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Abstract: Many flexible families of positive random variables exhibit non-closed

forms of the density and distribution functions and this feature is considered

unappealing for modelling purposes. However, such families are often charac-

terized by a simple expression of the corresponding Laplace transform. Rely-

ing on the Laplace transform, we propose to carry out parameter estimation

and goodness-of-fit testing for a general class of non-standard laws. We suggest

a novel data-driven inferential technique, providing parameter estimators and

goodness-of-fit tests, whose large-sample properties are derived. The implemen-

tation of the method is specifically considered for the positive stable and Tweedie

distributions. A Monte Carlo study shows good finite-sample performance of the

proposed technique for such laws.
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1. Introduction

Large classes of positive random variables display a simple closed form of

the Laplace transform, even if their density functions can be solely given

by means of special functions or series, which eventually require rather

complex algorithms for their computation. Owing to this shortcoming, field

scientists often discard the use of such random variables, although they are

appropriate for modelling real data.

An archetype of such a class of laws is the positive stable distribution,

which may be very suitable to model data with Paretian tails (see e.g.

Nolan, 2020). The density function of a positive stable random variable

can be expressed by means of the Wright function (see e.g. Barabesi, 2020),

which unfortunately is awkward to compute (see the algorithms proposed by

Luchko, 2008). To this aim, Barabesi (2020), Dunn and Smyth (2005) and

Dunn and Smyth (2008) suggest some approximation methods based on ad-

hoc Fourier or Laplace inversion techniques. However, these algorithms can

be time-consuming and possibly inadequate for evaluating the maximum-

likelihood estimates, especially when large dataset are at disposal. In this
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case, the maximum-likelihood method could be even prohibitive and alter-

native techniques are required.

Among these classes, the Tweedie distribution, owing to its flexibility,

is useful for modelling data arising from a plethora of different frameworks

(see e.g. Barabesi et al., 2016, Dunn and Smyth, 2005, Tweedie et al.,

1984). As a matter of fact, this family encompasses moderate heavy-tailed

distributions, as well as light-tailed distributions and it also comprises the

positive stable distribution as a special case (for more details, see the book

of Nolan, 2020). Actually, the Tweedie distribution is a tempered positive

stable distribution. In addition, the Tweedie law may even model data

with structural zeroes, since for some parameter ranges it is the mixture

of the Dirac mass at zero and an absolutely-continuous positive distribu-

tion (see Aalen, 1992). This feature is especially appealing when dealing

with data arising from socio-economic or environmental phenomena (see

Barabesi et al., 2016, Hasan and Dunn, 2015), which indeed may produce

structural zeroes. However, the distribution of a Tweedie random variable

in turn involves the Wright function, giving rise to computational draw-

backs.

In general, a large body of literature has been devoted to the tempering

of heavy-tailed laws (see e.g. the monograph by Grabchak and Grabchak,
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2016). Indeed, even if heavy-tailed distributions are well-motivated models

in a probabilistic setting, extremely fat tails may be unrealistic for many

real applications. Such a drawback has led to the introduction of models

which are morphologically similar to the original distributions, even if they

display lighter tails. In this setting, large classes of tempered distributions

may be formulated as scale mixtures of a Tweedie random variable with

a mixturing positive random variable (see Barabesi et al., 2016, Torricelli

et al., 2022). However, the corresponding density functions involve the gen-

eralized Mittag-Leffler function, which is even more challenging to compute

that the Wright function (see Barabesi, 2020 and references therein). In

turn, the use of maximum-likelihood methods could be unfeasible for these

models. Moreover, even least-square methods based on the theoretical and

empirical Laplace or Fourier transforms could be inadequate, since they

are likely to produce a criterion function which is not easily manageable,

and possibly with multiple local minima. In addition, computational effort

could be prohibitive for large datasets.

In this paper, we propose a suitable class of parameter estimators for

positive random variables showing a simple Laplace transform. The pro-

posed technique has connections with the procedures based on the probabil-

ity generating function for integer-valued random variables by Di Noia et al.
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(2023) and Di Noia et al. (2023). The consistency and the large-sample dis-

tribution of the suggested estimators are obtained, as well as estimators of

their asymptotic variance, thus naturally allowing to introduce appropriate

goodness-of-fit (GOF) test statistics. GOF tests are especially welcome for

the considered class of models, as no such proposals are present in statistical

literature.

The paper is organized as follows. In Section 2 some preliminaries and

background remarks are given. In Section 3 the censoring strategy is de-

scribed and the estimation procedure is introduced, as well as its asymptotic

properties are derived. In Sections 4 and 5 the methodology is respectively

adapted to the positive stable and Tweedie laws, and specific GOF tests

are proposed. Section 6 is devoted to numerical experiments. Finally, con-

clusions are drawn in Section 7.

2. Preliminaries

Let us consider a non-negative random variable (r.v.) X defined on the

probability space (Ω,A, P ) and let LX be the Laplace transform of X, i.e.

LX(s) = E(e−sX)

for s ≥ 0. Obviously, if F is the cumulative distribution function of X, it

holds LX(s) =
∫ 1

0
F (− log t/s) dt for s > 0. Moreover, if X is an absolutely-
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continuous random variable, we have LX(t) =
∫∞
0
e−sx F ′(x) dx. A large

distribution family has a Laplace transform of type

LX(s) = g(sγ), (2.1)

where γ is a parameter defined on a suitable subset of ]0, 1], while g is an

appropriate function (see e.g. Barabesi, 2020, Torricelli et al., 2022, and

references therein).

Example 1. The family (2.1) includes some rather exotic distributions,

such as the generalized Jacobi laws, which have Laplace transforms given

by

LX(s) =
sγ

sinh(sγ)

and

LX(s) =
1

cosh(sγ)
, (2.2)

where γ ∈ ]0, 1/2] (see Biane et al., 2001 and Devroye, 2009).

Example 2. The family with Laplace transform given by (2.1) encom-

passes the positive stable distribution. Indeed, a positive stable r.v. with

parameters (γ, λ), denoted by PS(γ, λ), has Laplace transform

LX(s) = e−λs
γ

, (2.3)
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where (γ, λ) ∈ ]0, 1]× ]0,∞[. For more details on the properties of this r.v.

and its stochastic representations, see e.g. Devroye and James (2014). The

integer-valued counterpart of the positive stable distribution is considered in

Steutel and van Harn (1979), Barabesi and Pratelli (2014b) and Marcheselli

et al. (2008). Parameter estimation for the positive stable distribution is

discussed in depth in Section 4.

It should be remarked that g could be in turn the Laplace transform

of a further positive (not necessarily absolutely-continuous) r.v. V , that is

g = LV . More precisely, if

X = V 1/γZ,

where Z is a positive stable r.v. with parameters (γ, 1) independent of V

(i.e. X is a scale mixture of positive stable distributions), we have

LX(s) = E(e−sV
1/γZ) = E(e−s

γV ) = LV (s
γ) = g(sγ).

Loosely speaking, in this setting the parameter λ is assumed to be a pos-

itive r.v. with a suitable distribution. The resulting family encompasses

many distributions including the positive Linnik distribution which is ob-

tained when V is distributed according to the Gamma distribution, see e.g.

Barabesi et al. (2016), Huillet (2000) and Jose et al. (2010).

An even larger model family of distributions has a Laplace transform
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of type

LX(s) = g({θ + s}γ − θγ), (2.4)

where g is an appropriate function and θ ≥ 0. If θ > 0, the parameter γ

may also be defined on ] − ∞, 1]. Obviously, for θ = 0 the family given

in (2.1) is obtained. In turn, the function g in (2.4) could be a Laplace

transform of a further positive r.v. V . Distribution classes of such a type

are considered by Barabesi et al. (2016), James (2010) and Torricelli et al.

(2022), among others.

Example 3. The typical member of the family with Laplace transform

given by (2.4) is the Tweedie distribution. A Tweedie r.v. with parameters

(γ, λ, θ), denoted by TW(γ, λ, θ), has the Laplace transform

LX(s) = esgn(γ)λ{θ
γ−(θ+s)γ}, (2.5)

where (γ, λ, θ) ∈ {[−∞, 0]× ]0,∞[× ]0,∞[ } ∪ { ]0, 1]× ]0,∞[×[0,∞[ }. The

distribution has been popularized and analysed at length by Hougaard

(1986) and Jørgensen (1987), following the seminal ideas described in Tweedie

et al. (1984). The distribution has been often used in actuarial studies and

ecology, among others (see e.g. Jørgensen, 1987 and Kendall, 2004). For

its integer-valued counterpart, see Baccini et al. (2016) and Barabesi and

Pratelli (2014a). As to the random variate generation of a Tweedie r.v., see
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Barabesi and Pratelli (2014b), Barabesi and Pratelli (2015), and references

therein. The family is very flexible and can be adopted as a model for

datasets with complex and non-standard features, since it can simultane-

ously arrange fat tails and structural zeroes. The inferential issues for the

Tweedie law will be discussed in details in Section 5.

Albeit the described families are very appealing from a probabilistic

perspective, the drawback with their use consists in the complex structure

of the corresponding density and distribution functions, despite the sim-

ple forms of their Laplace transform. Even if some approximations are

available in order to compute maximum-likelihood estimates (as proposed

by Barabesi, 2020), their computation may be too time-consuming. Thus,

alternative and simpler estimation methods may be welcome. These in-

ferential methods should also produce GOF testing procedures which are

particularly desirable, since no such proposals are present in literature.

3. Parameter estimation and GOF testing

Let the Laplace transform LX of the target random variable X belong to

the general class (2.4), specifically given by LX(s) = g(λ{(θ + s)γ − θγ}),

where g is a suitable infinitely differentiable function on R \ {0}, γ ̸= 0 and

λ > 0. In particular, E(X) is not finite for θ = 0, λ > 0 and γ ∈ ]0, 1[. Our
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objective is to estimate the parameters and to obtain GOF test statistics

by empirically estimating LX and its derivatives at appropriate values.

In this section, we introduce a methodology that is applicable to classes

satisfying (2.4) and more broadly to even more general classes. In the fol-

lowing sections, we will illustrate these general results in detail for positive

stable distributions and Tweedie distributions.

Let us start by noting that for any non-negative random variable X,

the following relationship holds:

L
(r)
X (a) = (−1)rE(Xre−aX), ∀a > 0, ∀r ∈ N. (3.1)

Even if E(X) is not finite, for a > 0 we have

E(Xre−aX) = E(Y r
a ) (3.2)

where Ya is the exponentially censored random variable X1{aX<T}, and T is

a standard exponential random variable, independent of X. Equation (3.2)

suggests to introduce a variant of the method of moments by considering

E(Xre−aX) for a suitable a > 0 when LX depends on some parameters

to be estimated. To estimate the model parameters, a natural approach

could rely on (3.1) and on the empirical counterpart of E(Xre−aX), where

r does not exceed the number of parameters. In practical applications, the

number of parameters typically is 1, 2, or 3, making this method feasible
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for implementation with real data.

Choosing a fixed deterministic point a > 0 for calculating LX does not pro-

vide robust estimations of model parameters. This is because LX(a) could

assume negligible values or values practically equal to one for many pairs

of parameters λ and γ, with θ = 0 or θ > 0, making any information on the

parameters irrelevant. This drawback persists even when multiple values

of a are fixed deterministically, and LX(a) with its empirical counterpart

are considered. However, the choice of a, denoted by a∗ is crucial for this

purpose. The ‘optimal’ a∗ will depend on the model parameters, and we

propose a data-driven method for obtaining a coherent estimator A of a∗.

To achieve this, first consider that LX([0,∞[) =]p, 1], where p = P (X = 0).

If p = 0, to avoid Ya∗ being too censored or scarcely censored (i.e.

E(Xre−a∗X) being practically equal to zero or ‘infinite’) and thus loosing

information on parameters, we could set a∗ = L−1
X (c∗) where L−1

X denotes

the inverse function of LX and c∗ is an element of [1/5, 4/5]. Moreover,

in the setting of positive stable distribution, it is convenient to maximize

−c∗ log(c∗) for estimating γ. Since c∗ = 1/e is the maximum point, in the

following, we will take

a∗ = L−1
X (1/e)

when p = 0. Otherwise, c∗ will be chosen to be greater than p. Now, let
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X1, . . . , Xn be n independent copies of the r.v. X and let

Ln(s) =
1

n

n∑
i=1

e−sXi

be the empirical counterpart of LX . Denote Fn as the empirical cumulative

distribution function associated with X1, . . . , Xn. It is worth noticing that

for all s > 0, it holds

|LX(s)− Ln(s)| =
∣∣∣ ∫ 1

0

{
F (− log t/s)− Fn(− log t/s)

}
dt
∣∣∣ ≤ ||F − Fn||∞.

Moreover, let A be a further positive random variable, which is a function

of X1, . . . , Xn and is defined by the implicit equation

Ln(A) =
1

n

n∑
i=1

e−AXi = e−1.

when p = 0. This implicit definition of A ensures that A is data-driven,

making it adaptive to the sample data X1, . . . , Xn. Since ∪ni=1{Xi = 0} is a

negligible event when p = 0, on the basis of the Glivenko-Cantelli Theorem,

A is well defined and converges almost surely to a∗ = L−1
X (e−1) because

|LX(A)− LX(a∗)| = |LX(A)− 1/e| = |LX(A)− Ln(A)| ≤ ||F − Fn||∞.

If p < 1/e, A is well defined for large n and the same asymptotic result

holds true. Otherwise, if p ≥ 1/e, we can consider c∗ =
1+(e−1)p

e
and define

A for large n by the implicit equation

Ln(A) =
1

n

n∑
i=1

e−AXi =
1 + (e− 1)p̂n

e
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where p̂n = 1
n

∑n
i=1 I{Xi=0}. For this choice of c∗ similar asymptotic results

for A are satisfied as when c∗ = 1/e. Additionally, we denote

mr,a∗ = E(Y r
a∗) = E(Xre−a∗X)

with empirical counterpart

m̂r,A =
1

n

n∑
i=1

Xr
i e

−AXi .

In the following Proposition we obtain the large-sample properties of the

r.v.s A and m̂1,A, . . . , m̂k,A, with k ≥ 1, by means of a suitable use of the

Delta Method.

Proposition 1. If p < 1/e then the random vector (m̂1,A, . . . , m̂k,A, A)

converges almost surely to the vector (m1,a∗ , . . . ,mk,a∗ , a∗), while the random

vector
√
n(m̂1,A−m1,a∗ , . . . , m̂k,A−mk,a∗ , A− a∗) converges in distribution

to the multivariate normal law Nk+1(0,Σ) as n → ∞. Here, Σ is the

variance-covariance matrix of the random vector (V1, . . . , Vk,W ), with

Vr = e−a∗X
(
Xr − mr+1,a∗

m1,a∗

)
,

for r = 1, . . . , k, and

W =
e−a∗X

m1,a∗

.

A consistent estimator of Σ is given by the sample variance-covariance ma-
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trix of the random vectors (V̂1,i, . . . , V̂k,i, Ŵi), i = 1, . . . , n, where

V̂r,i = e−AXi

(
Xr
i −

m̂r+1,A

m̂1,A

)
, Ŵi =

e−AXi

m̂1,A

.

Proof. For simplicity of notation, let us denote a = a∗. If u = (u1, . . . , uk)

is an element of Rk and t ∈ R, let us consider the r.v.

Un =
√
n
{ k∑

r=1

ur(m̂r,A −mr,a) + t(A− a)
}
.

On the basis of the Mean Value Theorem there exists a map h defined on

]0,∞[ 2 such that, for any b, x > 0, it holds

e−bx = e−ax − xe−h(b,x)x(b− a),

with h(b, x) ∈ ] min(b, a),max(b, a)[. Thus, we have

Un =
√
n
{ k∑

r=1

ur(m̂r,a −mr,a) + (A− a)(t−
k∑
r=1

ur
n

n∑
i=1

Xr+1
i e−h(A,Xi)Xi)

}
.

Since A converges almost surely to a, the Law of Large Numbers and the

Continuous Mapping Theorem imply that

lim
n

1

n

n∑
i=1

Xr+1
i e−h(A,Xi)Xi = mr+1,a

almost surely. Moreover, if p = 0 there exists a negligible event H such

that s 7→ Ln(s)(ω) is a strictly decreasing function for any ω ∈ Hc. These

functions are invertible for any ω ∈ Hc and their inverse mappings are
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differentiable at Ln(a)(ω) with derivative 1/L′
n(a)(ω). Then

√
n(A − a)

coincides almost surely with

√
n{L−1

n (e−1)− L−1
n (Ln(a))}=

√
n

L′
n(a)

{e−1 − Ln(a)}+oP (
√
n{e−1 − Ln(a)})

Since L′
n(a) converges almost surely to −m1,a, and oP (

√
n{e−1 − Ln(a)})

coincides with oP (
√
n{LX(a) − Ln(a)}) =

√
n{LX(a) − Ln(a)}oP (1), from

the convergence in distribution of
√
n{LX(a) − Ln(a)} it follows that Un

has the same large-sample behaviour of the r.v.

Sn =
√
n
[ k∑
r=1

ur(m̂r,a −mr,a) +
1

m1,a

{Ln(a)− e−1}(t−
k∑
r=1

urmr+1,a)
]
.

This holds true for large n, even when p ∈]0, 1/e[. Observe that

Sn =
√
n
[ k∑
r=1

ur
n

n∑
i=1

{
(Xr

i e
−aXi −mr,a)−

mr+1,a

m1,a

(e−aXi − e−1)
}

+
t

nm1,a

n∑
i=1

(e−aXi − e−1)
]
.

Thus, the classical Central Limit Theorem ensures that Sn converges in

distribution to the normal law N(0, σ2), where σ2 = Var(
∑k

r=1 urVr +

tW ). The result follows from the Cramér-Wold Theorem and the Law of

Large Numbers. In particular, the sample variance-covariance matrix of

(V̂1,i, . . . , V̂k,i, Ŵi) is a consistent estimator of Σ, since (m̂1,A, . . . , m̂k,A, A)

converges almost surely to (m1,a, . . . ,mk,a, a).
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Remark 1. From Proposition 1, it follows that
√
n(A − a∗) converges in

distribution to the normal law N(0, {LX(2a∗) − e−2}/m2
1,a∗) and has the

same large-sample behaviour as the r.v.
√
n

m1,a∗

(
1
n

∑n
i=1 e

−a∗Xi − e−1
)
.

Remark 2. If p ≥ 1/e, by taking a∗ = L−1
X (1+p(e−1)

e
) a similar proposition

can be proven, with some changes in the matrix Σ and the random variables

Vr and W .

Let us now suppose that the distribution ofX depends on k parameters,

say α1, . . . , αk. Let us also suppose that, on the basis of (3.1), there exist

k differentiable functions h1, . . . , hk and a natural number r ≤ k, such that

αj = hj(m1,a∗ , . . . ,mr,a∗ , a∗) for j = 1, . . . , k. Some hj could be solely

functions of a∗ and in this case we take r = 0. Thanks to Proposition 1,

consistent and large-sample normal estimators α̂j of αj, for j = 1, . . . , k,

are given by

α̂j = hj(m̂1,A, . . . , m̂r,A, A).

Moreover, if LX(s) = LX(s;α1, . . . , αk) we also adopt the notation

L̂X(s) = LX(s; α̂1, . . . , α̂k).

On the basis of the previous discussion, considering the empirical version
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of (3.1), a natural GOF test statistic is given by

Tn =
√
n{m̂r+1,A + (−1)rL̂

(r+1)
X (A)}, (3.3)

where L̂
(r)
X represents the r-th derivative of L̂X . Other GOF test statistics

can be obtained by substituting r + 1 with a natural number q > r + 1. If

L̂X(A) is not a degenerate random variable, a further GOF test statistic is

given by

T ′
n =

√
n{e−1 − L̂X(A)}. (3.4)

Remark 3. Note Tn (or T ′
n) can be written as

√
n
{
ψ(m̂1,A, . . . , m̂r+1,A, A)− ψ(m1,a∗ , . . . ,mr+1,a∗ , a∗)

}
where ψ is a differentiable function. From Proposition 1 and the Delta

Method, it follows that Tn (or T ′
n) converges in distribution to a centered

normal law. The asymptotic variance of Tn (or T
′
n) will be explicitly derived

for positive stable distribution (or Tweedie distribution) in the following two

sections.

Example 4. An interesting, even if simple, illustration of the suggested

methodology is obtained by considering a r.v. X with law defined by means

of the Laplace transform (2.2). If c = log(e+
√
e2 − 1), from

LX(a) =
1

cosh(aγ)
= e−1,
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we promptly obtain a∗ = c1/γ. Thus, since k = 1 and r = 0 in this case, we

trivially have

γ = h1(a∗) =
log(c)

log(a∗)

and an estimator γ̂ of γ is given by

γ̂ =
log(c)

log(A)
.

In addition, since it holds

m1,a∗ =
c sinh(c)γ

e2a∗
,

a GOF test statistic is given by

Tn =
√
n{m̂1,A − e−2c sinh(c)A−1γ̂}.

By using Proposition 1 and the Delta Method,
√
n(γ̂ − γ) and Tn converge

in distribution to centered normal laws, where the variances can be consis-

tently estimated by substituting γ̂ and A for γ and a∗ in the corresponding

theoretical expressions.

The results for the distribution family considered in the previous exam-

ple, depending on a single parameter, are appealing and relatively simple.

A more complicated setting occurs for a family depending on two or three

parameters, as shown in Section 4 and in Section 5, even if the results are
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rather similar in concept. In this more complex framework the following

result can be useful.

Remark 4. If LX(s) = g(λ{(θ + s)γ − θγ}), after some algebra, we also

have

E(Y 2
a ) = E(Ya)

2 g
′′(λ{(θ + a)γ − θγ})
g′(λ{(θ + a)γ − θγ})2

+ E(Ya)
1− γ

θ + a
, (3.5)

and

E(Y 3
a )=

E(Ya)
3g′′′(λ{(θ+a)γ−θγ})

g′(λ{(θ+a)γ−θγ})3
+
1−γ
θ+a

{
3E(Y 2

a )+E(Ya)
2γ−1

θ + a

}
. (3.6)

4. Inference for the positive stable distribution

In this section we assume that X is distributed with a positive stable law.

The corresponding Laplace transform (2.3) is obtained from class (2.4) by

setting g(x) = e−λx and θ = 0. Thus, the model involves two parameters

(γ, λ), where the parameter space is γ ∈ ]0, 1] and λ > 0. It is apparent

that X does not have a finite mean for γ < 1. On the basis of (2.3) and

(3.2) respectively, for a > 0 we have

LX(a) = e−λa
γ

, and E(Ya) = E(Xe−aX) = −γ
a
LX(a) log(LX(a)),

from which we respectively obtain

γ = − am1,a

LX(a) log(LX(a))
, and λ = −a−γ log(LX(a)).
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It follows that

a∗ = λ−1/γ

and (γ, λ) = (h1(m1,a∗ , a∗), h2(m1,a∗ , a∗)) = (em1,a∗a∗, a
−γ
∗ ). Therefore, by

using the results provided in Section 3, the estimators of (γ, λ) are given by

(γ̂, λ̂) = (em̂1,AA, A
−γ̂). (4.1)

Properties of estimators (4.1) are obtained in the following Proposition.

Proposition 2. The estimators (γ̂, λ̂) converge almost surely to (γ, λ) and

the random vector
√
n(γ̂−γ, λ̂−λ) converges in distribution to the bivariate

normal law N2(0,Σ) as n→ ∞. Here, Σ is the variance-covariance matrix

of the random vector

(S1, S2) = (a∗Xe
1−a∗X ,−λe1−a∗X{a∗X log(a∗) + 1})

A consistent estimator of Σ is given by the sample variance-covariance ma-

trix of the random vectors (Γi,Λi), with i = 1, . . . , n, where

(Γi,Λi) = (AXie
1−AXi ,−λ̂e1−AXi{XiA log(A) + 1}).

Proof. Since γ = h1(m1,a∗ , a∗) and λ = h2(m1,a∗ , a∗), we have the Jacobian

matrix of (h1, h2) given by

J =

 ea∗ em1

ea∗λ log(a∗) eλ log(a∗)m1,a∗ − a−1
∗ γλ

 .
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On the basis of Proposition 1 and the Delta Method,
√
n(γ̂ − γ, λ̂ − λ)

converges in distribution to N2(0,Σ), where Σ is the variance-covariance

matrix of the random vector

(V1,W )J⊤ = (e{a∗V1 +m1,a∗W}, eλ log(a∗){a∗V1 +m1,a∗W} − a−1
∗ γλW ),

and V1 and W are defined in Proposition 1. The previous random vector is

actually equal to (S1, S2), since m1,a∗ = a∗m2,a∗ . Finally, the Proposition

is proven, since A converges almost surely to a∗ and, by means of the Law

of Large Numbers, the sample variance-covariance matrix of the random

vectors (Γi,Λi) converges almost surely to Σ.

Since m1,a∗ = a∗m2,a∗ , by using (3.1), we have L̂
(2)
X (A) ∼ m̂1,A/A as

n→ ∞ and expression (3.3) suggests the equivalent GOF test statistic

Tn =
√
n(Am̂2,A − m̂1,A). (4.2)

The following Proposition provides the large-sample distribution of (4.2).

Proposition 3. The test statistic Tn in (4.2) converges in distribution to

N(0, σ2) as n→ ∞, where

σ2 = Var
(
e−a∗X

{a∗m3,a∗ − 2m2,a∗

m1,a∗

+X(1− a∗X)
})
.

σ2 can be estimated by

σ̂2 =
1

n− 1

n∑
i=1

(Zi − Z)2,
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where

Zi = e−AXi

{Am̂3,A − 2m̂2,A

m̂1,A

+Xi(1− AXi)
}
, and Z =

1

n

n∑
i=1

Zi.

Proof. Since

Tn =
√
n{(Am̂2,A − m̂1,A)− (am2,a −m1,a)},

on the basis of Proposition 1 and the Delta Method, Tn converges in dis-

tribution to the normal law N(0, σ2), where σ2 is the variance of the r.v.

(−V1 + aV2 +m2,aW ), where V1, V2 and W are defined in Proposition 1. It

holds

−V1 + a∗V2 +m2,a∗W = e−a∗X
{
−X(1− a∗X)− a∗m3,a∗

m1,a∗

+ 2
m2,a∗

m1,a∗

}
,

and the Proposition is proven, since A converges almost surely to a∗ and,

by means of the Law of Large Numbers, the sample variance σ̂2 converges

almost surely to σ2.

5. Inference for the Tweedie distribution

In this section we assume that X is distributed with the Tweedie law. The

corresponding Laplace transform (2.5) is a special case of the class (2.4) by

setting

g(x) = e−sgn(γ)λx.
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As to the Tweedie family, the parameter space is more complex with respect

to the positive stable case. Indeed, the parameters (γ, λ, θ) are defined on

the union of ]0, 1]× ]0,∞[×[0,∞[ and ] − ∞, 0[× ]0,∞[× ]0,∞[. On one

hand, when the parameters are elements of the first set, the Tweedie distri-

bution is actually an exponentially-tilted positive stable law. On the other

hand, when the parameters are elements of the second set, the Tweedie

distribution is a compound Poisson law (see Aalen, 1992).

Thus, the extra parameter θ substantially extends the flexibility of the

Tweedie model with respect to the positive stable model. For further prop-

erties of the Tweedie law, see Barabesi et al. (2016), Barabesi et al. (2016),

and references therein.

If λθγ > −sgn(γ), it holds

a∗ =
{ 1

sgn(γ)λ
+ θγ

}1/γ

− θ.

Note that P (X = 0) < 1/e ⇐⇒ λθγ > −sgn(γ). From (3.2), (3.5) and

(3.6) the following expressions arise

E(Ya∗) = |γ|λLX(a∗)(θ + a∗)
γ−1, E(Y 2

a∗) =
E(Ya∗)

2

LX(a∗)
+ E(Ya∗)

1− γ

θ + a∗
,

E(Y 3
a∗) =

E(Ya∗)
3

L2
X(a∗)

+
E(Ya∗)(1− γ)

θ + a∗

{3E(Ya∗)

LX(a∗)
+

2− γ

θ + a∗

}
.

Moreover, γ=h1(m1,a∗,m2,a∗,m3,a∗, a∗)=1−
(m2,a∗
m2

1,a∗
−e

)
ϕ(m1,a∗,m2,a∗ ,m3,a∗),

λ = h2(m1,a∗ ,m2,a∗ ,m3,a∗ , a∗) = em1,a∗|γ|−1(θ+a∗)
1−γ and θ coincides with
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h3(m1,a∗ ,m2,a∗ ,m3,a∗ , a∗) = −a∗ +m−1
1,a∗ϕ(m1,a∗ ,m2,a∗ ,m3,a∗), where

ϕ(m1,a∗ ,m2,a∗ ,m3,a∗) =
( m3,a∗ − e2m3

1,a∗

m1,a∗m2,a∗ − em3
1,a∗

− 2e− m2,a∗

m2
1,a∗

)−1

.

Therefore, on the basis of the results given in Section 3, the estimators

(γ̂, λ̂, θ̂) for the parameters (γ, λ, θ) are given by

γ̂ = 1−
(m̂2,A

m̂2
1,A

− e
)
ϕ(m̂1,A, m̂2,A, m̂3,A), (5.1)

λ̂ = em̂1,A|γ̂|−1(θ̂ + A)1−γ̂, θ̂ = −A+ m̂−1
1,A ϕ(m̂1,A, m̂2,A, m̂3,A). (5.2)

The large-sample properties of the previous estimators are given in the

following Proposition.

Proposition 4. If λθγ > −sgn(γ), the estimators (γ̂, λ̂, θ̂) converges almost

surely to (γ, λ, θ) and
√
n(γ̂ − γ, λ̂ − λ, θ̂ − θ) converges in distribution to

the trivariate normal law N3(0,Σ) as n → ∞. Here, Σ is the variance-

covariance matrix of the random vector

(S1, S2, S3) = e−a∗X
(
X − m2,a∗

m1,a∗

, X2 − m3,a∗

m1,a∗

, X3 − m4,a∗

m1,a∗

,
1

m1,a∗

)
J⊤

and J represents the Jacobian matrix of order 3 × 4 of the map h =

(h1, h2, h3) evaluated at (m1,a∗ ,m2,a∗ ,m3,a∗ , a∗). In particular, an estima-

tor of Σ is given by the sample variance-covariance matrix of (Γi,Λi,Θi)
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with i = 1, . . . , n, where

(Γi,Λi,Θi) = e−AXi

(
Xi −

m̂2,A

m̂1,A

, X2
i −

m̂3,A

m̂1,A

, X3
i −

m̂4,A

m̂1,A

,
1

m̂1,A

)
Ĵ⊤

and Ĵ = J(m̂1,A, m̂2,A, m̂3,A, A).

Proof. By means of Proposition 1 and the Delta Method applied to h, we

have the convergence in distribution of
√
n(γ̂−γ, λ̂−λ, θ̂−θ) to the trivari-

ate normal law N3(0,Σ), where Σ is the variance-covariance matrix of the

random vector (S1, S2, S3). Moreover, (γ̂, λ̂, θ̂) is a consistent estimator of

(γ, λ, θ) by means of the Law of Large Numbers and owing to the continuity

of h. Since A converges almost surely to a∗, the sample variance-covariance

matrix of (Γi,Λi,Θi) converges almost surely to Σ and the Proposition is

proven.

On the basis of (3.4), let us consider the test statistic

T ′
n =

√
n[sgn(γ̂)λ̂{(θ̂ + A)γ̂ − θ̂ γ̂} − 1].

The previous test statistic, suitably normalized, has the same asymptotic

behaviour of the normalized version of

T̃ ′
n =

√
n
{
1−

( θ̂

θ̂ + A

)γ̂
− γ̂

em̂1,A(θ̂ + A)

}
. (5.3)

The large-sample properties of the test statistic T̃ ′
n in (5.3) are derived in

the following Proposition.
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Proposition 5. If λθγ > −sgn(γ), the test statistic T̃ ′
n in (5.3) converges

in distribution to the normal law N(0, σ2) as n→ ∞, where

σ2 = Var(β1V1 + β2V2 + β3V3 + β4W )

and V1, V2, V3 andW are defined in Proposition 1. Moreover, (β1, β2, β3, β4)

is the gradient of the map (m1,m2,m3, a) 7→ −(1− am1ψ)
ϕ − e−1

(
ψ − m2

m2
1

)
evaluated at (m1,a∗ ,m2,a∗ ,m3,a∗ , a∗), where

ψ = ψ(m1,m2,m3) =
m3 − e2m3

1

m1m2 − em3
1

− 2e− m2

m2
1

and ϕ = ϕ(m1,m2,m3) = 1− 1
ψ

(
m2

m2
1
− e

)
. In particular,

σ̂2 =
1

n− 1

n∑
i=1

(Zi − Z)2

is a consistent estimator for σ2, where Zi = β̂1V̂1,i + β̂2V̂2,i + β̂3V̂3,i + β̂4Ŵi

and Z = 1
n

∑n
i=1 Zi, while β̂r denotes βr evaluated at (m̂1,A, m̂2,A, m̂3,A, A),

with r = 1, . . . , 4, and V̂1,i, V̂2,i, V̂3,i and Ŵi are defined in Proposition 1.

Proof. Since

T̃ ′
n =

√
n
{
− (1− Am̂1,Aψ̂)

ϕ̂ − e−1
(
ψ̂ − m̂2,A

m̂2
1,A

)}
with

ψ̂ =
m̂3,A − e2m̂3

1,A

m̂1,Am̂2,A − em̂3
1,A

− 2e− m̂2,A

m̂2
1,A
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and ϕ̂ = 1 − 1

ψ̂

( m̂2,A

m̂2
1,A

− e
)
, on the basis of Proposition 1 and of the Delta

Method, by considering the equality

(1− a∗m1,a∗ψ)
ϕ = −e−1

(
ψ − m2,a∗

m2
1,a∗

)
,

T̃ ′
n converges in distribution to the normal law N(0, σ2). The result follows

from Proposition 4 and the Law of Large Numbers.

6. Simulation results

By means of a Monte Carlo simulation study, we assess the finite sample

performance of the estimators and GOF procedures proposed in Section 4

for the positive stable PS(γ, λ) distribution and in Section 5 for the Tweedie

TW(γ, λ, θ) distribution. For the Tweedie distribution, when it is a com-

pound Poisson law, that is when γ < 0, it can be useful to determine

the parameters values characterizing the distributions from which data are

generated using the following notation

TW(γ, λ, θ) = TW0(|γ|λθγ−1,
1− γ

θ
, exp(−λθγ)) = TW0(µ,w, p). (6.1)

It should be noted that µ and p have an immediate interpretation as they

represent the mean and the probability of observing a zero value, respec-

tively. Then, if γ < 0, the model parameters are (γ, λ, θ), but their values

are derived from the values selected for µ, w and p. The random vari-
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ate generation is carried out by considering the stochastic representations

discussed in Devroye and James (2014) and Barabesi et al. (2016).

As to the positive stable distribution, first we consider four choices of the

parameter values and, for each choice, 3500 samples of size n = 100, 200, 300

are independently generated. For each sample, parameter estimates are ob-

tained by means of (4.1). From the Monte Carlo distributions of the esti-

mates, the Relative Root Mean Squared Error (RRMSE) of γ̂ and λ̂ is com-

puted as the root mean square error divided by the true parameter value.

Analogously, two parameter choices are considered for each parametriza-

tion of the Tweedie distribution and, for each choice, 3500 samples of size

n = 500, 1000, 1500 are independently generated. The different sample sizes

considered for the two distributions are related to the different number of

parameters. For each sample the estimates of γ, λ and θ are obtained by

means of (5.1) and (5.2) and the RRMSE values are computed from the

corresponding Monte Carlo distributions. Percentage values of RRMSEs

are reported in Table 1 and in Table 2 for the positive stable law and for

the Tweedie law, respectively. In these Tables and in all subsequent ones,

subscripts denote the sample size. The results illustrate the consistency of

the estimators for all the considered parameter values.

Moreover, for the positive stable distribution, also confidence interval
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estimates at confidence level 1− α = 0.95 are obtained using the quantiles

of the standard normal distribution and results in Section 4. The empirical

coverage is computed as the proportion of times the true value is in the

interval. More precisely, for any fixed value γ = 0.3, 0.5, 0.7, 0.8 and for λ

varying from 0.5 to 12 by 0.5, 3500 independent samples of n = 100, 200 are

generated and the empirical coverages of the 0.95 confidence intervals are

computed for γ and λ and depicted in Figure 1 and Figure 2, respectively.

The figures highlight that the empirical coverage of the interval estimators

for both parameters attains the nominal level of 0.95 for moderately large

sample sizes.

Table 1: Percentage values of RRMSE of (γ̂, λ̂) for the positive stable dis-

tribution for some parameter choices.

Model γ̂100 λ̂100 γ̂200 λ̂200 γ̂300 λ̂300

PS(0.3, 2) 11.84 12.46 8.34 8.49 6.77 6.88

PS(0.4, 5) 9.19 15.44 6.50 10.57 5.30 8.61

PS(0.5, 15) 7.31 18.81 5.19 12.96 4.22 10.54

PS(0.6, 20) 5.88 15.70 4.15 10.87 3.38 8.88

Concerning the GOF, both the testing procedures based on (4.2) and

(5.3) are evaluated in terms of the empirical significance and power levels.
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Table 2: Percentage values of RRMSE of (γ̂, λ̂, θ̂) for the Tweedie distribu-

tion for some parameter choices.

Model γ̂500 λ̂500 θ̂500 γ̂1000 λ̂1000 θ̂1000 γ̂1500 λ̂1500 θ̂1500

TW0(1, 1, 0.1) 28.66 37.49 23.13 19.56 19.73 15.80 16.02 15.08 13.12

TW0(1, 1.25, 0.2) 22.61 48.19 26.53 15.76 27.10 18.25 12.73 20.44 14.89

TW(0.5, 2, 0.5) 9.54 18.39 24.84 6.73 12.14 17.62 5.46 9.72 14.19

TW(0.6, 2.5, 0.6) 7.04 13.94 21.34 4.83 8.91 14.38 3.89 7.09 11.69
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Figure 1: Empirical coverage of the 0.95 confidence interval for γ in positive

stable distributions for different choices of γ and λ. Dashed line for n = 100

and solid line for n = 200.

First, 3500 independent samples are generated under the null hypothesis

H0, which represents the functional hypothesis that the target r.v. is dis-
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Figure 2: Empirical coverage of the 0.95 confidence interval for λ in positive

stable distributions for different choices of γ and λ. Dashed line for n = 100

and solid line for n = 200.

tributed according to the positive stable distribution or the Tweedie distri-

bution. Then, the empirical significance level is computed as the proportion

of rejections at the nominal level equal to 0.05.

Under the positive stable model, we obtain the empirical significance

level for various representative parameter choices and for samples of size

n = 100, 200, 300 (see Table 3). The empirical significance level is also

depicted in Figure 3 for γ = 0.3, 0.5, 0.7, 0.8 and λ varying from 0.5 to 12

by 0.5, for n = 100, 200. From Table 3 and Figure 3, it is apparent that the

test shows a satisfactory significance level, approaching the nominal level as
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n increases, albeit it is slightly conservative for small γ when the sample size

is small. Analogously, under the Tweedie model, we compute the empirical

significance level for some parameter choices for n = 500, 1000, 1500. The

parameter values when γ < 0 are given in Table 7. The results are reported

in Table 4. As it could be expected, the testing problem is much more

challenging for the Tweedie GOF test owing to the additional parameter.

Indeed, the test achieves the nominal level for a larger sample size such as

n = 1500. Anyway, it should be remarked that the test is conservative.

Table 3: Percentage values of the empirical significance level (nominal level

0.05) of the positive stable GOF test for some parameter choices.

Model T100 T200 T300

PS(0.3, 2) 2.83 3.94 4.14

PS(0.4, 5) 3.49 3.89 4.34

PS(0.5, 15) 3.69 4.74 5.20

PS(0.6, 20) 3.97 4.54 4.89

As to the power of the two tests, we consider as alternative distri-

butions the Linnik law denoted by LI(γ, λ, δ), the shape-scale Pareto law

denoted by PA(α, β) with density function f(x) = αβα/xα+11{x≥β}, and

the shape-scale Weibull law denoted by WE(k, λ) with density function
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Figure 3: Empirical significance level (nominal level 0.05) for different

choices of γ and λ. Dashed line for n = 100 and solid line for n = 200.

Table 4: Percentage values of the empirical significance level (nominal level

0.05) of the Tweedie GOF test for some parameter choices.

Model T̃ ′
300 T̃ ′

500 T̃ ′
1000 T̃ ′

1500

TW0(0.75, 0.5, 0.1) 1.17 2.11 3.31 3.43

TW0(1, 1, 0.1) 1.17 2.43 3.14 3.49

TW0(1, 1.25, 0.2) 1.09 2.03 2.66 3.20

TW(0.5, 2, 0.5) 1.06 1.83 3.77 3.80

TW(0.6, 2.5, 0.6) 0.17 1.49 3.26 3.40

f(x) = (k/λ)(x/λ)k−1 exp(−(x/λ)k). Moreover, we consider the log-normal

law denoted by LN(µ, σ) and, as a further alternative, LN1/2(µ, σ), that
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represent respectively the laws of the r.v.s Y = eX and Y = eX
2
, where

X has normal law N(µ, σ). We also consider some zero-inflated distribu-

tions, where the third parameter represents the probability of observing

a zero value. Such laws are indicated by adopting a null subscript, e.g.

PA0(α, β, p). The empirical powers of the tests, computed as the propor-

tion of rejections when data are generated according to alternative distri-

butions, are reported in Table 5 and Table 6 under the null hypothesis

of positive stable or Tweedie distributions, respectively. In particular, for

each alternative distribution, we generate 3500 independent samples of size

n = 100, 200, 300 when performing GOF test at significance level 0.05 for

the positive stable distribution and of size n = 300, 500, 1000, 1500 for the

Tweedie distribution.

From Table 5, the positive stable GOF show an appreciable power for

all the considered alternatives. In particular, it achieves an elevate power

for the PA and LN1/2 distribution. In contrast LI is similar to PS, justifying

a smaller power. The results in Table 6 evidence that the Tweedie GOF

test is consistent, even if the increase in the number of parameters leads to

a more challenging testing problem in terms of type 2 error. Indeed, larger

samples are necessary to achieve a power comparable to the positive stable

case, even if the power is satisfactory for n larger than 500. Moreover, under
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zero-inflated models, the procedure achieves an increasing performance as

the zero probability increases.

Table 5: Percentage values of the empirical power of the positive stable

GOF test for some selected alternative distributions.

Model T100 T200 T300

LN(0, 1.5) 63.80 95.66 99.69

PA(5, 2) 97.77 99.43 99.97

PA(10, 2) 99.97 100.00 99.97

LI(0.5, 2, 0.5) 10.03 27.43 43.91

LI(0.5, 2, 0.75) 10.51 31.51 52.14

LN1/2(0, 1.5) 87.97 99.29 100.00

LN1/2(0, 3) 51.09 81.57 93.11

7. Discussion and concluding remarks

We propose a new general inferential approach based on the Laplace trans-

form of a random variable, that relies on exponential random censoring.

This approach is useful to derive tractable parameter estimators that are

used to propose suitable GOF tests for some non-standard families of ran-

dom variables. The proposed estimators and test statistics are proven to
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Table 6: Percentage values of the empirical power of the Tweedie GOF test

for some selected alternative distributions.

Model T̃ ′
300 T̃ ′

500 T̃ ′
1000 T̃ ′

1500

LN(0, 1) 17.66 34.60 56.31 68.91

WE(5, 1) 20.46 42.03 76.00 90.57

PA(10, 2) 15.03 26.60 52.06 61.49

LN0(1, 0.75, 0.1) 69.74 96.91 100.00 100.00

LN0(1, 0.75, 0.2) 75.17 96.57 100.00 100.00

LN0(5, 1, 0.1) 27.51 58.43 93.51 99.11

LN0(5, 1, 0.2) 77.46 98.86 100.00 100.00

WE0(3, 1, 0.1) 74.11 99.57 100.00 100.00

WE0(3, 1, 0.2) 78.69 99.97 100.00 100.00

WE0(5, 1, 0.1) 99.83 100.00 100.00 100.00

WE0(5, 1, 0.2) 93.14 100.00 100.00 100.00

PA0(5, 2, 0.1) 20.77 41.49 69.29 85.49

PA0(5, 2, 0.2) 65.26 99.37 100.00 100.00

PA0(10, 2, 0.1) 99.86 100.00 100.00 100.00

be asymptotically normal, leading to computationally convenient inferen-

tial procedures. We show how exponential censoring can be used to build

parameter estimators and GOF tests for the positive stable and for the
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Table 7: Correspondence between the values of (γ, λ, θ) and (µ,w, p) for

the Tweedie distribution from (6.1).

Model γ λ θ

TW0(0.75, 0.5, 0.1) -1.8689607 60.297348 5.737921

TW0(1, 1, 0.1) -0.7677042 3.565768 1.767704

TW0(1, 1.25, 0.2) -0.9883402 2.546270 1.590672

Tweedie laws for which specific tests are not present in the literature. The

simulation study shows that the finite-sample performance of the proposed

procedures is rather satisfactory even in the three-parameter case for a

moderately large sample size.
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