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Abstract:

The Gaussian graphical model is routinely employed to model the joint distri-
bution of multiple random variables. The graph it induces is not only useful for
describing the relationship between these variables but also critical for improv-
ing statistical estimation precision. In high-dimensional data analysis, despite
abundant literature on estimating this graph structure, tests for the adequacy of
its specification at a global level are severely underdeveloped. To make progress,
this paper proposes novel goodness-of-fit tests that are computationally easy and
theoretically tractable. The first contribution of this paper is the development of
a new direct plug-in test statistic. We show that its asymptotic distribution under
the null follows a Gumbel distribution with a location parameter depending on
the underlying true graph structure. The direct test, however, has no power for
detecting structures including the truth but not equal. Our second contribution is

the development of a novel consistency-empowered test statistic that gains power



by, interestingly, amplifying the noise incurred in estimation. The improved test is
shown to be universally consistent for all fixed alternatives. Extensive simulation
illustrates that the proposed test procedures have the right size under the null,
and is powerful under alternatives. As an application, we apply the tests to the
analysis of a COVID-19 data set, demonstrating that our test can serve as a

valuable tool in choosing a graph structure to improve estimation efficiency.

Key words and phrases: Dependence, Gaussian graphical model, Goodness-of-fit

test, Gumbel distribution, High-dimensional data

1. Introduction

The Gaussian graphical model is commonly used for describing the joint
distribution of multiple random variables (Lauritzen, [1996). The graph
structure induced by this model not only delineates the conditional depen-
dence between these variables, but also is critical for improving estimation
precision. In estimating regression parameters in generalized estimating
equations (GEE) for example, |Zhou and Song| (2016) found that incorporat-
ing a suitable dependence structure of covariates can improve estimation
efficiency, sometimes substantially. In another example, Li and Li (2008)
showed that a correctly specified dependence structure is useful to improve
estimation efficiency in regularized estimation and variable selection. On the

other hand however, a mis-specified dependence structure affects efficiency



negatively (Zhou and Song), |2016|). Therefore, specifying an appropriate
graph is critical for efficiently estimating a parameter of interest.

In practice, the underlying graph structure of a given dataset may be
provided by existing studies or prior knowledge or assumed a priori. In
genomic studies (Li and Li, [2008; (Goeman and Mansmann, 2008]), rich
biological knowledge is available due to intensive biomedical studies, espe-
cially for complex diseases. Existing knowledge and information are publicly
available through databases such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO). The ontology terms of GO are
structured as a graph, with terms as nodes and the relations between them
as edges. Details on using GO to create graphical structures can be found
on the website https://geneontology.org/docs/ontology-relations/.
Gene pathway information can be converted into graphical structures using
R packages such as graphite (Sales et al., |2012)). Therefore, a natural
question is whether these prior graphs are adequate to describe the data from
a statistical perspective. This paper aims to develop novel goodness-of-fit
tests to address this challenge, in the context of high-dimensional data in
which dimensionality can exceed the sample size.

There is abundant literature focusing on estimating the underlying graph

in the Gaussian graphical model. For fixed-dimensional data, |[Edwards| (2000))


https://geneontology.org/docs/ontology-relations/

studied this problem by using a model selection approach that employs

stepwise likelihood ratio tests, while Drton and Perlman| (2004) developed a

multiple testing procedure using partial correlations. For high-dimensional
data, a popular approach is to employ a penalized likelihood approach, with
a penalty explicitly formulated to encourage the sparsity of the resulting

precision matrix that induces the underlying dependence structure. On

this, we refer to Yuan and Lin| (2007); Friedman et al. (2007); |Cai et al.|

(2011)); Liu and Wang (2017); [Eftekhari et al. (2021]), among many others.

On testing the graphical structure itself, there exist methods for testing
elements of the graphical structure. For example, (2013)) proposed
a bias-corrected estimator of the precision matrix and applied it to test

individual components of the precision matrix. Similar tests for individual

components in a precision matrix are also discussed in |Jankova and van de

(Geer] (2017); Ren et al.| (2015); Ning and Liu| (2017)). There are also some

existing global tests for precision matrices taking limited form, for example,

in Xia et al. (2015)) and (Cheng et al.| (2017). However, there is a lack of

general global specification tests for precision matrices considered in this
paper for testing the entire graph structure.
Our work is also related to a growing body of literature on testing

specific covariance structures for high-dimensional data. In this vein,




et al.| (2010) considered testing sphericity and identity structures, Qiu
and Chen| (2012) and Wang et al.| (2023) developed tests for bandedness
structures, |Zhong et al. (2017) developed tests for some parameterized
covariance structures such as autoregressive and moving average structures,
Zheng et al.| (2019) considered tests on linear structures, and (Guo and Tang
(2020)) considered specification tests for covariance matrices with nuisance
parameters in regression models. These tests are not applicable to test graph
structures. Moreover, compared with the above tests which usually involve
the estimation of a finite number of nuisance parameters, one significant
challenge associated with testing the graph structure in this paper is the
need to estimate a high dimensional nuisance parameter.

The main novelty of this paper lies in a new goodness-of-fit test that
explores the difference between a graph structure specified under the null and
the true underlying graph structure, based on an appropriate maximum norm
distance. We overcome the challenge of estimating the high dimensional
nuisance parameter by employing a simple and direct plug-in method,
thus bypassing the need of choosing tuning parameters employed in many
regularization methods in the literature for estimating a graph. Despite
its simplicity, the direct plug-in test is not universally consistent. It has a

limitation in that it is not consistent whenever the graph under the null



encompasses but is not equal to the true graph. To tackle this, we develop
a novel consistency-empowered test statistic by amplifying the noise, in
the sense that small stochastic noises as a result of estimating zero entries
in the graph will be enlarged. This modified test statistic is shown to be
universally consistent for testing all types of graphs.

The paper is organized as follows. In Section 2, we introduce basic
setting and our proposed test statistic. Section 3 summarizes asymptotic
distributions of the proposed test statistic, and the universally consistent of
the proposed test. Simulation studies are presented in Section 4. Section 5
provides an application of the proposed methods to a COVID-19 dataset
in selecting appropriate graphical structures for improving the estimation
efficiency. All technical proofs, additional simulation results, and a detailed
procedure for selecting data-driven tuning parameters are provided in the

supplementary material.

2. Setting and Proposed Test Statistics

Let X4, ..., X, be independent and identically distributed realizations of a p-
dimensional random vector X with mean p and covariance matrix 3* = (o7;).

The corresponding precision matrix is denoted as Q" = (wj;) = > Tt is

known that Q" naturally induces a graph denoted as G* = (V,£*), where



V = {1,...,p} is the set of nodes and & = {(i,7) : wj; # 0} C V xV
is the set of edges consisting of node pairs whose corresponding entries in
Q" are not zero. The absence of a pair of nodes in £* indicates that the
corresponding variables are conditionally independent given all the others
when X is normally distributed. (Lauritzen, 1996).

While graph £ is rarely known, in practice it can be estimated via the
penalized likelihood methods discussed in the Introduction or assumed a
priori. For the latter, when the dimension p is high, a convenient assumption
popular in the literature is that €2 admits some simple structure such as a
banding or a block diagonal structure. We will denote the corresponding
graph under the assumption as & and the main aim of this paper is to
ascertain whether this assumption is valid. That is, we consider the following
hypothesis

Hoig*:go VS. H1 15*7&50,

where in our high-dimensional setup, & usually has a cardinality much
smaller than p?. If X is normally distributed, the above hypothesis corre-
sponds to a hypothesis for testing the support of the precision matrix %,
where its non-zero elements are completely unspecified. Specifically, the

hypothesis is:

H{ : supp(§2") = supp(€) vs. Hj :supp(2*) # supp(£2p),



where supp(Q2*) = {(i,7) : wj; # 0} denotes the support of * (i.e., the
indices of its non-zero elements), and €2y = (w;j0) is a p X p precision matrix
of X that is compatible with & under the null hypothesis. This compatibility
means that if (7,j) € &, then w;;o0 = 0. The number of the unknown
parameters under the null is allowed to grow with p, which is drastically
different from existing tests in the literature for testing a covariance matrix
>* with its inverse under the null often specified up to a finite number of
unknown parameters (e.g./Zhong et al.| (2017)); Zheng et al.| (2019))

Our main idea is that if & is correctly specified, €2y will be equal to Q%;
that is, 3*Q¢ — I, = 0, where I, is the p-dimensional identity matrix and
0, is a (p x p)-dimensional matrix with entries all being zero. That is, if

& = £*, we can write the above equation elementwise as

T §V* T —
Jngx le; X wio —eje;| =0, (2.1)
where Q) = (W1,...,W,0) by denoting w; o as the i-th column of €y and

I, = (e1,...,e,) with e; being the i-th basis vector. On the other hand, if
&y is not correctly specified in the sense that & # £*, the maximum element
of 3% — I, may be different from zero.

Thus, to assess whether Hy (or Hy) is true is equivalent to check (2.1)).
If 2y and so w; o is known in advance, an estimator of (ejT.E*Wm — e}ei)2

may be obtained by replacing ¥* by the sample covariance matrix S,, =



zn:l(Xi — X)(Xz — X)T/(n — 1) Wlth X = (Xl,' . ,Xp)T = ?:1 XZ/TL

Then, we may use the following statistic D,, to distinguish Hy and Hy,

. 2 2 . (aT o — eTe)2/p..
Dn= max Dy, Dyj:= (ejSawio —ejei)”/0ijo,

where 0,50 = var(e]TSnwi70 - e}ei). Note that the statistic D,, depends on

the plug-in estimators of €;3"w; ¢, which can be expressed as
Ty * T§V*
ejz Wio = ejE Biowi10,

where w;; o represents the nonzero sub-vectors of w; o, and B, is a p X s;
matrix with elements equal to either 0 or 1, such that B, gw;1 0 = w; 0. It is
important to note that eJTE]*Bw and w;; o are both vectors of dimension
s;. Therefore, using the sample covariance S,, to estimate these two vectors
remains reasonable as long as s; satisfies condition (C2) below. Assume
X =T"Z + p, where T is an m X p matrix and Z = (73, ..., Z,,)" follows
the multivariate model described in Assumption (D1) of the supplemental
material (Bai and Saranadasa, 1996; Chen et al., 2010). This model specifies
that E(Z) = 0, var(Z) =1,,, and E(Z}) = 3 + x. This multivariate model
generalizes the Gaussian distribution. The leading-order term of 0,5 is

provided in the following lemma.



Lemma 1. Under Assumption (D1) in the supplemental file, we have

- - w07/ M, Jorl1<i#j<p
Oij0 = var(e; S, wip — e;e;) =

(whor+1+k)/n, for1<i=j<p

In particular, if the normality assumptions hold, k = 0 in the above expres-

sion.

However, D,, is not directly applicable because several quantities involved
are unknown. Noting that under the null hypothesis, €2 is a sparse matrix,
we denote the number of nonzero entries in the jth column of £, as s;,
where maxi <<, s; = o(y/n) is a typical assumption made in estimating high-
dimensional precision matrices (Cai et al., 2011; Liu and Wang, 2017). The
precision matrix €2y can be estimated in the following column-by-column
fashion. Denote ¥, = le. By definition, ¥ow;o = X¢Biowi10 = €;
and then B} 3oB;owio = Bige;. Thus, wio = (Bf(XoBio) 'Bjge;.
Under Hy, Bj (X1, ..., B;(X, are s;-dimensional independent and identically
distributed random vectors with covariance BEOEOBi,O. Because s; are
of smaller order of v/n, Bf(X¢B;o can be consistently estimated by the
sample covariance of B Xy, --,B;(X, given by B;;S,B;o under Hy.
Then, W10 = (BEOSnBiyo)*lBEOei and W; o = B; oW, is a consistent
estimator of w; ¢ under H,. By assembling W,  as Qg, we have a consistent

estimator of €2y. The technical detail of the preceding argument can be

10



found in |Le and Zhong| (2022). However, the estimated precision matrix
Q= (W10, ,Wp0) may not be symmetric or positive definite. To address
this, one can use the perturbation method proposed by |Liu and Luo (2015)
to ensure that € is positive definite, and then symmetrize it by averaging
it with its transpose: (£ + Qg) /2. We conducted a simulation study to
compare our proposed test using this estimator €y with its symmetrized
and positive definite version. The results of this comparison are presented
in Table 5 of the supplemental file.

Based on Lemma |1} we can then estimate 6,5 as éz’j,O et L +
#)0i;}/n where @y is the (i,4)th element of g, s;; is the (4, j)th element
of matrix S, & = >, sj_j4(Xij — X;)4/(np), and 6;; = 1if i # j and &;; = 0
if © = 5. If X is normally distributed, we set & = 0. Replacing the unknown
parameters by their estimators, we construct a test statistic D, using the

plug-in estimators w; g,

with D = (1S, Wi — ele;)?/0;0.

The above test statistic D, is free of tuning and extremely easy to
calculate for practical use. These advantages should be compared to those
penalized likelihood methods, such as GLASSO (Friedman et al., 2007)), for

which the choice of tuning parameters is crucial for the performance of the

11



resulting estimator. In Section 6.3 of the supplemental file, we compare
D,, using our proposed estimator W, o with results based on GLASSO. Our
proposed method shows better performance in terms of empirical sizes,
power, and computational efficiency. The time complexity of D, with
respect to p is max(sp, p*), where s3p represents the time complexity to
compute all ﬁij, and p? is the time complexity to compute the maximum
operator. See Figure [2|in the simulation study for details on the relationship
between estimated computational time and data dimension.

Despite the above advantages, D,, does not have much power in rejecting
&y if & C &; that is, when £* is included in & but they are not equal.
For notational convenience, we collect all the included structures in the
alternatives Hy as Hy : £ C &. Clearly, H, is a subset of H; and we call
the alternatives in H, included structures. An example is given in Figure
Where D,, will have no power in rejecting the & in (b), while it does for
rejecting the & in (c) or (d). For (b), this is simply because under the null
hypothesis that £ = &, any reasonable estimator of €2y of 2* denoted as

Q. including the one discussed above, will asymptotically converge to 2%,

making 2 — I, very small stochastically.
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2.1 A novel consistency-empowered test statistic

AN/ AN

(a) (b) (c) (@)

Figure 1: Different dependence structures: (a) the true graph £*; (b) &
that satisfies £* C & (included structure); (c) & that satisfies & C £*; (d)

& that is not nested within or outside £*.

2.1 A novel consistency-empowered test statistic

When &* C & as illustrated in Figure [I, we know that its compatible
estimator € will be close to Q* loosely speaking. Thus, if (i,7) € & but
(i,7) & E*, @i will be close to zero. For the test to have power, we need to
offset the effect of those small estimates. Our idea is to augment those small
estimates with a constant that is just large enough for us to reject the null.
Thus, in a certain sense, we are amplifying those small noises as a means
to empower the consistency of a new test statistic. Of course, how close is
close to zero for a small noise should be gauged against its standard error,
which motivates the development of the following consistency-empowered
test statistic.

Let (IJZ({)O be the jth component of Ww;; o with the associated standard

() )

error 01y, where W1 is defined in the previous section. Let &;{ be a

13



2.1 A novel consistency-empowered test statistic

consistent estimator of aff?o which will be defined shortly. Define w;; o =

(@511,)07 e 7@1(153)T where

VNVE{,)O = VAV({,)O + Ag)a

)

with AE{) =C,I (|LDZ({)O|/ 62({,)0 < 6,). Here C,, # 0 and 4,, are tuning parame-
ters which will be discussed in the next section. Clearly, what this procedure
does is to add a constant to those elements of W;; o that are stochastically
small. Or put differently, it simply amplifies the noise, as opposed to the
usual notion of filtering out noises for better estimation accuracy.

Recall the definition of B, in the last section. Let w;o = B, oW1
and A; = B, pA;; where A = (Ag), . Agfi))T. Our proposed consistency-
empowered test statistic is then

D, = max (e; S Wi — e]T-ei)2/9Aij70 = max D

2
1<i,j<p * 7 1<i,j<p "’

where f)fj = (€] S,Wio— e;‘-Fei)2 / éij,0~ The consistency-empowered estimator
Wz({)o aims to ensure that the non-zero components WZ({?O are indeed estimated
by some non-zero estimators. Interestingly, the form of the consistency-
empowered estimator VVE{)O is an opposite of the conventional threshold tests
(Fan|, [1996), where small components under some threshold are set to zeros.

The proposed test statistic D,, is also different from the power-enhanced test

statistic proposed by [Fan et al. (2015)) which includes a combination of a test

14



statistic that has an asymptotically correct size and a power enhancement
component. Our proposed D, is not a combination of two components. We
modify the estimator vAvl({)0 to ensure the consistency of the proposed test
for all types of null hypotheses. Having said this, we point out that the test
statistic D,, without consistency empowerment is powerless to test those
null hypotheses in which the true graph is nested within the graph of the
null, regardless of the sample size.

We now discuss a consistent estimator of ag?o required in Ag{). Any
non-zero element @z({)o of W;1 0 corresponds to @ixo (k=1,...,p), (i,k)-th

component of g, such that @z(i)o = Wik0- |Le and Zhong| (2022) established

that LDZ({)O is asymptotically normal, in the sense that
Vi@l — i) = Vit@io — wiko) = N(0, ha) (22)

in distribution, where h;, = wjwy, + wj;,. Thus, a consistent estimator of

ol is simply 67 = /(@ okk0 + G20)/ v/

3. Main Results

In this section, we study the asymptotic distributions of D, and the
consistency-empowered test statistic D,, under the general distributional as-
sumptions (D1) and (D2) specified in the supplemental material, as p — oo

and n — co. Although the asymptotic results in Theorems 1-4 are applicable

15



to non-Gaussian random variables X, our discussion following each theorem
will primarily focus on Gaussian graphical models.. We assume the following
regularity conditions.

(C1) There exist constants C7,Cy > 0 such that ||X*||; < Cy and ||QF]|]; <
Csy, where ||M||; = max;<j<, >ivy |M;;] for any m x n matrix M = (M,;);
(C2) som = 0(1), where sy = maxi<;<; s;.

These two conditions are commonly employed in the literature (e.g.,
Zhou et al.| (2011); |Liu and Luo| (2015)). Many commonly assumed precision
matrix structures such as banded and factor models satisfy Condition (C1).
See the supplementary materials for details.

A node is called isolated if it does not connect with any other nodes.
That is, node i in £* or the support for the i-th variable in supp(£2*) is
isolated if and only if w;; = 0 for all j # i. We have the following results on

the asymptotic distribution of D,.

Theorem 1. Under conditions (C1)-(C2) and Assumptions (D1) and (D2)
in the supplemental file, if supp(§2*) has k isolated variables where phj& k/p=

8,0 < B <1, then under the null Hf,
pr{Dy, — 4logp +log(log p) < t} — exp{—exp(—1/2)/\/(2y7)}
where v = (1 — */2)72.

16



Interestingly, the asymptotic distribution of D, depends on k, the
number of isolated nodes in £*. From Theorem [1} if the number of isolated
nodes k is of a smaller order of the number of variables p as k = o(p), then

A

D,, converges to the following Gumbel distribution

pr{D, —4logp +log(logp) < t} = exp{—exp(—t/2)/y/(2m)}.  (3.1)
Example 1 and Example 2 below further illustrate Theorem [I]

Example 1. Assume that £* has a Toeplitz structure € = {(,7), |t — j| <
So}. The number of the isolated node in £* is 0 and hence v = 1. Then
under the null Hy : & = &, we have pr{D, — 4logp + log(logp) < t} —

exp{— exp(—t/2)/,/(2m)}. The limiting distribution of D,, is Gumbel(— log 2, 2).

Example 2. Assume that £* follows a factor model structure with 2% =
I, + wyu?, where u; = (1,1,1,0,...,0) € RP. The limiting distribution of
D, satisfies pr{D,, — 4logp + log(logp) < t} — exp{— exp(—t/2)/,/(87)}.

In this case, the limiting distribution of D,, is Gumbel(— log 8, 2).

As discussed in Section , D,, cannot detect the alternative hypothesis
under which £* C & or supp(2*) C supp(p), that is, when & # £* but &
includes the true network structure £* or supp(€2*) # supp(£2y) but supp(£2o)
includes supp(2*). In fact, for testing Hy : £ = & vs Hy : £* C &y, which
is equivalent to H : supp(§2*) = supp(Qp) vs Hj : supp(2*) C supp(Qo),

17



it H, is true or H; is true, the the test statistic D,, converges to the same
distribution as the test statistic under Hy or Hj. The following Theorem

states this fact.

Theorem 2. Under the alternative hypothesis Hj : supp(§¥*) C supp(§2o)
when supp(Qy) satisfies the sparsity assumption (C2) and Assumptions (D1)
and (D2) in the supplemental file, the test statistic D,, converges to the same

limiting distribution specified in Theorem 1]

The results in Theorem [2 imply that the test based on D, is not
consistent for alternatives defined by Hy : £ C &. We now show that
the modified test D,, is universally consistent for all types of alternatives
when the tuning parameters C), and 9,, involved in its definition are chosen
appropriately. A strategy is to choose these two parameters such that D,
and D,, have the same asymptotic distribution under Hy, while the test based
on D,, can reject network structures satisfying £* = &, with probability one
when & C &. Under Hy where £ = &, w§{'?0 (j =1,...,s;) are all non-
zeros. However, if £ C & but £* # &, wgf?o (j=1,...,s;) are supposed to
be non-zeros because of the specification of £, but some of them will be
estimated as zeros (in asymptotic sense). Based on the asymptotic normality
in , we have @(f)o = wl-(f?o + O,(1/4/n). This result holds when the true

value of wff?o is zero or non-zero. If wg?o # 0, then (212({)0 / aff?o = O,(v/n)

18



where aff?o is defined in equation 1) If wg’)o = 0, then @z(f)o / aﬁ?o = 0,(1).
Based on these observations, we may choose C,, = C'y/log(p) for some C' > 0
and 6,, = \/log(n) so that D,, and ﬁn have the same asymptotic distribution

under Hy. The details can be found in the proof of the following theorem.

Theorem 3. Under conditions (C1)-(C2), and Assumptions (D1) and
(D2) in the supplemental file, if supp(2*) has k isolated variables where
plgglo k/p =B for some 0 < [ <1, 6, = /log(n) and C,, = Cy/log(p) for

some constant C' > 0, then under the null H,

pr{D,, —4logp +log(logp) < t} — exp{—exp(~t/2)/y/(2ym)},
where v = (1 — 32/2)72

Based on Theorem , we can use the same cutoff as that used for D,
to construct the test. If the tuning parameters §,, and C,, are selected at
the levels specified by Theorem , the test D, can maintain the type I
error asymptotically. Furthermore, the following Theorem shows that D,
is universally consistent for all types of fixed alternatives. In particular, it

rejects any network structure in Hy satisfying & 2 £* with probability one.

Theorem 4. If we choose 6, = y/log(n) and C,, = C,/log(p) for some
C > max; ; 4(wjo%; +1) /(05,05 +2077), under conditions (C1)-(C2) and As-

i jj i jj

sumptions (D1) and (D2) in the supplemental file, the consistency-empowered

19



test based on D,, is universally consistent for all types of fized alternatives.

By comparing Theorems [2] and [4] we observe that the modified test
based on D,, is more powerful than the test based on ﬁn in the sense that
D,, is consistent for alternatives in Hy but D,, is not. More importantly,
the results in Theorem 4] formally establish that the proposed test D, is
universally consistent for all types of fixed alternatives. Theorem {| provides
us some guidelines on the choice of C'. The magnitude of C' could be chosen
by max; ; 4(0i6;; + 1)/(6:65; + 267;) where @;; and &5 are, respectively,
estimators of w}; and o7;. We propose a data-driven procedure for selecting
the tuning parameters d,, and C,,. Due to space constraints, the detailed
procedure and a small simulation study are provided in Section 7 of the

supplementary material.

4. Simulation Studies

4.1 Numerical performance of the test statistic D,

We perform numerical study to evaluate the finite sample performance of
the proposed test statistic D,, in terms of its size and power properties. We
generate n i.i.d. multivariate normally distributed p-dimensional random
vectors with mean vector 0 and covariance matrix X* with its corresponding

graph £* admitting a banded structure such that £* = {(7,7) : |i — j| < so}-

20



4.1 Numerical performance of the test statistic D,

In Section 6.1 of the supplemental file, we present simulation studies to
assess the robustness of the proposed methods with respect to the normality
assumption. Our findings indicate that the proposed tests perform reasonably
well under non-Gaussian conditions.

Let Q" = 27! = (wj;)pxp be the precision matrix. Because different
precision matrices can correspond to the same underlying graph, we specify
two precision matrices to examine the performance of the proposed test
statistic. For the first precision matrix, we set it as banded with its non-zero
components decaying at an exponential rate away from its diagonals. More
specifically, we set w}; = 0.671=7l for |i — j| < s and w;; = 0 otherwise.
For the other precision matrix, we again set it as banded with its non-zero
components decaying at the polynomial rate, that is, w;; = (1+1]i—yg))2
for |i — j| < so and wj; = 0 otherwise. We consider two different sparsity
levels as sg = 4 or 6. To evaluate the performance of the proposed tests
under various scenarios for £2*, we also conduct simulation studies on data
with both a sparse and random underlying precision matrix, as well as a
precision matrix with small signals. These studies are detailed in Section
6.2 of the supplemental material.

To evaluate the empirical size and power of the proposed test, we consider

various specifications of &, the structure specified in the null hypothesis. For
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4.1 Numerical performance of the test statistic D,

evaluating the empirical size, we consider & = £*. To evaluate the power of
the proposed test, we consider the following four different specifications of
&o-

1) (Isolated structure) Set & = &1 = {(i,7) : ¢ = j}. All the nodes are
isolated.

2) (Nested structure) Set & = Eyo = {(4,7) : |i — 7| < 3}. This structure is
nested in the true network structure £*.

3) (1-diff: structure with edges to node 1 different) Set & = & U & 3, where
& = &* on the set of edges {(4,7),4,j # 1}, and & 3 = {(1,3),(1,7), (1,8),(1,9)}
are edges connected with node 1.

4) (2-diff: structure with edges to 2 nodes different) Set & = &5 U&y 4, where
&y = &£* on the set of edges {(4,j), 4,5 # 1,2}, and &4 = {(1,3), (1,7),(1,8),
(1,9),(2,4),(2,9),(2,12)} are edges connected to nodes 1 and 2.

To understand the effect of sample size and data dimension, we choose
two different sample sizes n = 300 and n = 1000. For each sample size, data
dimension is changed by setting p/n at three different values 0.5, 1, and 2.
Because the true precision matrix 2" specified above satisfies Conditions
(C1)-(C2), we applied the results in Theorem [Il More specifically, we
rejected the hypothesis if the test statistic values D,, are greater than the

4log p — log(log p) + Gumbel g5(— log 27, 2), where Gumbel g5(— log 27, 2) is
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4.1 Numerical performance of the test statistic D,

the 95 % quantile value of the Gumbel distribution with location parameter
—log 27 and scale parameter 2. Simulation results are reported based on
500 simulation replications.

Table [I] reports the empirical sizes and power of the proposed test
statistic D,, for testing different structures & specified in the above (1)-(4).
It can be seen that our proposed test controls type I error rate well at the
nominal level of 0.05 under various settings. The proposed test statistic is
consistent as the power of the tests are one in many scenarios. Based on
the pattern of empirical power, we see that the power of the proposed test
D,, increases as n increases or p decreases. Table [1] also shows that sparsity
level has some impact on the power of the test statistic, the increasing of s
leads to a decreasing power.

Table 2] summarizes the empirical size and power of the proposed test
D,, under the polynomial rate decay structure. We see that its patterns are
similar to that in Table [I| where the empirical power increases as sample size
increases, and decreases as p or sg increases. We observe that in this case the
power is not as high as those in Table [T] where the precision matrix decays
at an exponential rate in Table (1| This is also something expected because

the signals of the precision matrix in Table [2| is weaker than the signals in

the previous example. For example, when sq = 4, the non-zeros in the first
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4.1 Numerical performance of the test statistic D,

Table 1: Type I error and power of the proposed test statistic D,, under
different alternatives when the precision matrix has banded structure and

decays at an exponential rate.

24

Empirical Power of the Test D,
Size Isolated Nested 1-diff 2-diff
0.034 1.000 1.000  1.000 1.000
0.042 1.000 1.000  1.000 1.000
0.030 1.000 1.000  1.000 1.000
0.038 1.000 1.000  1.000 1.000
0.032 1.000 1.000  1.000 1.000
0.044 1.000 1.000  1.000 1.000
0.026 1.000 0.824  1.000 1.000
0.032 1.000 0.766  1.000 1.000
0.028 1.000 0.648  1.000 1.000
0.032 1.000 1.000  1.000 1.000
0.046 1.000 1.000  1.000 1.000
0.036 1.000 1.000  1.000 1.000



4.1 Numerical performance of the test statistic D,

Table 2: Type I error rate and power of the proposed test statistic D,, under
different alternatives where the precision matrix has banded structure and

decays at a polynomial rate.
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Empirical Power of the Test D,
Size Isolated Nested 1-diff 2-diff
0.022 1.000 0.034 0.348 0.468
0.034 1.000 0.038 0.226 0.336
0.024 1.000 0.024 0.170 0.248
0.034 1.000 0.274  0.998 1.000
0.046 1.000 0.210 0.994 1.000
0.038 1.000 0.204 0.988 1.000
0.032 1.000 0.034 0.320 0.474
0.030 1.000 0.028 0.248 0.328
0.024 1.000 0.024 0.164 0.224
0.046 1.000 0.130  0.992 1.000
0.032 1.000 0.106  0.994 1.000
0.024 1.000 0.084 0.994 1.000



4.2 Numerical comparison of ﬁn and D,

column of polynomial decayed precision matrix Q* is (1,0.6,0.36,0.216)"
while the first column non-zeros are (1,0.25,0.11,0.06)" in the exponentially

decayed *.

4.2 Numerical comparison of ﬁn and Dn

In this simulation study, we evaluate the finite sample performance of D,, and
D,, in terms of empirical sizes and powers in detecting the nested network
and the included network structures. Similar to Simulation Settings I, we

generate n IID multivariate normally distributed p-dimensional random

vectors with mean vector 0 and covariance matrix ¥*. The corresponding

*
ij

precision matrix is ° = 3* 7" = (w};),x, where w; = 0.6 for |i—j| < s
and w;; = 0 otherwise. For evaluating the empirical sizes, we consider
& = &*. We consider the following two specified structures hypotheses in
the simulation

5) (Nested structure) Set & = &5 = {(7,7) : [i—j| < so—1}. The structure
&y is nested in the true structure £*.

6) (Included structure) Set & = &y = {(4,74) : |1 —j| < so + 1}. The
structure & includes in the true structure £*.

Table [3] summarizes the empirical sizes and powers of the tests based

on ﬁn and D,,. Table |3 demonstrates both tests have the similar power
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4.2 Numerical comparison of ﬁn and D,

in rejecting the nested structure and control the type 1 error rate. The
modified test statistics version D, has the ability to reject the pre-specified
network structures that include the true network structure, while the test
statistic D, loses power for included networks. We chose 8, = /log(n) and
C, = 0.05 for the test statistics D,, in our simulation studies. Tables 6
and 7 in the supplemental file demonstrate that the proposed test is robust
to different choices of C,; the empirical size and power remain consistent
across various values of C,, when §, is fixed. Additionally, the proposed
tests exhibit similar empirical sizes and power for k = 2,4 across all choices
of C,. This simulation study demonstrates that the proposed tests perform
reasonably well with the suggested order of §,, = /logn.

To illustrate the computational complexity of D, F igure 2 presents the
average running time in seconds for D, versus the data dimension, with p
on the x-axis and the square root of the running time on the y-axis. We
observe a linear relationship between p and the square root of the running
time, indicating that the computational time is approximately of the order

p? with respect to the data dimension.
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Figure 2: The square root of the running time for the test statistic D,, versus the
data dimension for different combinations of n, p, and sq is shown for the following
scenarios: S1: (m,sp) = (500,4); Sa: (n,so) = (1000,4); S3: (n,s9) = (500,6);

and Sy: (n,so) = (1000, 6).

5. Real Data Analysis

We illustrate the use of the proposed test statistics for identifying the
structure of a graphical model by applying them to a correlated data
analysis. Towards this, we examined a COVID-19 dataset provided by The
New York Times (The New York Times, 2021) that is publicly available
on https://github.com/nytimes/covid-19-data. The data set includes
daily confirmed COVID-19 cases observed over 51 states of the U.S. from
January 1, 2021 to December 31, 2021. We aggregated the data on a weekly

basis such that the data contain 52 weekly confirmed cases in thousands
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Table 3: Type 1 error and empirical power of the test statistics D, and D,
for both nested and included structures
D, D,

Power Running Power Running
so n p/n Size Nested Included Time Size Nested Included Time
4 500 0.50 0.020 1.000 0.030 0.16 0.020 1.000 0.970 0.17

1.00 0.050 1.000  0.050 1.08 0.050 1.000  0.990 1.08

2.00 0.050 1.000 0.040 6.92 0.050 1.000 0.990 6.96

1000 0.50 0.030 1.000  0.040 1.18 0.030 1.000 1.000 1.19
1.00 0.030 1.000 0.020 6.62 0.030 1.000 1.000 6.64
2.000.010 1.000 0.010  59.62 0.010 1.000 1.000  59.63

6 500 0.50 0.000 0.110  0.000 0.17 0.010 0.160 0.520 0.17
1.00 0.030 0.060  0.030 1.10  0.030 0.100  0.690 1.10

2.00 0.010 0.070  0.000 6.62 0.020 0.090 0.590 6.64

1000 0.50 0.050 0.670  0.050 1.23  0.040 0.690 1.000 1.24
1.00 0.050 0.570  0.040 7.15 0.050 0.580  1.000 7.17

2.000.010 0.450 0.010  55.15 0.020 0.460 1.000  55.17
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from 51 states, which is denoted as a matrix of size 51 x 52. Our interest was
to understand how the numbers of COVID cases depend on geographical
locations. Towards this, we coded three dummy variables according to
whether a state is in the North East, West, Mid West, or the South. The

following linear regression was postulated
E(yij|x;) = Bo + Brxin + Batio + Pawis, (1 =1,...,51;5 =1,...,52), (5.1)

where x;; is an indicator variable whether the state is in the North East, x;5
is for the Mid West, and z;3 is for the West. Denote Y; = (yi1, .- -, Uis2)",
B = (Bo, b1, P2, 03)", Xi = 1 ® (1,251, x40, T43), where 1 = (1,...,1)" is a
52 x 1 matrix, ® is the Kronecker product, and X is a 52 x 4 matrix. Since
the components of Y; are correlated, we applied the method of generalized
estimation equations (Liang & Zeger, 1986) for estimating 3 by incorporating

the correlation structure of Y;. That is, we estimate 8 by solving

S X VY- XiB) —0, (5:2)
i=1
where V' is the so-called working covariance matrix. It is known that
correct specification of V' improves the estimation efficiency of the resulting
estimator.

To choose an appropriate graph corresponding to Q = V! first,

we estimate the underlying graph £* of Y using the TIGER approach
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(Liu and Wang, [2017) and the GLASSO method (Friedman et al., 2019).
The heatmaps of these estimated graphs are provided in Section 9 of the
supplemental file. Both methods suggest that either a banded structure or a
block diagonal structure may be reasonable for this dataset. To this end, we
formally conducted the proposed tests to determine if one of these specified
graphical structures fits the data well.

a) (Isolated structure) Set & = &1 = {(4,7),i = j}.

b) (Banded structure with bandwidth 3, denoted as Band(3)) Set & =
o2 = {(i,7), li — jl < 3}.

c) (Diagonal blocks structure, denoted as Block(4)) Set & = &3, where
o3 =U {(4,7),4(k —1)+1<4,5 <4(k—1)+4}.

We applied our proposed methods to test the above hypothetical struc-
tures. Since the number of isolated nodes of the true structure is unknown,
we chose v = 1 for the limiting distribution in Theorem [I| so that our test
is conservative because we only reject the null hypothesis if our test statis-
tic value is large enough. The test statistic values and its corresponding
p-values (in parentheses) for testing Isolated, Band(3), and Block(4) are,
respectively, 49.57(< 0.0001), 17.61(0.08), and 16.32(0.14). Therefore we
reject the null hypothesis that the true structure is the Isolated structure

with 95% confidence. However, we cannot reject the null hypothesis that
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the true structure is the Band(3) network or the Block(4) network at the

95% confidence level.

Table 4: Estimated coefficients parameters under three different pre-specified
structures, standard errors of the estimated parameters in the parentheses,

and * denotes p-value less than 0.05.

Coefficients  Isolated Band(3) Block(4)

By -0.78 (1.59)  0.64 (0.73) -0.32 (0.25)
Ba -0.68 (1.30)  1.01 (0.80) -0.01 (0.32)
Bs -0.85 (1.47) 1.91 (0.66)*  0.23 (0.24)

We then used these three pre-specified structures to obtain the estimating
coefficients for the model . Table 4] reports the estimated results for
model , including the estimated coefficients, their standard errors, and
their statistical significance (p-value less than 0.05). When using the pre-
specified Band(3) structure, there are significant differences in COVID cases
between the West and the South. But, under the Isolated structure and
Block(4) structure, all the coefficients /31, B2 and (3 are not significant which
indicates that there is no significant difference in COVID cases among the

four regions in the U.S. We also notice that, the estimated standard errors
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under the Band(3) and Block(4) pre-specified network are much smaller
the Isolated structure. These results are consistent with our proposed test
statistics since they suggest that the Block(4) and Band(3) structure fit the
data well, but not the Isolated structure. This suggests that the proposed
test statistics can be used as a powerful tool to identify a good pre-specified
structure for further analysis.

Finally, we applied a bootstrap method to further evaluate the standard
errors of coefficient estimators, and compared the efficiency gain in terms of
the standard errors when using different pre-specified network structures.
More specifically, we subsampled 40 states from 51 states without replace-
ment for 100 times. At each time we used subsampled data in the GEE
equation to estimate the coefficients. Note that here to increase the
stability of the procedure, we reuse the estimated precision matrix V!
based on the data from all 51 states. At the ¢-th replication, we denote
the corresponding standard errors of each coefficient by (Sd;;, Sda;, Sds.;).
To evaluate the variability of standard errors from the subsampling pro-
cess, we then calculate the corresponding means and standard deviations

of (Sdl,ia Sdg’i, Sdgﬂ'), for 1 = ]_, cee ,100 as AVEJ = 211201 de/lOO, SDJ =

\/{ 12 (Sd; s — AVE;)?/100} for j = 1,2,3.

Figure [3| shows the mean and standard deviation of the coefficients
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Figure 3: Average (a) and standard error (b) of absolute prediction errors

of three pre-specified graphic structures: Isolated, Band(3), and Block(4).

obtained from the above subsampling procedure. Both panels 2(a) and 2(b)
of the figure demonstrate that the standard error obtained from the pre-
specified Block(4) structure is the smallest, followed by Band(3), and Isolated
network. The result again agrees with our test statistics obtained and
confirms that choosing a good pre-specified graphical structure is essential
for efficiency gain when using the GEE method. Therefore, the proposed

test statistics can help to select a reliable pre-specified graphic structure.

6. Discussion

In this paper, we have developed new methods for testing pre-specified graphs

that are available as prior information in some applications. However, in
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situations where a pre-specified graph is not available, there may be interest
in determining whether a certain family of graphical structures, indexed
by certain parameters, is appropriate for the observed data. To address
this, we have extended our method to assess the following goodness-of-fit
hypothesis: Hy: E* € E(y) vs. Hy: E & E(7y), where & () represents
a family of graphical structures indexed by parameters ~, and 7 is unknown.
For example, & () could represent a banded structure with an unknown
bandwidth ~. In this framework, it is not necessary to specify a single graph
structure; instead, one only needs to specify a family of graphical structures.

This extension is discussed in Section 8 of the supplemental file.

Supplementary Material

All technical proofs, examples of structures satisfying condition (C1),
additional simulation results, a data-driven tuning parameter selection
procedure, and further details on the real data analysis are provided
in the supplementary materials. The source codes and real data sets
are included in a Github link: https://github.com/leminhthien2011/

UniversalConsistentTestforGraphsofGGM.
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