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Abstract: In this paper, we prove that functional sliced inverse regression (FSIR)

achieves the optimal (minimax) rate for estimating the central space in functional

sufficient dimension reduction problems. First, we provide a concentration in-

equality for the FSIR estimator of the covariance of the conditional mean. Based

on this inequality, we establish the root-n consistency of the FSIR estimator of

the image of covariance of the conditional mean. Second, we apply the most

widely used truncated scheme to estimate the inverse of the covariance operator

and identify the truncation parameter that ensures that FSIR can achieve the

optimal minimax convergence rate for estimating the central space. Finally, we

conduct simulations to demonstrate the optimal choice of truncation parameter

and the estimation efficiency of FSIR. To the best of our knowledge, this is the

first paper to rigorously prove the minimax optimality of FSIR in estimating the

central space for multiple-index models and general Y (not necessarily discrete).

Key words and phrases: Central space, Functional data analysis, Functional sliced

inverse regression, Multiple-index models, Sufficient dimension reduction.
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1. INTRODUCTION

1. Introduction

Sufficient Dimension Reduction (SDR) aims to identify a low-dimensional

subspace that captures the most important features of the data that are rel-

evant to the response variable. It is a useful tool for researchers to perform

both exploratory data analysis and detailed model developments when the

dimension of the covariates is high. Concretely, for a pair of random vari-

ables (X, Y ) ∈ Rp×R, an effective dimension reduction (EDR) subspace is

a subspace S ⊂ Rp such that Y is independent of X given PSX (where PS

denotes the projection operator from Rp to S), which can be represented

as:

Y ⊥⊥ X | PSX. (1.1)

SDR targets at estimating the intersection of all EDR subspaces, which is

shown to be again an EDR subspace under mild conditions (Cook, 1996).

This intersection is often referred to as the central space and denoted by

SY |X . To find the central space SY |X , researchers have developed a variety

of methods: sliced inverse regression (SIR, Li 1991), sliced average variance

estimation (SAVE, Cook and Weisberg 1991), principal hessian directions

(PHD, Li 1992), minimum average variance estimation (MAVE, Xia et al.

2009), directional regression (DR, Li and Wang 2007), etc. SIR is one of the
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1. INTRODUCTION

most popular SDR methods and its asymptotic properties are of particular

interest. For more details, readers can refer to Hsing and Carroll (1992);

Zhu and Ng (1995); Zhu et al. (2006); Wu and Li (2011); Lin et al. (2018,

2021); Tan et al. (2020); Huang et al. (2023).

There has been a growing interest in statistical modeling of functional

data (i.e., the predictors are random functions in some function space H),

and researchers have extended existing multivariate SDR algorithms to ac-

commodate this type of data. In a functional SDR algorithm, the space

Rp is replaced by the function space H, a functional EDR subspace can be

defined as a subspace S ⊂ H such that (1.1) holds, and the intersection of

all functional EDR subspaces can be referred to as the functional central

space.

Functional sliced inverse regression (FSIR) proposed by Ferré and Yao

(2003) is one of the earliest functional SDR algorithms. They estimate the

central space SY |X under a multiple-index model. The model is mathemat-

ically represented as

Y = f(〈β1,X〉, . . . , 〈βd,X〉, ε) (1.2)

where f : Rd+1 → R is an unknown (non-parametric) link function, the
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predictor X and indices βi’s are functions in L2[0, 1], the separable Hilbert

space of square-integrable curves on [0, 1], and ε is a random noise inde-

pendent of X. Although the individual βj’s are unidentifiable because of

the flexibility of the link function f , space SY |X := span{β1, · · · ,βd} is es-

timable. Several key findings concerning FSIR have been established since

its introduction. Ferré and Yao (2003) showed the consistency of the FSIR

estimator under some technical assumptions. However, they did not estab-

lish a similar convergence rate for FSIR as those for the multivariate SIR

obtained by Hsing and Carroll (1992) and Zhu and Ng (1995). Forzani and

Cook (2007) found that the
√
n-consistency of the central space can not be

achieved by the FSIR estimator unless some very restrictive conditions on

the covariance operator of the predictor are imposed. Yao et al. (2015) in-

troduced the technique of functional cumulative slicing estimation (FCSE)

for SDR, focusing on scenarios with sparse designs, and also obtained its

convergence rate. Lian (2015) showed that the convergence rate of the FSIR

estimator for a discrete response Y is the same as that for functional linear

regression in (Hall and Horowitz, 2007), but they did not provide a rigorous

proof of the optimality of FSIR, which is deemed quite challenging. Recent

developments in this field can be found in Lian and Li (2014); Wang and

Lian (2020); Tian et al. (2023).
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Recently, there have been significant advances in understanding the

behavior of SIR for high dimensional data (i.e., ρ := lim p/n is a constant or

∞). Lin et al. (2018) established the phase transition phenomenon of SIR in

high dimensions, i.e., SIR can estimate the central space consistently if and

only if ρ = 0. Lin et al. (2021) further obtained the minimax convergence

rate of estimating the central space in high dimensions and showed that

SIR can achieve the minimax rate. In a different setting, Tan et al. (2020)

studied the minimax rate in high dimensions under various loss functions

and proposed a computationally tractable adaptive estimation scheme for

sparse SIR. Huang et al. (2023) generalized the minimax rate results to cases

with a large structural dimension d (i.e., there is no constant upper bound

on the dimension of the central space d). These work in high dimensional

SIR inspires our research to address the theoretical challenges of FSIR and

bridge the aforementioned theoretical gap between FSIR and multivariate

SIR.

In the present paper, we focus on examining the error bound of FSIR

under very mild conditions. We show that FSIR can estimate the central

space optimally for general Y (not necessarily discrete) over a large class of

distributions.
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1.1 Major contributions

Our main results are summarized as follows:

(i) To study the asymptotic properties of FSIR under very general set-

tings, we introduce a fairly mild condition called the weak sliced stable

condition (WSSC) for functional data (see Definition 1).

(ii) Under the above WSSC, we prove a concentration inequality for the

FSIR estimator 󰁥Γe around its population counterpart Γe := var(E[X |

Y ]) (see Lemma 2).

(iii) Based on the concentration inequality, we show that the space spanned

by the top d eigenfunctions of 󰁥Γe is a root-n consistent estimator of

the image of Γe (see Theorem 1). This part is a crucial step to our

key results, the minimax rate optimality of FSIR estimator for the

central space.

(iv) Having (i)-(iii) established, we apply the most widely used truncated

scheme to estimate the inverse of the covariance operator of the pre-

dictor and then establish the consistency of the FSIR estimator for

the central space. Furthermore, we identify the optimal truncation

parameter to achieve the minimax optimal convergence rate for FISR

in Theorem 2. It turns out that the converging rate of FSIR is the
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same as the minimax rate for estimating the slope in functional linear

regression (Hall and Horowitz, 2007).

(v) Finally, we show that the convergence rate we obtained in (iv) is

minimax rate-optimal for multiple-index models over a large class of

distributions (see Theorem 3).

(vi) Simulation studies show that the optimal choice of m matches the

theoretical ones and illustrate the efficiency of FSIR on both synthetic

and real data.

To the best of our knowledge, this is the first work that rigorously

establishes the optimality of FSIR for a general response Y . Our results

provide a precise characterization of the difficulty associated with the esti-

mation of the functional central space in terms of the minimax rates over

a wide range of distributions. It not only enriches the existing theoretical

results of FSIR, but also opens up new possibilities for extending other well-

understood results derived from high-dimensional data to those related to

functional data.
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1.2 Notations and organization

Throughout the paper, we take H = L2[0, 1] to be the separable Hilbert

space of square-integrable curves on [0, 1] with the inner product 〈f, g〉 =
󰁝 1

0

f(u)g(u) du and norm 󰀂f󰀂 :=
󰁳
〈f, f〉 for f, g ∈ H.

For an operator T on H, 󰀂T󰀂 denotes its operator norm with respect

to 〈·, ·〉, i.e.,

󰀂T󰀂 := sup
u∈SH

󰀂T (u)󰀂

where SH = {u ∈ H : 󰀂u󰀂 = 1}. Im(T ) denotes the closure of the image

of T , PT the projection operator from H to Im(T ), and T ∗ the adjoint

operator of T (a bounded linear operator). If T is self-adjoint, λ+
min(T )

denotes the infimum of the positive spectrum of T and T † the Moore–

Penrose pseudo-inverse of T . Abusing notations, we also denote by PS

the projection operator onto a closed space S ⊆ H. For any x, y ∈ H,

x⊗ y is the operator of H to itself, defined by x⊗ y(z) = 〈x, z〉y, ∀z ∈ H.

For any random element X = Xt ∈ H, its mean function is defined as

(EX)t = E[Xt]. For any random operator T on H, the mean E[T ] is

defined as the unique operator on H such that for all z ∈ H, (E[T ])(z) =

E[T (z)]. Specifically, the covariance operator of X, var(X), is defined as
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var(X)(z) = E (〈X, z〉X) − 〈EX, z〉EX. For a pair of random variables

(X, Y ) ∈ H×R, Γ and Γe denote the covariance operator of X and E[X |

Y ] respectively, i.e.,

Γ := var(X) and Γe := var(E[X | Y ]). (1.3)

For two sequences an and bn, we denote an ≲ bn (resp. an ≳ bn ) if

there exists a positive constant C such that an 󰃑 Cbn (resp. an 󰃍 Cbn),

respectively. We denote an ≍ bn if both an ≲ bn and an ≳ bn hold. For a

random sequence Xn, we denote by Xn = Op(an) that ∀ε > 0, there exists

a constant Cε > 0, such that supn P(|Xn| 󰃍 Cεan) 󰃑 ε. Let [k] denote

{1, 2, . . . , k} for some positive integer k 󰃍 1.

The rest of this paper is organized as follows. We first provide a brief

review of FSIR in Section 2. After introducing the weak sliced stable condi-

tion for functional data in Section 3.1, we establish the root-n consistency

of the estimated inverse regression subspace in Section 3.2. Lastly, the

minimax rate optimality of FSIR are shown in Section 3.3 and the numer-

ical experiments are reported in Section 4. All proofs are deferred to the

supplementary files.
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2. Optimal Truncated FSIR

Without loss of generality, we assume that X ∈ H satisfies E[X] = 0

throughout the paper. As is usually done in functional data analysis (Ferré

and Yao, 2003; Lian and Li, 2014; Lian, 2015), we assume that E[󰀂X󰀂4] <

∞, which implies that Γ is a trace class (Hsing and Eubank, 2015) and X

possesses the following Karhunen–Loéve expansion:

X =
∞󰁛

i=1

ξiφi (2.1)

where ξi’s are random variables satisfying E[ξ2i ] = λi and E[ξiξj] = 0 for

i ∕= j and {φi}∞i=1 are the eigenfunctions of Γ in (1.3) associated with the

decreasing eigenvalues sequence {λi}∞i=1. In addition, we assume that Γ is

non-singular (i.e., λi > 0, ∀i) as the literature on functional data analysis

usually does. Since Γ is compact (Γ is a trace class), by spectral decomposi-

tion theorem of compact operators, we know that {φi}∞i=1 forms a complete

basis of H.

In order for FSIR to produce a consistent estimator of the functional

central space SY |X for (X, Y ) from the multiple index model (1.2), people

often assume that the joint distribution of (X, Y ) satisfies the following

conditions (see e.g., Ferré and Yao (2003); Lian and Li (2014); Lian (2015)).
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Assumption 1. The joint distribution of (X, Y ) satisfies

i) Linearity condition: For any b ∈ H, E[〈b,X〉 | (〈β1,X〉, . . . , 〈βd,X〉)]

is linear in 〈β1,X〉, . . . , 〈βd,X〉.

ii) Coverage condition: Rank (var(E[X|Y ])) = d.

Both of these conditions are natural generalizations of the multivariate

ones that appear in the multivariate SIR literature (Li, 1991; Hall and Li,

1993; Li and Hsing, 2010). They are necessary for Ferré and Yao (2003)

to establish that the inverse regression subspace Se := span{E[X | Y =

y] | y ∈ R} equals to the space ΓSY |X := span{Γβ1, . . . ,Γβd}. Since

Se = Im(Γe), FSIR estimates SY |X by estimating Γ−1Im(Γe).

The FSIR procedure for estimating Γe can be briefly summarized as

follows. Given n i.i.d. samples {(Xi, Yi)}ni=1 from the multiple index model

(1.2), FSIR sorts the samples according to the order statistics Y(i) and

then divide the samples into H(󰃍 d) equal-size slices (for the simplicity

of notation, we assume that n = Hc for some positive integer c). We re-

index the data as Yh,j = Y(c(h−1)+j) and Xh,j = X(c(h−1)+j) where X(k) is the

concomitant of Y(k) (Yang, 1977). Let Sh be the h-th interval (Y(h−1,c), Y(h,c)]

for h = 2, . . . , H − 1, S1 = {y | y 󰃑 Y(1,c)} and SH = {y | y > Y(H−1,c)}.

Consequently, SH(n) := {Sh, h = 1, .., H} is a partition of R and is referred
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to as the sliced partition. FSIR estimates the conditional covariance Γe via

󰁥Γe :=
1

H

H󰁛

h=1

Xh,· ⊗Xh,· (2.2)

where Xh,· :=
1
c

󰁓c
j=1 Xh,j is the sample mean in the h-th slice.

To estimate Γ−1, one need to resort to some truncation scheme. Given

n i.i.d. samples {(Xi, Yi)}ni=1, a straightforward estimator of Γ−1 is 󰁥Γ†, the

pseudo-inverse of the sample covariance operator 󰁥Γ := 1
n

󰁓n
i=1 Xi ⊗ Xi.

However, it is not practical since the operator Γ is compact (Γ is a trace

class) and then Γ−1 is unbounded. To circumvent this technical difficulty,

one may apply some truncation strategies such as the operations in Ferré

and Yao (2003), which we briefly review as follows. We choose an integer m

and define the truncated covariance operator Γm := ΠmΓΠm where Πm :=

󰁓m
i=1 φi⊗φi is the truncation projection operator. Since each Γm is of finite

rank, we are able to estimate Γ†
m. Specifically, let the sample truncation

operator 󰁥Πm :=
󰁓m

i=1
󰁥φi⊗ 󰁥φi and the sample truncated covariance operator

󰁥Γm := 󰁥Πm
󰁥Γ󰁥Πm, where {󰁥φm}mi=1 are the top m eigenfunctions of 󰁥Γ. Then the

estimator of Γ†
m can be defined as 󰁥Γ†

m. It is clear that 󰀂Γ−Γm󰀂
m→∞−−−→ 0 and

the space ΓmSY |X would be close to the space ΓSY |X when m is sufficiently

large. Thus we can accurately estimate Γ−1 by 󰁥Γ†
m for sufficiently large m.
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Algorithm 1 FSIR (Ferré and Yao, 2003).

1. Standardize {Xi}ni=1, i.e., Zi := Xi − n−1
󰁓n

i=1 Xi;

2. Divide the n samples {(Zi, Yi)}ni=1 into H equally sized slices ac-

cording to the order statistics Y(i), 1 󰃑 i 󰃑 n;

3. Calculate 󰁥Γ = 1
n

󰁓n
i=1 Zi ⊗ Zi with its top m eigenvalues {󰁥λi, 1 󰃑

i 󰃑 m} and the corresponding eigenfunctions {󰁥φi : 1 󰃑 i 󰃑 m},

where m is the tuning parameter. Let 󰁥Γm =
󰁓m

i=1
󰁥λi
󰁥φi ⊗ 󰁥φi;

4. Calculate Zh,· = 1
c

󰁓c
j=1 Zh,j, h = 1, 2, · · · , H and 󰁥Γe =

1
H

󰁓H
h=1 Zh,· ⊗Zh,· similarly as (2.2) ;

5. Find the top d eigenfunctions of 󰁥Γe, denoted by 󰁥β′
k (k = 1, . . . , d)

and calculate 󰁥βk = 󰁥Γ†
m
󰁥β′
k.

Return span
󰁱
󰁥β1, ..., 󰁥βd

󰁲
.

In introducing our optimal truncated FSIR algorithm (FSIR-OT), we

commence by revisiting the classical FSIR algorithm proposed in Ferré and

Yao (2003) as shown in Algorithm1. It is worth noting that Ferré and Yao

(2003) did not provide any specific guidance on the choice of the tuning pa-

rameter m. Our FSIR-OT algorithm provides an optimal selection criterion

for m, namely, m ∝ n1/(α+2β), where α and β are defined in Assumption 4.

Under this optimal choice, we prove that FSIR-OT can achieve the minimax

rate for estimating the central space in the next section.
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3. Minimax rate optimality of FSIR-OT

Throughout the paper, the number of indexes d is assumed known and fixed.

By analyzing the asymptotic behaviors of FSIR-OT, we derive the minimax

rate optimality of FSIR-OT. We begin by proposing a fairly mild condition

called the weak sliced stable condition (WSSC) for functional data. Then,

we show that the top d eigenfunctions of the estimated conditional covari-

ance 󰁥Γe span a consistent estimator 󰁥Se of the inverse regression subspace

Se, with convergence rate of n−1/2 based on WSSC. Lastly, we establish the

consistency of the FSIR-OT estimator of the central space and show that

the convergence rate is minimax optimal over a large class of distributions.

3.1 Weak sliced stable condition for functional data

The sliced stable condition (SSC) was first introduced in Lin et al. (2018)

to analyze the asymptotic behavior of SIR in high dimensions such as the

phase transition phenomenon. Lin et al. (2021) showed the optimality of

SIR in high dimensions based on SSC. Huang et al. (2023) weakened SSC

to weak sliced stable condition (WSSC) to establish the optimality of SIR

in more general settings. This inspires us to extend WSSC to functional

data. Throughout the paper, γ is a fixed small positive constant.

Definition 1 (Weak Sliced Stable Condition). Let Y ∈ R be a random
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variable, K a positive integer and τ > 1 a constant. A partition BH :=

{−∞ = a0 < a1 < · · · < aH−1 < aH = ∞} of R is called a γ-partition if

1− γ

H
󰃑 P(ah 󰃑 Y 󰃑 ah+1) 󰃑

1 + γ

H
, ∀h = 0, 1, . . . , H − 1. (3.1)

A continuous curve κ(y) : R → H is said to be weak (K, τ)-sliced stable

w.r.t. Y , if for any H 󰃍 K and any γ-partition BH , it holds that

1

H

H−1󰁛

h=0

var (〈u,κ(Y )〉 | ah 󰃑 Y 󰃑 ah+1) 󰃑
1

τ
var (〈u,κ(Y )〉) (∀u ∈ SH).

(3.2)

Compared with the original SSC (e.g., the equation (4) in Lin et al.

(2018)) for the central curve m(y) := E[X|Y = y], WSSC condition is less

restrictive. The average of the variances (the left hand side of (3.2)) is only

required to be sufficiently small by WSSC condition, in contrast to that,

it needs to vanish as H → ∞ by the original SSC. In fact, as we will in

Theorem 1, the constant τ in (3.2) only needs to be greater than 6󰀂Γe󰀂
λ+
min(Γe)

to guarantee the consistency of the FSIR-OT estimator. Furthermore, the

following lemma shows that WSSC of m(y) is readily fulfilled under certain

mild prerequisites.

Lemma 1. Suppose that the joint distribution of (X, Y ) ∈ H×R satisfies
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the following conditions:

i) for any u ∈ SH, E
󰀅
|〈u,X〉|ℓ

󰀆
󰃑 c1 holds for absolute constants ℓ > 2

and c1 > 0;

ii) Y is a continuous random variable;

iii) the central curve m(y) := E[X|Y = y] is continuous.

Then for any τ > 1, there exists an integer K = K(τ, d) 󰃍 d such that

m(y) is weak (K, τ)-sliced stable w.r.t. Y .

Assumption 2. The central curve m(y) = E[X|Y = y] is weak (K, τ)-

sliced stable with respect to Y for two positive constants K and τ (i.e.,

WSSC).

We note that the requirement of K being a constant is mild since d is

bounded. With the help of WSSC, we can now bound the distance between

󰁨Γe and Γe, where

󰁨Γe :=
1

H

󰁛

h:Sh∈SH(n)

mh⊗mh and mh := E[m(Y ) | Y ∈ Sh] = E[X|Y ∈ Sh].

Here SH(n) is the sliced partition defined in Section 2. This bound is key

to obtaining a concentration inequality for the FSIR-OT estimator 󰁥Γe of

the conditional covariance Γe.
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Proposition 1. Under Assumption 2, there exist positive constants C and

H0 󰃍 K, such that for all H > H0, if n > 1 + 4H/γ is sufficiently large,

we have

P
󰀕󰀏󰀏󰀏

󰁇󰀓
󰁨Γe − Γe

󰀔
(u),u

󰁈󰀏󰀏󰀏 󰃑 3

τ
〈Γe(u),u〉 , ∀u ∈ SH

󰀖

󰃍1− CH2
√
n+ 1 exp

󰀕
−γ2(n+ 1)

32H2

󰀖
.

(3.3)

When τ > 6󰀂Γe󰀂
λ+
min(Γe)

, we know that Im(󰁨Γe) = Im(Γe) holds with high

probability (see Lemma 5 in Appendix for details). In other words, Propo-

sition 1 implies that Im(󰁨Γe) is a consistent estimator of Im(Γe) even if 󰁨Γe is

not a consistent estimator of Γe.

3.2 Root-n consistency of the FSIR-OT estimator for inverse

regression subspace

We study asymptotic behaviors of the FSIR-OT estimator 󰁥Se of the in-

verse regression subspace Se. As in most studies in functional data analysis

(Hall and Horowitz, 2007; Lei, 2014; Lian, 2015; Wang and Lian, 2020), we

introduce the following assumption:

Assumption 3. There exists a constant c1 > 0 such that E[ξ4i ]/λ2
i 󰃑 c1

uniformly for all i ∈ Z+ where ξi and λi are defined in (2.1).
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Now we are ready to state our first main result, which is similar to

the ‘key lemma’ in Lin et al. (2018), a crucial tool for developing the phase

transition phenomenon and establishing the minimax optimality of the high

dimensional SIR.

Lemma 2. Suppose that Assumptions 2 and 3 hold. For any fixed integer

H > H0 (H0 is defined in Proposition 1) and any sufficiently large n >

1 + 4H/γ, we have

󰀐󰀐󰀐󰁥Γe − Γe

󰀐󰀐󰀐 = Op

󰀣
1

τ
+

󰁵
1

n

󰀤
and

󰀐󰀐󰀐󰁥Γe − 󰁨Γe

󰀐󰀐󰀐 = Op

󰀣󰁵
1

n

󰀤
.

The τ term in the first equation of Lemma 2 suggests that 󰁥Γe may not

be a consistent estimator of Γe. However, we are interested in estimating

the space Se = Im(Γe) rather than Γe itself and the τ term would not affect

the convergence rate of
󰀐󰀐P 󰁥Se

− PSe

󰀐󰀐 as long as τ is sufficiently large. This

will be elaborated in the following theorem, our second main result.

Theorem 1. Consider the same conditions and constants as in Lemma 2

and suppose that τ > 6󰀂Γe󰀂
λ+
min(Γe)

. It holds that

E
󰁫󰀐󰀐P 󰁥Se

− PSe

󰀐󰀐2
󰁬
≲ 1

n
. (3.4)
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Equation (3.4) implies that 󰁥Se is a root-n consistent estimator of the in-

verse regression subspace Se. This is a crucial step to establish the minimax

rate optimality of FSIR-OT estimator for the central space.

3.3 Optimality of FSIR-OT

In order to obtain the convergence rate of the FSIR-OT estimator of the

central space, we need a further assumption, which is commonly imposed

in functional data analysis (see e.g., Hall and Horowitz (2007); Lei (2014);

Lian (2015)).

Assumption 4 (Rate-type condition). There exist positive constants α, β,

c2 and c′2 satisfying

α > 1,
1

2
α + 1 < β, λj − λj+1 󰃍 c2j

−α−1 and |bij| 󰃑 c′2j
−β (∀i ∈ [d], j ∈ Z+)

where bij := 〈ηi,φj〉 for {ηi}di=1 the generalized eigenfunctions of Γe associ-

ated with top d eigenvalues {µi}di=1 (i.e., Γeηi = µiΓηi).

The assumption on the eigenvalues λj of Γ requires a gap between ad-

jacent eigenvalues and ensures the accuracy of the estimation of eigenfunc-

tions of Γ. It also implies a lower bound on the decay rate of λj: λj ≳ j−α.

The assumption on the coefficients bij implies that they do not decrease too
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slowly with respect to j uniformly for all i. It also implies that any basis

{󰁨βi}di=1 of SY |X such that 󰁨βi =
󰁓∞

j=1
󰁨bijφj satisfies |󰁨bij| ≲ j−β. The inequal-

ity 1
2
α + 1 < β requires that the generalized eigenfunction ηi is smoother

than the covariate function X.

The conditions in Assumption 4 have been imposed in Hall and Horowitz

(2007) for showing that the minimax rate of functional linear regression

models is n−(2β−1)/(α+2β). Lian (2015) also made use of some similar condi-

tions to show that the FSIR estimator of the central space SY |X for discrete

Y (i.e., Y only takes finite values) can achieve the same convergence rate

as the one for estimating the slope in functional linear regression.

Now we state our third main result, an upper bound on the convergence

rate of the FSIR-OT estimator of the central space.

Theorem 2. Suppose Assumptions 1 to 4 hold with constants α, β and

τ > 6󰀂Γe󰀂
λ+
min(Γe)

. By choosing m ≍ n
1

α+2β , we can get that for any fixed integer

H > H0 (H0 is defined in Proposition 1) and any sufficiently large n >

1 + 4H/γ, we have

󰀐󰀐󰀐P 󰁥SY |X
− PSY |X

󰀐󰀐󰀐
2

= Op

󰀓
n

−(2β−1)
α+2β

󰀔

where 󰁥SY |X = 󰁥Γ†
m
󰁥Se is the estimated central space given by FSIR-OT.
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The convergence rate we have derived for FSIR-OT is the same as the

minimax rate for estimating the slope in functional linear regression (Hall

and Horowitz, 2007). While the convergence rate appears to be the same

as that in Lian (2015), their study only considered the case where the re-

sponse Y is discrete. Moreover, their work lacked a proof for the optimality

of FSIR-OT in estimating the central space. Yao et al. (2015) also intro-

duced the FCSE method, focusing on scenarios with sparse designs, wherein

only limited, noisy, and irregular observations are available for some or all

subjects. However, they did not provide any analysis regarding the min-

imax optimality. In the following, we will provide a rigorous proof that

our convergence rate is indeed minimax rate-optimal over a large class of

distributions, which is highly nontrivial. To do this, we first introduce a

class of distributions:

M (α, β, τ, c0, C0) :=

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

(X, Y )

Y = f(〈β1,X〉, . . . , 〈βd,X〉, ε);

X,βi ∈ H := L2[0, 1] (i = 1, . . . , d);

ε is a random noise independent of X;

(X, Y ) satisfies Assumption 1-4 ;

c0 󰃑 λd(Γe) 󰃑 · · · 󰃑 λ1(Γe) 󰃑 C0;

󰀂Γ󰀂 󰃑 C0, λmin(Γ|Se) 󰃍 c0

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀾
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where c0 and C0 are two positive universal constants.

Then we have the following minimax lower bound for estimating the

central space over M (α, β, τ, c0, C0).

Theorem 3. For any given positive constants α, β and τ satisfying α >

1, 1
2
α+1 < β and τ > 6C0

c0
, there exists an absolute constant ϑ > 0 that only

depends on α and β, such that for any sufficiently large n, it holds that

inf
󰁥SY |X

sup
M∈M(α,β,τ,c0,C0)

PM

󰀕󰀐󰀐󰀐P 󰁥SY |X
− PSY |X

󰀐󰀐󰀐
2

󰃍 ϑn− 2β−1
α+2β

󰀖
󰃍 0.9

where 󰁥SY |X is taken over all possible estimators of SY |X based on the train-

ing data {(Xi, Yi)}ni=1.

The main tool we used in proving this minimax lower bound is Fano’s

Lemma (see e.g., (Yu, 1997)). The major challenge is to construct a specific

family of distributions that are far apart from each other in the parameter

space, yet close to each other in terms of Kullback–Leibler divergence. An

important contribution in this paper is the construction of such distribu-

tions.

Theorems 2 and 3 together show that the FSIR-OT estimator P 󰁥SY |X
is

minimax rate-optimal for estimating the central space.
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4. Numerical Studies

In this section, we present several numerical experiments to illustrate the

behavior of the FSIR-OT algorithm. The first experiment demonstrates

the optimal choice of the truncation parameter m for estimating the cen-

tral space. The results corroborate the conclusion of Theorem 2 that the

choice in of FSIR-OT (namely m ≍ n
1

α+2β ) is optimal. The second experi-

ment focuses on the estimation performance of FSIR-OT on synthetic data.

Lastly, we analyze a real data set on bike rentals using FSIR algorithms. By

comparing our algorithm with the FCSE algorithm of Yao et al. (2015) and

the regularized FSIR (Lian 2015, RFSIR), we demonstrate advantages of

FSIR-OT on both synthetic and real datasets. Similar to FSIR-OT, FCSE

performs a truncation operation on the covariance operator, controlled by

parameter m, whereas RFSIR employs ridge-type regularization character-

ized by a regularization parameter ρ.
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4.1 Generalized signal noise ratio (gSNR) of multiple index mod-

els

Recall that the signal-to-noise ratio (SNR) for the linear model Y = 〈β,X〉+

ε, where ε ∼ N(0, σ2), is defined as

SNR =
E[〈β,X〉2]

E[Y 2]
=

〈Γβ,β〉
σ2 + 〈Γβ,β〉 .

A simple calculation shows that

Γe =
Γβ ⊗ Γβ

〈Γβ,β〉+ σ2
, and λ(Γe) =

󰀂Γβ󰀂2
〈Γβ,β〉+ σ2

,

where λ(Γe) is the unique non-zero eigenvalue of Γe. This leads to the

following identity for the linear model:

λ(Γe) =
󰀂Γβ󰀂2
〈Γβ,β〉SNR.

Thus, in a multiple index model we call λ, the smallest non-zero eigenvalue

of Γe, the model’s generalized SNR (gSNR) .
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4.2 Optimal choice of truncation parameter m

Throughout this section, we set H = 15 and ε ∼ N(0, 2). We note that

the results are not sensitive to the choice of H. The guidelines for the

choice ofH in practice are presented Section H.2 of Supplementary Material.

The experimental results for other noise levels (with variances of 1 and

0.25, respectively) and other H are shown in Section H.3 of Supplementary

Material.

The following model is first considered:

(I) Y = 〈β1,X〉+ε, whereX =
󰁓100

j=1 j
−3/4Xjφj and β1 =

󰁓
j󰃍1(−1)jj−2φj.

Here Xj
iid∼ N(0, 1), φ1 = 1,φj+1 =

√
2 cos(jπt), j 󰃍 1.

Note that the construction of X here is equivalent to a construction

that satisfies the assumption that Γ is non-singular (i.e., λi > 0, ∀i). A

detailed explanation is deferred to Section H.1 of Supplementary Material.

For this model α = 3/2 and β = 2, so the optimal choice of m used by

FSIR-OT satisfies m ∝ n2/11. The gSNRs of Model I are 0.791, 0.498, and

0.333, respectively, when the noise variances are 0.25, 1, and 2.

To evaluate the performance of FSIR-OT, we consider the subspace esti-

mation error defined as D( 󰁥B;B) :=
󰀐󰀐P 󰁥B − PB

󰀐󰀐 where 󰁥B := (󰁥β1, . . . , 󰁥βd) :

Rd → L2[0, 1] and B := (β1, . . . ,βd) : Rd → L2[0, 1]. This metric takes
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value in [0, 1] and, the smaller it is, the better the performance. Each trial

is repeated 100 times for reliability.

The left panel of Figure 1 is the average subspace estimation error under

Model (I) where n ranges in {2× 103, 2× 104, 5× 104, 2× 105, 5× 105, 106},

m ranges in {3, 4, . . . , 25}. The optimal value of m (denoted by m∗) for

each n is marked with a circle. Among the 100 replicates for every n,

the number of times that the minimal estimation error occurs at m∗ is

48, 32, 29, 29, 26, 26, respectively. The shaded areas represent the standard

error bands associated with these estimates (all smaller than 0.009). The

right panel of Figure 1 illustrates the linear dependence of log(m∗) on log(n).

The solid line characterizes the linear trend of log(m∗) against log(n). The

dotted line is their least-squares fitting, with its slope estimated as 0.2,

which is close to the theoretical value of 2/11. These results are consistent

with the theoretically optimal choice of m in FSIR-OT.
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Figure 1: Experiments for the optimal choice of truncation parameter m

with ε ∼ N(0, 2) and H = 15. Left: average subspace estimation error with

increasing m for different n. Right: linear trend of log(m∗) against log(n),

with a slope of 0.2 and R2 > 0.98.

4.3 Subspace estimation error performance in synthetic data

In this section, we compare FSIR-OT with RFSIR and FCSE for model (I)

from Section 4.2 and the following two models:

(II) Y = 〈β1,X〉 + 100〈β2,X〉3 + ε, where β1(t) =
√
2 sin(3πt

2
), β2(t) =

√
2 sin(5πt

2
) for t ∈ [0, 1], and X is the standard Brownian motion on

[0, 1] (The Brownian motion is approximated by the top 100 eigen-

functions of the Karhunen–Loève decomposition in practical imple-

mentation).

(III) Y = exp(〈β,X〉) + ε, where X is the standard Brownian motion on
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[0, 1], and β =
√
2 sin(3πt

2
).

For model II and model III, we compute the estimated gSNR by λd(󰁥Γe),

the d-th eigenvalue of the SIR estimate of Γe based on 2000 replicates,

where n = 10000. The mean gSNRs (standard deviation) of model II are

0.020 (0.001), 0.009 (0.001), and 0.003 (0.001), respectively, when the noise

variances are 0.25, 1, and 2. The mean gSNRs (standard deviation) of model

III are 0.729 (0.01), 0.536 (0.01), and 0.305 (0.01), respectively, when the

noise variances are 0.25, 1, and 2.

For each model, we calculate the average subspace estimation error of

FSIR-OT, RFSIR and FCSE based on 100 replicates, where n = 20000, the

truncation parameterm of FSIR-OT and FCSE ranges in {2, 3, . . . , 13, 14, 20,

30, 40}, and the regularization parameter ρ in RFSIR ranges in 0.01 ×

{1, 2, · · · , 9, 10, 15, 20, 25, 30, 40, · · · , 140, 150}. Detailed results are presented

in Figure 2, where we mark the minimal error in each model with ‘×’ and

denote the corresponding value of truncation (or regularization) parame-

ter by m∗ (or ρ∗). The shaded areas represent the corresponding standard

errors, all of which are less than 0.012. For FSIR-OT, the minimal errors

for M1, M2, and M3 are 0.06, 0.03, and 0.01 respectively. Among the

100 replicates for every model, the number of times that the minimal esti-

mation error occurs at m∗ is 33, 80 and 70, respectively. For RFSIR, the
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corresponding minimal errors are 0.10, 0.08, and 0.01, respectively. Among

the 100 replicates for every model, the number of times that the minimal

estimation error occurs at ρ∗ is 37, 13 and 18, respectively. For FCSE,

the corresponding minimal errors are 0.07, 0.03, and 0.02. Among the 100

replicates for every model, the number of times that the minimal estimation

error occurs at m∗ is 24, 23 and 28, respectively.

The results here suggest that the performance of FSIR-OT is generally

superior to, or at the very least equivalent to, that of RFSIR and FCSE.
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Figure 2: Average subspace estimation error of FSIR-OT, RFSIR and

FCSE for various models in the case of ε ∼ N(0, 2) and H = 15. The

standard errors are all below 0.01. Left: FSIR-OT with different truncation

parameter m; Middle: RFSIR with different values of the regularization

parameter ρ; Right: FCSE with different truncation parameter m.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0396



4. NUMERICAL STUDIES

4.4 Application to real data

In the following, we apply FSIR-OT to a business data analysis problem re-

garding bike sharing. The data are available from https://archive.ics.

uci.edu/ml/datasets/Bike+Sharing+Dataset. The main purpose is to

analyze how the bike rental counts are affected by the temperature on Sat-

urdays. After removing data from 3 Saturdays with missing information,

we plot hourly bike rental counts and hourly normalized temperature (val-

ues divided by the maximum 41°C) on 102 Saturdays in Figure 3. In the

following experiments, we treat hourly normalized temperature and the log-

arithm of daily average bike rental counts as predictor function and scalar

response respectively.

Figure 3: Bike sharing data for 102 Saturdays. Left: Hourly rental counts.
Right: Hourly temperature, normalized by the overall maximum observed tem-
perature. Each curve represents a single day.

In order to compare the estimation error performance of FSIR-OT with
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RFSIR and FCSE for estimating the central space, we employ dimension

reduction using these algorithms with H = 15 as an intermediate step in

modelling the relation between the predictor and response. Specifically,

given any training samples {(Xi, Yi)}ni=1, we utilize each dimension reduc-

tion algorithm to obtain a set of low-dimensional predictors xi for i ∈ [n].

Then, we employ Gaussian process regression to fit a nonparametric regres-

sion model based on samples {(xi, Yi)}ni=1. We randomly select 90 samples

as the training data and then calculate the out-of-sample mean squared

error (MSE) using the remaining samples.

Since d is unknown in most real applications, including this one, we

follow the PCA approach by calculating the sum of the first k (k ≤ 24)

eigenvalues of 󰁥Γe. We found for this dataset that the first five eigenvalues

account for 99.8% of the summation of all eigenvalues. Therefore, we nar-

rowed the selection range of d to {1, 2, 3, 4, 5}. For each chosen d, we then

selected the corresponding value of m satisfying m ≥ d. The experiment is

repeated 100 times and the mean and standard error are presented in Ta-

ble 1. Among the 100 replicates for every method (FSIR-OT, FCSE, and

RFSIR), the number of times that the minimal estimation error occurs at

the optimal pair of tuning parameters (i.e., (m∗, d∗), (m∗, d∗), and (ρ∗, d∗),

respectively) is 6, 4, and 8, respectively.
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From Table 1, it can be concluded that FSIR-OT performs better than

FCSE and RFSIR if both methods are fine-tuned. Furthermore, the best re-

sult of FSIR-OT is observed at d = 2, while those for FCSE and RFSIR are

both observed at d = 4. This means that, if all methods were further fine-

tuned, FSIR-OT would have provided a more accurate and simpler (lower

dimensional) model for the relationship between the response variable and

the predictor than the other two methods.

Remark 1. In dealing with real data, a crucial question is how to select

the optimal m. The selection method provided in Theorem 2 is based on

asymptotic theory, which aims to provide minimax optimality results of

FSIR under general conditions and is not directly applicable to real data.

To date, the problem of selecting the optimal m for a particular data set

remains unresolved, as shown in Hall and Horowitz (2007) and Lian (2015).

To utilize the asymptotic results of Theorem 2 for selecting m in prac-

tice, we first estimate parameters α and β according to Assumption 4.

Specifically, we first obtain the d eigenfunctions, 󰁥β′
k (k = 1, . . . , d), of 󰁥Γe

and set 󰁥ηk = 󰁥Γ−1 󰁥β′
k. Then we estimate α and β according to 󰁥λj − 󰁥λj+1 󰃍

c2j
−󰁥α−1 and |󰁥bij| := 〈󰁥ηi, 󰁥φj〉 󰃑 c′2j

−󰁥β where 󰁥Γe, 󰁥Γ, 󰁥λj and 󰁥φj are defined

in Algorithm 1. For example, we calculate 󰁥α = −
󰀓

ln(󰁥λj−󰁥λj+1)

ln j
+ 1

󰀔
and

󰁥β = − ln |󰁥bij |
ln j

for sufficiently large j respectively. After we get 󰁥α and 󰁥β,
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H = 15 m 2 4 6 8 10

FSIR-OT
d = 1 0.209 0.212 0.207 0.211 0.206

(0.010) (0.010) (0.010) (0.009) (0.009)
d = 2 0.229 0.196 0.188 0.200 0.215

(0.013) (0.009) (0.008) (0.010) (0.010)
d = 3 0.209 0.193 0.208 0.207

(0.012) (0.009) (0.010) (0.010)
d = 4 0.229 0.216 0.213 0.224

(0.011) (0.011) (0.009) (0.010)
d = 5 0.245 0.284 0.316

(0.014) (0.021) (0.025)

FCSE
d = 1 0.207 0.206 0.190 0.214 0.230

(0.010) (0.010) (0.008) (0.010) (0.012)
d = 2 0.215 0.222 0.202 0.197 0.195

(0.010) (0.009) (0.009) (0.010) (0.010)
d = 3 0.216 0.209 0.214 0.207

(0.011) (0.010) (0.010) (0.011)
d = 4 0.190 0.223 0.220 0.207

(0.007) (0.010) (0.012) (0.010)
d = 5 0.254 0.255 0.302

(0.012) (0.015) (0.039)
ρ 0.044 0.101 0.159 0.216 0.274

RFSIR
d = 1 0.236 0.222 0.244 0.219 0.221

(0.011) (0.012) (0.012) (0.010) (0.011)
d = 2 0.206 0.224 0.230 0.235 0.236

(0.011) (0.011) (0.011) (0.011) (0.012)
d = 3 0.219 0.218 0.212 0.216 0.232

(0.009) (0.011) (0.010) (0.009) (0.011)
d = 4 0.198 0.215 0.207 0.197 0.189

(0.010) (0.010) (0.010) (0.008) (0.008)
d = 5 0.208 0.193 0.211 0.211 0.234

(0.010) (0.009) (0.012) (0.011) (0.011)

Table 1: The mean (standard error) of the out-of-sample MSE for predict-
ing logarithm of daily average bike rental counts using projected predictors
after different dimension reduction methods.
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we choose m in the interval [n
1

󰁥α+2󰁥β / log(n), n
1

󰁥α+2󰁥β · log(n)] and choose ρ in

[n
− 󰁥α

󰁥α+2󰁥β / log(n), n
− 󰁥α

󰁥α+2󰁥β · log(n)] (see Lian (2015)). This approach signifi-

cantly narrows down the choice range for m and ρ and is also consistent

with our asymptotic results. In our experiments, feasible values for m were

within {1, 2, . . . , 11} and that for ρ were within [0.015, 0.302]. For the ease

of presentation, we selected 5 representative values each for m and ρ. De-

tailed results are presented in Table 1.

5. Discussion

In this paper, we established the minimax rate-optimality of FSIR-OT for

estimating the functional central space. Specifically, we first prove an upper

bound on the convergence rate of the FSIR-OT estimator of the functional

central space under very mild assumptions. Then we establish a minimax

lower bound on the estimation of the functional central space over a large

class of distributions. These two results together show optimality of FSIR-

OT. Our results not only enrich the theoretical understanding of FSIR-OT

but also indicate the possibility of extending the findings of multivariate

SDR methods to functional data.

There are some open questions related to the findings in this paper.

First, the structural dimension d is assumed to be bounded in the current
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paper. It is still unclear whether this restriction can be relaxed so that

the minimax convergence rate of the functional central space estimation

can be determined even when d is large (i.e., there is no constant upper

bound on d). Second, recent studies have revealed the dependence of the

estimation error on the gSNR defined as λd(Cov (E[X | Y ])) for multivariate

SIR (Lin et al., 2021; Huang et al., 2023)). Exploring the role of gSNR in

the estimation of the functional central space will be an interesting next

step.

Supplementary Material

The online Supplementary Material includes the proofs for all the theoret-

ical results in the paper.
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