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Abstract: We consider a general M -estimation problem based on contaminated

case-control data, including the primary and secondary analyses of case-control

studies as special examples. The case pool contains ineligible patients who should

be excluded from the study if known, but the true status of an individual in the

case pool is unclear except in a small subset. Through imputing the possibly

unobserved status variable with a function of all available relevant predictors,

followed by an appropriate debiasing procedure, we exploit the whole sample to

develop a family of robust and efficient estimators, eliminating bias from the case

contamination. With the help of cross-fitting, the imputation function can be

constructed using any reasonable regression or machine learning approaches. Our

estimators are always root-n-consistent and asymptotically normal regardless of

the imputation function’s limit. Further, we explore relaxation of requirements

on the imputation function. We show even without any assumption on its con-

vergence properties, our estimators are still root-n-consistent while asymptotic

normality can be achieved by a sample-splitting variant. We also demonstrate

results of this type, which are entirely free of convergence assumptions on the nui-

sance estimators, can be extended to other problems involving nuisance functions.

The finite-sample superiority of our method is demonstrated by comprehensive

simulation studies. We also apply our method to analyze sepsis-related death

based on a real data set from electronic health records.

Key words and phrases: Contaminated case pool; Estimating equation; Nuisance

estimation; Primary and secondary analyses of case-control data; Robustness and

efficiency.
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1. Introduction

In epidemiology and many other biomedical fields, case-control designs have

been serving as flexible and cost-effective tools for investigating risk fac-

tors for conditions of interest, e.g., the occurrence of rare diseases and

disease-related mortality. In stark contrast with prospective cohort de-

signs, a case-control sample is assembled by combining two independent

subsamples drawn separately from two groups: individuals with (cases)

and without (controls) the condition of interest. A detailed overview of

case-control methods can be found in Breslow (1996). In biomedical re-

search, case-control data are popularly used for two purposes:

(a) Primary analysis that aims to understand how the primary outcome

defining the case-control status is associated with a set of covariates. The

most frequently used approach is fitting a prospective logistic regression

model (Prentice and Pyke, 1979).

(b) Secondary analysis that focuses on the relationship between the co-

variates and a secondary outcome, whose data are also available in the

case-control sample defined in terms of the primary outcome. A variety

of strategies have been proposed to adapt prospective regression methods

to accommodate the case-control sampling scheme; see Tchetgen Tchetgen

(2014) for a thorough review of the secondary analysis literature.
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1.1 Case contamination in electronic health records

1.1 Case contamination in electronic health records

Recent applications of case-control methods to electronic health record

(EHR) data have produced many promising results; see, for example, Palen

et al. (2012). Containing a wealth of patients’ health information, EHRs

provide rich resources for clinical and translational studies (Casey et al.,

2016). Nonetheless, standard analytical techniques are often not suitable

for analyzing EHR data because they were collected mainly for purposes

other than research (Pathak et al., 2013). Specific to EHR-based case-

control studies, a widely recognized challenge is case contamination, that

is, inclusion of ineligibles in the case pool who cannot be treated as either

cases or controls but should be excluded from the study. This is an essential

difference of our problem from two relevant traditional ones: the outcome

misclassification framework and the exponential tilt mixture model; see the

clarification in Section S1 of the Supplementary Material. On the other

hand, phenotyping information that can help validate eligibility of cases

is often known only in a random subset of the whole pool (Klarin et al.,

2019). For example, when phenotyping information is not directly available

from the records, a common strategy for researchers is randomly drawing a

small portion of all cases and validating their eligibility by approaches such

as medical chart reviews, which cannot be conducted for the whole case
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1.1 Case contamination in electronic health records

pool due to logistic constraints (Wang et al., 2021). In contrast, a sufficient

number of controls can usually be collected with accurate phenotyping in-

formation, since there are typically many more controls than cases given,

for example, the condition of interest is the occurrence of a rare disease

or disease-related mortality. Actually, because the definitions of cases and

controls are interchangeable in case-control samples, the method developed

in this work can be directly applied to studies with ineligible controls. It can

also be easily generalized to handle problems where contamination exists

in both the case and control pools. We focus on case-control studies with

only case contamination, which is the most common situation in practice,

to illustrate our main ideas and simplify notation.

The phenotyping challenge described above can be clearly illustrated

by a case-control study on sepsis-related death in Dai et al. (2023), which

is based on a data set extracted from the Medical Information Mart for

Intensive Care (MIMIC) III (Johnson et al., 2016). The control pool of

the study consists of survivors with sepsis who are eligible for the study.

But the case pool, which is supposed to contain only patients who died of

sepsis-related causes, is actually contaminated by ineligibles, i.e., deceased

individuals who died of reasons unrelated to sepsis. As the definition of con-

trols is “having sepsis and surviving”, those ineligibles cannot be treated
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1.2 Existing methods and motivations of our work

as controls but should be excluded from the study. Since the phenotyping

information for discerning cases and ineligibles is available only in the “val-

idation set”, which was verified as a random subset of the case pool, it is

infeasible to identify all the sepsis patients followed by applying standard

case-control methods. Detailed descriptions and analyses of this data set

can be found in Section 6.

1.2 Existing methods and motivations of our work

The case contamination problem illustrated in Section 1.1 is ubiquitous in

EHR data, necessitating novel strategies for conducting valid case-control

studies using the contaminated samples. In such settings, some recent

progress has been made for estimating odds ratio parameters of the pri-

mary analysis in light of a feature of the data structure: due to being a

random subset of the case pool, the validation set provides information

that can be transferred to the nonvalidated candidate cases. Here the “can-

didate cases” is a collective name of cases and ineligibles. Along this line,

Wang et al. (2021) pointed out the key role of the phenotyping model, which

predicts based on the covariates the likelihood of a candidate case being

a case, in correcting bias caused by case contamination and making use

of the nonvalidated candidate cases to improve estimation efficiency. In-
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1.2 Existing methods and motivations of our work

stead of attempting to exclude ineligibles, Wang et al. (2021) constructed a

weighted estimating equation involving all available data, where the weight

of a candidate case is determined by a phenotyping model learned from

the validation set. Despite outperforming the naive approach that ignores

the contamination, their method undesirably relies on an assumption that

the phenotyping model has a logistic form, violation of which can result

in inconsistent estimation. This stringent condition was loosened by a re-

cent unbiased estimating equation approach developed in Dai et al. (2023),

which possesses full robustness against model misspecification and achieves

semiparametric efficiency when the phenotyping model is indeed logistic.

The above-mentioned methods from Wang et al. (2021) and Dai et al.

(2023) share a common limitation: they both build a low-dimensional para-

metric (working) phenotyping model where the number of predictors is

much smaller than the validation set size. In EHR data sets, the collection

of predictors for discerning cases and ineligibles can be very rich, rang-

ing from demographics, healthcare utilization, labs and prescriptions to

co-morbidity statuses, etc. To fully exploit the predictiveness of these vari-

ables whose number may well exceed the validation set size, it is necessary

to allow for high dimensional phenotyping models of flexible forms.

In addition to investigating risk factors for the case-control status as in
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Wang et al. (2021) and Dai et al. (2023), another important task in case-

control studies is to perform association analysis for co-morbid statuses or

other secondary outcomes given the tremendous effort required to prepare

an EHR data set for a research study. None of the existing methods is

directly applicable when case contamination exists. The paucity of relevant

research motivates us to develop a unified theory that can facilitate both

the primary and secondary analyses based on the contaminated data.

1.3 Our contributions

We aim to provide a thorough and comprehensive understanding of case-

control studies with contaminated case pools. Our theoretical analysis is

conducted under a general M -estimation framework, where the target pa-

rameters are defined as the solution to a set of estimating equations involv-

ing cases and controls only, without assumptions on the underlying relation

between the covariates and primary or secondary outcome. This highly flex-

ible model-free framework renders our method applicable to inference for

(i) the odds ratio parameters in the primary analysis and (ii) the generalized

linear model parameters in the secondary analysis, among others.

For these important parameters in the primary or secondary analysis

of case-control studies, we devise a family of estimators that make use of
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all available data, indexed by a function employed to impute the possi-

bly unobserved status variables of candidate cases. Constructed using the

one-step update strategy (Van der Vaart, 2000), our estimators have a sim-

ple closed-form expression allowing for easy implementation. Under the

high-level assumptions listed in Section 3.2, we establish in Theorem 1 the

n1/2-consistency and asymptotic normality of our estimators with n being

the number of validated individuals. Thanks to an appropriate debiasing

procedure and the use of cross-fitting (Newey and Robins, 2018) in calculat-

ing the imputation function as an estimator for the (possibly misspecified)

phenotyping model, these properties rely on neither (i) correct specifica-

tion of the phenotyping model nor (ii) first-order asymptotics or stochastic

equicontinuity conditions of the imputation function. This feature enables

us to exploit a wide range of regression and machine learning algorithms

for constructing the possibly high dimensional imputation function with-

out any knowledge of its asymptotic expansion or specific convergence rate.

Moreover, when the phenotyping model is correctly specified by the im-

putation function, our estimators enjoy semiparametric efficiency (Tsiatis,

2007) under appropriate semiparametric models; see Remark 3.

Another notable contribution of this work is rigorous development of

inferential theory under minimum assumptions on the nuisance estimator
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in our method, i.e., the imputation function. We demonstrate in Remark 2

that for deriving the n1/2-consistency and asymptotic normality of our esti-

mators, the L2 convergence of the nuisance estimator is generally sufficient,

where the limit does not have to equal the true phenotyping model. This is

a fairly mild requirement that holds for a variety of regression and machine

learning approaches. Further relaxation of this assumption is considered

in Theorem 2, which reveals that given we are entirely agnostic to asymp-

totic behaviors of the nuisance estimator whose limit may not even exist,

our estimators are still guaranteed to be n1/2-consistent for the target pa-

rameters while asymptotic normality can be achieved by a variant resorting

to the sample-splitting technique (Cox, 1975). For other estimation prob-

lems involving nuisance functions, e.g., semi-supervised inference (Zhang

and Bradic, 2022) and treatment effect estimation in randomized experi-

ments (Wager et al., 2016), results of this type, which are completely free of

convergence assumptions on the nuisance estimators, can also be pursued

in a similar way while having not been studied in the existing literature;

see Remark 4 and Section S4 in the Supplementary Material.
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2. Problem setup

Notations Throughout, the lower case letter c stands for a generic pos-

itive constant, including c1, c2, etc, which may vary from place to place.

For a vector u, we use u[j] to represent its jth component. The symbols

‖ · ‖ and λmin(·) respectively refer to the maximum and minimum singular

value of a matrix, while 1(·) is the indicator function. The bold number

0 is a zero vector of an appropriate length and I an identity matrix of an

appropriate size. For any random function ĝ(·) and random vector U with

copies {Ui : i = 1, . . . , n}, denote EU|S=s{ĝ(U)} :=
∫

ĝ(u)dFU|S=s(u) as

the integral of ĝ(·) with respect to the conditional distribution function

FU|S=s(·) of U given a binary variable S = s ∈ {0, 1}. The symbol N(µ,Σ)

represents a normal distribution with mean µ and covariance matrix Σ.

Data structure To formulate the case contamination problem, we intro-

duce a three-valued variable D ∈ {0, 1, 2} to indicate whether an individual

in the sample is (i) an ineligible (D = 0), (ii) a case (D = 1) or (iii) a

control (D = 2). Cases and ineligibles are collectively referred to as “can-

didate cases”, while the latter should be excluded from the study since our

target population consists of cases and controls only. We also let a binary

variable S := 1(D 6= 2) represent the status of being a candidate case
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(S = 1) or a control (S = 0). To reflect the difficulty in obtaining pheno-

typing information of candidate cases, we assume S is always observed but

the value of D (0 or 1) is available only in a small subset of the candidate

case pool, i.e., the validation set. In other words, it is clear whether an

individual in the sample is a candidate case (S = 1) or a control (S = 0),

but whether a candidate case is a case (D = 0) or an ineligible (D = 1)

is unknown except in the validation set of size n. In a typical case-control

study among cases (D = 1) and controls (D = 2), the primary goal is

to study relationship between D and a set of covariates X ∈ Rp where

p ≥ 1 is a fixed integer. We are also interested in how the covariates in

X affect a secondary outcome Y ∈ R which is potentially associated with

D. Besides X and Y , there are also records of predictors X∗ available in

the data, which are informative for the true status of a candidate case.

We allow the dimension d of Z := (Y,XT,XT
∗ )T ∈ Z ⊂ Rd to diverge

and exceed the validation set size n. Our study sample can be written

as the union of three mutually independent subsets: (i) the validation set

V := {(Di, Si ≡ 1,Zi) : 1 ≤ i ≤ n} of size n, (ii) the nonvalidated candidate

case pool N := {(Si ≡ 1,Zi) : n < i ≤ N1} of size N1 − n and (iii) the

control pool C := {(Si ≡ 0,Zi) : N1 < i ≤ N} of size N0 := N −N1, which

contain independent copies of base observations (D,S = 1,Z), (S = 1,Z)
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and (S = 0,Z). In retrospective sampling, the numbers of candidate cases

and controls were determined in advance, so that N1, N0 and Si are non-

random while the proportion of candidate cases, τ := N−1
∑N

i=1Si ≡ N1/N ,

may not equal the population counterpart η := E(S).

Remark 1 (Difference from missing data problems). Since typically the

validation set is randomly drawn from the candidate case pool (see the first

paragraph of Section 1.1), one can roughly treat D as “missing by design”

in V ∪N from the missing data perspective. The exposition in Chen (2000)

indicates the known “missingness” mechanism of D guarantees the valid-

ity of transferring information from the validation set to the nonvalidated

candidate case pool. Nonetheless, as clarified in Dai et al. (2023), there

is a subtle and rather important difference between the traditional missing

data framework and our data structure: in our setting, the validation set

can be arbitrarily small relative to the whole candidate case pool. That

is, for δn := n/N1, we allow δ := limn→∞ δn ∈ [ 0, 1). Since n < N1, the

sequence N1 → ∞ whenever n → ∞. We thus suppress the subscript N1

in δn for brevity. The special case δ = 0 holds when, for example, N1 = n2.

It apparently violates the “positivity assumption” that the proportion of

complete observations in the sample is bounded away from zero, which is

typically considered inevitable in the missing data literature (Tsiatis, 2007).
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In EHR-based case-control studies, the whole candidate case pool size N1

can be very large, say 105, while the typical validation set size n is just

several hundred. Then δ = 0 approximately holds.

Target parameters Our target parameter vector θ0 ∈ Θ ⊂ Rp is defined

as the solution to the following equation:

αE{Dψ(W,θ0) | S = 1}+ (1− α)E{ψ(W,θ0) | S = 0} = 0 (2.1)

with W := (S, Y,XT)T, α ∈ {τ ≡ N1/N, η ≡ E(S)} and ψ(W,θ) ∈ Rp

an estimating function that is differentiable with respect to θ. Recalling

S ≡ 1(D 6= 2), equation (2.1) actually defines θ0 within the population

of cases (D = 1) and controls (D = 2) only, since ineligibles (D = 0)

should be excluded from the study. Except for the basic smoothness and

moment conditions on ψ(W,θ) specified in Section 3.2, we do not impose

extra requirements on the distribution of (D,W). Hence, our framework is

entirely model-free. In Section S2 of the Supplementary Material, practical

relevance of the general M -estimation problem (2.1) is illustrated by two

important special examples, which correspond to the primary and secondary

analyses in case-control studies. We also address the existence, uniqueness

and identifiability of θ0 in the remarks therein.
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3. Estimation and inference

Since the status variable D is unknown in the nonvalidated candidate case

pool N , we cannot estimate θ0 by directly constructing the empirical ver-

sion of (2.1) with the whole study sample. Therefore, we consider replac-

ing D with a function of Z in equation (2.1) so that N can be used for

estimation. Denote the phenotyping model µ(Z) := E(D | Z, S = 1).

Recalling W ≡ (S, Y,XT)T and (Y,XT)T are subvectors of Z, we have

E[{D − µ(Z)}ψ(W,θ0) | Z, S = 1] = 0, which suggests substituting

µ(Z) for D in (2.1) does not cause bias at the population level. We

can thus estimate θ0 based on the equation αE{µ(Z)ψ(W,θ0) | S =

1} + (1 − α)E{ψ(W,θ0) | S = 0} = 0, which does not involve D. Never-

theless, fitting µ(Z) fully nonparametrically is usually infeasible considering

the dimension d of Z can be greater than the validation set size n. On the

other hand, positing parametric assumptions on the form of µ(·) will lead

to potential model misspecification and estimation bias. These issues high-

light the necessity of appropriate debiasing strategies in the construction of

estimators involving the nonvalidated candidate cases.

For an arbitrary µ∗ : Rd 7→ R that may not equal µ(·), the following

identity always holds: 0 = Φ(θ0) :=

αE{Dψ(W,θ0) | S = 1}+ (1− α)E{ψ(W,θ0) | S = 0} (3.1)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0373



= αE{µ∗(Z)ψ(W,θ0) | S = 1}+ (1− α)E{ψ(W,θ0) | S = 0}+

αE[{D − µ∗(Z)}ψ(W,θ0) | S = 1]. (3.2)

The above (3.2) provides an unbiased estimating equation for θ0 that is

robust against misspecification of the phenotyping model µ(·). Noticing the

three expectations E{µ∗(Z)ψ(W,θ0) | S = 1}, E{ψ(W,θ0) | S = 0} and

E[{D−µ∗(Z)}ψ(W,θ0) | S = 1] in (3.2) can respectively be approximated

based on the whole candidate case pool V ∪N , the control pool C and the

validation set V , it is natural to expect an estimator of θ0 can be obtained

from solving, with respect to θ, the empirical version of (3.2), that is,

0 = αN−11

∑N1

i=1µ̂(Zi)ψ(Wi,θ) + (1− α)N−10

∑N
i=N1+1ψ(Wi,θ)+

αn−1
∑n

i=1{Di − µ̂(Zi)}ψ(Wi,θ), (3.3)

where Wi := (Si, Yi,X
T
i )T and µ̂(·) is an estimator of µ∗(·) based on the

validation set V . Whereas, this is quite a challenging task: rewrite (3.3) as∑N
i=1ξ̂iψ(Wi,θ) = 0 with

ξ̂i := α[1(i ≤ n){Di − µ̂(Zi)}/n+ 1(i ≤ N1)µ̂(Zi)/N1] + (1− α)1(i > N1).

Since n < N1, it is possible that ξ̂i ≡ µ̂(Zi)(N
−1
1 − n−1) < 0 for i ∈ {i :

1 ≤ i ≤ n,Di = 0}. If we view (3.3) as a weighted estimating equation, the

weight ξ̂i can be negative for some summands in
∑N

i=1ξ̂iψ(Wi,θ). There-

fore, solving (3.3) may correspond to some nonconvex optimization problem

even when ψ′(W,θ) := ∂ψ(W,θ)/∂θ is positive definite for any θ ∈ Θ.
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3.1 Construction of debiased estimators using one-step update

3.1 Construction of debiased estimators using one-step update

To avoid complicated algorithms and simplify the implementation, we adopt

the one-step update strategy (Van der Vaart, 2000). Notice the derivative

of function Φ(·) in (3.1) is Φ′(θ) := dΦ(θ)/dθ ≡

αE{Dψ′(W,θ) | S = 1}+ (1− α)E{ψ′(W,θ) | S = 0}. (3.4)

Let Ω(θ) := −{Φ′(θ)}−1. Then, at the population level, we can refine an

(initial) solution θIN to (3.2) by a one-step update θIN−{Φ′(θIN)}−1Φ(θIN) ≡

θIN + Ω(θIN)(αE{µ∗(Z)ψ(W,θIN) | S = 1}+ (1− α)E{ψ(W,θIN) | S = 0}

+ αE[{D − µ∗(Z)}ψ(W,θIN) | S = 1] ),

whose empirical version provides a family of estimators for θ0:

θ̂ := θ̂IN + Ω̂[αN−11

∑N1

i=1µ̂(Zi)ψ(Wi, θ̂IN) + (1− α)N−10

∑N
i=N1+1ψ(Wi, θ̂IN)

+ αn−1
∑n

i=1{Di − µ̂(Zi)}ψ(Wi, θ̂IN)], (3.5)

indexed by (initial) estimators {θ̂IN, Ω̂, µ̂(·)} for {θ0, Ω ≡ Ω(θ0), µ
∗(·)}

that are calculated from the complete observations in V ∪ C. We do not

specify their forms in our theoretical analysis. Imposing the high-level con-

ditions in Assumptions 2–3 on {θ̂IN, Ω̂, µ̂(·)} is sufficient for establishing

the results in Sections 3.2 and 5. Some reasonable choices of {θ̂IN, Ω̂} will

be provided in Section 3.3, while thorough discussions of the phenotyping

model estimator µ̂(·) can be found in Section 5.

To facilitate derivations of our method’s properties, we adopt the cross-
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3.1 Construction of debiased estimators using one-step update

fitting technique (Newey and Robins, 2018) for the nuisance estimator µ̂(·):

without loss of generality, divide the index set I := {1, . . . , n} into M

disjoint subsets {I1, . . . , IM} of size n/M for some fixed integer M ≥ 2.

Let µ̂m(·) be an estimator for µ∗(·) based on the data set V−m := {(Di, Si ≡

1,Zi) : i ∈ I\Im} (m = 1, . . . ,M). Then we calculate {µ̂(Zi) : i =

1, . . . , N1} in (3.5) as follows:

µ̂(Zi) ≡
∑M

m=1{1(i ∈ Im)µ̂m(Zi) + 1(i > n)µ̂m(Zi)/M}. (3.6)

The cross-fitting procedure removes the dependence between µ̂(·) and Zi

in terms {µ̂(Zi) : i = 1, . . . , n}, making remainders involving them in the

expansion of θ̂ easier to control without changing the influence function

thereof. Consequently, when establishing asymptotic properties of θ̂, we

avoid some stringent conditions on µ̂(·), which are similar to the stochastic

equicontinuity assumptions in empirical processes theory (Van der Vaart,

2000). As shown in Theorem 1 and Remark 3, employing µ̂(·) in (3.6) does

not reduce asymptotic efficiency of our method though µ̂m(·) involves only

a part of the validation set. The use of cross-fitting does not require specific

forms of µ̂(·), so the flexibility of our method is not degraded.
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3.2 Asymptotic properties of θ̂

3.2 Asymptotic properties of θ̂

We thoroughly study in Theorem 1 asymptotic properties of our estimators

θ̂, presenting their expansion with explicit remainder rates, followed by

their limiting distribution. The semiparametric efficiency of θ̂ is discussed

in Remark 3. We first specify assumptions needed for these results.

Assumption 1. Let ψ′[j](W,θ) and ψ′′[j](W,θ) be the first- and second-

order derivatives of ψ[j](W,θ) with respect to θ. Then there exists B0 :=

{θ : ‖θ−θ0‖ < c} with some c > 0 such that E{supθ∈B0‖ψ
′
[j](W,θ)‖2} <∞

and supθ∈B0‖E{ψ
′′
[j](W,θ)}‖ <∞ for j = 1, . . . , p.

Assumption 2. For some positive sequences un = o(1) and vn = o(1), the

estimators θ̂IN and Ω̂ satisfy ‖θ̂IN − θ0‖ = Op(un) and ‖Ω̂−Ω‖ = Op(vn).

Assumption 3. The function µ∗(·) is bounded. Its estimator µ̂m(·) satisfies

for some positive sequences {an,∞, an,2} and m = 1, . . . ,M that

supz∈Z |µ̂m(z)− µ∗(z)| = Op(an,∞) and (3.7)

E1/2
Z,W|S=1[‖{µ̂m(Z)− µ∗(Z)}ψ(W,θ0)‖2] = Op(an,2). (3.8)

Assumption 1 on the estimating function ψ(·, ·) is usually equivalent to

some mild moment conditions on the covariates X. For the primary and

secondary analyses specified in Section S2 of the Supplementary Material,

Assumption 1 holds as long as E(‖X‖4) <∞. Assumption 2 requires con-

sistency of the (initial) estimators {θ̂IN, Ω̂} for {θ0,Ω}, which is standard

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0373



3.2 Asymptotic properties of θ̂

for the one-step update approach; see Section 3.3 for detailed discussion

of {θ̂IN, Ω̂}. In Assumption 3, we do not require µ∗(·) = µ(·), allowing

for misspecification of the phenotyping model. We consider µ∗(·) bounded

because µ̂(·) is usually calculated as an estimated conditional probability,

which means its limit µ∗(·) ∈ [0, 1]. Conditions (3.7)–(3.8) specify the rates

of terms involving µ̂(·) that appear in the remainders of the expansion of

θ̂. We emphasize sequences {an,∞, an,2} are allowed to diverge. Remark

2 suggests an,∞ log(2 + an,∞) = o(n1/2) and an,2 = o(1) are sufficient for

n1/2-consistency and asymptotic normality of θ̂.

Theorem 1. Under Assumptions 1–3, our estimators θ̂ have the following

expansion: θ̂ − θ0 =

Ω[αn−1
∑n

i=1{Di − µ∗(Zi)}ψ(Wi,θ0) + αN−11

∑N1

i=1µ
∗(Zi)ψ(Wi,θ0)+

(1− α)N−10

∑N
i=N1+1ψ(Wi,θ0)] +Op(rn) + op(n

−1/2), (3.9)

where rn := unvn + u2n + (an,2 + unan,∞) log(2 + unan,∞/an,2)/n
1/2. (3.10)

Further, suppose rn = o(n−1/2), E{‖ψ(W,θ0)‖2(1+c1)} <∞ and λmin{An(µ∗)} ≥

c2 for some positive constants {c1, c2}, where

An(µ∗) := α2cov[{D − (1− δn)µ∗(Z)}ψ(W,θ0) | S = 1]+

α2δn(1− δn)cov{µ∗(Z)ψ(W,θ0) | S = 1}+

(1− α)2τ(1− τ)−1δncov{ψ(W,θ0) | S = 0}. (3.11)

Then n1/2{ΩAn(µ∗)Ω}−1/2(θ̂ − θ0)
d−→ N(0, I) as n→∞. (3.12)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0373



3.2 Asymptotic properties of θ̂

Remark 2 (Rate conditions for the asymptotic normality of θ̂). We can see

in Theorem 1 the key to the distributional result (3.12) is the rate condition

rn = o(n−1/2) with sequence rn given in (3.10). The arguments in Section

3.3 indicate typical rates of {un, vn} are un = O(n−1/2) and vn = o(1).

These imply an,2 + an,∞ log{2 + an,∞/(n
1/2an,2)}/n1/2 = o(1) suffices to

guarantee rn = o(n−1/2). Thus, the properties of µ̂(·) needed for (3.12) are

an,∞ log(2 + an,∞) = o(n1/2) and an,2 = o(1) (3.13)

with {an,∞, an,2} given in (3.7)–(3.8). Here we use the fact that an,2 gener-

ally cannot converge faster than n−1/2. We can see the L∞ error supz∈Z |µ̂m(z)−

µ∗(z)| is actually allowed to diverge. Rate condition (3.13) is quite reason-

able for various regression and machine learning approaches used to calcu-

late µ̂m(·), under suitable conditions of the estimating function ψ(·, ·). For

example, if the components of ψ(·, ·) are bounded, then the second part of

(3.13) is equivalent to E1/2
Z|S=1[{µ̂m(Z) − µ∗(Z)}2] = op(1). Compared with

assuming supz∈Z |µ̂m(z) − µ∗(z)| = op(1) or requiring specific convergence

rates of µ̂m(·) (e.g., an,2 = O(n−1/2)), such an L2 convergence condition is

considerably weaker. Throughout, we place no restriction on the form of

µ̂m(·). In the numerical studies of Sections 4 and 6, we will specify some

parametric, semiparametric and nonparametric examples of µ̂m(·) for the

implementation of our method.
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3.3 Choices of θ̂IN and Ω̂

Remark 3 (Semiparametric efficiency of θ̂). We can show that given the

phenotyping model is correctly specified, i.e., µ∗(·) = µ(·), our estimators

θ̂ attain under appropriate semiparametric models the semiparametric effi-

ciency defined in Tsiatis (2007), when δ ≡ limn→∞(n/N1) is either positive

or zero. The detailed derivations are technical and a bit lengthy so we

relegate them to Section S3 of the Supplementary Material.

3.3 Choices of θ̂IN and Ω̂

A natural choice of θ̂IN is the solution to (3.3) with µ̂(·) ≡ 0, which discards

the nonvalidated candidate cases. That is, we obtain θ̂IN from solving

0 = αn−1
∑n

i=1Diψ(Wi, θ̂IN) + (1− α)N−10

∑N
i=N1+1ψ(Wi, θ̂IN), (3.14)

which can be written as 0 =
∑N

i=1πiψ(Wi, θ̂IN) with πi := 1(i ≤ n)αDi/n+

1(i > N1)(1 − α)/N0 ≥ 0. This can be easily solved as a weighted empir-

ical version of (2.1). The n1/2-consistency of θ̂IN in (3.14) is ensured by

the classical M -estimation theory (Van der Vaart, 2000, Chapter 5) under

standard regularity conditions. Hence, the sequence un in Assumption 2

typically satisfies un = O(n−1/2). To estimate matrix Ω, we set −Ω̂−1 ≡

αn−1
∑n

i=1Diψ
′(Wi, θ̂IN) + (1− α)N−10

∑N
i=N1+1ψ

′(Wi, θ̂IN). (3.15)

The convergence of Ω̂ to Ω shown below proves Ω̂ satisfies Assumption 2.

Proposition 1. Suppose ‖θ̂IN−θ0‖ = op(1) and E{supθ∈B0‖ψ
′′
[j](W,θ)‖} <

∞ for j = 1, . . . , p. Then Ω̂ given in (3.15) satisfies ‖Ω̂−Ω‖ = op(1).
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4. Simulations

We now examine the numerical performance of our method on simulated

data. Throughout, the dimensions of Z and X are d = 500 and p = 12.

The random vector Z follows the d-dimensional normal distribution with

a zero mean and a covariance matrix whose (i, j)th entry equals 0.5|i−j|.

We let X ≡ (1,Z[1], . . . ,Z[p−1])
T and Y ≡ Z[p]. The first component 1

of X is included to capture intercept terms in regression models. We use

several different combinations of sample sizes (n,N): n ∈ {200, 400} and

N ∈ {5×103, 104, 2.5×104}. The ratio of candidate cases to controls in the

case-control samples is set to τ = 0.4, so the value of δn ≡ n/N1 ≡ n/(τN)

ranges from 0.02 to 0.2 in these setups, including cases where the validation

set is much smaller or comparable in size to the whole sample. Observations

of S and D are generated from the following mechanism:

E(S | Z) ≡ h(2
∑d

j=1Z[j]/d
1/2), µ(Z) ≡ E(D | Z, S = 1) ≡ h{ρ(Z)} (4.1)

with h(x) := {1 + exp(−x)}−1. The prevalence of candidate cases in model

(4.1) is η ≡ E(S) = 0.5. We consider five different forms of µ(Z) in (4.1) by

setting ρ(Z) to the choices (a)–(e) listed in Section S5 of the Supplemen-

tary Material, which simulate a variety of phenotyping effects, including

linear, quadratic and interaction ones that are common in biomedical stud-

ies. The sparsity level of the high dimensional phenotyping model µ(Z),
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which is represented by q, takes two different values, q = dd1/2e and q = n,

corresponding to sparse and dense models, respectively.

Our target is to estimate the odds ratio parameters (S1) for the primary

analysis and the linear regression parameters (S3) (with f(x) ≡ x) for the

secondary analysis, which are specified in Section S2 of the Supplementary

Material. To construct our estimators θ̂ proposed in (3.5), we plug in the

initial estimator θ̂IN that solves (3.14), along with the Jacobian estimate Ω̂

in (3.15). Regarding the phenotyping model estimator µ̂(·), we adopt the

cross-fitting strategy (3.6) with M = 10 and four choices of µ̂m : Rd 7→ R:

(i) a parametric estimator

µ̂m(z) ≡ {1 + exp(−β̂T
mz)}−1 (4.2)

with β̂m ∈ Rd from penalized logistic regression of D on Z using V−m, where

the L1 penalty is used with a tuning parameter chosen by cross validation;

(ii) a semiparametric estimator

µ̂m(z) ≡
∑

i∈I−mDiKb{β̂T
m(z− Zi)}/

∑
i∈I−mKb{β̂T

m(z− Zi)},

where β̂m is as in (4.2) and Kb(x) := exp{−x2/(2b2)} denotes the Gaussian

kernel with a bandwidth b chosen by cross validation;

(iii) a machine learning estimator µ̂m(z) yielded by applying the random

forest algorithm to V−m, which treats D as the outcome, grows 500 trees and

randomly draws dd1/2e components of Z as candidates at each split.
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4.1 Estimation results: relative efficiencies

The implementations of the above (i), (ii) and (iii) make use of the R pack-

ages glmnet, np and randomForest. In the following, all the results are

summarized over 500 iterations. To save space, the results of the secondary

analysis are reported in the Supplementary Material

4.1 Estimation results: relative efficiencies

We investigate the estimation quality. The consistent initial estimator θ̂IN

in (3.14) serves as a benchmark. Tables 1 and S1 (in the Supplementary

Material) report efficiencies of θ̂ relative to θ̂IN, i.e.,

E(‖θ̂IN − θ0‖2)/E(‖θ̂ − θ0‖2). (4.3)

Since θ̂IN uses only controls and cases in the validation set, ignoring the

nonvalidated candidate case pool N , criterion (4.3) reflects if and to what

extent our method improves the estimation of θ0 through exploiting N .

Also, we provide the maximum relative efficiency in each setting:

MRE := tr{ΩAn(0)Ω}/tr{ΩAn(µ)Ω}, (4.4)

where tr(·) denotes the trace of a square matrix; see (3.4) and (3.11) for the

forms of matrices Ω ≡ −{Φ′(θ0)}−1 and An(·). This represents the optimal

asymptotic efficiency that is attainable only if the phenotyping model µ(·)

is correctly specified and the estimation errors of {µ̂m(·), θ̂IN, Ω̂} are zero.

Apparently, the maximum relative efficiency is unrealistic in a finite sample.
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4.1 Estimation results: relative efficiencies

We present it just as a reference for estimation quality. The true value of

θ0, as well as the unknown quantities in (4.4), is calculated by Monte Carlo

based on a sample {(Di, Si,Zi) : i = 1, . . . , 5× 104} that is independent of

the data involved in estimation.

Across all the simulation configurations listed in Tables 1 and S1, re-

gardless of whether the phenotyping model µ(·) is misspecified by the nui-

sance estimator µ̂m(·) or not, we observe uniform superiority of our es-

timators θ̂ over the benchmark θ̂IN, indicated by the relative efficiencies

that significantly exceed one. The advantages become more notable as

the whole sample size N increases. These results corroborate our method

achieves robust and efficient use of the nonvalidated candidate cases, which

are discarded by θ̂IN. When the validation set size n rises from 200 to 400,

there emerges a clear trend of numbers in the two tables approaching the

corresponding maximum relative efficiencies. This validates the asymptotic

optimality of our method under correct specification of µ(·) as clarified in

Remark 3. Comparing the three different types of nuisance estimators, we

can see for sparse models with q = dd1/2e, the parametric one using penal-

ized logistic regression generally produces the best results. When it comes

to denser models with q = n, the machine learning method based on ran-

dom forest shows advantages in most of the cases. This observation can be
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4.1 Estimation results: relative efficiencies

Table 1: Simulation results of the primary analysis in Section 4: relative

efficiencies (4.3) of our estimators θ̂ to the benchmark θ̂IN. The nuisance

estimator µ̂(·) in θ̂ is constructed using logistic regression (LR), kernel
smoothing (KS) or random forest (RF). Here q is the sparsity level of the
phenotyping model E(D | Z, S = 1), d ≡ 500 the dimension of the predic-
tors Z, N the whole sample size, n the validation set size, ρ(Z) the function
in data generating model (4.1) and MRE as defined in (4.4). The choices
(a)–(e) of ρ(Z) are listed in Section S5 of the Supplementary Material. Re-
sults in settings with (a) ρ(Z) ≡ 0.7 are displayed in the upper panel only
because they are not affected by the sparsity level q.

q = dd1/2e N = 5000 N = 10000 N = 25000

n ρ(Z) LR KS RF MRE LR KS RF MRE LR KS RF MRE

200

(a) 2.31 2.20 2.33 2.44 2.74 2.56 2.76 2.76 3.00 2.74 3.01 3.00

(b) 2.68 2.22 1.75 4.18 2.92 2.40 1.79 5.59 3.37 2.57 1.95 7.09

(c) 2.17 1.91 2.21 3.29 2.34 2.03 2.42 4.03 2.77 2.36 2.84 4.69

(d) 1.94 1.72 1.93 3.25 2.10 1.82 2.09 3.94 2.29 1.95 2.27 4.53

(e) 2.67 2.35 2.02 3.76 2.88 2.37 2.10 4.85 3.37 2.62 2.44 5.92

400

(a) 1.94 1.91 1.94 2.01 2.40 2.35 2.41 2.44 2.77 2.68 2.77 2.83

(b) 2.45 2.28 1.63 2.84 3.15 2.79 1.80 4.18 3.88 3.20 1.95 6.01

(c) 1.92 1.85 1.92 2.45 2.19 2.07 2.19 3.29 2.61 2.42 2.60 4.23

(d) 1.75 1.69 1.69 2.45 1.99 1.87 1.94 3.25 2.20 2.05 2.14 4.11

(e) 2.37 2.27 1.81 2.65 2.88 2.67 2.02 3.76 3.73 3.33 2.34 5.16

q = n N = 5000 N = 10000 N = 25000

n ρ(Z) LR KS RF MRE LR KS RF MRE LR KS RF MRE

200

(b) 2.42 2.02 2.40 4.93 2.72 2.17 2.71 7.18 2.97 2.29 2.98 10.03

(c) 2.63 2.33 2.69 3.91 2.91 2.56 2.99 5.14 3.48 2.94 3.60 6.39

(d) 2.25 1.96 2.31 3.80 2.45 2.12 2.54 4.89 2.76 2.27 2.92 5.94

(e) 2.75 2.42 2.81 4.54 3.31 2.74 3.38 6.43 4.00 3.25 4.08 8.68

400

(b) 2.25 2.06 2.23 3.11 2.94 2.58 2.96 5.05 3.69 3.07 3.68 8.49

(c) 2.27 2.15 2.29 2.85 3.07 2.79 3.11 4.32 4.08 3.53 4.13 6.50

(d) 2.07 1.95 2.09 2.75 2.52 2.26 2.56 4.01 3.02 2.63 3.08 5.68

(e) 2.47 2.36 2.48 3.01 3.55 3.25 3.58 4.84 4.87 4.36 4.91 8.01

attributed to the relatively strong ability of machine learning approaches in

capturing nonlinear and dense structures of complex phenotyping models.
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4.1 Estimation results: relative efficiencies

It highlights the benefits of allowing the form of µ̂m(·) to be arbitrary, which

is a remarkable feature of our method. Concerning the semiparametric nui-

sance estimator that combines logistic regression and kernel smoothing, we

notice substantial improvement of its performance when n increases from

200 to 400. We believe this is because the bandwidth selection in the kernel

smoothing procedure is more stable with a larger sample size. All these

three approaches largely facilitate estimation for the target parameters θ0

based on the contaminated case-control samples through successfully learn-

ing the relation between the true status D and predictors Z among can-

didate cases. In addition we consider in some of the simulation settings a

plug-in estimator θ̂PI, which is the solution to

αN−11

∑N1

i=1µ̂(Zi)ψ(Wi, θ̂PI) + (1− α)N−10

∑N
i=N1+1ψ(Wi, θ̂PI) = 0. (4.5)

The estimating equation (4.5) naively substitutes the phenotyping model

estimator µ̂(Z) for the possibly unknown status variable D without debi-

asing. Its efficiency relative to θ̂IN is recorded in Table S3 of the Supple-

mentary Material to save space. Comparing the numbers in Tables 1, S1

and S3, we can see apparent efficiency inferiority of θ̂PI to our estimators

θ̂. In fact θ̂PI performs even worse than the initial estimator θ̂IN in some

cases. These results emphasize the necessity of adopting appropriate debi-

asing procedures after imputation, especially when µ̂(·) is calculated based
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4.2 Inference results: confidence intervals

on high dimensional or machine learning models.

4.2 Inference results: confidence intervals

We now establish 95% confidence intervals for the components of θ0 using

the samples of size N = 5 × 103, based on limiting distribution (3.12)

and a consistent estimate Ω̂ÂnΩ̂/n for the covariance matrix ΩAn(µ∗)Ω/n

therein. Here Ω̂ is as in (3.15) and Ân :=

α2ĉovV [{D − (1− δn)µ̂(Z)}ψ(W, θ̂)] + α2δn(1− δn)ĉovV∪N{µ̂(Z)ψ(W, θ̂)}

+ (1− α)2τ(1− τ)−1δnĉovC{ψ(W, θ̂)}

with ĉovV(·), ĉovV∪N (·) and ĉovC(·) referring to the empirical covariance

matrices calculated from the data sets V , V ∪ N and C, respectively. Re-

sults in the settings where N ∈ {104, 2.5 × 104} appear similar in pattern.

We thus omit them in the interest of space. Since the target θ0 is a p-

dimensional vector, we calculate for each case two numbers that summarize

the coverage rates and lengths of the p componentwise confidence intervals

{CI1, . . . ,CIp}: (a) the deviation of coverage rates from the nominal level,

DCR := p−1
∑p

j=1|CRj × 100− 95| (4.6)

with CRj the coverage rate of CIj, and (b) the average length of {CI1, . . . ,CIp}.

In Tables 2 and S2 (in the Supplementary Material), we can see the

confidence intervals possess satisfactory average lengths along with negli-
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gible deviations of coverage rates across all the settings, which reveal high

precision and accuracy of our inference method. These observations verify

the distributional result obtained in Theorem 1, confirming the asymptotic

normality of θ̂ relies on neither specific forms of the nuisance estimator nor

correct specification of the phenotyping model. Interestingly, when q = n,

our method still yields coverage rates that are very close to the nominal level

95%. Considering the typical L2 convergence rate of β̂m in (4.2), for exam-

ple, is Op((q log d/n)1/2) (Wainwright, 2019), limiting behaviors of µ̂m(·) in

(4.2) are quite hard to specify in dense models with q = n: even the exis-

tence of its limit is uncertain. The decent performance in such harsh settings

suggests notable insensitivity of our inference method to asymptotics of the

nuisance estimation, which will be further investigated in Section 5. Over-

all, the simulation results demonstrate based on contaminated case-control

data, our method is able to provide robust and efficient inference for θ0

without knowledge concerning (a) structures of the phenotyping model and

(b) convergence properties of the nuisance estimator.

5. Relaxation of conditions on the nuisance estimator

Noticing in Section 4 that our method yields satisfactory numerical perfor-

mance under high dimensional dense phenotyping models, where limiting
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Table 2: Simulation results of the primary analysis in Section 4: compo-

nentwise confidence intervals for θ0 established based on our estimators θ̂
given in (3.5). The sample size is N = 5000. The nuisance estimator µ̂(·)
in θ̂ is constructed using logistic regression (LR), kernel smoothing (KS) or
random forest (RF). Here q is the sparsity level of the phenotyping model
E(D | Z, S = 1), d ≡ 500 the dimension of the predictors Z, n the vali-
dation set size, ρ(Z) the function in data generating model (4.1), DCR as
defined in (4.6) and AL stands for “average length”. The choices (a)–(e) of
ρ(Z) are listed in Section S5 of the Supplementary Material.

q = dd1/2e q = n

LR KS RF LR KS RF

n ρ(Z) DCR AL DCR AL DCR AL DCR AL DCR AL DCR AL

200

(a) 0.90 0.28 0.97 0.28 0.98 0.28 0.90 0.28 0.97 0.28 0.98 0.28

(b) 0.73 0.31 0.93 0.33 0.87 0.38 0.85 0.28 0.80 0.30 0.93 0.28

(c) 0.93 0.29 0.65 0.31 0.90 0.29 0.95 0.26 0.88 0.27 1.15 0.25

(d) 1.12 0.34 0.85 0.36 1.08 0.34 0.78 0.29 1.02 0.31 0.78 0.29

(e) 0.85 0.28 0.90 0.30 0.98 0.32 0.93 0.24 0.88 0.26 1.03 0.24

400

(a) 0.48 0.21 0.40 0.22 0.52 0.21 0.48 0.21 0.40 0.22 0.52 0.21

(b) 0.70 0.23 0.93 0.24 0.67 0.28 1.35 0.19 1.15 0.20 1.18 0.19

(c) 0.62 0.22 0.75 0.23 0.65 0.23 0.80 0.18 0.78 0.19 0.70 0.18

(d) 0.83 0.25 1.07 0.26 1.05 0.25 0.65 0.20 0.70 0.21 0.62 0.20

(e) 0.85 0.21 0.67 0.22 0.47 0.24 1.05 0.17 1.10 0.17 1.10 0.17

behaviors of µ̂m(·) can be quite uncertain and Assumption 3 may not hold,

we attempt to provide some explanations for this observation by exploring

properties of our estimators θ̂ without Assumption 3. Another motiva-

tion of this section is the fact that θ̂IN in (3.14) is a regular M -estimator

without any nuisance function, which enjoys n1/2-consistency and asymp-

totic normality for θ0 under standard regularity conditions. However, the

simulation results in Section 4.1 indicate θ̂IN is generally inefficient due to

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0373



ignoring the nonvalidated candidate cases. Compared with θ̂IN, our method

involves nuisance estimator µ̂m(·) to achieve semiparametric efficiency. We

naturally wish to minimize costs of the efficiency gain, i.e., to strengthen

robustness of θ̂ to assumptions on µ̂m(·) to the greatest extent possible.

Consider this question: what if no convergence condition is imposed on

the nuisance estimation? Theorem 2 shows in this scenario, our estimators

θ̂ are still n1/2-consistent. To attain asymptotic normality, we introduce a

variant of θ̂ adopting the sample-splitting strategy (Cox, 1975): divide the

validation set V into two disjoint subsets, Ṽ1 := {(Di, Si ≡ 1,Zi) : 1 ≤ i ≤

n1} and Ṽ2 := {(Di, Si ≡ 1,Zi) : n1 < i ≤ n}, of sizes n1 and n2 := n− n1.

Let µ̃1(·) be a random function involving Ṽ1 only. The sample-splitting

variant of our estimators for θ0 is θ̃ :=

θ̂IN + Ω̂[α(N1 − n1)
−1∑N1

i=n1+1µ̃1(Zi)ψ(Wi, θ̂IN) + (1− α)N−10 ×∑N
i=N1+1ψ(Wi, θ̂IN) + αn−12

∑n
i=n1+1{Di − µ̃1(Zi)}ψ(Wi, θ̂IN)]. (5.1)

We can see
∑N1

i=n1+1µ̃1(Zi)ψ(Wi,θ),
∑N

i=N1+1ψ(Wi,θ) and
∑n

i=n1+1{Di−

µ̃1(Zi)}ψ(Wi,θ) in (5.1) are three sums of conditionally independent terms

given Ṽ1, since µ̃1(·) is calculated from Ṽ1 ≡ {(Di, Si ≡ 1,Zi) : 1 ≤ i ≤ n1}

only. This is a key feature that enables us to derive the conditional limit-

ing distribution of θ̃ given Ṽ1 by treating µ̃1(·) as nonrandom. Then, the

unconditional asymptotic normality of θ̃ follows.
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Theorem 2. Let µ̂(·) in (3.5) be the cross-fitting estimator (3.6). Suppose

{µ̃1(·), µ̂1(·), · · · , µ̂M(·)} are bounded and Assumptions 1–2 hold. Then es-

timators θ̂ in (3.5) satisfies ‖θ̂−θ0‖ = Op(n
−1/2 +unvn +u2n). Concerning

θ̃ in (5.1), we have n
1/2
2 (ΩÃnΩ)−1/2(θ̃ − θ0)

d−→ N(0, I) as n2 → ∞ given

unvn + u2n = o(n
−1/2
2 ), E{‖ψ(W,θ0)‖2(1+c)} <∞ for some constant c > 0,

and λ−1min(Ãn) = Op(1). The form of matrix Ãn is specified in Section S6 of

the Supplementary Material.

Remark 4 (Interpretation and extension of results in Theorem 2). The only

requirement on the nuisance estimators is boundedness. This is realistic be-

cause {µ̃1(·), µ̂m(·)} typically aim to predict some conditional probabilities.

More generally, assuming certain moments of the nuisance estimators to be

of order Op(1) should suffice for the results in Theorem 2. Compared with

the standard definition of “robustness” in the presence of nuisance estima-

tion in the literature such as Bang and Robins (2005), Athey and Imbens

(2015) and Dai et al. (2023), the robustness of θ̂ established in Theorem

2 is superior in the sense that the n1/2-consistency of θ̂ does not rely on

any asymptotic property of the nuisance estimator, while the standard ro-

bustness just defends against misspecification of nuisance estimators’ limits.

Regarding θ̃, one may not use it to estimate θ0 in practice due to efficiency

loss caused by discarding n1 validated cases in formula (5.1). However, by
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proposing θ̃ and investigating its asymptotic behaviors, we have illustrated

the possibility of valid inference without any asymptotic knowledge of nui-

sance estimators. We believe the distributional result of θ̃ in Theorem 2

can partially explain the numerical results in Section 4.2: the confidence in-

tervals produced by our method always yield satisfactory coverage rates for

the components of θ0, even if properties of µ̂(·) are intractable. In Section

S4 of the Supplementary Material, we illustrate generalizability of Theorem

2 by deriving analogous properties, which are entirely free of convergence

assumptions on nuisance estimation, for approaches to two other important

problems involving nuisance functions: semi-supervised inference for mean

response (Zhang and Bradic, 2022) and average treatment effect estimation

in randomized experiments (Wager et al., 2016).

6. Real data analysis

This section illustrates the applicability of our method through an associ-

ation study of sepsis-related death with a set of critical risk factors, which

was based on a data set extracted from MIMIC III (Johnson et al., 2016).

For each patient, the data set provided records of the thirty-day vital status

S and covariates X ∈ R12 (including a constant one as the first component)

that were identified as important risk factors for patients’ mortality by Hou
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et al. (2020). Detailed descriptions of these covariates can be found in Ta-

ble S4 of the Supplementary Material. Noticing some individuals do not

have any sepsis-related billing code, we realized they were very likely to

be sepsis-free and should thereby be excluded from the study that focused

on sepsis-related death. To handle this potential cohort contamination, we

treated only those with at least two of the six common sepsis-related billing

codes as eligible observations. Complete records of the six codes were avail-

able for 3411 survivals and 116 deaths in the data set. According to our

criterion, 1327 survivals and 80 deaths were classified as sepsis patients.

The former suffices to serve as the control pool in our study while the latter

provides too few cases. We attempted to make use of another 579 deaths

who were recorded in the data set but had unknown sepsis statuses. The

two-sided t/Z-test between the groups of 116 validated and 579 nonvali-

dated deaths was conducted for each of the continuous/binary covariates in

X, yielding p-values all above 0.05. Hence we treated the validation set as

a random subset of all the deaths. Considering the inclusion of ineligibles

and the incompleteness of phenotyping information, it was suitable to apply

our method to conduct the primary analysis on relationship between mor-

tality and the 12 covariates among sepsis patients. In addition to X, the

data set contained observations for another 68 predictors as well, including
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a number of demographic and clinical variables that were informative for

sepsis status. In summary, we had N0 = 1327 controls (S = 0 and D = 2)

as well as N1 = 116 + 579 = 695 candidate cases (S = 1 and D ∈ {0, 1}) of

which only n = 116 possessed known status D. We aimed at the odds ratio

parameters of the vital status S on the covariates X ∈ R12 among individ-

uals with D 6= 0, as defined in (S1) of the Supplementary Material. The

phenotyping model E(D | Z, S = 1) was established based on the predictors

in Z ∈ R80, including X as a subvector.

In Figure 1, we display 95% confidence intervals of the 11 odds ratio

parameters constructed based on our estimators θ̂ in (3.5). The intercept

term was excluded because it is usually not of interest in a case-control

study. Our method was implemented as described in the second paragraph

of Section 4. The benchmark was still the initial estimator θ̂IN given in

(3.14). Compared with θ̂IN (red bars), our estimators θ̂ with any of the

three imputation functions (green, blue and purple bars) produced substan-

tially shorter confidence intervals for all the parameters. In particular, the

covariate “metastatic cancer” was detected as significant by our approach.

This finding coincided with the medical knowledge that metastatic cancer

increases the risk of death. In contrast, the benchmark inference method

that discarded the nonvalidated candidate cases missed this significance.
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Figure 1: Results of the data analysis in Section 6, which studied rela-
tionship between mortality and 11 covariates among sepsis patients: 95%
confidence intervals of the odds ratio parameters defined in (S1) of the Sup-
plementary Material, which were constructed based on the initial estimator

θ̂IN in (3.14) or our estimators θ̂ in (3.5). The imputation function µ̂(·)
in θ̂ was calculated using logistic regression (LR), kernel smoothing (KS)
or random forest (RF). All the continuous covariates were standardized in
advance.

Among the three imputation functions, the semiparametric (blue bars) and

machine learning (purple bars) ones, which leveraged kernel smoothing and

random forest, outperformed the parametric one (green bars) based on lo-

gistic regression. This finding again illustrated benefits of compatibility

with any reasonable regression or machine learning approaches employed

for the nuisance estimation, which is a desirable feature of our method.

Also we calculated the plug-in estimator θ̂PI in (4.5), whose components
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were displayed in Table S5 of the Supplementary Material in the interest of

space. Therein θ̂PI showed severe deviation from our estimators presented

in Figure 1, which can be attributed to naive imputation without debiasing.

Due to not being appropriately debiased in the construction of θ̂PI, the nui-

sance estimator µ̂(·) yielded first-order errors that possibly dominated the

limiting behavior of θ̂PI. Considering µ̂(·) was based on high dimensional

or machine learning models with intractable properties, the plug-in estima-

tor θ̂PI generally did not have an explicit asymptotic distribution, thus not

allowing for confidence interval construction. This fact highlighted another

critical advantage of our approach – the ability to provide valid inference.

Supplementary Material

The Supplementary Material collects several important materials that can-

not be accommodated in the main article. All the programs and data set

used in Sections 4 and 6 are available at https://github.com/guorongdai/

case_contamination_M_estimation.
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