)T appears four times with indexes

1, 2, 4 and 7 in Γ. This is consistent with the fact that the first 4 factors that can not

be generated by the 6 basic words of design 10.4 are x1, x2, x4 and x7. The 6-IFD has

CFV=[(0, 0, 0, 0, 18, 0)4], GR=4.67 and B4 = 2.

By Algorithm 1, for any given initial design, one can obtain all nonequivalent f -

IFDs and get the best one, provided u and f are not too large. When u and/or f is large,
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however, it can be computationally infeasible due to both time and space complexity,

as the enumeration of equivalent groups increases sharply as u and f increase. For this

reason, we next develop a shortcut to find the lowest G-aberration f -IFD from any

initial design D0.

For an f -IFD, its confounding frequency vector corresponding to z̃ is essentially

determined by its B matrix. For matrix B, we use the coordinate exchange algorithm

(Meyer and Nachtsheim, 1995) to search for the lowest G-aberration f -IFD based on

D0. Notably, the resulting design is the locally optimal solution, which may or may not

be the globally optimal solution in terms of the G-aberration criterion. For this reason,

we then use variable neighborhood search to optimize B for potential improvement.

Variable neighborhood search is a popular optimization method that systematically

explores multiple neighborhoods, where a neighborhood is defined to be some variants

of a given solution (Mladenović and Hansen, 1997; Hansen and Mladenović, 2001;

Hansen et al., 2008). Variable neighborhood search uses more than one neighborhood

to prevent the search process from getting stuck in a locally optimal solution, as a

locally optimal solution with respect to one neighborhood is not necessarily a locally

optimal solution with respect to another neighborhood.

We now propose a second algorithm to search for the lowest G-aberration f -IFD

for this situation, as given in Algorithm 2. Unlike the exhaustive search in Algorithm

1, Algorithm 2 finds the lowest G-aberration f -IFD by iteratively optimizing a random

f -IFD and thus provides a shortcut to search for the lowest G-aberration f -IFD.
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Algorithm 2 (A short-cut to find a low G-aberration f -IFD).

Input : A design with n runs and k factors called D0, and an integer f ≥ 2.

Output : The lowest G-aberration f -IFD constructed from D0.

Step 1. For an initial n-run and k-factor design D0, let L = (L1, . . . , Le) and J =

(J1, . . . , Je) be the lengths and J-characteristics of words W arranged in Yates

order, respectively.

Step 2. Randomly generate an u× (f − 1) matrix on {−1, 1}, and set the correspond-

ing f -IFD as the start. Obtain a locally optimal f -IFD through a coordinate

exchange algorithm based on this start. Randomly choose M designs in the

neighborhoods N2 and N3 of the locally optimal f -IFD, where Ni consists of f -

IFDs whose B matrices differ from that of the local optimal design in exactly i

positions for i = 2, 3.

Step 3. For each of the M designs, conduct the coordinate exchange algorithm and get

the least G-aberration f -IFD. Choose the best one from all resulting f -IFDs to

obtain the best f -IFD based on D0.

Remark 1. Algorithms 1 and 2 can also be used to search for the lowest G2-aberration

f -IFD by changing the optimality objective from the confounding frequency vector to

the generalized wordlength pattern.

Example 6. We seek the lowest G-aberration 6-IFD based on design 10.48. As

discussed in Example 4, there are 4.7454 ∗ 1010 nonequivalent 6-IFDs based on design

10.48, making Algorithm 1 computationally infeasible (due to both time and space
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complexity). We use the short-cut Algorithm 2. First, we randomly generate a 9 × 5

matrix with entries from {−1, 1}. It is then used as the B matrix of the starting 6-IFD

after adding a 9 × 1 vector with all elements unity. Second, optimize the matrix B

by the coordinate exchange to get a locally optimal 6-IFD based on this start. Then

we apply the coordinate exchange to the randomly selected M =100 6-IFDs in the

neighborhoods N2 and N3 of this local optimal 6-IFD. In this way, we obtain the

lowest G-aberration 6-IFD based on design 10.48, defined by the foldover matrix

Γ =





1 1 1 1 1 1 1 1 1 1

−1 −1 1 −1 1 1 1 1 1 −1

1 −1 1 1 1 1 1 1 −1 −1

−1 −1 1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 1 −1 −1 1 1

−1 −1 1 −1 1 1 1 1 −1 1

.

It is easily checked that all elements in the fifth column of Γ are 1. This is consistent

with the fact that factor x5 can not be generated by the 9 basic words of design 10.48

(see Example 4 for the words of design 10.48). Besides, all elements in the sixth column

of Γ are 1, indicating that like the fifth factor, this factor is not reversed in each of all

6 foldovers. The resulting design has CFV=[(1, 0, 0, 0, 9, 32)4], GR= 4 and B4 = 2.89.

According to Examples 5 and 6, the 6-IFD for 10 factors in 96 runs from design

10.4 has less G- and G2-aberration than that from design 10.48, while design 10.48 has

less G- and G2-aberration than design 10.4. For even f , the minimum G-aberration

f -IFD often comes from a D0 that is not the minimum aberration regular design.
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Table 1: The Minimum G-aberration 6-IFDs based on 16× 10 designs.

Initial design Optimal Minimum G-aberration 5-IFD

Design GR CFV:(f16, f8)i u F0 foldover matrix GR CFV:(f96, f80, f64, f48, f32, f16)4

10.44 3.5 [(4, 24)3, (3, 48)4] 9 {7} Γ1 4.67 [(0, 0, 0, 0, 3, 48)4]

10.69 3.5 [(4, 21)3, (3, 51)4] 9 {7} Γ2 4.67 [(0, 0, 0, 0, 3, 51)4]

10.68 3.5 [(4, 20)3, (3, 52)4] 9 {7} Γ3 4.67 [(0, 0, 0, 0, 3, 52)4]

The foldover matrix for the ith best 6-IFD is Γi, where Γi is provided in the Supplementary Material; The

initial designs 10.44, 10.69 and 10.68 are provided in the Supplementary Material.

As mentioned in Section 2, Sun (1993) (as well as Schoen et al. (2010)) provided

78 nonisomorphic designs of size 16× 10, denoted as 10.z for z = 1, . . . , 78. We obtain

the lowest G-aberration 6-IFD for each of these 78 D0 using Algorithm 2, and show

the results for the best three in Table 1. The minimum G-aberration 6-IFD comes

from design 10.44. Compared to the same size designs from Vazquez and Xu (2019),

Wang and Mee (2021) and Wang and Mee (2023), our 6-IFD from Algorithm 2 has

less G-aberration. It has the same G2-aberration as the design in Wang and Mee

(2021), and both of them have less G2-aberration than the design in Vazquez and Xu

(2019) and Wang and Mee (2023). In addition, it has the same DF for two-factor

interactions as the designs in Wang and Mee (2021) and Wang and Mee (2023), as

shown in Table 2, where DF denotes degrees of freedom for two-factor interactions.

The PFD structure of each design is listed in the last column of Table 2. The 6-IFD

is constructed from design 10.44 (where design 10.44 is an 8-PFD) and thus is a 48-

PFD. Our algorithm does not always return the minimum G-aberration design for a

given size. Vazquez et al. (2022) found a nonregular design for 10 factors in 96 runs
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Table 2: Comparison of the 96 × 10 designs from Algorithm 2, Vazquez and Xu

(2019), Wang and Mee (2021) and Wang and Mee (2023).

Source CFV:(f96, f80, f64, f48, f32, f16)4 B4 GR PFD structure

Vazquez and Xu (2019) [(0, 0, 0, 0, 30, 0)4] 3.33 4.67 48-PFD

Wang and Mee (2021) [(0, 0, 0, 0, 15, 0)4] 1.67 4.67 6-PFD

Wang and Mee (2023) [(0, 0, 0, 0, 18, 0)4] 2.00 4.67 6-PFD

6-IFD from Algorithm 2 [(0, 0, 0, 0, 3, 48)4] 1.67 4.67 48-PFD

All designs have DF=45 for two-factor interactions; Only the design from Vazquez and Xu (2019) has

repeat runs, where it has 2 duplicate runs; The initial design of the 6-IFD, i.e. design 10.44 provided in

the Supplementary Material, is an 8-PFD.

with CFV=[(0, 0, 0, 0, 0, 24)4] and B4 = 0.67 by concatenating two 48-run strength-

three designs via an effective column change/variable neighborhood search algorithm.

It is worth noting that our 6-IFD is a 48-PFD and thus much easier to understand

and analyze. For example, the estimated models have a block diagonal information

matrix where estimates of parameters belonging to different diagonal submatrices are

uncorrelated. As such, the covariance matrix of the least-square estimates is simplified

and the complexity of linear dependencies among factor effects is reduced. Therefore,

aliasing relations are much easier to understood, which carries implications for both

design choice and data analysis (Edwards and Mee, 2023). We believe that this is an

important advantage over the alternative designs.

Note that the proposed 6-IFD is a 48-PFD based on a single flat of size 2. For the

initial 210−9 regular design, there is a total of 512 disjoint single flats in its family, with

each determined by the sign assignment of 9 defining words. To obtain a 48-PFD, we
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include the first flat with +1 for all defining words, and consider the assignment of the

other 47 flats from the remaining 511 flats; there are 511!/[47!564!] = 8.6 × 1066 such

cases to consider. An exhaustive search here is infeasible. A simulation study, provided

in the Appendix, shows that the 48-PFD we constructed as a 6-IFD is extremely rare

among numerous cases.

Similarly, we obtain the minimum G-aberration 10-IFD from design 10.z can be

obtained for z = 1, . . . , 78.Compared to the equally-sized designs from Vazquez and Xu

(2019) and Wang and Mee (2023), the resulting 10-IFD has less G- and G2-aberration

with the same DF, as shown in Table 3. The 10-IFD is constructed from design 10.44

(where design 10.44 is an 8-PFD) and thus is an 80-PFD.

Table 3: Comparison of the 160× 10 designs from Algorithm 2, Vazquez and Xu

(2019) and Wang and Mee (2023).

Source CFV:(f160, . . . , f48, f32, f16)4 B4 GR PFD structure

Vazquez and Xu (2019) [(0, 0, 0, 0, 0, 0, 0, 0, 50, 0)4] 2.00 4.8 80-PFD

Wang and Mee (2023) [(0, 0, 0, 0, 0, 0, 0, 0, 18, 0)4] 0.72 4.8 10-PFD

10-IFD from Algorithm 2 [(0, 0, 0, 0, 0, 0, 0, 0, 3, 48)4] 0.60 4.8 80-PFD

All designs have DF=45 for two-factor interactions; Only the design from Vazquez and Xu (2019) has repeat

runs, where it has 2 quadruplicate runs; The initial design of the 10-IFD, i.e. design 10.44 provided in the

Supplementary Material, is an 8-PFD.

Example 7. As discussed in Wang and Mee (2023), their perturbation improvement

algorithm does not always return the minimum G-aberration design for a given single

flat. For instance, there exists an 8-PFD for 15 factors in 128 runs with generalized

resolution 5.5, based on the minimum aberration 215−11 design as single flat (Mee, 2009,
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Table 4: Comparison of the 128×15 designs from Algorithm 2 and Wang and Mee

(2023).

Source CFV:(f128, f96, f64, f32)4 B4 GR PFD structure

Wang and Mee (2023) [(0, 0, 52, 0)4] 13.00 4.50 8-PFD

4-IFD from Algorithm 2 [(0, 0, 0, 333)4] 20.81 4.75 32-PFD↓(2,32)

Both designs have no repeat runs; The initial design of the 4-IFD (provided in the Supplementary Material) is

a 32-PFD; ↓(λ,µ): The corresponding IFD can be reduced into a λ-IFD with the initial design being a µ-PFD.

Page 286). The best design they generate has a generalized resolution of 4.5. Using

Algorithm 2, a 128×15 design with a generalized resolution of 4.75 can be obtained as

a 4-IFD, where the initial 32 × 15 design is provided in the Supplementary Material.

As summarized in Table 4, compared with the design from Wang and Mee (2023), the

4-IFD from Algorithm 2 has less G- and G2-aberration as well as a larger generalized

resolution. We can check that the 4-IFD can be reduced to a 2-IFD with the initial

design being a 64-run 32-PFD. Following Theorem 3, the 4-IFD is a 32-PFD.

Technically, designs of size 100 can be constructed from a low-resolution single flat

of size 4 as 25-PFDs, as described in Wang and Mee (2021, 2023). It is worth noting

that constructing 5-IFDs from one of the 20-run orthogonal arrays is more successful.

Let us consider the following illustrative example.

Example 8. A design with 100 runs and k factors can be constructed from the min-

imum aberration 2k−(k−2) design as a 25-PFD. Note that the number of flats is large,

and thus the construction methods in Wang and Mee (2021) are not feasible. Here we

seek the minimum G-aberration 20-PFD via the perturbation improvement algorithm
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in Wang and Mee (2023). The 100× k design can also be constructed from the mini-

mum G-aberration nonregular 20 × k design as a 5-IFD via Algorithm 2. The initial

nonregular designs are available in Eendebak and Schoen (2017). Table 5 summarizes

the resulting 100 × k designs from both methods for k = 7, . . . , 15. Compared with

the 25-PFD, the 5-IFD has less G-aberration and G2-aberration, as well as a larger

generalized resolution. In summary, the 5-IFDs from the 20-run nonregular design

are superior to the 25-PFDs from the low-resolution 4-run single flat in terms of the

G-aberration and G2-aberration criteria. For k larger than 9, one might prefer the

25-PFD with a small B2 > 0 to estimate more interactions.

These examples illustrate the merits of IFDs. That is, constructing good IFDs

based on a nonregular initial design is often more successful than doing so with a more

granular single flat. The IFD structure provides an efficient way to find good designs.

Moreover, the resulting IFDs can be characterized as PFDs and thus are much easier

to understand and analyze than many other nonregular designs (Edwards and Mee,

2023). One distinction of IFDs is that they may have partial replication. While single

flats from the same family are either disjoint or identical, this is not the case for distinct

foldovers of a given initial design. For instance, consider the two 100 × 7 designs in

Example 8, as shown in Table 5. The one from Wang and Mee (2023) is a 25-PFD

with 92 distinct rows. It has 23 distinct flats, two of which are repeated twice. The

5-IFD generated via Algorithm 2 has 88 distinct rows, 12 of which are repeated twice.

Here partial replication is attractive because it provides the degrees of freedom for

estimating the error variance.
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5. Summary and discussion

This article introduces a new class of nonregular designs called IFDs, that is com-

posed of several foldovers of an initial design. We study the general theory for IFDs,

and present a method to obtain all nonequivalent f -IFDs for any given initial design.

Two algorithms were given to search for the optimal f -IFD in terms of G-aberration (or

G2-aberration) criterion. It is worth noting that IFDs have a parallel flats structure,

and thus are much easier to understand and analyze than many other nonregular de-

signs. Most importantly, as illustrated in Tables 2–5, constructing good IFDs based on

a nonregular initial design is often more successful than doing so with a more granular

single flat. The IFD structure provides an efficient way to find good designs.

The IFDs include several existing designs as special cases. When f is 2, and the

initial design D0 is taken to be a regular design, the resulting 2-IFDs degenerate to the

combined designs in Li and Lin (2003); When f is 2, and the initial design D0 is taken

to be a nonregular design, the resulting 2-IFDs degenerate to the combined designs in

Li et al. (2003). More construction results are provided in the Appendix.

Supplementary Material

The online Supplementary Material includes S1: the proofs of Theorems 1–3 and

Corollaries 1 and 2; S2: the optimal foldover matrices for the three 6-IFDs in Table 1;

S3: the initial designs of the IFDs in Tables 1–4; S4: the initial designs of the IFDs in

Tables C.1 and C.2; and S5: The indicator function of design 10.48.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0401



TWO-LEVEL ISOMORPHIC FOLDOVERS DESIGNS 29

Acknowledgments

The authors would like to thank Professor Robert Mee for his valuable comments

and suggestions. This work was supported by the National Natural Science Foundation

of China (Grant Nos. 12301323 and 12131001), and the MOE Project of Key Research

Institute of Humanities and Social Sciences (22JJD110001).

Appendix

Appendix A: An illustrative example of the basic words

Let H12 be the 12× 11 Plackett-Burman design, which is provided in the Supple-

mentary Material. It has in total of 1123 words, i.e. one complete word, 990 partial

words of aliasing index 1/3, and 132 partial words of aliasing index 2/3. It is a 12-

PFD, where the single flat can be regared as the 211−11 design with 211 − 1 = 2047

complete words generated by X = {x1, x2, . . . , x11}. Among the 2047 complete words

of the single flat, 990 words become partial words of aliasing index 1/3, 132 words

become partial words of aliasing index 2/3, one word remains a complete word, and

the remaining 924 words are removed in design H12. The 1123 words of design H12 can

be generated by the 11 words in X. Thus, we have n = 12, k = 11, g = 12, e = 1123

and u = 11 for design H12. Here g = n, u = k and e < 2u − 1.

Take the first 10 columns of H12 and denote the resulting 12 × 10 design as H10
12 .

We can check that H10
12 is a 12-PFD. It has 495 partial words of aliasing index 1/3

and 66 partial words of aliasing index 2/3. The 561 words can be generated by the 10

words in X = {x1, x2, . . . , x10}. Thus, we have n = 12, k = 10, g = 12, e = 561 and

u = 10 for design H10
12 . Here g = n, u = k and e < 2u − 1.
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Table A.1: The basic words of designs Hk
12 for k = 3, . . . 11.

k g e u CFV:(f12, f8, f4)i

3 3 1 1 [(0, 0, 1)3]

4 12 5 4 [(0, 0, 4)3], (0, 0, 1)4]

5 12 15 5 [(0, 0, 10)3, (0, 0, 5)4, (0, 0, 0)5]

6 12 36 6 [(0, 0, 20)3, (0, 0, 15)4, (0, 1, 0)5, (0, 0, 0)6]

7 12 75 7 [(0, 0, 35)3, (0, 0, 35)4, (0, 3, 0)5, (0, 1, 0)6, (0, 0, 1)7]

8 12 147 8 [(0, 0, 56)3, (0, 0, 70)4, (0, 8, 0)5, (0, 4, 0)6, , (0, 0, 8)7, (0, 0, 1)8]

9 12 285 9 [(0, 0, 84)3, (0, 0, 126)4, (0, 18, 0)5, (0, 12, 0)6, (0, 0, 36)7, (0, 0, 9)8, (0, 0, 0)9]

10 12 561 10 [(0, 0, 120)3, (0, 0, 210)4, (0, 36, 0)5, (0, 30, 0)6, (0, 0, 120)7, (0, 0, 45)8, (0, 0, 0)9, (0, 0, 0)10]

11 12 1123 11 [(0, 0, 165)3, (0, 0, 330)4, (0, 66, 0)5, (0, 66, 0)6, (0, 0, 330)7, (0, 0, 165)8, (0, 0, 0)9, (0, 0, 0)10, (0, 0, 1)11]

The 12× k design Hk
12 is a g-PFD with e words. It has u basic words. Here fi8, fi4 correspond to partial words of

aliasing index 2/3 and 1/3 respectively, while fi12 corresponds to complete words.

Let Hk
12 be the 12 × k design consisting of the first k columns of H12. Table A.1

lists the k (number of factors), g (number of flats), e (number of words), u (number

of basic words) and CFV of design Hk
12 for k = 3, . . . , 12. As shown in Table A.1, for

k = 4, . . . , 11, design Hk
12 is a 12-PFD, and thus u = k. Design H3

12 has one partial

word of aliasing index 1/3. This design is a 3-PFD, where the single flat is a 23−1

design with one complete word x1x2x3. This word becomes a partial word of aliasing

index 1/3 of design H3
12 as a 3-PFD. Thus, we have n = 12, k = 3, g = 3, u = 1, e = 1

for design H3
12 with u = k − log2(n/g). Here e = 2u − 1 holds even though design H3

12

is nonregular.
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Appendix B: A simulation example used to supplement Table 2

Here we show that the 48-PFD we constructed as a 6-IFD is extremely rare among

all possible 48-PFDs from the 210−9 single flat. To see this, we evaluate 100000 48-PFDs

generated by the perturbation improvement algorithm in Wang and Mee (2023). The

generalized resolutions of these designs are 2.91, 2.96, 4.33, 4.50, and 4.67 with frequen-

cies of 728, 98971, 1, 148, and 152, respectively. There are in total of 301 strength-

three designs and their B4 values are distributed as in Figure B.1. The minimum

G-aberration design has GR=4.67, B4 = 4.06 and CFV=[(0, 0, 0, 0, 0, 0, 0, 0, 9, 110)4],

while the minimumG2-aberration design has GR=4.67, B4 = 3.92 and CFV=[(0, 0, 0, 0,

0, 0, 0, 0, 11, 97)4]. None of these 100000 48-PFDs achieve a B4 of 1.67, not even close.

That is, the proposed 6-IFD which can be characterized as a 48-PFD, is superior to

the 100000 48-PFDs under both G- and G2-aberration criteria. Note that any 6-IFD

can form a 48-PFD. Thus the set of all 6-IFDs will be a subset of all 48-PFDs. It is

clear that the search for 6 foldovers of size 16 is easier than the search for 48 flats of

size 2. The simulation study indicates that the 48-PFDs that are not included in the

subset defined by 6-IFDs do not contain any designs better than the best 6-IFD.

Appendix C: Some IFDs from Algorithm 2

Some selected isomorphic foldovers designs constructed from the 12×11 and 16×15

designs are listed in Tables C.1 and C.2 respectively. The initial designs i.e. the unique

12× 11 strength-two design (Plackett-Burman design) and five nonisomorphic 16× 15

strength-two designs are available in Sun (1993), Schoen et al. (2010), Eendebak and

Schoen (2017) and the library of orthogonal arrays maintained by Dr. N.J.A. Sloane
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Figure B.1: The distribution of B4 of the 301 strength-three 48-PFDs.

(http://neilsloane.com/oadir/index.html). We provide these designs in the Supple-

mentary Material. As shown in Tables C.1 and C.2, all the IFDs have a parallel flats

structure. For f = 4, 6, 8, 10, the f -IFD based on the 12-run Plackett-Burman design

can be reduced into a (f/2)-IFD, where the initial design is a 2-IFD based on the

Plackett-Burman design, as shown in the last column of Table C.1.
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Table C.1: Selected f -IFDs from the 12× 11 strength-two design.

Runs f CFV=(f48, f40, f32, f24, f16, f8)4 B4 GR DF PFD structure

24 2 [(0, 0, 0, 0, 0, 330)4] 36.67 4.67 11 12-PFD

48 4 [(0, 0, 0, 0, 154, 0)4] 17.11 4.67 22 12-PFD↓(2,12)

72 6 [(0, 0, 0, 70, 0, 260)4] 10.99 4.67 33 36-PFD↓(3,12)

96 8 [(0, 0, 28, 0, 168, 0)4] 7.78 4.67 44 48-PFD↓(4,12)

120 10 [(0, 8, 0, 102, 0, 220)4] 5.95 4.67 53 60-PFD↓(5,12)

144 12 [(2, 0, 66, 0, 168, 0)4] 5.56 4.67 55 72-PFD↓(6,12)

The initial 12× 11 strength-two design (provided in the Supplementary Material) is a 12-PFD; All IFDs

have no repeat runs; ↓(λ,µ): The corresponding IFD can be reduced into a λ-IFD with the initial design

being a µ-PFD.

Table C.2: Selected f -IFDs from 16× 15 strength-two designs.

Runs f D0 CFV=(f96, f80, f64, f48, f32, f16)4 B4 GR DF PFD structure

32 2 H16.V [(0, 0, 0, 0, 21, 336)4] 105.00 4.00 15 8-PFD

64 4 H16.III [(0, 0, 9, 0, 144, 0)4] 45.00 4.00 30 8-PFD↓(2,8)

96 6 H16.II [(3, 0, 0, 48, 54, 144)4] 25.00 4.00 45 12-PFD↓(3,4)

128 8 H16.I [(0, 0, 32, 0, 0, 0)4] 8.00 4.50 81 8-PFD

160 10 H16.V [(3, 8, 0, 102, 18, 226)4] 15.24 4.40 75 40-PFD↓(5,8)

The initial 16× 15 designs labeled H16.I , . . . , H16.V (provided in the Supplementary Material) are 1, 4, 8,

16, and 8-PFD respectively; All IFDs have no repeat runs; ↓(λ,µ): The corresponding IFD can be reduced

into a λ-IFD with the initial design being a µ-PFD.
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Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Comput. Oper.

Res. 24, 1097–1100

Montgomery, D. C. and Runger, G. C. (1996). Foldovers of 2k−p resolution IV experi-

mental designs. J. Qual. Technol. 28, 446–450.

Schoen, E. D., Eendebak, P. T. and Nguyen, M. V. M. (2010). Complete enumeration

of pure-level and mixed-level orthogonal arrays. J. Comb. Des. 18, 123–140.

Schoen, E. D. and Mee, R. W. (2012). Two-level designs of strength 3 and up to 48

runs. (2012). J. R. Stat. Soc. C 61, 163–74.

Schoen, E. D., Vo-Thanh, N. and Goos, P. (2017). Two-level orthogonal screening

designs with 24, 28, 32, and 36 runs. J. Amer. Statist. Assoc. 112, 1354–1369.

Shi, C. and Tang, B. (2018). Designs from good Hadamard matrices. Bernoulli 24,

661–671.

Shrivastava, A. K. and Ding, Y. (2010). Graph based isomorph-free generation of two-

level regular fractional factorial designs. J. Statist. Plann. Inference 140 169–179.

Sun, D. X. (1993). Estimation capacity and related topics in experimental designs.

unpublished doctoral thesis, University of Waterloo, Dept. of Statistics and Actuarial

Science.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0401



TWO-LEVEL ISOMORPHIC FOLDOVERS DESIGNS 38

Sun, D. X., Li, W. and Ye. K. Q. (2002) An algorithm for sequentially constructing

nonisomorphic orthogonal designs and its applications. Technical report, Department

of Applied Mathematics and Statistics, SUNY at Stony Brook.

Tang, B. and Deng, L. Y. (1999). Minimum G2-aberration for nonregular fractional

factorial designs. Ann. Statist. 27 1914–1926.

Vazquez, A. R. and Xu, H. (2019). Construction of two-level nonregular designs of

strength three with large run sizes. Technometrics 61, 341–353.

Vazquez, A. R, Goos, P. and Schoen, E. D. (2019). Constructing two-level designs by

concatenation of strength-3 orthogonal arrays. Technometrics 61, 219-232.

Vazquez, A. R., Schoen, E. D and Goos, P. (2022). Two-level orthogonal screening

designs with 80, 96, and 112 runs, and up to 29 factors. J. Qual. Technol. 54, 338-

358.

Wang, C. and Mee, R. W. (2021). Two-level parallel flats designs. Ann. Statist. 49,

3015–3042.

Wang, C. and Mee, R. W. (2023). Fast construction of efficient two-level parallel flats

designs. J. Statist. Plann. Inference, accepted.

Webb, S. (1968). Non-orthogonal designs of even resolution. Technometrics 10 291–299.

Wu, C. F. J. and Hamada, M. (2021). Experiments: Planning, Analysis and Optimiza-

tion (3nd ed.). Wiley, New York.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0401



TWO-LEVEL ISOMORPHIC FOLDOVERS DESIGNS 39

Xu, H. (2005). Some nonregular designs from the Nordstrom–Robinson code and their

statistical properties. Biometrika 92, 385–397.

Xu, H. (2009) Algorithmic construction of efficient fractional factorial designs with

large run sizes. Technometrics 51 262–277.

Xu, H. and Wong, A. (2007). Two-level nonregular designs from quaternary linear

codes. Statist. Sinica 17, 1191–1213.

Ye, K. Q. (2003). Indicators functions and its applications in two-level factorial design.

Ann. Statist. 31, 984–994.

Chunyan Wang

Center for Applied Statistics and School of Statistics, Renmin University of China,

Beijing 100872, China

E-mail: chunyanwang@ruc.edu.cn

Dennis K. J. Lin

Department of Statistics, Purdue University, West Lafayette, IN 47907, USA

E-mail: dkjlin@purdue.edu

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0401




