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Abstract:

The Gaussian graphical model is routinely employed to model the joint distri-

bution of multiple random variables. The graph it induces is not only useful for

describing the relationship between these variables but also critical for improv-

ing statistical estimation precision. In high-dimensional data analysis, despite

abundant literature on estimating this graph structure, tests for the adequacy of

its specification at a global level are severely underdeveloped. To make progress,

this paper proposes novel goodness-of-fit tests that are computationally easy and

theoretically tractable. The first contribution of this paper is the development of

a new direct plug-in test statistic. We show that its asymptotic distribution under

the null follows a Gumbel distribution with a location parameter depending on

the underlying true graph structure. The direct test, however, has no power for

detecting structures including the truth but not equal. Our second contribution is

the development of a novel consistency-empowered test statistic that gains power

1

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0385



by, interestingly, amplifying the noise incurred in estimation. The improved test is

shown to be universally consistent for all fixed alternatives. Extensive simulation

illustrates that the proposed test procedures have the right size under the null,

and is powerful under alternatives. As an application, we apply the tests to the

analysis of a COVID-19 data set, demonstrating that our test can serve as a

valuable tool in choosing a graph structure to improve estimation efficiency.

Key words and phrases: Dependence, Gaussian graphical model, Goodness-of-fit

test, Gumbel distribution, High-dimensional data

1. Introduction

The Gaussian graphical model is commonly used for describing the joint

distribution of multiple random variables (Lauritzen, 1996). The graph

structure induced by this model not only delineates the conditional depen-

dence between these variables, but also is critical for improving estimation

precision. In estimating regression parameters in generalized estimating

equations (GEE) for example, Zhou and Song (2016) found that incorporat-

ing a suitable dependence structure of covariates can improve estimation

efficiency, sometimes substantially. In another example, Li and Li (2008)

showed that a correctly specified dependence structure is useful to improve

estimation efficiency in regularized estimation and variable selection. On the

other hand however, a mis-specified dependence structure affects efficiency
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negatively (Zhou and Song, 2016). Therefore, specifying an appropriate

graph is critical for efficiently estimating a parameter of interest.

In practice, the underlying graph structure of a given dataset may be

provided by existing studies or prior knowledge or assumed a priori. In

genomic studies (Li and Li, 2008; Goeman and Mansmann, 2008), rich

biological knowledge is available due to intensive biomedical studies, espe-

cially for complex diseases. Existing knowledge and information are publicly

available through databases such as the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO). The ontology terms of GO are

structured as a graph, with terms as nodes and the relations between them

as edges. Details on using GO to create graphical structures can be found

on the website https://geneontology.org/docs/ontology-relations/.

Gene pathway information can be converted into graphical structures using

R packages such as graphite (Sales et al., 2012). Therefore, a natural

question is whether these prior graphs are adequate to describe the data from

a statistical perspective. This paper aims to develop novel goodness-of-fit

tests to address this challenge, in the context of high-dimensional data in

which dimensionality can exceed the sample size.

There is abundant literature focusing on estimating the underlying graph

in the Gaussian graphical model. For fixed-dimensional data, Edwards (2000)
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studied this problem by using a model selection approach that employs

stepwise likelihood ratio tests, while Drton and Perlman (2004) developed a

multiple testing procedure using partial correlations. For high-dimensional

data, a popular approach is to employ a penalized likelihood approach, with

a penalty explicitly formulated to encourage the sparsity of the resulting

precision matrix that induces the underlying dependence structure. On

this, we refer to Yuan and Lin (2007); Friedman et al. (2007); Cai et al.

(2011); Liu and Wang (2017); Eftekhari et al. (2021), among many others.

On testing the graphical structure itself, there exist methods for testing

elements of the graphical structure. For example, Liu (2013) proposed

a bias-corrected estimator of the precision matrix and applied it to test

individual components of the precision matrix. Similar tests for individual

components in a precision matrix are also discussed in Janková and van de

Geer (2017); Ren et al. (2015); Ning and Liu (2017). There are also some

existing global tests for precision matrices taking limited form, for example,

in Xia et al. (2015) and Cheng et al. (2017). However, there is a lack of

general global specification tests for precision matrices considered in this

paper for testing the entire graph structure.

Our work is also related to a growing body of literature on testing

specific covariance structures for high-dimensional data. In this vein, Chen
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et al. (2010) considered testing sphericity and identity structures, Qiu

and Chen (2012) and Wang et al. (2023) developed tests for bandedness

structures, Zhong et al. (2017) developed tests for some parameterized

covariance structures such as autoregressive and moving average structures,

Zheng et al. (2019) considered tests on linear structures, and Guo and Tang

(2020) considered specification tests for covariance matrices with nuisance

parameters in regression models. These tests are not applicable to test graph

structures. Moreover, compared with the above tests which usually involve

the estimation of a finite number of nuisance parameters, one significant

challenge associated with testing the graph structure in this paper is the

need to estimate a high dimensional nuisance parameter.

The main novelty of this paper lies in a new goodness-of-fit test that

explores the difference between a graph structure specified under the null and

the true underlying graph structure, based on an appropriate maximum norm

distance. We overcome the challenge of estimating the high dimensional

nuisance parameter by employing a simple and direct plug-in method,

thus bypassing the need of choosing tuning parameters employed in many

regularization methods in the literature for estimating a graph. Despite

its simplicity, the direct plug-in test is not universally consistent. It has a

limitation in that it is not consistent whenever the graph under the null
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encompasses but is not equal to the true graph. To tackle this, we develop

a novel consistency-empowered test statistic by amplifying the noise, in

the sense that small stochastic noises as a result of estimating zero entries

in the graph will be enlarged. This modified test statistic is shown to be

universally consistent for testing all types of graphs.

The paper is organized as follows. In Section 2, we introduce basic

setting and our proposed test statistic. Section 3 summarizes asymptotic

distributions of the proposed test statistic, and the universally consistent of

the proposed test. Simulation studies are presented in Section 4. Section 5

provides an application of the proposed methods to a COVID-19 dataset

in selecting appropriate graphical structures for improving the estimation

efficiency. All technical proofs, additional simulation results, and a detailed

procedure for selecting data-driven tuning parameters are provided in the

supplementary material.

2. Setting and Proposed Test Statistics

Let X1, . . . , Xn be independent and identically distributed realizations of a p-

dimensional random vector X with mean µ and covariance matrix Σ∗ = (σ∗
ij).

The corresponding precision matrix is denoted as Ω∗ = (ω∗
ij) = Σ∗−1. It is

known that Ω∗ naturally induces a graph denoted as G∗ = (V , E∗), where

6

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0385



V = {1, . . . , p} is the set of nodes and E∗ = {(i, j) : ω∗
ij ̸= 0} ⊂ V × V

is the set of edges consisting of node pairs whose corresponding entries in

Ω∗ are not zero. The absence of a pair of nodes in E∗ indicates that the

corresponding variables are conditionally independent given all the others

when X is normally distributed. (Lauritzen, 1996).

While graph E∗ is rarely known, in practice it can be estimated via the

penalized likelihood methods discussed in the Introduction or assumed a

priori. For the latter, when the dimension p is high, a convenient assumption

popular in the literature is that Ω∗ admits some simple structure such as a

banding or a block diagonal structure. We will denote the corresponding

graph under the assumption as E0 and the main aim of this paper is to

ascertain whether this assumption is valid. That is, we consider the following

hypothesis

H0 : E∗ = E0 vs. H1 : E∗ ̸= E0,

where in our high-dimensional setup, E0 usually has a cardinality much

smaller than p2. If X is normally distributed, the above hypothesis corre-

sponds to a hypothesis for testing the support of the precision matrix Ω∗,

where its non-zero elements are completely unspecified. Specifically, the

hypothesis is:

H∗
0 : supp(Ω∗) = supp(Ω0) vs. H∗

1 : supp(Ω∗) ̸= supp(Ω0),
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where supp(Ω∗) = {(i, j) : ω∗
ij ̸= 0} denotes the support of Ω∗ (i.e., the

indices of its non-zero elements), and Ω0 = (wij,0) is a p × p precision matrix

of X that is compatible with E0 under the null hypothesis. This compatibility

means that if (i, j) ̸∈ E0, then wij,0 = 0. The number of the unknown

parameters under the null is allowed to grow with p, which is drastically

different from existing tests in the literature for testing a covariance matrix

Σ∗ with its inverse under the null often specified up to a finite number of

unknown parameters (e.g.,Zhong et al. (2017); Zheng et al. (2019))

Our main idea is that if E0 is correctly specified, Ω0 will be equal to Ω∗;

that is, Σ∗Ω0 − Ip = 0p, where Ip is the p-dimensional identity matrix and

0p is a (p × p)-dimensional matrix with entries all being zero. That is, if

E0 = E∗, we can write the above equation elementwise as

max
1≤i,j≤p

|eT
j Σ∗wi,0 − eT

j ei| = 0, (2.1)

where Ω0 = (w1,0, . . . , wp,0) by denoting wi,0 as the i-th column of Ω0 and

Ip = (e1, . . . , ep) with ei being the i-th basis vector. On the other hand, if

E0 is not correctly specified in the sense that E0 ̸= E∗, the maximum element

of Σ∗Ω0 − Ip may be different from zero.

Thus, to assess whether H0 (or H∗
0 ) is true is equivalent to check (2.1).

If Ω0 and so wi,0 is known in advance, an estimator of (eT
j Σ∗wi,0 − eT

j ei)2

may be obtained by replacing Σ∗ by the sample covariance matrix Sn =
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∑n
i=1(Xi − X̄)(Xi − X̄)T/(n − 1) with X̄ = (X̄1, · · · , X̄p)T = ∑n

i=1 Xi/n.

Then, we may use the following statistic Dn to distinguish H0 and H1,

Dn = max
1≤i,j≤p

D2
ij, D2

ij := (eT
j Snwi,0 − eT

j ei)2/θij,0,

where θij,0 = var(eT
j Snwi,0 − eT

j ei). Note that the statistic Dn depends on

the plug-in estimators of eT
j Σ∗wi,0, which can be expressed as

eT
j Σ∗wi,0 = eT

j Σ∗Bi,0wi1,0,

where wi1,0 represents the nonzero sub-vectors of wi,0, and Bi,0 is a p × si

matrix with elements equal to either 0 or 1, such that Bi,0wi1,0 = wi,0. It is

important to note that eT
j Σ∗Bi,0 and wi1,0 are both vectors of dimension

si. Therefore, using the sample covariance Sn to estimate these two vectors

remains reasonable as long as si satisfies condition (C2) below. Assume

X = ΓTZ + µ, where Γ is an m × p matrix and Z = (Z1, . . . , Zm)T follows

the multivariate model described in Assumption (D1) of the supplemental

material (Bai and Saranadasa, 1996; Chen et al., 2010). This model specifies

that E(Z) = 0, var(Z) = Im, and E(Z4
i ) = 3 + κ. This multivariate model

generalizes the Gaussian distribution. The leading-order term of θij,0 is

provided in the following lemma.
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Lemma 1. Under Assumption (D1) in the supplemental file, we have

θij,0 = var(eT
j Snwi,0 − eT

j ei) =


ω∗

iiσ
∗
jj/n, for 1 ≤ i ̸= j ≤ p

(ω∗
iiσ

∗
ii + 1 + κ)/n, for 1 ≤ i = j ≤ p

In particular, if the normality assumptions hold, κ = 0 in the above expres-

sion.

However, Dn is not directly applicable because several quantities involved

are unknown. Noting that under the null hypothesis, Ω0 is a sparse matrix,

we denote the number of nonzero entries in the jth column of Ω0 as sj,

where max1≤j≤p sj = o(
√

n) is a typical assumption made in estimating high-

dimensional precision matrices (Cai et al., 2011; Liu and Wang, 2017). The

precision matrix Ω0 can be estimated in the following column-by-column

fashion. Denote Σ0 = Ω−1
0 . By definition, Σ0wi,0 = Σ0Bi,0wi1,0 = ei

and then BT
i,0Σ0Bi,0wi1,0 = BT

i,0ei. Thus, wi1,0 = (BT
i,0Σ0Bi,0)−1BT

i,0ei.

Under H0, BT
i,0X1, . . . , BT

i,0Xn are si-dimensional independent and identically

distributed random vectors with covariance BT
i,0Σ0Bi,0. Because si are

of smaller order of
√

n, BT
i,0Σ0Bi,0 can be consistently estimated by the

sample covariance of BT
i,0X1, · · · , BT

i,0Xn given by BT
i,0SnBi,0 under H0.

Then, ŵi1,0 = (BT
i,0SnBi,0)−1BT

i,0ei and ŵi,0 = Bi,0ŵi1,0 is a consistent

estimator of wi,0 under H0. By assembling ŵi,0 as Ω̂0, we have a consistent

estimator of Ω0. The technical detail of the preceding argument can be
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found in Le and Zhong (2022). However, the estimated precision matrix

Ω̂0 = (ŵ1,0, · · · , ŵp,0) may not be symmetric or positive definite. To address

this, one can use the perturbation method proposed by Liu and Luo (2015)

to ensure that Ω̂0 is positive definite, and then symmetrize it by averaging

it with its transpose: (Ω̂0 + Ω̂
T

0 )/2. We conducted a simulation study to

compare our proposed test using this estimator Ω̂0 with its symmetrized

and positive definite version. The results of this comparison are presented

in Table 5 of the supplemental file.

Based on Lemma 1, we can then estimate θij,0 as θ̂ij,0 = {ω̂ii,0sjj + (1 +

κ̂)δij}/n where ω̂ii,0 is the (i, i)th element of Ω̂0, sjj is the (j, j)th element

of matrix Sn, κ̂ = ∑n
i=1 s−4

jj (Xij − X̄i)4/(np), and δij = 1 if i ̸= j and δij = 0

if i = j. If X is normally distributed, we set κ̂ = 0. Replacing the unknown

parameters by their estimators, we construct a test statistic D̂n using the

plug-in estimators ŵi,0,

D̂n = max
1≤i,j≤p

D̂2
ij,

with D̂2
ij = (eT

j Snŵi,0 − eT
j ei)2/θ̂ij,0.

The above test statistic D̂n is free of tuning and extremely easy to

calculate for practical use. These advantages should be compared to those

penalized likelihood methods, such as GLASSO (Friedman et al., 2007), for

which the choice of tuning parameters is crucial for the performance of the
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resulting estimator. In Section 6.3 of the supplemental file, we compare

D̂n using our proposed estimator ŵi,0 with results based on GLASSO. Our

proposed method shows better performance in terms of empirical sizes,

power, and computational efficiency. The time complexity of D̂n with

respect to p is max(s3
0p, p2), where s3

0p represents the time complexity to

compute all D̂ij, and p2 is the time complexity to compute the maximum

operator. See Figure 2 in the simulation study for details on the relationship

between estimated computational time and data dimension.

Despite the above advantages, D̂n does not have much power in rejecting

E0 if E∗ ⊊ E0; that is, when E∗ is included in E0 but they are not equal.

For notational convenience, we collect all the included structures in the

alternatives H1 as H2 : E∗ ⊊ E0. Clearly, H2 is a subset of H1 and we call

the alternatives in H2 included structures. An example is given in Figure

1 where D̂n will have no power in rejecting the E0 in (b), while it does for

rejecting the E0 in (c) or (d). For (b), this is simply because under the null

hypothesis that E = E0, any reasonable estimator of Ω0 of Ω∗ denoted as

Ω̂0, including the one discussed above, will asymptotically converge to Ω∗,

making Σ∗Ω̂0 − Ip very small stochastically.
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2.1 A novel consistency-empowered test statistic
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Figure 1: Different dependence structures: (a) the true graph E∗; (b) E0

that satisfies E∗ ⊊ E0 (included structure); (c) E0 that satisfies E0 ⊊ E∗; (d)

E0 that is not nested within or outside E∗.

2.1 A novel consistency-empowered test statistic

When E∗ ⊊ E0 as illustrated in Figure 1, we know that its compatible

estimator Ω̂0 will be close to Ω∗ loosely speaking. Thus, if (i, j) ∈ E0 but

(i, j) ̸∈ E∗, ω̂ij,0 will be close to zero. For the test to have power, we need to

offset the effect of those small estimates. Our idea is to augment those small

estimates with a constant that is just large enough for us to reject the null.

Thus, in a certain sense, we are amplifying those small noises as a means

to empower the consistency of a new test statistic. Of course, how close is

close to zero for a small noise should be gauged against its standard error,

which motivates the development of the following consistency-empowered

test statistic.

Let ω̂
(j)
i1,0 be the jth component of ŵi1,0 with the associated standard

error σ
(j)
i1,0, where ŵi1,0 is defined in the previous section. Let σ̂

(j)
i1,0 be a
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2.1 A novel consistency-empowered test statistic

consistent estimator of σ
(j)
i1,0 which will be defined shortly. Define w̃i1,0 =

(ω̃(1)
i1,0, . . . , ω̃

(si)
i1,0)T where

w̃(j)
i1,0 = ŵ(j)

i1,0 + ∆(j)
i1 ,

with ∆(j)
i1 = CnI(|ω̂(j)

i1,0|/σ̂
(j)
i1,0 ≤ δn). Here Cn ̸= 0 and δn are tuning parame-

ters which will be discussed in the next section. Clearly, what this procedure

does is to add a constant to those elements of ŵi1,0 that are stochastically

small. Or put differently, it simply amplifies the noise, as opposed to the

usual notion of filtering out noises for better estimation accuracy.

Recall the definition of Bi,0 in the last section. Let w̃i,0 = Bi,0w̃i1,0

and ∆i = Bi,0∆i1 where ∆i1 = (∆(1)
i1 , . . . , ∆(si)

i1 )T. Our proposed consistency-

empowered test statistic is then

D̃n = max
1≤i,j≤p

(eT
j Snw̃i,0 − eT

j ei)2/θ̂ij,0 = max
1≤i,j≤p

D̃2
ij,

where D̃2
ij = (eT

j Snw̃i,0 − eT
j ei)2/θ̂ij,0. The consistency-empowered estimator

w̃(j)
i1,0 aims to ensure that the non-zero components w(j)

i1,0 are indeed estimated

by some non-zero estimators. Interestingly, the form of the consistency-

empowered estimator w̃(j)
i1,0 is an opposite of the conventional threshold tests

(Fan, 1996), where small components under some threshold are set to zeros.

The proposed test statistic D̃n is also different from the power-enhanced test

statistic proposed by Fan et al. (2015) which includes a combination of a test
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statistic that has an asymptotically correct size and a power enhancement

component. Our proposed D̃n is not a combination of two components. We

modify the estimator ŵ(j)
i1,0 to ensure the consistency of the proposed test

for all types of null hypotheses. Having said this, we point out that the test

statistic D̂n without consistency empowerment is powerless to test those

null hypotheses in which the true graph is nested within the graph of the

null, regardless of the sample size.

We now discuss a consistent estimator of σ
(j)
i1,0 required in ∆(j)

i1 . Any

non-zero element ω̂
(j)
i1,0 of ŵi1,0 corresponds to ω̂ik,0 (k = 1, . . . , p), (i, k)-th

component of Ω̂0, such that ω̂
(j)
i1,0 = ω̂ik,0. Le and Zhong (2022) established

that ω̂
(j)
i1,0 is asymptotically normal, in the sense that

√
n(ω̂(j)

i1,0 − ω
(j)
i1,0) =

√
n(ω̂ik,0 − ωik,0) → N(0, hik) (2.2)

in distribution, where hik = ω∗
iiω

∗
kk + ω∗

ik. Thus, a consistent estimator of

σ
(j)
i1,0 is simply σ̂

(j)
i1,0 =

√
(ω̂ii,0ω̂kk,0 + ω̂2

ik,0)/
√

n.

3. Main Results

In this section, we study the asymptotic distributions of D̂n and the

consistency-empowered test statistic D̃n under the general distributional as-

sumptions (D1) and (D2) specified in the supplemental material, as p → ∞

and n → ∞. Although the asymptotic results in Theorems 1-4 are applicable
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to non-Gaussian random variables X, our discussion following each theorem

will primarily focus on Gaussian graphical models.. We assume the following

regularity conditions.

(C1) There exist constants C1, C2 > 0 such that ||Σ∗||1 ≤ C1 and ||Ω∗||1 ≤

C2, where ||M||1 = max1≤j≤n
∑m

i=1 |Mij| for any m × n matrix M = (Mij);

(C2) s0

√
(log p/n) = o(1), where s0 = max1≤j≤p sj.

These two conditions are commonly employed in the literature (e.g.,

Zhou et al. (2011); Liu and Luo (2015)). Many commonly assumed precision

matrix structures such as banded and factor models satisfy Condition (C1).

See the supplementary materials for details.

A node is called isolated if it does not connect with any other nodes.

That is, node i in E∗ or the support for the i-th variable in supp(Ω∗) is

isolated if and only if ω∗
ij = 0 for all j ̸= i. We have the following results on

the asymptotic distribution of D̂n.

Theorem 1. Under conditions (C1)-(C2) and Assumptions (D1) and (D2)

in the supplemental file, if supp(Ω∗) has k isolated variables where lim
p→∞

k/p =

β, 0 ≤ β < 1, then under the null H∗
0 ,

pr{D̂n − 4 log p + log(log p) ≤ t} → exp{− exp(−t/2)/
√

(2γπ)}

where γ = (1 − β2/2)−2.

16

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0385



Interestingly, the asymptotic distribution of D̂n depends on k, the

number of isolated nodes in E∗. From Theorem 1, if the number of isolated

nodes k is of a smaller order of the number of variables p as k = o(p), then

D̂n converges to the following Gumbel distribution

pr{D̂n − 4 log p + log(log p) ≤ t} → exp{− exp(−t/2)/
√

(2π)}. (3.1)

Example 1 and Example 2 below further illustrate Theorem 1.

Example 1. Assume that E∗ has a Toeplitz structure E = {(i, j), |i − j| ≤

s0}. The number of the isolated node in E∗ is 0 and hence γ = 1. Then

under the null H0 : E0 = E , we have pr{D̂n − 4 log p + log(log p) ≤ t} →

exp{− exp(−t/2)/
√

(2π)}. The limiting distribution of D̂n is Gumbel(− log 2π, 2).

Example 2. Assume that E∗ follows a factor model structure with Ω∗ =

Ip + u1u
T
1 , where u1 = (1, 1, 1, 0, . . . , 0) ∈ Rp. The limiting distribution of

D̂n satisfies pr{D̂n − 4 log p + log(log p) ≤ t} → exp{− exp(−t/2)/
√

(8π)}.

In this case, the limiting distribution of D̂n is Gumbel(− log 8π, 2).

As discussed in Section 2.1, D̂n cannot detect the alternative hypothesis

under which E∗ ⊊ E0 or supp(Ω∗) ⊊ supp(Ω0), that is, when E0 ̸= E∗ but E0

includes the true network structure E∗ or supp(Ω∗) ̸= supp(Ω0) but supp(Ω0)

includes supp(Ω∗). In fact, for testing H0 : E∗ = E0 vs H2 : E∗ ⊊ E0, which

is equivalent to H∗
0 : supp(Ω∗) = supp(Ω0) vs H∗

2 : supp(Ω∗) ⊊ supp(Ω0),
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if H2 is true or H∗
2 is true, the the test statistic D̂n converges to the same

distribution as the test statistic under H0 or H∗
0 . The following Theorem

states this fact.

Theorem 2. Under the alternative hypothesis H∗
2 : supp(Ω∗) ⊊ supp(Ω0)

when supp(Ω0) satisfies the sparsity assumption (C2) and Assumptions (D1)

and (D2) in the supplemental file, the test statistic D̂n converges to the same

limiting distribution specified in Theorem 1.

The results in Theorem 2 imply that the test based on D̂n is not

consistent for alternatives defined by H2 : E∗ ⊊ E0. We now show that

the modified test D̃n is universally consistent for all types of alternatives

when the tuning parameters Cn and δn involved in its definition are chosen

appropriately. A strategy is to choose these two parameters such that D̃n

and D̂n have the same asymptotic distribution under H0, while the test based

on D̃n can reject network structures satisfying E∗ = E0 with probability one

when E∗ ⊊ E0. Under H0 where E = E0, ω
(j)
i1,0 (j = 1, . . . , si) are all non-

zeros. However, if E∗ ⊂ E0 but E∗ ̸= E0, ω
(j)
i1,0 (j = 1, . . . , si) are supposed to

be non-zeros because of the specification of Ω0, but some of them will be

estimated as zeros (in asymptotic sense). Based on the asymptotic normality

in (2.2), we have ω̂
(j)
i1,0 = ω

(j)
i1,0 + Op(1/

√
n). This result holds when the true

value of ω
(j)
i1,0 is zero or non-zero. If ω

(j)
i1,0 ≠ 0, then ω̂

(j)
i1,0/σ

(j)
i1,0 = Op(

√
n)
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where σ
(j)
i1,0 is defined in equation (2.2). If ω

(j)
i1,0 = 0, then ω̂

(j)
i1,0/σ

(j)
i1,0 = Op(1).

Based on these observations, we may choose Cn = C
√

log(p) for some C > 0

and δn =
√

log(n) so that D̃n and D̂n have the same asymptotic distribution

under H0. The details can be found in the proof of the following theorem.

Theorem 3. Under conditions (C1)-(C2), and Assumptions (D1) and

(D2) in the supplemental file, if supp(Ω∗) has k isolated variables where

lim
p→∞

k/p = β for some 0 ≤ β < 1, δn =
√

log(n) and Cn = C
√

log(p) for

some constant C > 0, then under the null H∗
0 ,

pr{D̃n − 4 log p + log(log p) ≤ t} → exp{− exp(−t/2)/
√

(2γπ)},

where γ = (1 − β2/2)−2.

Based on Theorem 3, we can use the same cutoff as that used for D̂n

to construct the test. If the tuning parameters δn and Cn are selected at

the levels specified by Theorem 3, the test D̃n can maintain the type I

error asymptotically. Furthermore, the following Theorem shows that D̃n

is universally consistent for all types of fixed alternatives. In particular, it

rejects any network structure in H2 satisfying E0 ⊋ E∗ with probability one.

Theorem 4. If we choose δn =
√

log(n) and Cn = C
√

log(p) for some

C > maxi,j 4(ω∗
iiσ

∗
jj +1)/(σ∗

iiσ
∗
jj +2σ∗2

ij ), under conditions (C1)-(C2) and As-

sumptions (D1) and (D2) in the supplemental file, the consistency-empowered
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test based on D̃n is universally consistent for all types of fixed alternatives.

By comparing Theorems 2 and 4, we observe that the modified test

based on D̃n is more powerful than the test based on D̂n in the sense that

D̃n is consistent for alternatives in H2 but D̂n is not. More importantly,

the results in Theorem 4 formally establish that the proposed test D̃n is

universally consistent for all types of fixed alternatives. Theorem 4 provides

us some guidelines on the choice of C. The magnitude of C could be chosen

by maxi,j 4(ω̂iiσ̂jj + 1)/(σ̂iiσ̂jj + 2σ̂2
ij) where ω̂ii and σ̂ij are, respectively,

estimators of ω∗
ii and σ∗

ii. We propose a data-driven procedure for selecting

the tuning parameters δn and Cn. Due to space constraints, the detailed

procedure and a small simulation study are provided in Section 7 of the

supplementary material.

4. Simulation Studies

4.1 Numerical performance of the test statistic D̂n

We perform numerical study to evaluate the finite sample performance of

the proposed test statistic D̂n in terms of its size and power properties. We

generate n i.i.d. multivariate normally distributed p-dimensional random

vectors with mean vector 0 and covariance matrix Σ∗ with its corresponding

graph E∗ admitting a banded structure such that E∗ = {(i, j) : |i − j| < s0}.
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4.1 Numerical performance of the test statistic D̂n

In Section 6.1 of the supplemental file, we present simulation studies to

assess the robustness of the proposed methods with respect to the normality

assumption. Our findings indicate that the proposed tests perform reasonably

well under non-Gaussian conditions.

Let Ω∗ = Σ∗−1 = (ω∗
ij)p×p be the precision matrix. Because different

precision matrices can correspond to the same underlying graph, we specify

two precision matrices to examine the performance of the proposed test

statistic. For the first precision matrix, we set it as banded with its non-zero

components decaying at an exponential rate away from its diagonals. More

specifically, we set ω∗
ij = 0.6−|i−j| for |i − j| < s0 and ω∗

ij = 0 otherwise.

For the other precision matrix, we again set it as banded with its non-zero

components decaying at the polynomial rate, that is, ω∗
ij = (1 + |i − j|)−2

for |i − j| < s0 and ω∗
ij = 0 otherwise. We consider two different sparsity

levels as s0 = 4 or 6. To evaluate the performance of the proposed tests

under various scenarios for Ω∗, we also conduct simulation studies on data

with both a sparse and random underlying precision matrix, as well as a

precision matrix with small signals. These studies are detailed in Section

6.2 of the supplemental material.

To evaluate the empirical size and power of the proposed test, we consider

various specifications of E0, the structure specified in the null hypothesis. For
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4.1 Numerical performance of the test statistic D̂n

evaluating the empirical size, we consider E0 = E∗. To evaluate the power of

the proposed test, we consider the following four different specifications of

E0.

1) (Isolated structure) Set E0 = E0,1 = {(i, j) : i = j}. All the nodes are

isolated.

2) (Nested structure) Set E0 = E0,2 = {(i, j) : |i − j| < 3}. This structure is

nested in the true network structure E∗.

3) (1-diff: structure with edges to node 1 different) Set E0 = E∗
1 ∪ E0,3, where

E∗
1 = E∗ on the set of edges {(i, j), i, j ̸= 1}, and E0,3 = {(1, 3), (1, 7), (1, 8), (1, 9)}

are edges connected with node 1.

4) (2-diff: structure with edges to 2 nodes different) Set E0 = E∗
2 ∪E0,4, where

E∗
2 = E∗ on the set of edges {(i, j), i, j ̸= 1, 2}, and E0,4 = {(1, 3), (1, 7), (1, 8),

(1, 9), (2, 4), (2, 9), (2, 12)} are edges connected to nodes 1 and 2.

To understand the effect of sample size and data dimension, we choose

two different sample sizes n = 300 and n = 1000. For each sample size, data

dimension is changed by setting p/n at three different values 0.5, 1, and 2.

Because the true precision matrix Ω∗ specified above satisfies Conditions

(C1)-(C2), we applied the results in Theorem 1. More specifically, we

rejected the hypothesis if the test statistic values D̂n are greater than the

4 log p − log(log p) + Gumbel.95(− log 2π, 2), where Gumbel.95(− log 2π, 2) is
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4.1 Numerical performance of the test statistic D̂n

the 95 % quantile value of the Gumbel distribution with location parameter

− log 2π and scale parameter 2. Simulation results are reported based on

500 simulation replications.

Table 1 reports the empirical sizes and power of the proposed test

statistic D̂n for testing different structures E0 specified in the above (1)-(4).

It can be seen that our proposed test controls type I error rate well at the

nominal level of 0.05 under various settings. The proposed test statistic is

consistent as the power of the tests are one in many scenarios. Based on

the pattern of empirical power, we see that the power of the proposed test

D̂n increases as n increases or p decreases. Table 1 also shows that sparsity

level has some impact on the power of the test statistic, the increasing of s0

leads to a decreasing power.

Table 2 summarizes the empirical size and power of the proposed test

D̂n under the polynomial rate decay structure. We see that its patterns are

similar to that in Table 1 where the empirical power increases as sample size

increases, and decreases as p or s0 increases. We observe that in this case the

power is not as high as those in Table 1 where the precision matrix decays

at an exponential rate in Table 1. This is also something expected because

the signals of the precision matrix in Table 2 is weaker than the signals in

the previous example. For example, when s0 = 4, the non-zeros in the first
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4.1 Numerical performance of the test statistic D̂n

Table 1: Type I error and power of the proposed test statistic D̂n under

different alternatives when the precision matrix has banded structure and

decays at an exponential rate.

Empirical Power of the Test D̂n

s0 n p/n Size Isolated Nested 1-diff 2-diff

4 300 0.5 0.034 1.000 1.000 1.000 1.000

1 0.042 1.000 1.000 1.000 1.000

2 0.030 1.000 1.000 1.000 1.000

1000 0.5 0.038 1.000 1.000 1.000 1.000

1 0.032 1.000 1.000 1.000 1.000

2 0.044 1.000 1.000 1.000 1.000

6 300 0.5 0.026 1.000 0.824 1.000 1.000

1 0.032 1.000 0.766 1.000 1.000

2 0.028 1.000 0.648 1.000 1.000

1000 0.5 0.032 1.000 1.000 1.000 1.000

1 0.046 1.000 1.000 1.000 1.000

2 0.036 1.000 1.000 1.000 1.000
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4.1 Numerical performance of the test statistic D̂n

Table 2: Type I error rate and power of the proposed test statistic D̂n under

different alternatives where the precision matrix has banded structure and

decays at a polynomial rate.

Empirical Power of the Test D̂n

s0 n p/n Size Isolated Nested 1-diff 2-diff

4 300 0.5 0.022 1.000 0.034 0.348 0.468

1 0.034 1.000 0.038 0.226 0.336

2 0.024 1.000 0.024 0.170 0.248

1000 0.5 0.034 1.000 0.274 0.998 1.000

1 0.046 1.000 0.210 0.994 1.000

2 0.038 1.000 0.204 0.988 1.000

6 300 0.5 0.032 1.000 0.034 0.320 0.474

1 0.030 1.000 0.028 0.248 0.328

2 0.024 1.000 0.024 0.164 0.224

1000 0.5 0.046 1.000 0.130 0.992 1.000

1 0.032 1.000 0.106 0.994 1.000

2 0.024 1.000 0.084 0.994 1.000
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4.2 Numerical comparison of D̂n and D̃n

column of polynomial decayed precision matrix Ω∗ is (1, 0.6, 0.36, 0.216)T

while the first column non-zeros are (1, 0.25, 0.11, 0.06)T in the exponentially

decayed Ω∗.

4.2 Numerical comparison of D̂n and D̃n

In this simulation study, we evaluate the finite sample performance of D̂n and

D̃n in terms of empirical sizes and powers in detecting the nested network

and the included network structures. Similar to Simulation Settings I, we

generate n IID multivariate normally distributed p-dimensional random

vectors with mean vector 0 and covariance matrix Σ∗. The corresponding

precision matrix is Ω∗ = Σ∗−1 = (ω∗
ij)p×p where ω∗

ij = 0.6−|i−j| for |i−j| < s0

and ω∗
ij = 0 otherwise. For evaluating the empirical sizes, we consider

E0 = E∗. We consider the following two specified structures hypotheses in

the simulation

5) (Nested structure) Set E0 = E0,5 = {(i, j) : |i−j| < s0 −1}. The structure

E0 is nested in the true structure E∗.

6) (Included structure) Set E0 = E0,6 = {(i, j) : |i − j| < s0 + 1}. The

structure E0 includes in the true structure E∗.

Table 3 summarizes the empirical sizes and powers of the tests based

on D̂n and D̃n. Table 3 demonstrates both tests have the similar power
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4.2 Numerical comparison of D̂n and D̃n

in rejecting the nested structure and control the type 1 error rate. The

modified test statistics version D̃n has the ability to reject the pre-specified

network structures that include the true network structure, while the test

statistic D̂n loses power for included networks. We chose δn =
√

log(n) and

Cn = 0.05 for the test statistics D̃n in our simulation studies. Tables 6

and 7 in the supplemental file demonstrate that the proposed test is robust

to different choices of Cn; the empirical size and power remain consistent

across various values of Cn when δn is fixed. Additionally, the proposed

tests exhibit similar empirical sizes and power for k = 2, 4 across all choices

of Cn. This simulation study demonstrates that the proposed tests perform

reasonably well with the suggested order of δn =
√

log n.

To illustrate the computational complexity of D̃n, Figure 2 presents the

average running time in seconds for D̃n versus the data dimension, with p

on the x-axis and the square root of the running time on the y-axis. We

observe a linear relationship between p and the square root of the running

time, indicating that the computational time is approximately of the order

p2 with respect to the data dimension.
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Figure 2: The square root of the running time for the test statistic D̃n versus the

data dimension for different combinations of n, p, and s0 is shown for the following

scenarios: S1: (n, s0) = (500, 4); S2: (n, s0) = (1000, 4); S3: (n, s0) = (500, 6);

and S4: (n, s0) = (1000, 6).

5. Real Data Analysis

We illustrate the use of the proposed test statistics for identifying the

structure of a graphical model by applying them to a correlated data

analysis. Towards this, we examined a COVID-19 dataset provided by The

New York Times (The New York Times, 2021) that is publicly available

on https://github.com/nytimes/covid-19-data. The data set includes

daily confirmed COVID-19 cases observed over 51 states of the U.S. from

January 1, 2021 to December 31, 2021. We aggregated the data on a weekly

basis such that the data contain 52 weekly confirmed cases in thousands
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Table 3: Type 1 error and empirical power of the test statistics D̂n and D̃n

for both nested and included structures

D̂n D̃n

Power Running Power Running

s0 n p/n Size Nested Included Time Size Nested Included Time

4 500 0.50 0.020 1.000 0.030 0.16 0.020 1.000 0.970 0.17

1.00 0.050 1.000 0.050 1.08 0.050 1.000 0.990 1.08

2.00 0.050 1.000 0.040 6.92 0.050 1.000 0.990 6.96

1000 0.50 0.030 1.000 0.040 1.18 0.030 1.000 1.000 1.19

1.00 0.030 1.000 0.020 6.62 0.030 1.000 1.000 6.64

2.00 0.010 1.000 0.010 59.62 0.010 1.000 1.000 59.63

6 500 0.50 0.000 0.110 0.000 0.17 0.010 0.160 0.520 0.17

1.00 0.030 0.060 0.030 1.10 0.030 0.100 0.690 1.10

2.00 0.010 0.070 0.000 6.62 0.020 0.090 0.590 6.64

1000 0.50 0.050 0.670 0.050 1.23 0.040 0.690 1.000 1.24

1.00 0.050 0.570 0.040 7.15 0.050 0.580 1.000 7.17

2.00 0.010 0.450 0.010 55.15 0.020 0.460 1.000 55.17

29

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0385



from 51 states, which is denoted as a matrix of size 51× 52. Our interest was

to understand how the numbers of COVID cases depend on geographical

locations. Towards this, we coded three dummy variables according to

whether a state is in the North East, West, Mid West, or the South. The

following linear regression was postulated

E(yij|xi) = β0 + β1xi1 + β2xi2 + β3xi3, (i = 1, . . . , 51; j = 1, . . . , 52), (5.1)

where xi1 is an indicator variable whether the state is in the North East, xi2

is for the Mid West, and xi3 is for the West. Denote Yi = (yi1, . . . , yi52)T,

β = (β0, β1, β2, β3)T, Xi = 1 ⊗ (1, xi1, xi2, xi3), where 1 = (1, . . . , 1)T is a

52 × 1 matrix, ⊗ is the Kronecker product, and Xi is a 52 × 4 matrix. Since

the components of Yi are correlated, we applied the method of generalized

estimation equations (Liang & Zeger, 1986) for estimating β by incorporating

the correlation structure of Yi. That is, we estimate β by solving

51∑
i=1

Xi
TV −1(Yi − Xiβ) = 0, (5.2)

where V is the so-called working covariance matrix. It is known that

correct specification of V improves the estimation efficiency of the resulting

estimator.

To choose an appropriate graph corresponding to Ω = V −1, first,

we estimate the underlying graph E∗ of Y using the TIGER approach
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(Liu and Wang, 2017) and the GLASSO method (Friedman et al., 2019).

The heatmaps of these estimated graphs are provided in Section 9 of the

supplemental file. Both methods suggest that either a banded structure or a

block diagonal structure may be reasonable for this dataset. To this end, we

formally conducted the proposed tests to determine if one of these specified

graphical structures fits the data well.

a) (Isolated structure) Set E0 = E0,1 = {(i, j), i = j}.

b) (Banded structure with bandwidth 3, denoted as Band(3)) Set E0 =

E0,2 = {(i, j), |i − j| < 3}.

c) (Diagonal blocks structure, denoted as Block(4)) Set E0 = E0,3, where

E0,3 = ∪13
k=1{(i, j), 4(k − 1) + 1 ≤ i, j ≤ 4(k − 1) + 4} .

We applied our proposed methods to test the above hypothetical struc-

tures. Since the number of isolated nodes of the true structure is unknown,

we chose γ = 1 for the limiting distribution in Theorem 1 so that our test

is conservative because we only reject the null hypothesis if our test statis-

tic value is large enough. The test statistic values and its corresponding

p-values (in parentheses) for testing Isolated, Band(3), and Block(4) are,

respectively, 49.57(< 0.0001), 17.61(0.08), and 16.32(0.14). Therefore we

reject the null hypothesis that the true structure is the Isolated structure

with 95% confidence. However, we cannot reject the null hypothesis that
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the true structure is the Band(3) network or the Block(4) network at the

95% confidence level.

Table 4: Estimated coefficients parameters under three different pre-specified

structures, standard errors of the estimated parameters in the parentheses,

and * denotes p-value less than 0.05.

Coefficients Isolated Band(3) Block(4)

β1 -0.78 (1.59) 0.64 (0.73) -0.32 (0.25)

β2 -0.68 (1.30) 1.01 (0.80) -0.01 (0.32)

β3 -0.85 (1.47) 1.91 (0.66)* 0.23 (0.24)

We then used these three pre-specified structures to obtain the estimating

coefficients for the model (5.1). Table 4 reports the estimated results for

model (5.1), including the estimated coefficients, their standard errors, and

their statistical significance (p-value less than 0.05). When using the pre-

specified Band(3) structure, there are significant differences in COVID cases

between the West and the South. But, under the Isolated structure and

Block(4) structure, all the coefficients β1, β2 and β3 are not significant which

indicates that there is no significant difference in COVID cases among the

four regions in the U.S. We also notice that, the estimated standard errors
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under the Band(3) and Block(4) pre-specified network are much smaller

the Isolated structure. These results are consistent with our proposed test

statistics since they suggest that the Block(4) and Band(3) structure fit the

data well, but not the Isolated structure. This suggests that the proposed

test statistics can be used as a powerful tool to identify a good pre-specified

structure for further analysis.

Finally, we applied a bootstrap method to further evaluate the standard

errors of coefficient estimators, and compared the efficiency gain in terms of

the standard errors when using different pre-specified network structures.

More specifically, we subsampled 40 states from 51 states without replace-

ment for 100 times. At each time we used subsampled data in the GEE

equation (5.2) to estimate the coefficients. Note that here to increase the

stability of the procedure, we reuse the estimated precision matrix V −1

based on the data from all 51 states. At the i-th replication, we denote

the corresponding standard errors of each coefficient by (Sd1,i, Sd2,i, Sd3,i).

To evaluate the variability of standard errors from the subsampling pro-

cess, we then calculate the corresponding means and standard deviations

of (Sd1,i, Sd2,i, Sd3,i), for i = 1, · · · , 100 as AVEj = ∑100
i=1 Sdj,i/100, SDj =√{ ∑100

i=1(Sdj,i − AVEj)2/100
}

for j = 1, 2, 3.

Figure 3 shows the mean and standard deviation of the coefficients
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Figure 3: Average (a) and standard error (b) of absolute prediction errors

of three pre-specified graphic structures: Isolated, Band(3), and Block(4).

obtained from the above subsampling procedure. Both panels 2(a) and 2(b)

of the figure demonstrate that the standard error obtained from the pre-

specified Block(4) structure is the smallest, followed by Band(3), and Isolated

network. The result again agrees with our test statistics obtained and

confirms that choosing a good pre-specified graphical structure is essential

for efficiency gain when using the GEE method. Therefore, the proposed

test statistics can help to select a reliable pre-specified graphic structure.

6. Discussion

In this paper, we have developed new methods for testing pre-specified graphs

that are available as prior information in some applications. However, in
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situations where a pre-specified graph is not available, there may be interest

in determining whether a certain family of graphical structures, indexed

by certain parameters, is appropriate for the observed data. To address

this, we have extended our method to assess the following goodness-of-fit

hypothesis: H0 : E∗ ∈ E0(γ) vs. H1 : E∗ ̸∈ E0(γ), where E0(γ) represents

a family of graphical structures indexed by parameters γ, and γ is unknown.

For example, E0(γ) could represent a banded structure with an unknown

bandwidth γ. In this framework, it is not necessary to specify a single graph

structure; instead, one only needs to specify a family of graphical structures.

This extension is discussed in Section 8 of the supplemental file.

Supplementary Material

All technical proofs, examples of structures satisfying condition (C1),

additional simulation results, a data-driven tuning parameter selection

procedure, and further details on the real data analysis are provided

in the supplementary materials. The source codes and real data sets

are included in a Github link: https://github.com/leminhthien2011/

UniversalConsistentTestforGraphsofGGM.
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