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Abstract: We consider the problem of two-sample testing for time series with

staggered observation periods, where the two time series can have different start-

ing and ending observation times and can be of different lengths. In addition,

we allow the two time series to depend on each other in a general way, which

makes the staggered observation periods nontrivial to deal with as it now re-

quires accommodating the joint dependence in the presence of overlapping and

nonoverlapping segments when designing a valid inference protocol. This also

makes existing self-normalization methods inapplicable to the current problem.

To address this, we propose a warped self-normalized two-sample test, which

uses warped self-normalized subsamples to provide uncertainty quantification of

the global two-sample statistic. The method can be readily applied to compare

quantities beyond the mean such as the variance or quantiles, and the associated

asymptotic theory has been established. Numerical experiments including a sim-

ulation study and a real data analysis are also provided to further illustrate the

proposed method.
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1. Introduction

Applications from various scientific problems often require the comparison

of data from two populations, which can be, for example, clinical trial data

from the treatment and control groups, temperature record data from dif-

ferent countries or regions, electricity usage data from different industries,

among many others. The problem is often phrased as a two-sample test

in statistical analysis, which has been widely studied in the literature; see

for example Hotelling (1931), Cressie and Whitford (1986), Hall and Mar-

tin (1988), Bai and Saranadasa (1996), Keselman et al. (2004), Chen and

Qin (2010), Chen et al. (2013), Cai et al. (2014), Gregory et al. (2015),

Xu et al. (2016), Städler and Mukherjee (2017), Chen et al. (2019), Zhang

et al. (2020), and references therein. The aforementioned works mostly con-

cerned the situation when the data can be viewed as independent samples

from an underlying distribution. For time series data, Dette and Weißbach

(2009) considered testing the difference between regression functions of two

stationary conditional heteroskedastic autoregressive processes. Politis and

Romano (2010) considered the use of subsampling in two-sample or multi-
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sample problems of time series data. Horváth et al. (2013) considered test-

ing the equality of means in two functional time series by using a normal

approximation for the functional sample mean and estimating the long-run

covariance kernel. Dette et al. (2020) considered the problem of testing

relevant hypotheses in two functional time series. In the aforementioned

works, however, the two time series being compared are often assumed to

be independent of each other. When dependence exists between the two

time series to be compared, Zhang and Shao (2015) proposed the use of

self-normalization to pivotalize the test statistic to accommodate the joint

dependence. Their method is based on the key assumption that the sample

size of the two time series are the same, namely the balanced two-sample

case. The extension to the unbalanced case can be highly nontrivial, as

Shao (2015) demonstrated with counterexamples that self-normalization

can work in two-sample problems only when the two time series are inde-

pendent or when they are of the same length.

In many applications, however, the two time series to be compared are

not necessarily of the same length and can have different starting and ending

observation times. For example, in the CRUTEM data hosted by the Met

Office Hadley Centre that contains hemispheric and global mean time series

of land air temperature anomalies, the northern hemisphere has anomaly
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values started in 1850 while the southern hemisphere only has data started

in 1857 mainly due to the poor land data coverage in the southern hemi-

sphere before 1857. Also, for the United Kingdom (UK) precipitation data

studied in Section 4.2, the monthly precipitation record started in January

1873 for the Northwest England and Wales (NwEW) region and January

1931 for the Northern Ireland (NI) region. More generally in meteorolog-

ical science and climate science, it is often the case that one time series

has a longer history of record than the other, and monitoring stations can

be built or demolished at different times in different regions making their

collected data on different time periods. In finance, portfolios and index

funds can be created and abandoned at different times making their record-

ing periods different. In economics, it is often the case that the economic

variable of interest has published data available on different time horizons

for different countries. In infectious diseases research such as the most re-

cent COVID-19, different countries often start and end the data collection

at different times making their observation periods different. When the

two time series to be compared do not share the same observation period,

it then becomes difficult to accommodate their joint dependence. In this

case, using independent random block subsamples from the two time series

as in Politis and Romano (2010) may no longer preserve the underlying de-
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pendence structure in the target global two-sample statistic. On the other

hand, the limiting distribution of the self-normalized statistic as in Shao

(2015) will be affected by the underlying joint dependence in this case and

is no longer pivotalized unless the two time series are of the same length.

We shall here fill the gap and propose a new approach that can survive

when the two time series to be compared do not share the same observa-

tion period, have possibly different lengths, and exhibit nonnegligible joint

dependence.

To handle staggered observation periods in the presence of joint depen-

dence, we propose a warped self-normalized two-sample test which incorpo-

rates a time domain warping based on how the two time series are staggered

to recover and match the original dependence structure. The test can be

applied to handle settings with different staggering patterns, for example

when the two time series share the same starting time but have different

ending times, when one time series is observed on a time subset of the

other, or when the two time series are observed on time intervals that have

overlapping and nonoverlapping segments. A distinguishable feature of the

proposed method is that it allows the length of nonoverlapping segments

to increase with the sample size so that the data sample is not necessar-

ily dominated by the overlapping segment. In addition, it can be readily
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applied to compare quantities beyond the mean such as the variance or

quantiles in a unified manner, and the associated asymptotic guarantee is

also established. In Section 2, we revisit the subsampling approach of Poli-

tis and Romano (2010) and the self-normalization approach of Shao (2015)

to understand what caused their inapplicability to the current setting. Al-

though combining the strength of subsampling and self-normalization has

been demonstrated to be useful in certain problems (Bai et al., 2016), its

direct application still cannot handle the joint dependence under staggered

observation periods. For this, we in Section 3 propose a new ingredient,

called the time domain warping, which leads to a warped self-normalized

two-sample test that is able to address the problem. Numerical experiments

including a Monte Carlo simulation and a real data analysis are provided

in Section 4 to further illustrate the proposed method. Technical proofs are

deferred to the supplementary material.

2. Subsampling and Self-Normalization: A Revisit

In this section, we revisit the subsampling approach of Politis and Romano

(2010) and the self-normalization approach of Shao (2015) to illustrate,

and more importantly to understand, why such popular approaches can

become inapplicable in the current setting. For this, suppose we observe
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Xk, . . . , Xm and Yl, . . . , Yn from a stationary bivariate time series (Xi, Yi),

where the observation periods [k,m] and [l, n] for the two time series are not

necessarily the same and we denote the associated sample sizes by Nx = m−

k+1 and Ny = n− l+1 respectively. As commented by Politis and Romano

(2010), the literature on comparing time series of different lengths seems

scarce, and Politis and Romano (2010) proposed to address the problem

using subsampling. To illustrate, we consider the case of the mean, and we

denote X̄k,m = (m−k+1)−1
∑m

i=kXi and Ȳl,n = (n− l+1)−1
∑n

j=l Yj, then

the method of Politis and Romano (2010) approximates the distribution

of X̄k,m − Ȳl,n by that of subsamples after a suitable scale adjustment. In

particular, let Xi, . . . , Xi+Bx−1 and Yj, . . . , Yj+By−1 be subsamples of lengths

Bx and By from the two time series, and we denote the underlying means

and long-run variances by

µx = E(X0), µy = E(Y0), gx =
∑
k∈Z

cov(X0, Xk), gy =
∑
k∈Z

cov(Y0, Yk),

then by Politis and Romano (2010) the distribution of

ZPR10 = (N−1x gx +N−1y gy)
−1/2(X̄k,m − Ȳl,n)

under the null hypothesis of equal mean can be approximated by the em-

pirical distribution F̂PR10(u), u ∈ R, of the subsamples

Hi,j = (B−1x gx +B−1y gy)
−1/2(X̄i,i+Bx−1 − Ȳj,j+By−1),
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where 1 ≤ i ≤ qx = Nx − Bx + 1 and 1 ≤ j ≤ qy = Ny − By + 1. In

particular, let I(·) be the indicator function, then we can write

F̂PR10(u) = q−1x q−1y

qx∑
i=1

qy∑
j=1

I(Hi,j ≤ u).

Assuming independence between (Xi) and (Yj), Politis and Romano (2010)

provided the theoretical guarantee of such a two-sample subsampling ap-

proach under strong mixing. When the two time series are not independent

of each other, however, the following theorem suggests that the subsampling

approach of Politis and Romano (2010) may become inapplicable even for

the simple case of d-dependent processes that share the same observation

period.

Theorem 1. Assume that (Xi, Yi) is a d-dependent stationary process with

finite second moment and we observe Xk, . . . , Xm and Yl, . . . , Yn with k = l

and m = n. If the long-run variances gx and gy are both bounded away

from zero and the subsample lengths satisfy 1/Bx+Bx/Nx → 0 and 1/By +

By/Ny → 0, then under the null hypothesis of µx = µy, as Nx = Ny → ∞

we have

F̂PR10(u)→p pr(ZPR10 ≤ cxyu),

where →p denotes the convergence in probability and

cxy =

(
gx + gy − axy

gx + gy

)1/2

, axy =
∑
k∈Z

{cov(X0, Yk) + cov(Y0, Xk)}.
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When the two time series (Xi) and (Yj) are not independent as in Politis

and Romano (2010), the cross term axy is generally nonzero which makes

the constant cxy 6= 1. As a result, the subsampling distribution F̂PR10

in this case will become a distorted approximation to the distribution of

ZPR10 = (N−1x gx + N−1y gy)
−1/2(X̄k,m − Ȳl,n), which makes the method of

Politis and Romano (2010) inapplicable to the current setting. Note that

implementing the above discussed subsampling approach also requires es-

timating the long-run variances gx and gy, which can itself be a nontriv-

ial problem and may involve the selection of additional tuning parameters.

This motivates the use of self-normalization in two-sample problems as con-

sidered in Shao (2015) and Zhang and Shao (2015).

The idea of self-normalization is to use a sequence of recursive estima-

tors to pivotalize the asymptotic distribution of the two-sample statistic.

Following Shao (2015), we let N = Nx + Ny and consider the case when

k = l = 1 so that the two time series (Xi) and (Yj) share the same starting

time. In this case, the recursive two-sample differences can be constructed

as

Di,N = X̄1,biNx/Nc − Ȳ1,biNy/Nc, i = 1, . . . , N, (2.1)
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and the self-normalized two-sample statistic of Shao (2015) takes the form

ZS15 =
ND2

N,N

N−2
∑N

i=1 i
2(Di,N −DN,N)2

. (2.2)

To derive the asymptotic distribution of ZS15, we follow Shao (2015) and

make the following assumption.

(IP) There exist a, b 6= 0 and c such that for any M →∞,

M−1/2
bMtc∑
i=1

 Xi − µx

Yi − µy

⇒
 a 0

−c −b




W1(t)

W2(t)

 ,

where ⇒ denotes the weak convergence in the Skorokhod space and

W1(t) and W2(t) are two independent standard Brownian motions.

Assumption (IP) is generally referred to as the invariance principle,

which has been widely studied under various short-range dependence condi-

tions; see for example Hannan (1979), Herrndorf (1984), Wu (2007), Berkes

et al. (2014) and references therein. We also refer to Shao (2010), Zhang

and Lavitas (2018) and Zhang et al. (2019) for additional references on the

use of the invariance principle in self-normalization. Let →d denotes the

convergence in distribution, then by assumption (IP) and the continuous

mapping argument as in Shao (2015) and Zhang and Lavitas (2018), one

can show that as Nx/N → px and Ny/N → py for some px, py ∈ (0, 1) the
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self-normalized two sample statistic

ZS15 →d

{Vpx,py(1; a, b, c)}2∫ 1

0
{Vpx,py(t; a, b, c)− tVpx,py(1; a, b, c)}2dt

,

where

Vpx,py(t; a, b, c) =
a

px
W1(pxt) +

c

py
W1(pyt) +

b

py
W2(pyt).

In the case when px = py for which the two time series share the same

length, we can write

Vpx,py(t; a, b, c) =
a+ c

px
W1(pxt) +

b

px
W2(pxt),

which then has the same distribution as the process p
−1/2
x {(a+c)2+b2}1/2W1(t)

on t ∈ [0, 1]. As a result, one can show that in this case,

ZS15 →d
{W1(1)}2∫ 1

0
{W1(t)− tW (1)}2dt

,

where the asymptotic distribution is pivotal. When the two time series are

not of the same length, however, the process Vpx,py(t; a, b, c), t ∈ [0, 1], is

not necessarily a Brownian motion and the asymptotic distribution of ZS15

can then depend on the underlying unknown dependence structure; see also

the discussion in Shao (2015). Note that even if the two time series are of

the same length, when one is started recording earlier than the other, the

aforementioned self-normalization of Shao (2015) can become inapplicable
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as well. To illustrate, we consider the case when Nx = Ny but k 6= l, and

we can generalize the recursive two-sample difference sequence in (2.1) to

consider

D?
i,N = X̄k,k+biNx/Nc−1 − Ȳl,l+biNy/Nc−1, i = 1, . . . , N. (2.3)

Similar to (2.1), the quantity in (2.3) represents the recursive two-sample

difference obtained by using the first i/N proportion of the data from both

time series, where D?
N,N = X̄k,m − Ȳl,n continues to represent the global

two-sample difference. The self-normalized two-sample statistic can then

be constructed as

Z?
S15 =

N(D?
N,N)2

N−2
∑N

i=1 i
2(D?

i,N −D?
N,N)2

,

and its asymptotic distribution is given in Theorem 2.

Theorem 2. Assume condition (IP) and Nx = Ny. If k = 1, N →∞, and

l/N → ` for some ` ∈ (0, 1/2), then under the null hypothesis of µx = µy

we have

Z?
S15 →d

{V ?
` (1; a, b, c)}2∫ 1

0
{V ?

` (t; a, b, c)− tV ?
` (1; a, b, c)}2dt

,

where

V ?
` (t; a, b, c) = 2aW1(t/2)+2c{W1(`+t/2)−W1(`)}+2b{W2(`+t/2)−W2(`)}.
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By Theorem 2, the asymptotic distribution of the self-normalized statis-

tic Z?
S15 in this case can be affected by the recording lag in time represented

by ` and is generally not pivotal unless ` = 0. Therefore, a direct appli-

cation of self-normalization as in Shao (2015) seems to be able to address

the joint dependence only in the case when the two time series are observed

during the same period, and such a method can become inapplicable for

time series with staggered observation periods. We shall in the following

propose a new method that can handle staggered observation periods in the

presence of joint dependence.

3. Warped Self-Normalized Subsampling

3.1 The Mean Case: Illustration of the Idea

We first illustrate the idea by considering the mean case. Following the

setting in Section 2, suppose we observe Xk, . . . , Xm and Yl, . . . , Yn from a

stationary bivariate time series (Xi, Yi), where the observation periods [k,m]

and [l, n] for the two time series are not necessarily the same and we denote

the associated sample sizes by Nx = m−k+1 and Ny = n−l+1 respectively.

Write N = Nx + Ny, and without loss of generality, we assume that 1 =

k ≤ l. Our idea is to use self-normalized statistics calculated from windows

with appropriately warped times between the two time series to precisely
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3.1 The Mean Case: Illustration of the Idea

capture the underlying dependence as in the global two-sample statistic.

Let BN be a sequence of nonnegative real numbers, we first construct a

pair of index sets that represent the desired time warping as

Ix,i,BN = {s ∈ Z : l + i− 1− bBN(l − 1)/Nc ≤ s

≤ l − bBN(l − 1)/Nc+ bBNNx/Nc − 1 + i− 1}

and

Iy,i,BN = {s ∈ Z : l + i− 1 ≤ s ≤ l + bBNNy/Nc − 1 + i− 1}.

The time warping association between index sets of the two time series as

proposed above is carefully constructed to preserve the dependence struc-

ture, and serves as a key component in self-normalized inference when

the two time series have staggered observation periods. Intuitively, Ix,i,j

and Iy,i,j are constructed to mimic the staggering pattern of the original

data, so that the joint dependence between the original two time series

with full length can be well approximated by that of the recursive pairs

using the warped index sets when constructing the self-normalizer. To

illustrate, we consider the simple example when Nx = Ny = 100 with

k = 1 and l = 51. In this case, N = Nx + Ny = 200 and we observe

X1, . . . , X100 and Y51, . . . , Y150, which have an overlap of length 50 equal-

ing to half of their own length. If we apply the proposed time warping,
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3.1 The Mean Case: Illustration of the Idea

then it can be seen that the recursive time-warped index pairs are Ix,1,j =

{50−bj/4c+1, . . . , 50−bj/4c+bj/2c} and Iy,1,j = {50+1, . . . , 50+bj/2c},

which continue to have an overlap equaling to approximately half of their

own length. The idea is then to use Ix,1,j and Iy,1,j recursively over j

to construct the time-warped self-normalizer, so that the associated re-

cursive means will have asymptotically the same joint dependence as the

original X1, . . . , X100 and Y51, . . . , Y150. However, if we ignore the stag-

gered observation periods and use Z?
S15 in Section 2, then it amounts to

the use of X1, . . . , Xbj/2c and Y50+1, . . . , Y50+bj/2c when constructing the self-

normalizer, which can have a different dependence structure when compared

to the full data X1, . . . , X100 and Y51, . . . , Y150. Therefore, an appropriate

time warping as carefully constructed in the current article plays an im-

portant role to preserve the dependence structure for valid self-normalized

inference.

For any nonempty index set I, we use |I| to denote its cardinality, and

we define the averages X̄I = |I|−1
∑

i∈I Xi and ȲI = |I|−1
∑

i∈I Yi. Then,

based on the suitably constructed warped index sets Ix,i,BN and Iy,i,BN as

proposed above, we can form the time-warped self-normalized statistic as

Ti,BN (∆) =
BN(X̄Ix,i,BN − ȲIy,i,BN −∆)2

B−2N
∑BN

j=1 j
2{(X̄Ix,i,j − ȲIy,i,j)− (X̄Ix,i,BN − ȲIy,i,BN )}2

. (3.1)

The presence of ∆ allows the statistic to be used for assessing a more
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3.1 The Mean Case: Illustration of the Idea

general null value of the difference µx − µy, and we write Ti,BN = Ti,BN (0)

for the null hypothesis of µx = µy. When BN = N and i = 1, we have

Ix,1,N = {j ∈ Z : 1 ≤ j ≤ m} and Iy,1,N = {j ∈ Z : l ≤ j ≤ n},

in which case T1,N now represents the global time-warped self-normalized

two-sample statistic.

We shall here provide a brief discussion on the connection and compar-

ison with the conventional self-normalized statistic reviewed in Section 2.

In particular, when the two time series share the same observation period

with the same length for which Nx = Ny and k = l = 1, then by Shao

(2015) the self-normalized statistic Z?
S15 in Section 2 will continue to work.

In this case, there is no need to perform the additional time warping, and it

can be shown that the proposed time-warped self-normalized statistic T1,N

will automatically reduce to Z?
S15, which can be an attractive feature. On

the other hand, when the two time series to be compared do not share the

same observation period or when they are of different lengths, then the new

self-normalized statistic T1,N can now be different from Z?
S15 in Section 2

due to the new self-normalizer used in the construction of T1,N that incor-

porates an additional time warping between the two time series to preserve

the underlying dependence structure. With the same time warping, the dis-

tribution of T1,N can then be well approximated by that of the time-warped
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3.1 The Mean Case: Illustration of the Idea

self-normalized subsamples Ti,BN .

We shall in the following present the detailed algorithm that describes

and implements the proposed warped self-normalized two-sample test for

time series with staggered observation periods.

(i) Given the observed time series Xk, . . . , Xm and Yl, . . . , Yn with 1 =

k ≤ l, use (3.1) to compute the global warped self-normalized two-

sample statistic T1,N .

(ii) For a preselected BN , use (3.1) to compute the warped self-normalized

statistics for all subsamples of the designated size with ∆ replaced by

∆̂ = X̄k,m− Ȳl,n to neutralize the effect of the null for the subsamples,

and denote them by Ti,BN (∆̂), 1 ≤ i ≤MN , where

MN = min(m−l+2+bBN(l−1)/Nc−bBNNx/Nc, n−l+2−bBNNy/Nc).

(iii) Compute the (1−α)-th quantile q̂T,1−α of Ti,BN (∆̂), 1 ≤ i ≤MN , and

reject the null hypothesis of µx = µy at level α if T1,N > q̂T,1−α.

To provide the theoretical justification of the proposed warped self-normalized

method, we use the strong mixing framework of Rosenblatt (1956). In

particular, let Fa,b be the σ-field generated by (Xa, Ya), . . . , (Xb, Yb) for
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3.1 The Mean Case: Illustration of the Idea

−∞ ≤ a ≤ b ≤ ∞, then the strong mixing coefficient is defined as

α(k) = sup
A∈F−∞,0, B∈Fk,∞

|pr(A ∩B)− pr(A)pr(B)|.

Let Υk be the covariance matrix between the two vectors (Xi, Yi) and

(Xi+k, Yi+k), then the long-run covariance matrix of the process (Xi, Yi)

is given by Υ =
∑

k∈Z Υk. We make the following assumptions.

(S1) The process (Xi, Yi) is strong mixing with

E(|Xi|ι) <∞, E(|Yi|ι) <∞,
∞∑
k=1

{α(k)}1−2/ι <∞

for some ι > 2.

(S2) The long-run covariance matrix Υ is positive definite.

Assumptions (S1) and (S2) are standard primitive conditions for the invari-

ance principle (IP) in Section 2; see for example Phillips and Durlauf (1986).

The strong mixing condition has been widely used to study limit theorems

of dependent processes, and we refer to the survey paper by Bradley (2005)

and the book by Bradley (2007) for a detailed review and additional ref-

erences. Theorem 3 provides the asymptotic justification of the proposed

warped self-normalized subsampling method.

Theorem 3. Assume (S1), (S2), Nx/N → px ∈ (0, 1), Ny/N → py ∈ (0, 1)

and l/N → ` ∈ [0, 1) as N → ∞. If BN → ∞ and BN/N → 0, then for
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3.1 The Mean Case: Illustration of the Idea

any α ∈ (0, 1) we have (i) under the null hypothesis of µx = µy,

pr(T1,N > q̂T,1−α)→ α;

and (ii) under the alternative when N1/2|µx − µy| → ∞,

pr(T1,N > q̂T,1−α)→ 1.

By Theorem 3, the asymptotic size of the proposed warped self-normalized

two-sample test is guaranteed to converge to its nominal level under the null,

and the power of the proposed test will converge to one under the alter-

native when N1/2|µx − µy| → ∞. The proposed warped self-normalized

two-sample test provides a unified solution to different staggering schemes

of the two time series, for example when the two time series share the

same starting time but have different ending times, when one time series

is observed on a time subset of the other, or when the two time series are

observed on time intervals that have overlapping and nonoverlapping seg-

ments. This makes it convenient to use in practice as one does not need to

perform a case-by-case study and can simply apply the proposed method to

obtain a meaningful p-value justified by a solid statistical theory. We shall

in the following section consider extending the proposed test to quantities

beyond the mean, such as the variance or quantiles.
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3.2 The General Case: Quantities Beyond the Mean

Due to the incorporation of self-normalization, the proposed method can

be easily extended to cases beyond the mean. For this, suppose one is

interested in comparing the quantity θx = Q(Fx,d) with θy = Q(Fy,d), where

Q is a functional that maps the d-dimensional marginal distributions Fx,d

and Fy,d of the two time series to their respective quantities of interest. As

illustrated in Shao (2010) and Zhang and Lavitas (2018), such a framework

covers many commonly used quantities of interest as special cases. For

example, if we set d = 1 and use Fx,1 to denote the marginal distribution,

then taking Q(Fx,1) =
∫
R uFx,1(u)du leads us to the mean case considered in

Section 3.1. As additional examples, we can set Q(Fx,1) =
∫
R u

2Fx,1(u)du−

{
∫
R uFx,1(u)du}2 to focus on the variance case and Q(Fx,1) = F−1x,1 (q) for

some q ∈ (0, 1) to focus on the quantile case; see also Shao (2010) and

Zhang and Lavitas (2018) for further discussions. For index sets Ix and Iy,

let F̂x,d,Ix and F̂y,d,Iy be the associated empirical distributions calculated

from (Xi)i∈Ix and (Yi)i∈Iy respectively, then θ̂x,Ix = Q(F̂x,d,Ix) and θ̂y,Iy =

Q(F̂y,d,Iy) represent the parameter estimators calculated from (Xi)i∈Ix and

(Yi)i∈Iy respectively. We can now form the time-warped self-normalized
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3.2 The General Case: Quantities Beyond the Mean

statistic as

T θi,BN (∆) =
BN(θ̂x,Ix,i,BN − θ̂y,Iy,i,BN −∆)2

B−2N
∑BN

j=1 j
2{(θ̂x,Ix,i,j − θ̂y,Iy,i,j)− (θ̂x,Ix,i,BN − θ̂y,Iy,i,BN )}2

,

(3.2)

which extends (3.1) from the mean case to more general quantities. Simi-

larly, we write T θi,BN = T θi,BN (0) for the null hypothesis of θx = θy. By sub-

stituting this generalized statistic (3.2) into the algorithm described in Sec-

tion 3.1, we can similarly compute the global time-warped self-normalized

statistic T θ1,N along with its subsample version T θi,BN (∆̂θ) for 1 ≤ i ≤ MN

where ∆̂θ = θ̂x,Ix,1,N − θ̂y,Iy,1,N . Let q̂T θ,1−α be the (1 − α)-th quantile of

T θi,BN (∆̂θ), 1 ≤ i ≤MN , we can then reject the null hypothesis of θx = θy at

level α if T θ1,N > q̂T θ,1−α. To provide the theoretical justification under this

more general setting, we introduce the notion of influence function (Hampel

et al., 1986) defined as

IFQ(z, Fd) = lim
ε↓0

Q{(1− ε)Fd + εδz} −Q(Fd)

ε
,

where z ∈ Rd and δz denotes the point mass at z. Then for any index set

I, we can follow Shao (2010) and apply the expansion

θ̂x,I = Q(F̂x,d,I) = Q(Fx,d) +
1

|I|
∑
i∈I

IFQ(Xi, Fx,d) +Rx,I

and

θ̂y,I = Q(Fy,d) +
1

|I|
∑
i∈I

IFQ(Yi, Fy,d) +Ry,I ,
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where E{IFQ(Xi, Fx,d)} = E{IFQ(Yi, Fy,d)} = 0 and RI = (Rx,I , Ry,I)
>

with > being the transpose represents the remainder term. We make the

following assumptions.

(A1) The process (Xi, Yi) is strong mixing with

E{|IFQ(Xi, Fx,d)|ι} <∞, E{|IFQ(Yi, Fy,d)|ι} <∞,
∞∑
k=1

{α(k)}1−2/ι <∞

for some ι > 2.

(A2) The long-run covariance matrix of the influence function process

{IFQ(Xi, Fx,d), IFQ(Yi, Fy,d)}> is positive definite.

(A3) The remainder term |I|RI = op(N
1/2) uniformly over I = {i ∈ Z :

Ns ≤ i ≤ Nt} for 0 ≤ s ≤ t ≤ 1 for all large N .

Assumptions (A1)–(A3) are standard in self-normalized inference; see

for example Shao (2010) and the discussions therein. Intuitively, Assump-

tions (A1) and (A2) imply an invariance principle for the influence functions

which generalizes the mean invariance principle (IP) in Section 2. Assump-

tion (A3) is a negligibility condition on the remainder term, which is also

mild; see for example the discussion in Shao (2010) and its verification for

the class of smooth function models. We also remark that it is possible to
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replace or alleviate Assumptions (A1)–(A3) by, for example, the functional

delta approach as in Volgushev and Shao (2014). Theorem 4 provides the

asymptotic justification of the proposed warped self-normalized subsam-

pling method for quantities beyond the mean.

Theorem 4. Assume (A1)–(A3), Nx/N → px ∈ (0, 1), Ny/N → py ∈

(0, 1) and l/N → ` ∈ [0, 1) as N →∞. If BN →∞ and BN/N → 0, then

for any α ∈ (0, 1) we have (i) under the null hypothesis of θx = θy,

pr(T θ1,N > q̂T θ,1−α)→ α;

and (ii) under the alternative when N1/2|θx − θy| → ∞ we have

pr(T θ1,N > q̂T θ,1−α)→ 1.

Although in practice one is often interested in testing the null hypothesis

of θx = θy or equivalently θx − θy = 0, it is possible to extend the proposed

time-warped self-normalized test to handle the more general null hypothesis

of θx−θy = ∆ for some prespecified ∆ ∈ R. For this, we use the global time-

warped self-normalized statistic T θ1,N(∆) and follow the algorithm described

in Section 3.1 to obtain its subsample version T θi,BN (∆̂θ) for 1 ≤ i ≤ MN

where ∆̂θ = θ̂x,Ix,1,N−θ̂y,Iy,1,N . Note that the subsample statistics T θi,BN (∆̂θ),

1 ≤ i ≤MN , use the estimate ∆̂θ in their construction, and as a result the

associated subsampling distribution will not be affected by whether the null
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θx− θy = ∆ is true or not. Corollary 1 provides the theoretical justification

of the proposed time-warped self-normalized test for handling such a more

general null hypothesis.

Corollary 1. Assume (A1)–(A3), Nx/N → px ∈ (0, 1), Ny/N → py ∈

(0, 1) and l/N → ` ∈ [0, 1) as N →∞. If BN →∞ and BN/N → 0, then

for any α ∈ (0, 1) we have (i) under the null hypothesis of θx − θy = ∆,

pr(T θ1,N(∆) > q̂T θ,1−α)→ α;

and (ii) under the alternative when N1/2|(θx − θy)−∆| → ∞ we have

pr(T θ1,N(∆) > q̂T θ,1−α)→ 1.

The proposed warped self-normalized subsampling method provides a

unified approach for two-sample testing of mean and other quantities when

the two time series to be compared can depend on each other, be collected

on staggered time periods, and have different lengths. In contrast, existing

results are often developed for the setting when the two time series are either

independent or collected on the same period, and may no longer work in

the current more general setting; see for example the discussion in Section

2.
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4. Numerical Experiments

4.1 Simulation Results

We shall here provide a simulation study to examine the finite-sample per-

formance of the proposed warped self-normalized subsampling method, de-

noted by WSNS hereafter. We also make a comparison with the two-sample

subsampling approach of Politis and Romano (2010), denoted by PR10 here-

after, and the self-normalized two-sample inference of Shao (2015), denoted

by S15 hereafter. For this, let (ζi) and (ξi) be independent autoregressive

processes generated as ζi

ξi

 = ρ

 ζi−1

ξi−1

+

 ε1i

ε2i

 ,

where ε1i and ε2i, i ∈ Z, are independent standard normal random variables.

Additional simulation results for other innovation types are provided in the

supplementary material. We consider the joint process Xi

Yi

 =

 1 0

r
√

1− r2


 ζi

ξi

 ,

where r controls the degree of dependence between the two time series (Xi)

and (Yi). The observations are taken as Xk, . . . , Xm and Yl, . . . , Yn, for

which we consider three scenarios.
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• Scenario 1: k = l = 1, m = n = 500s, s ∈ {1, 2, 3}, which represents

the situation when the two time series share the same observation

period.

• Scenario 2: k = 1, l = 100s + 1, m = 600s, n = 700s, s ∈ {1, 2, 3},

which represents the situation when the two time series are recorded

on shifted observation periods.

• Scenario 3: k = 1, l = 250s + 1, m = n = 750s, s ∈ {1, 2, 3}, which

represents the situation when the observation period of one time series

is a subset of the other.

For all the three scenarios, the overlapping length between (Xi) and (Yi) is

set as Nc = 500s, s ∈ {1, 2, 3}. For each realization, we apply the proposed

WSNS method, the PR10 method of Politis and Romano (2010) and the S15

method of Shao (2015) to perform two-sample tests on the mean, median

and variance of the two time series. Let ρ = 0.3, Nc = 1500, BN = 100,

and r ∈ {0, 0.4, 0.8}, the results based on 1000 realizations for each setting

are summarized in Tables 1–3 for Scenarios 1–3 respectively. Additional

simulation results for other choices of ρ, Nc and BN are provided in the

supplementary material. From the simulation results, we can observe the

followings.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0379



4.1 Simulation Results

First, the PR10 method of Politis and Romano (2010) was developed

for independent time series and is therefore expected to work when r = 0.

When there exists dependence between the two time series to be compared,

however, it is no longer guaranteed to work and it can be seen from Tables

1–3 that the PR10 method starts to exhibit a certain degree of size distor-

tions when r = 0.4 and further deteriorates when r = 0.8. For example,

if we consider the mean case with r = 0.8 in Table 1, then the empirical

coverage probabilities of the PR10 method are distorted to 1.000, 1.000 and

1.000 at 90%, 95% and 99% nominal levels. Note that the PR10 method

requires estimating the normalizing sequence of the test statistic, which

relates to the long-run variance of a dependent process and we use the

banding estimate as described in Zhang (2021). As a comparison, the S15

method of Shao (2015) uses a self-normalizer to pivotalize the two-sample

test statistic that avoids direct estimation of the normalizing sequence. It

can be seen from Table 1 that the S15 method performs reasonably well

under Scenario 1 even when the two time series depend on each other with

r = 0.4 or r = 0.8. However, as discussed in Section 2, the S15 method

described in Shao (2015) is not directly applicable to address the situation

when the two time series have different starting times unless they are inde-

pendent. In particular, it can be seen from Table 2 that the S15 method
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performs reasonably well under Scenario 2 when r = 0 but exhibits size

distortions similar to the PR10 method when r = 0.4 and r = 0.8. For

example, if we consider the mean case with r = 0.8 in Table 2, then the

empirical coverage probabilities of the S15 method are distorted to 0.989,

0.995 and 1.000 at 90%, 95% and 99% nominal levels. In comparison, the

empirical coverage probabilities of the proposed WSNS method for the same

setting are 0.922, 0.964 and 0.993 which are reasonably close to their 90%,

95% and 99% nominal levels. The main reason is that, when the two time

series exhibit joint dependence and are observed on staggered observation

periods, the original self-normalizer as used in Shao (2015) may no longer

be able to pivotalize the two-sample statistic; see also the discussion in Sec-

tion 2. By incorporating an appropriate time-warping into the construction

of a new time-warped self-normalizer as proposed in Section 3, our WSNS

method can effectively handle time series exhibiting joint dependence with

staggered observation periods. In addition, it provides a unified approach

to handle the mean and other quantities such as the median and variance.

It can be seen from Tables 1–3 that the proposed WSNS method seems to

perform reasonably well as the empirical coverage probabilities are mostly

close to their nominal levels for Scenarios 1–3 no matter if the two time

series are independent (r = 0) or dependent (r = 0.4 and r = 0.8); see also
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the additional simulation results in the supplementary material.

Table 1: Empirical coverage probabilities of the proposed WSNS method,

the PR10 method of Politis and Romano (2010) and the S15 method de-

scribed in Shao (2015) for Scenario 1 with standard normal innovation,

ρ = 0.3, Nc = 1500, and BN = 100.

Mean Median Variance

r Method 90% 95% 99% 90% 95% 99% 90% 95% 99%

0 WSNS 0.893 0.937 0.982 0.895 0.950 0.992 0.874 0.925 0.979

PR10 0.884 0.934 0.985 0.879 0.945 0.991 0.882 0.942 0.986

S15 0.898 0.951 0.991 0.904 0.958 0.995 0.896 0.954 0.990

0.4 WSNS 0.889 0.938 0.983 0.894 0.944 0.981 0.871 0.927 0.972

PR10 0.965 0.989 0.998 0.950 0.976 0.997 0.916 0.960 0.989

S15 0.900 0.947 0.992 0.913 0.959 0.991 0.902 0.947 0.987

0.8 WSNS 0.887 0.926 0.983 0.868 0.929 0.984 0.887 0.928 0.974

PR10 1.000 1.000 1.000 0.998 0.999 1.000 0.984 0.995 1.000

S15 0.890 0.946 0.994 0.925 0.964 0.997 0.903 0.944 0.992
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Table 2: Empirical coverage probabilities of the proposed WSNS method,

the PR10 method of Politis and Romano (2010) and the S15 method de-

scribed in Shao (2015) for Scenario 2 with standard normal innovation,

ρ = 0.3, Nc = 1500, and BN = 100.

Mean Median Variance

r Method 90% 95% 99% 90% 95% 99% 90% 95% 99%

0 WSNS 0.900 0.953 0.988 0.902 0.954 0.987 0.881 0.932 0.983

PR10 0.903 0.942 0.982 0.892 0.950 0.982 0.888 0.941 0.993

S15 0.901 0.940 0.989 0.907 0.958 0.991 0.887 0.948 0.992

0.4 WSNS 0.909 0.954 0.991 0.908 0.961 0.994 0.876 0.937 0.985

PR10 0.953 0.978 0.996 0.936 0.977 0.996 0.915 0.963 0.994

S15 0.942 0.973 0.999 0.939 0.973 0.995 0.896 0.960 0.993

0.8 WSNS 0.922 0.964 0.993 0.892 0.957 0.994 0.890 0.937 0.981

PR10 0.991 0.998 1.000 0.980 0.994 1.000 0.980 0.996 1.000

S15 0.989 0.995 1.000 0.970 0.988 0.999 0.973 0.991 0.999
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Table 3: Empirical coverage probabilities of the proposed WSNS method,

the PR10 method of Politis and Romano (2010) and the S15 method de-

scribed in Shao (2015) for Scenario 3 with standard normal innovation,

ρ = 0.3, Nc = 1500, and BN = 100.

Mean Median Variance

r Method 90% 95% 99% 90% 95% 99% 90% 95% 99%

0 WSNS 0.894 0.945 0.992 0.903 0.961 0.991 0.866 0.933 0.986

PR10 0.896 0.940 0.980 0.884 0.933 0.985 0.881 0.939 0.988

S15 0.896 0.951 0.989 0.917 0.962 0.989 0.894 0.949 0.990

0.4 WSNS 0.877 0.938 0.988 0.896 0.948 0.990 0.866 0.931 0.982

PR10 0.947 0.979 0.992 0.932 0.969 0.997 0.913 0.961 0.994

S15 0.940 0.976 0.997 0.933 0.971 0.997 0.908 0.960 0.998

0.8 WSNS 0.895 0.952 0.990 0.877 0.936 0.989 0.869 0.927 0.973

PR10 0.992 0.999 1.000 0.981 0.994 1.000 0.974 0.991 1.000

S15 0.982 0.994 1.000 0.971 0.988 1.000 0.964 0.987 0.998

4.2 Application to a Precipitation Data

We shall here apply the proposed method to a precipitation data to com-

pare the monthly precipitation series in the Northwest England and Wales
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(NwEW) region and the Northern Ireland (NI) region of the United King-

dom (UK). The data is available from the Met Office Hadley Centre website

at https://www.metoffice.gov.uk, and time series plots are provided in

Figure 1. For the NwEW region, the precipitation series begins in January

1873, while for the NI region it begins in January 1931. Therefore, one of

the time series has an earlier starting time than the other and the two time

series are of different lengths. This makes it desirable to use the proposed

method for their two-sample tests, and we use all the available data through

December 2021 in the analysis. The sample size for the NwEW series is

1788 and the sample size for the NI series is 1092. We consider testing if the

NwEW region and the NI region share the same mean, median and vari-

ance for their history precipitation. The subsampling bandwidth is selected

using the minimum volatility method described in the supplementary ma-

terial, and the selected bandwidths are BN = 43, 79 and 132 for the mean,

median and variance respectively. The results are summarized in Table 4,

from which we can see that, at the 5% significance level, the NwEW region

and the NI region seem to possess the same mean and median in precip-

itation with p-values 0.501 and 0.356 respectively. However, the p-value

for the variance test is 0.000 indicating that the NwEW region and the

NI region have statistically different variations in their precipitation. This

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0379



4.2 Application to a Precipitation Data

1880 1900 1920 1940 1960 1980 2000 2020
0

70

140

210

280

Time (years)

P
re

ci
p

it
at

io
n

 (
m

m
)

Monthly precipitation, Northwest England & Wales

1880 1900 1920 1940 1960 1980 2000 2020
0

70

140

210

280

Time (years)

P
re

ci
p

it
at

io
n

 (
m

m
)

Monthly precipitation, Northern Ireland

Figure 1: Time series plots for monthly precipitation records in the Northwest England

and Wales (NwEW) region (top) and the Northern Ireland (NI) region (bottom) through

December 2021.

could possibly be related to the mountainous terrain in the NwEW region

that makes its rainfall vary a lot across its different subareas. In particular,

according to the fact sheet published by the Met Office (2013), the moist

westerly winds in general tend to produce orographic rainfalls that lead to

more precipitation over the mountains. On the other hand, as commented

in the climatological memorandum published by the Meteorological Office

(1983), the protected areas behind the mountains can be much drier than

even the driest zones of NI. Therefore, our analysis seems to provide the

statistical support that complements the climatological intuition.
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Table 4: Two-sample test results of the monthly precipitation in the North-

west England and Wales (NwEW) region and Northern Ireland (NI) region

of the United Kingdom (UK).

Quantity T θ1,N p-value

Mean 3.70 0.501

Median 9.12 0.356

Variance 253.59 0.000

5. Conclusion

Applications from various disciplines often desire the comparison of a given

quantity from two time series in the form of a two-sample test. In prac-

tice, there are many circumstances that can cause the two time series to

depend on each other and be recorded on different time periods. For ex-

ample, climate science data recorded in different regions often exhibit joint

dependence, and one region may get monitored earlier than the other. The

joint dependence between the two time series together with their staggered

observation periods make many existing methods not directly applicable,

and it is desirable to propose a new method to handle such situations. In

this paper, we consider incorporating a suitable time domain warping into
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the construction of a new time-warped self-normalizer as proposed in Sec-

tion 3, and the resulting method can effectively handle two-sample testing

of time series that exhibit joint dependence with staggered observation pe-

riods. In addition, it provides a unified approach to handle the mean and

other quantities such as the variance or quantiles which can be a convenient

feature for practitioners. By applying the proposed method to a precipi-

tation data, we found that the NwEW region and the NI region in UK

share the same mean and median in their history precipitation but have

statistically different variations. This provides the statistical support and

complements the climatological intuition that the mountainous subareas in

NwEW tend to receive much more rainfalls due to orographic precipitation

than the protected subarea that is often much drier than the NI.

Supplementary Material

Supplementary material contains technical proofs for our main results in

Sections 2 and 3, additional simulation results, and the description of a

minimum volatility bandwidth choice.
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